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Chapter 12
Brain Haemorrhage Detection Through 
SVM Classification of Electrical 
Impedance Tomography Measurements

Barry McDermott, Eoghan Dunne, Martin O’Halloran, Emily Porter, 
and Adam Santorelli

12.1  �Introduction

An important medical problem is the accurate and timely detection and diagnosis of 
the presence of a brain haemorrhage in a patient. Brain haemorrhages can be present 
in pathologies such as stroke and traumatic brain injury. Stroke (also known as a 
cerebral vascular accident (CVA)) features a disruption in the flow of blood to an 
area of the brain and a subsequent sudden loss of neurological function [1]. Stroke 
is the main cause of adult disability in the United States, the fourth largest killer, and 
costs the country in the region of $70 billion annually in direct and indirect costs 
[2]. The aetiology of an incidence of CVA will either be related to a blockage of a 
blood vessel (ischaemic stroke) or the rupture of a blood vessel and subsequent 
bleed (haemorrhagic stroke). Crucially, as the treatment is radically different 
depending on the stroke type, it is vital to differentiate the cause as ischaemic or 
haemorrhagic [3]. For example, the use of the drug tissue plasminogen activator 
(tPA) is indicated for ischaemic patients but may be lethal to haemorrhagic patients 
[3]. Further, the patient outcomes following a CVA are directly linked to the length 
of interval between stroke onset and the start of treatment, with a worse prognosis 
associated with a delay. This underlines the need for both accurate and rapid detec-
tion of the presence, and equally the absence, of brain haemorrhage in stroke 
patients. Currently, definitive diagnosis is dependent on imaging modalities such as 
computed tomography (CT) and magnetic resonance imaging (MRI), which often 
suffer from accessibility issues for patients [4]. A device based on electrical imped-
ance tomography (EIT), and augmented with machine learning (ML), may result in 
expedited initial diagnosis for CVA patients.

Traumatic brain injury (TBI) is any of a range of injuries that results from an 
external force impacting the head with a consequent disruption in brain function. 
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TBI results in an annual cost of $61 billion in the United States [5]. Initial triage of 
TBI usually involves subjective assessment of severity with use of metrics such as 
the Glasgow Coma Scale [6]. Imaging (usually CT) is indicated for more severe TBI 
cases including incidents featuring haemorrhage [6, 7]. Better initial triage, includ-
ing improved early detection of brain haemorrhage, potentially with the use of a 
modality like EIT coupled with ML, would improve the efficiency of the patient 
pathway through more objective selection of patients for gold standard imaging like 
CT. This need is illustrated by the estimation that a 10% reduction in the use of CT 
for minor TBI patients could save $10 million annually in the United States [8].

It is emphasised that in both of these motivating clinical examples, the imaging 
of a bleed is unnecessary; it is the definitive ruling in or out of the presence of the 
bleed that is essential to the progress of the patient in the work-up.

The use of machine learning applied to medical diagnostics and other medical 
areas has been the scene of significant and important growth recently [9]. The fact 
that computers can process large amounts of data at high speed, combined with the 
rapidly increasing ability of machines to learn and improve performance over time, 
makes the technique amply suited to analysis and interpretation of biological data. A 
popular biomedical application for ML and the closely related and complimentary 
area of data mining (DM) has been interpretation of diagnostic imaging which 
includes data from such modalities as CT, MRI, and ultrasound [10–12]. However, 
ML and DM are now being used in a range of other areas such as genetic analysis, 
monitoring of physiology, and the evaluation of disability [13]. In this work, we 
examine the potential for EIT to be used to assess anatomy and physiology of the 
body, coupled with the ML technique of support vector machine (SVM) classification 
to be used in medical diagnostics, denoted as EIT-SVM.

Fundamental to this research is the use of computational (numerical) models. 
Computational models allow controlled development of a technology or algorithm 
with the ability to experiment and test parameters resulting in progression and a 
better final product before translation to patients.

In the next section, the basis behind EIT, including the nature of EIT measure-
ment frames, which are the input to the classifiers, is described. Description of the 
SVM classifier and the computational modelling techniques used are also presented 
in Sect. 12.2. Section 12.3 then summarises the application of a linear SVM classi-
fier to raw and minimally pre-processed EIT measurement frames, investigating the 
performance of the classifier in detecting bleeds in different scenarios, including 
variations in simulated noise, bleed size, bleed location, electrode positioning, and 
anatomy of the model. Section 12.4 presents methods to improve the performance 
and efficiency of the classifier, including changing the kernel function, selective 
pre-processing of the frames (including the use of sub-frames), dimensionality 
reduction and selection of specific features (using Laplacian scores and principal 
component analysis (PCA)), and finally using an ensemble classifier. Section 12.5 
ends the chapter with a discussion and conclusion.

The content of this chapter builds on the research presented in [14], which was 
expanded upon in [15]. This previously published material from [14, 15] forms the 
core of Sect. 12.3, before new content in Sect. 12.4 is presented, which aims to 
improve the classifier performance.
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12.2  �Technologies

This section introduces the core technologies used in this study; EIT and SVM clas-
sifiers. In the final part of the section, the computational modelling techniques and 
tools centred on a two-layer computational model of the head with variants, designed 
to emulate various test scenarios, is described.

12.2.1  �Electrical Impedance Tomography

Electrical impedance tomography is an imaging modality and the basis of an ever-
increasing and vibrant area of active research with a number of applications in the 
biomedical sphere [16]. EIT is based on the feature of biological tissue of electrical 
conductivity, as a result of the ion containing extracellular fluid (ECF) and intracel-
lular fluid (ICF). The ECF bathes and surrounds cells, while the ICF refers to the 
fluid within cells. The cell membrane that surrounds the individual cells represents 
the border between the two compartments [17]. The conductivity is characteristic to 
each particular tissue. For example, blood is a good conductor, owing to the high ion 
content of the tissue, whereas bone is a poor conductor [16]. The conductivity is 
quantified in Sm−1 and is the inverse of the resistivity. Closely related is the concept 
of electrical impedance, which is the extension of the idea of resistance to alternat-
ing current (AC) circuits with a real (resistance) and complex (reactance) part. A 
biological tissue can be modelled as a three-part electrical circuit as shown in 
Fig. 12.1, where Re is the resistance of the ECF, Ri the resistance of the ICF, and the 
cell membrane is modelled as a capacitor with capacitance Cm [18]. At low AC fre-
quencies, the capacitive reactance of the cell membrane is high with the result of the 
overall impedance of the system being effectively Re. At higher AC frequencies, 
current can pass through the cell as the capacitive reactance drops and, consequently, 
the overall impedance of the system drops. This concept is illustrated in Fig. 12.2 
[18]. As conductivity is inversely related to impedance, it follows that the electrical 
conductivity of a tissue will increase with increase in AC frequency. The exact 
nature of the conductivity profile is a characteristic of the tissue in question.

EIT makes use of the difference in conductivity profiles of tissues. This differ-
ence in conductivity profiles is often used to generate an image of the region of 

Fig. 12.1  An electrical model of biological tissue with current having two paths of flow. One path 
is the ECF with resistance Re, while the other is through the cell which has a capacitor like mem-
brane with capacitance Cm and the ICF with resistance Ri. (Adapted from [18])
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interest (ROI). EIT characteristically involves an array of electrodes positioned on 
the boundary of the ROI. A popular electrode configuration is that of a ring of elec-
trodes, typically with 8–64 electrodes surrounding the region [18]. Electrical cur-
rent is then injected through a pair of electrodes (“stimulation”) and the resultant 
voltages measured at all other electrode pairs. The injection pair is then changed, 
and voltage measurements are taken between the new measuring pairs. The overall 
pattern of stimulation and measurement constitutes an EIT “protocol”, with each 
individual measurement referred to as a “channel”. The complete set of chan-
nels comprises the EIT measurement “frame”. EIT systems typically operate in the 
1 kHz–2 MHz frequency range, with injected currents of the order of μA to low mA 
[16]. Importantly, international safety standards limit the current to 100 μA rms for 
currents up to 1 kHz with the limit rising to an absolute limit of 10 mA when operat-
ing above 100  kHz [16, 19]. The electrode configuration and number, protocol, 
current amplitude, and frequency are application dependent. In Fig. 12.3, a sample 
EIT measurement channel, with a “skip 2” protocol and the electrodes arranged in 
a 16-electrode ring surrounding a circular body, is illustrated. In this protocol, each 
electrode is paired to the electrode three positions away from it (i.e., with 2 in-
between electrodes skipped over). The ROI illustrated in Fig. 12.3 is of homogenous 
tissue with one region of differing conductivity present (illustrated as a red circle). 
The presence of this tissue affects the voltage at the different measurement elec-
trodes. For example, at 50 kHz, a bleed is more electrically conductive than the 
surrounding brain parenchyma [15]. Hence, for a given channel with a constant 
injection current, the measured voltage will be smaller in magnitude if a bleed is 
present than if there is only healthy brain tissue present. This trend follows from 
Ohm’s law, described in Eq. (12.1) where V is the voltage, I is the current; and σ is 
the electrical conductivity,

Fig. 12.2  Current 
movement through tissues 
at low and high 
frequencies. At low 
frequencies, the capacitor 
effect of the cell membrane 
impedes current flow 
through the interior of the 
cell. At high frequencies, 
the capacitor effect 
becomes negligible and 
current can flow through 
the ICF. (Adapted from 
[18])
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	 V Is = 	 (12.1)

If a bleed is larger, the measured voltages will be smaller. Further, channels 
nearer to the bleed are affected more by the presence of the bleed than those further 
away, as EIT is more sensitive to changes where current density is higher [19]. 
Hence, information regarding the presence, nature, and location of the various tis-
sues in the ROI are theoretically encoded in the final measurement frame.

For a 16-electrode ring, a given injecting pair results in 16 measurement pairs. 
However, it is common practice not to take measurements from either of the inject-
ing electrodes hence 13 measurements are taken [19]. Over the course of a complete 
protocol, there will be 16 injecting pairs and so a complete frame will be made up 
of a total of 208 channels. The number of channels in the frame is summarised in 
Eq. (12.2):

	
N N NM E E= -( )3 	

(12.2)

where NM is the number of measurements when using NE electrodes.
The relationship between the conductivity profile of the ROI and the values in 

EIT measurement frames is given by the EIT forward and inverse problems. The 
EIT “forward problem” refers to the prediction of the measured values given the 
complete conductivity profile of the body [19]. In the computational model used in 
this study (described in Sect. 12.2.3), the finite element method (FEM) was used to 
solve the forward problem for the geometry of interest, which is that of the human 
head. An important calculated parameter is the sensitivity matrix (the Jacobian, J). 
The Jacobian gives the sensitivity of each measurement to a conductivity change 
within the ROI [19]. The “inverse problem” of EIT involves calculating the conduc-
tivity profile of the interior of the body of interest given a set of measurements. This 

Fig. 12.3  An EIT 
measurement channel from 
a “skip 2” protocol 
involving a 16-electrode 
ring around a circular 
ROI. Current is injected 
between electrodes #1 and 
#4 (orange arc) with 
voltage measured between 
electrodes #3 and #6 (beige 
arc). A tissue with different 
conductivity to the bulk 
tissue is illustrated by the 
red circle
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is an ill-posed inverse problem (the number of “voxels” to be assigned conductivity 
values is typically larger than the number of measurements) with the need for regu-
larisation techniques in order to obtain the most reasonable solution [19]. The result 
is a conductivity map of the interior of the ROI.

EIT is a non-invasive modality with a high temporal resolution [19]. However, it 
has drawbacks, including poor spatial resolution, low sensitivity to conductivity 
changes at a depth from the boundary, and high sensitivity to electrode modelling 
errors [19, 20]. Attempts to overcome these challenges and reconstruct useful 
images have seen different EIT modalities established, many of which rely on dif-
ference imaging in order to minimise errors. The most successful EIT modality to 
date is that of time difference EIT (tdEIT), which reconstructs an image based on 
differencing frames of a “before” and “after” measurement. This modality has been 
applied to the monitoring of physiological functions in regions such as the thorax 
where there is a large contrast between inspiration (air in the lungs) and expiration 
(air emptied from the lungs) [19]. Static scenes are more challenging, without a 
satisfactory modality for imaging established to date. In a complex region such as 
the head, where the high impedance of the skull severely dampens the stimulating 
current, the imaging of static pathologies such as an established bleed has been 
proven to be difficult [18, 21].

In this work we examine the viability of using EIT measurement frames in a 
more direct manner, without the mathematically difficult and challenging image-
reconstruction step. In scenarios that do not require an immediate image, such as 
stroke classification or TBI triage, it may be sufficient to definitively rule in or out a 
bleed. The information relating to the presence or absence of such a perturbation in 
the body of interest is encoded in the EIT measurement frame. The basis for this is 
the a priori knowledge that there is a notable difference in conductivity between 
blood and normal brain parenchyma [22]. ML offers techniques that can potentially 
learn from raw or processed EIT frames and classify the frame as positive or nega-
tive for a bleed. In the next section we examine such a ML technique: SVM 
classifiers.

12.2.2  �Support Vector Machine (SVM) Classifiers

A definition of ML proposed by Mitchell is that of a “computer program that 
improves its performance at some task through experience” [23]. Different types of 
“tasks” exist when referring to ML. One of the major task types is classification. In 
a classification task, each observation is assigned to one of a number of designated 
classes or labels. Each observation consists of several features (traits) that define it. 
These features are used as the inputs to the ML algorithm. The algorithm will then 
use this information to create a trained model that can be used to predict the class 
that future observations belong to. In the context of the work presented here, the 
input features are the EIT measurement frames (processed or un-processed) obtained 
from numerical simulations of the head in which a bleed is or is not present. The two 
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classes defined in this scenario are “bleed” or “normal”, denoted as +1 and −1, 
respectively. The task of the classifier is to use the measurement frames, with the 
channel measurement values (or equivalent if processed) as features, to correctly 
predict whether future observations belong to the “bleed” or “normal” class.

SVMs are a group of popular ML algorithms commonly employed for binary 
classification. They have been used in previous biomedical applications, including 
the use of microwave signals to classify whether a breast scan is considered healthy 
or tumourous [24–26], and electrical impedance spectroscopy signals for classifica-
tion of breast [27–29] and prostate [30] as diseased or normal. The use of EIT mea-
surements in ML algorithms is a relatively new area of research. Some work has 
been done in the area of bladder volume estimation [31, 32] and the focus of this 
chapter, brain haemorrhage detection, has been explored by our group [14, 15, 33].

As is typical in the use of SVMs and related classifiers, the basis of the algorithm 
is the creation of a model using a training set. This training set consists of observa-
tions with the true class known (supervised learning) or unknown (unsupervised 
learning). The performance of the trained classifier can be assessed by analysis of 
the results of classifying a test set of previously unseen observations. The trained 
and tested classifier can then be used to classify new observations; assuming the 
training and testing process was properly implemented, the classifier will perform 
in-line with expectations even on new observations.

The core of the SVM model is the creation of a hyperplane that best separates 
observations from the two classes. A representation of a two-dimensional (2-D) 
hyperplane (a line) separating the observations classified as +1 or −1 is shown in 
Fig. 12.4. In the training phase, a mathematical model of the hyperplane and margin 
is developed with the training observations having n-dimensions (n number of fea-
tures). The hyperplane is used to decide whether future observations belong to 
either the +1 or −1 class. When the data is not perfectly separable (there exists no 
margin that guarantees no observations between it and the hyperplane), “soft” mar-
gins can be used to ignore those outliers [34]. An important parameter when using 
SVM classifiers is the kernel, which defines the function used to generate the hyper-
plane. A linear kernel is the simplest type of kernel, which offers potential advan-
tages including speed, low computational overhead, and an ease of implementation 
[35]. Other kernel functions, including the non-linear Gaussian Radial Basis 
Function (RBF), can be used to define the hyperplane [24, 27]. Additional informa-
tion about the mathematical formulations governing the various SVM algorithms 
can be found in [34, 36].

The performance of a classifier can be reported by a number of different metrics. 
A key result is the confusion matrix, which compares the expected and predicted 
classes. An example of a confusion matrix, for a binary classifier, is shown in 
Fig. 12.5. As shown, a true positive (TP) refers to observations where the expected 
and predicted classes are +1, and a true negative (TN) where the expected and 
predicted classes are −1. A false positive (FP) is where the expected class is −1 but 
is predicted as +1, with a false negative (FN) the opposite.

Two key metrics of performance derived from the confusion matrix are the sen-
sitivity and specificity. Sensitivity (TP Rate) is the proportion of observations clas-
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sified as +1 out of the total that are truly +1. Specificity (TN Rate) is the proportion 
of observations classified as −1 out of the total that are truly −1. Accuracy is the 
proportion of correctly classified cases out of the total number of cases. These met-
rics are defined in Eqs. (12.3)–(12.5),

	
Sensitivity

TP

TP FN
=

+ 	
(12.3)

	
Specificity

TN

TN FP
=

+ 	
(12.4)

	
Accuracy

TP TN

TP TN FP FN
=

+
+ + + 	

(12.5)

Fig. 12.4  Visualisation of a SVM classifier. The trained SVM classifier model calculates the opti-
mal hyperplane that separates the two classes (shown here as black circles for the +1 class and grey 
circles for the −1). The margin of the hyperplane is as wide as possible (for a “hard” margin), with 
the borders of the margins defined by the cases called “support vectors” represented here as circles 
with a visible outer shell. The hyperplane in this case is 2D (a line)

Fig. 12.5  The confusion 
matrix for a binary 
classifier with classes ±1. 
The expected (true) class 
and predicted class 
assigned to cases are 
compared
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The above Eqs. (12.3)–(12.5) imply the values of sensitivity, specificity, and 
accuracy range between 0 and 1, with 1 indicating perfect performance for that 
metric (this range is equivalent to 0–100%).

The receiver operating characteristic (ROC) curve is a plot of sensitivity versus 
(1 – specificity) [35]. It is a useful tool to illustrate the trade-off between sensitivity 
and specificity. If a classifier is 100% sensitive and 100% specific, as is ideal, then 
the ROC curve is said to have an Area Under the Curve (AUC) of 1. In the proposed 
application of brain haemorrhage detection applied to stroke and TBI, this is the 
ideal performance of a trained classifier. However, in cases where the performance 
is imperfect, this is reflected in a ROC curve where the AUC is <1. In such cases, it 
is possible to adjust the operating point of the classifier with a trade-off between 
sensitivity and specificity. For brain haemorrhage detection, it could be proposed 
that sensitivity is more important than specificity. A reduced specificity indicates an 
increased level of FPs which is not ideal but the alternative of reduced sensitivity 
with a consequent increased level of FNs would result in patients with bleeds being 
classified as normal and potentially receiving a dose of lethal tPA in the case of 
stroke or not receiving timely CT scan in the case of TBI. Hence, for brain haemor-
rhage detection, the optimal point of operation of the classifier is the point on the 
ROC curve where sensitivity is 1 while minimising (1 – Specificity). An example of 
three ROC curves is shown in Fig. 12.6.

Fig. 12.6  Receiver operating characteristic (ROC) curves are a plot of sensitivity versus (1 – spec-
ificity) and show the trade-off possible between sensitivity and specificity. An ideal ROC curve has 
an area under the curve (AUC) of 1 with an example of this shown as the blue trace. Here, an 
operating point where both sensitivity and specificity are both 100% is at (0,1). The red and yellow 
traces show imperfect ROC curves where AUC <1. In this case it is possible to maximise sensitiv-
ity by moving to the operating point shown with the penalty of reduced specificity. At any given 
point, the red curve gives a better sensitivity/specificity trade-off compared to the yellow curve. 
The yellow curve only offers a sensitivity of 1 where specificity is 0, which would result all obser-
vations being classified as +1
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12.2.3  �Computational Modelling Techniques

The core computational model used in this work was a FEM model of the human 
head and brain. The head is an anatomically complex and intricate structure [37], 
but for the purposes of EIT, simplifications can be made by focusing on those tis-
sues that have a significant effect on the conduction of electrical current. Typically, 
EIT simulations use a four-layer model, which includes the brain as the innermost 
layer, the electrically conductive cerebrospinal fluid (CSF) layer immediately exter-
nal to it, the highly resistive skull, and the moderately resistive scalp [18]. Naturally, 
more complex models exist and may be relevant depending on the research ques-
tion. For example, physical phantom models which model the differing resistivity 
across the skull are reported in the literature [38, 39].

In this work the head was designed as a two-layer structure. The layers were 
anatomically accurate representations of the brain and an aggregate outer layer 
comprised of the tissues external to the brain (the scalp, skull, and CSF layers), 
derived from anatomically realistic stereolithography (STL) files of the head [40] 
and brain [41]. As described in [15], this simplified model facilitated the develop-
ment of an equivalent physical phantom, allowing comparison between the compu-
tational results and the phantom results. Further, it was computationally “light” and 
allowed rapid development of variant test models.

The STL files were meshed into a FEM model using the software packages 
EIDORS [42], which itself uses Netgen [43] and Gmsh [44] for meshing. EIDORS 
is an open source set of tools designed to aid the development of EIT (and the 
related area of diffuse optical tomography), and is written for use with MATLAB 
[45] and Octave [46]. Using EIDORS, a 16-electrode ring was placed on the exterior 
surface of the FEM model at the approximate level of the inion-nasion line sym-
metrically across the sagittal plane. The electrode ring defined a transverse plane, 
and a refinement of the mesh at the contact points [47] was carried out. This consti-
tuted the “base numerical model”. Modifications were made to expand this model to 
create a total of 243 models of the “normal” (bleed free) head. These 243 models 
were created by varying the head and brain anatomy (±5% in size in each Cartesian 
axis), and modifying the electrode position (±2 mm in the positioning of the ring in 
terms of height). More complete details on these 243 models can be found in [33].

Bleeds were modelled as spheres within the brain layer using the computer-aided 
design package Autodesk Fusion 360 [48]. The two primary bleed sizes used were 
30 ml and 60 ml, with some experiments using bleeds of smaller volume (down to 
5 ml). In stroke patients, a 30 ml bleed is a threshold size associated with worse 
outcomes, with 60 ml a threshold for significant mortality [49, 50]. These bleeds 
were placed in each of the 243 normal models at each of the 4 cardinal points of 
north (‘N’, front), south (‘S’, back), east (‘E’, right), and west (‘W’, left) in the 
plane of the ring, at the exterior of the brain. This resulted in 1944 “bleed” head 
models, each model with one bleed of a given size and location. The electrical con-
ductivity, fundamental to EIT, can be assigned to each FEM model element depend-
ing on which tissue is being modelled. The realistic conductivity values of 0.1 Sm−1, 
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0.3 Sm−1, and 0.7 Sm−1 were used for the aggregate outer layer, the brain layer, and 
the bleeds, respectively [15]. EIDORS allows defining of the EIT protocol (“skip 2” 
for this work) and the subsequent generation of measurement frames from a FEM 
model. This suite of 243 normal and 1944 bleed heads allowed the emulation of a 
wide variety of test situations, with these experiments and results described in later 
sections. In Fig. 12.7 the base numerical model is shown along with the positioning 
of the 30 ml and 60 ml bleeds within the model.

12.3  �SVM Applied to Raw EIT Measurement Frames 
with Analysis of the Effect of Individual Variables 
on SVM Performance

Initial experiments focussed on the effect of individual variables such as measure-
ment noise, bleed size and location, electrode position, and anatomy. These vari-
ables constitute important parameters. Understanding the effect they have on EIT 
measurement frames, and consequent performance of the SVM classifier, can help 

Fig. 12.7  Computational (numerical) model of the head. Left: The base numerical model is an 
anatomically accurate two-layer model of the brain and aggregated tissues external to the brain. 
The 16-electrode ring is shown with electrode contact areas in green and white numbering of some 
electrodes for orientation. Right: Removal of the brain layer to illustrate the size and positioning 
of the bleeds. The positioning of the electrodes #1–16 are shown as a ring of white numbers. 
Bleeds of volume 30 ml and 60 ml are positioned in the north, south, east, and west locations as 
shown. A given model will contain either no bleed or only one bleed. The bleeds are positioned 
immediately at the exterior of the brain layer in the plane of the ring. The different colouring of the 
layers represents the different electrical conductivities; 0.1  Sm−1 for the aggregate outer layer 
(white), 0.3 Sm−1 for the brain (yellow), and 0.7 Sm−1 for bleed (burgundy). (Adapted from [15])
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inform future research experiment decisions. The results and conclusions from 
these experiments are briefly summarised herein; for more detail, refer to [15].

In each experiment, measurement frames generated from a subset of FEM mod-
els were used to train and test a linear SVM with no (raw) or minimal processing of 
the frames performed prior to use of the classifier. Minimal processing constituted 
sorting the values in the measurement frames in order of numerical value. This 
simple pre-processing step was found to aid performance in certain scenarios (see 
Sect. 12.3.2). In all cases, the training and test sets comprise an equal number of 
measurement frames from normal models and models with bleeds present. In this 
section, a linear SVM classifier was implemented for all experiments. The classifier 
was trained with 80% of the data set and then tested with the remaining, unseen, 
20%. The classifier is optimised by generating a ROC curve in training. The gener-
alised accuracy in training is used to choose a point on the ROC curve that maxi-
mises sensitivity. The final classifier is re-trained at this operating point and the 
performance of the trained classifier on the test set data is used to obtain the perfor-
mance metrics presented in this section.

12.3.1  �The Effect of Noise

The amount of noise in a measurement frame can be controlled by adjusting the 
signal-to-noise ratio (SNR) using tools supplied by EIDORS. The SNR is defined in 
Eq. (12.6), where the noise is a numerical value in dB,

	 SNR (Signal/Noise)= 20 10Log 	 (12.6)

In order to add noise to a measurement frame, EIDORS generates a vector (of 
same size as the measurement frame) of normally distributed random numbers with 
the values in this vector then scaled by multiplication of the ratio of the Euclidean 
norms of the measurement frame and noise vector, before further scaling by divi-
sion by the desired SNR value. This final scaled vector of noise values is added to 
the measurement frame, resulting in a “noisy” frame.

EIT applications such as thoracic imaging may be successful with a system 
offering a SNR of 30–40 dB, whereas more demanding neural applications, that 
may involve smaller changes and issues such as the skull dampening, may require 
systems capable of 80 dB and higher [51]. In order to study the effect of noise on 
performance, the base numerical model was used to generate normal frames, with 
the 30 ml and 60 ml bleeds placed in the north location to generate bleed frames. 
Noise was added to the measurement frames so that a SNR of 80 dB, 60 dB, 40 dB, 
and 20 dB was obtained. These measurement frames at the four SNR levels were 
used as the input features for a linear SVM classifier. Separate experiments were 
performed with the raw and sorted frames. The results for the sensitivity and speci-
ficity are shown in Fig. 12.8. The results show that the classifier performs well at a 
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SNR of 80 dB and 60 dB (sensitivity and specificity at or near 1), with a falloff in 
performance at 40 dB and poor performance at 20 dB.

12.3.2  �Effect of Bleed Location

The base numerical model was used to generate normal frames, with 30 ml and 
60 ml bleeds placed at the north location in the training set. The test set was created 
from frames generated by placing 30 ml and 60 ml bleeds at the three other cardinal 
points. Hence, the test set had novel bleed locations in comparison to the training 
set. The results for sensitivity and specificity for the raw and sorted frames are 
reported in Fig. 12.9, with the experiment performed at SNR levels of 80 dB, 60 dB, 
40 dB, and 20 dB. The classifier is seen to fail at bleed detection (sensitivity of 0) at 
80 dB and 60 dB when using raw measurement frames. This indicates an inability 
to cope with bleeds in locations different to that of the training set. The specificity 
is near 1 at 80 dB and 60 dB as expected as it is a measure of the ability to detect 
normal cases, which are the same in the training and test sets. The sensitivity then 
paradoxically increases at lower SNR levels, but an explanation may be the intro-
duction of general inability to differentiate normal from bleed at lower SNR levels 
as evidenced by the drop in specificity. The simple pre-processing step of sorting the 
frames by channel value helps increase the sensitivity from 0 to 0.33 and 0 to 0.47 

Fig. 12.8  Effect of noise on classifier performance. Measurement frames from normal and bleed 
cases have SNR levels of 80 dB, 60 dB, 40 dB, and 20 dB. The frames are unaltered (raw) or sorted 
by numerical values. The results of the classifier in terms of sensitivity (Sens.) and specificity 
(Spec.) for each scenario are reported above
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at 80 dB and 60 dB, respectively. The sorting results in channels located near the 
bleed location (with smaller measured voltages as explained in Sect. 12.2.1) to clus-
ter in the same area of the frame regardless of location. In the absence of the bleed, 
this area of “clustered” channels will have higher values characteristic of the no 
bleed case.

However, effectively these results suggest that accurate detection of bleeds in 
unseen locations is challenging. As described in [15], it is possible to improve per-
formance by working at an adjusted point on the ROC curve which improves sensi-
tivity at cost to specificity.

12.3.3  �Effect of Bleed Size

As described in Sect. 12.2.1, the larger the size of the bleed, the greater the voltage 
measurements will deviate from normal values. To investigate this effect, measure-
ments from the base numerical model without a bleed and then with bleeds of 60 ml, 
30 ml, 20 ml, 10 ml, and 5 ml at each of the four locations were generated at 60 dB 
SNR. The 60 ml bleed subset was used to train the classifier, which was then tested 
with each of the smaller volumes in turn at 60 dB SNR. These results are shown in 

Fig. 12.9  Effect of bleed location on classifier performance. The classifier performs poorly at 
detecting bleeds, as judged by the sensitivity, in novel locations to that used in the training set at 
80 dB and 60 dB with a paradoxical improvement seen at 20 dB SNR. The implementation of a 
simple pre-processing step, sorting the frames, improves sensitivity from 0 at 80 dB and 60 dB to 
values of 0.33 and 0.47 respectively. Specificity is not affected as severely, but this is expected as 
the normal cases are the same in both the training and test sets
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Fig. 12.10, which indicates a general inability to detect bleeds smaller than those 
trained with. The best value for sensitivity observed was 0.63 when using raw 
frames to detect the 30 ml bleed. Again, the TN rate (specificity) is not affected as 
the normal cases are the same in both the training and test sets.

Repeating the experiment using the 5 ml bleed in the training set and testing with 
each of the larger bleeds gives the results shown in Fig. 12.11, which shows gener-
ally good performance (sensitivity and specificity near 1) for detection of each of 
the larger bleed sizes. As discussed in Sect. 12.2.1, the size of voltage measurements 
is related to bleed size, with larger bleeds affecting measurements more than smaller 
ones. Hence, training with a small bleed “sensitises” the classifier to the bleed type, 
with larger bleeds resulting in even more pronounced changes in voltages and hence 
easier classification as bleeds.

12.3.4  �Effect of Electrode Positioning

Recent literature suggests that EIT is sensitive to errors in electrode positioning 
[52]. In this experiment, the base numerical model is used to generate measurement 
frames with and without all permutations of the 30 ml and 60 ml bleed at all four 
positions. The test set then comprises of measurement frames from equivalent 

Fig. 12.10  Effect of bleed size on classifier performance. A 60 ml bleed size is used in the training 
set with the test set comprised of bleeds of smaller volume. All experiments are performed at 60 dB 
SNR. The SVM classifier is unable to detect smaller bleeds than those trained with; however, the 
30 ml bleed is detected with a sensitivity of 0.63 when using the raw measurement frames
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models that differ only in the position of the electrode ring, with the ring displaced 
±2 mm with respect to the original, parallel to the plane of the original. This was to 
replicate operator error in placing a ring on a patient’s head. This analysis was per-
formed at a SNR of 60  dB.  This small error in electrode positioning causes a 
decrease in the sensitivity by 0.05 and 0.03, for the raw and sorted measurement 
frames, respectively. There is no impact on the specificity from this small electrode 
displacement.

12.3.5  �Effect of Normal Variation in Between-Patient Anatomy

The ability of the classifier to classify normal from bleed in unseen anatomies is 
assessed in this experiment. The training set is made up of measurement frames 
calculated from the base numerical model with and without the 30 ml and 60 ml 
bleed at all four locations. The test set is comprised of measurement frames from 80 
other anatomies that differ in the size of both the aggregate outer layer and brain 
layer by ±5% in the three Cartesian axes but have the electrode ring in the same 
position (as described in Sect. 12.2.3). These anatomies are used to generate mea-
surement frames with and without the equivalent bleeds present. Noise is added to 
all measurement frames, leading to a 60 dB SNR. The results indicate that the clas-
sifier struggles with unseen anatomy; the sensitivity and specificity were below 0.60 

Fig. 12.11  Effect of Bleed Size on Classifier Performance. A 5 ml bleed size is used in the training 
set with the test set comprised of bleeds of larger volume. All measurement frames have a SNR of 
60 dB. The SVM classifier performs well (Sensitivity and Specificity near 1) for all test volumes
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for both raw and sorted measurement frames, a decrease in over 0.40 from the clas-
sifier performance with known anatomies. Further analysis showed that an excess of 
brain tissue or lack of outer tissue in a test model compared to the training model 
was often misclassified as a bleed. Conversely, lack of brain tissue or excess outer 
tissue compared to the training model was often misclassified as normal.

12.4  �SVM Applied to EIT Processed Measurement Frames

Section 12.3 examined the use of a linear SVM classifier to classify FEM models of 
the head and brain as having a bleed or no bleed. The emphasis was on the effect of 
individual variables such as noise, bleed location and size, electrode positioning, 
and head anatomy on classifier performance. The section constituted an initial 
exploratory study with minimal attempt to intelligently select features for input to 
the classifier or indeed in selection of the best type of SVM classifier. In this section, 
research into these areas is reported, starting with the effect of a change of kernel on 
performance. Then, the effect of pre-processing and selecting input features is 
examined.

In all the experiments in this section, all 243 normal models and 1944 bleed 
models are used to generate measurement frames. As described in Sect. 12.2.3 (and 
elaborated on in [15]), the starting STL files of the head and brain are each distorted 
by ±5% in each Cartesian axis as well as in all three axes simultaneously, giving 
nine distinct head and nine distinct brain anatomies. FEM models of all combina-
tions of these brain anatomies as well as the electrode ring in one of three heights 
resulted in 243 normal models. Bleed models were based on every combination of 
these normal head models combined with one of either the 30 ml or 60 ml bleed in 
one of the four locations, leading to a total of 1944 bleed models. An equal number 
of frames from the normal head set and bleed head set were used to generate 155,520 
measurement frames.

A consistent method is applied in this section to optimise the performance of the 
SVM classifiers. First, the data is separated into five separate folds, each with a 
unique training data set and testing data set that is made up of 80% and 20% of the 
original data set, respectively. The training data set is used to optimise the SVM 
classifier hyper-parameters, namely the box constraint and kernel scaling factor. A 
Bayesian optimisation procedure is implemented to identify the hyper-parameters 
that lead to the greatest generalised accuracy across fivefold cross-validation. Once 
identified, a final trained SVM classifier is created with these optimised 
hyper-parameters. The excluded testing data set is then used to obtain performance 
metrics for the final classifier. This procedure is then repeated for all five of the 
unique training-testing data pairs, and final classifier performance is presented as 
the mean and standard deviation (STD) across these five iterations. This nested test-
ing methodology, which has been used previously in the literature [26, 53], provides 
a more generalised and robust indication of classifier performance.

12  Brain Haemorrhage Detection Through SVM Classification of Electrical…



228

12.4.1  �Radial Basis Function Kernel Compared to Linear 
Kernel

The RBF kernel can be used for SVMs when the relationship between the features 
and labels is non-linear, has less hyperparameters than a polynomial kernel, and has 
less numerical difficulties [54]. The RBF can be conceptualised as a flexible mem-
brane that fits through sample points while minimising the curvature. Hence, the 
hyperplane is a “gently varying surface” and is suitable for scenarios where the data 
points (measurement values) do not change dramatically within a short distance in 
the n-dimensional hyperspace.

The first investigation of this section involves comparing the use of the linear and 
RBF kernels with a SVM classifier trained and optimised across all four SNR levels 
(80 dB, 60 dB, 40 dB, and 20 dB). In Fig. 12.12, the classifier performance, in terms 
of the sensitivity, specificity, and accuracy, for both the linear-SVM (top) and the 
RBF-SVM (bottom), is shown. Each dot on the plot denotes the mean classifier 
performance across the fivefold testing, with error bars representing the standard 
deviation range. While perfect classifier performance (1.00 ± 0.00 in all metrics) is 
achieved by both kernel types at 80 dB, it is observed from this figure that use of the 
RBF kernel can improve the classifier performance, notably at the 60 dB and 40 dB 
SNR levels; there is an increase in the mean accuracy between approximately 0.03 
(3%) and 0.09 (9%), respectively, at these SNR levels when using the RBF kernel. 
When the SNR decreases to 20 dB, the performance of both classifiers approaches 
that of guesswork, with the mean accuracy only slightly above 50%, indicating that 
the changes in impedance due to the presence of the bleed are embedded within the 
noise. This finding suggests that hardware should guarantee an SNR well above 
20 dB. From Fig. 12.12, we can in fact infer that the SNR for a hardware system 
should be on the order of 60 dB to expect accurate detection of brain bleeds. The 
improvement with the use of the RBF kernel over the linear kernel provided the 
motivation for the use of this kernel in all the following sections of Sect. 12.4.

12.4.2  �Frame Pre-processing

In the previous sections, the classifier input features were the unprocessed EIT mea-
surement frames, with the injection channels removed. This section will explore the 
use of various pre-processing techniques, ranging from manually chosen feature-
extraction methods, such as taking the mean of sub-frames, to using electrode pair 
proximity to decide input features, to variance-based methods such as Laplacian 
scores and PCA. These feature extraction methods are carried out on data at all four 
SNR levels (80 dB, 60 dB, 40 dB, and 20 dB), with the RBF-SVM classifier opti-
mised as described in Sect. 12.4.1. As before, classifier performance is presented as 
the results across fivefold testing.
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�Sub-frame Means 

A sub-frame is defined as the set of measurement channels associated with a given 
injection pair. A measurement frame from a 16-electrode array using a skip 2 pat-
tern will have 16 such sub-frames, each with 13 channels (three channels are 
removed as they use either of the injecting electrodes). The 13 voltage measure-
ments in each of the 16 sub-frames are averaged, with the resulting 16 mean-values 
used as the input features to the classifier. This reduces the dimensionality of the 
input from 208 features to 16 features. The pre-processing work-flow is shown in 
Fig. 12.13 below.

The performance of the RBF-SVM classifier using the sub-frame means as 
inputs is reported in Fig. 12.14 at each SNR level as the mean ± standard deviation 
of the sensitivity, specificity, and accuracy after fivefold cross validation and 
Bayesian optimisation. As seen, the performance at 80 dB is excellent, being near 
1 ± 0 for all metrics, with a fall off at lower SNRs with, for example, sensitivity at 

Fig. 12.12  Comparison of 
classifier performance 
using the linear-SVM (top) 
and RBF-SVM (bottom). 
Each dot on the plot 
denotes the mean classifier 
performance across the 
fivefold testing, with the 
error bars representing the 
standard deviation range at 
the respective SNR level. 
There is a significant 
improvement in 
performance when using 
the RBF kernel, notably at 
the 60 dB and 40 dB SNR 
levels
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approximately 0.71 ± 0.02 at 60 dB and all metrics at approximately 0.5 at 40 dB 
and 20 dB. It is noteworthy however that near identical performance is achieved at 
80 dB relative to that of using full measurement frames (with a difference of <0.01 
(1%) in all metrics), despite the significant drop in the number of features. Such a 
reduction in dimensionality, with nearly no effect on performance, would result in a 
less computationally expensive algorithm.

�Near and Far Sub-frame Channels 

In this section we explore using selected channels of each measurement sub-frame 
based on the physical locations of the recording electrodes relative to the injection 
pairs. Specifically, we analyse classifier performance when using “near” sub-frame 
channels and “far” sub-frame channels. The “near” sub-frame channels are defined 
as the seven channels nearer in physical location to the injecting pair of a given sub-
frame. The “far” sub-frame channels are defined as the six channels further in loca-
tion from the injecting pair. The complete set of near channels from each sub-frame 
are amalgamated and used as the input to the classifier with the same process per-
formed to the far channels. This process reduces the input feature size to 112 

Fig. 12.13  Generating the mean of each sub-frame. Each sub-frame is made up of the 16 channels 
associated with a given injection pair. Removal of channels involving either of the injection pair 
electrodes gives 16 sub-frames each with 13 channels. The mean of the voltage measurements 
from each set of 13 channels in a given sub-frame is used, leaving 16 values, the sub-frame means, 
which are used as inputs to the classifier
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features for the near sub-frame channels and to 96 features when using the far sub-
frame channels, as compared to 208 for a full measurement frame. It is anticipated 
that the near sub-frame channels are more informative due to their proximity to the 
injecting pairs. The near and far sub-frame channels, for one sub-frame (that of the 
1–4 injection pair), are shown in Fig. 12.15. The injecting electrode pair is denoted 
by the red arrow, with the near sub-frame channels shown in orange, and the far 
sub-frame channels shown in green.

The performance of the RBF-SVM classifier using the near and far sub-frame 
channels are again reported at each SNR level as the mean ± standard deviation of 
the sensitivity, specificity, and accuracy. These results are given in Fig. 12.16. Both 
the near and far sub-frame channels offer perfect performance (sensitivity, specific-
ity, and accuracy of 1.00 ± 0.00) at 80 dB SNR, with a slight drop in performance at 
60 dB SNR (but all values are ≥0.99 ± 0.01) before further drops at the 40 dB and 
20 dB SNR levels. The near sub-frame channels result in better performance than 
the far sub-frame channels. Performance at all SNR levels for the near sub-frame 
channels in particular is equivalent to that of using complete frames despite an 
almost 50% reduction in dimensionality.

�Laplacian Scores 

A type of feature selection method is filter-based methods. Filter methods work by 
analysing the data before classification, giving a ranking to each feature. Then, the 
number of ranked features that optimises performance can be chosen by the user. In 

Fig. 12.14  Performance of the RBF-SVM using sub-frame means as input features. Each dot on 
the plot denotes the mean classifier performance across the fivefold testing, with the error bars 
representing the standard deviation range at the respective noise level. The performance at 80 dB 
SNR is near the ideal of 1 ± 0 for all metrics, comparable to the performance achieved when using 
the complete frames. However, performance falls off quickly at lower SNRs, with all metrics 
below 0.85 at 60 dB and at approximately 0.5 at 40 dB and 20 dB
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Fig. 12.15  Near and far 
sub-frame channels. Here 
the injection pair of 1–4 is 
shown (red). The 7 nearest 
channels are shown in 
orange, with the 6 far 
channels shown in green. 
Channels involving the 
measurement pair are not 
considered. These near 
sub-frames and far 
sub-frames channels are 
then used as inputs to the 
classifier

Fig. 12.16  Comparison of 
RBF-SVM classifier 
performance with using the 
near (top) and far (bottom) 
sub-frame channels as 
input features. Both the 
near and far sub-frame 
channels results in perfect 
(1.00 ± 0.00) performance 
at 80 dB SNR and near 
perfect (≥0.99 ± 0.01) at 
60 dB SNR. At lower SNR 
levels of 40 dB and 20 dB, 
the near sub-frames 
outperform the far 
sub-frames. Of note, the 
near sub-frames result in 
equivalent performance to 
using full measurement 
frames at all SNR points
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the context of this work, features correspond to the measurement channels. Filter 
methods can be implemented as either supervised or unsupervised methods. 
Supervised filter methods require both the observations (inputs) and classes (labels) 
in order to rank the features. In order to avoid any bias or data contamination, it is 
important to carefully choose a subset of the entire data set for the feature selection 
process when using supervised filter methods. Alternatively, unsupervised filter 
methods can use the entire dataset in order to rank the features, without biasing the 
classification result. An unsupervised feature selection algorithm, the Laplacian 
Score algorithm [55, 56], was used in this work to rank the features on the measure-
ment sets (datasets). Specifically, the Laplacian Score algorithm works on the 
assumption that if two data points are close, then the data points most likely share a 
label [55]. Further detail on the algorithm can be found in [55]. The distance metric 
used in this work to define the weight matrix of the algorithm was the Euclidian 
distance. The advantage of using the filter-based feature selection is that after deter-
mination of the optimal number of ranked features, the original data can be used as 
input for the classification, with only the additional computational cost of removal 
of unnecessary features.

After first standardising the data, the Laplacian score is applied to each data set 
corresponding to each of the four SNR levels (80 dB, 60 dB, 40 dB, and 20 dB) to 
obtain a ranking of the 208 features at each SNR level. The optimal number of 
ranked features is then chosen through finding the number of features that lead to 
greatest generalised accuracy in the cross-validation training of the SVM classifier. 
In Fig. 12.17, the generalised accuracy is presented, at each of the four SNR levels, 
as the number of Laplacian score ranked features is increased. Based on Fig. 12.17, 
we can determine the optimal number of features, i.e. the best combination between 
the number of features and the best generalised accuracy; these optimal points are 
tabulated in Table 12.1.

The performance of the classifier at each SNR level is assessed with the pre-
determined number of ranked features as given in Table 12.1. The results are shown 

Fig. 12.17  The 
performance of the 
RBF-SVM classifier using 
a different number of 
ranked features, measured 
by the generalised 
accuracy. The ranked 
features were determined 
using the Laplacian score. 
The optimal point at a 
given SNR the one offering 
the highest accuracy with 
the lowest number of 
features
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in Fig. 12.18. The accuracy, sensitivity, and specificity are perfect (1.00 ± 0.00) at 
80 dB SNR, and all are better than 0.97 ± 0.01 at 60 dB SNR. Thus, classification 
performance is preserved while significantly reducing the input feature size from 
208 to 25 and 75 features for the 80 dB and 60 dB SNR levels, respectively. Even at 
40 dB SNR, classifier performance was essentially unchanged (compared to using 
full measurement frames) while reducing the input data set to only 100 features. As 
with all previous analyses, as the SNR level decreased to 20 dB, classifier perfor-
mance approaches that of a random guess (metric scores of 0.5).

While unsupervised filter-based feature selection does allow preservation of the 
captured data to be used as inputs to the classifier in a reduced form, transforming 
the data with variance techniques such as PCA may enhance the results. The PCA 
approach is considered next.

�Principal Component Analysis 

A commonly implemented feature extraction method is PCA [24, 25]. PCA is used 
to reduce the dimensionality of data by generating new variables that represent the 
original data. These new variables, referred to as the principal components, are cre-
ated from a linear combination of the original variables, with each successive com-
ponent defining an orthogonal axis to the previous components. Thus, the entire set 
of principal components form an orthogonal basis for the space defined by the origi-
nal data set. The data set can then be projected onto this new orthogonal basis in 
such a way that the variance in each axis is maximised, allowing data to be, poten-
tially, better discriminated [57], and only a select few principal components can be 
used to accurately represent the data. Thus, PCA is used to both extract specific 
features and reduce the dimensionality of the data.

The projection of the original data on specific principal components can be 
referred to as the “scores”. For every observation, it is these scores that will be used 
as input features to the RBF-SVM classifier. As PCA is a variance based feature 
extraction algorithm, it is important to prevent any data contamination; when per-
forming PCA, it is necessary that there is no knowledge of the test data set. In this 
work, PCA is performed on only the training data, with the transformative coeffi-
cients stored and then applied to the test-set data to obtain the projection onto the 
principal components. Thus, we can ensure that there is no knowledge of the test-set 
data when performing PCA.

Similar to the previous section, a search for the optimal number of principal 
components is completed prior to assessing the classifier performance. The opti-

Table 12.1  The optimum 
number of ranked features at 
each SNR level (Maximal 
accuracy with fewest number 
of features)

SNR point
Number of 
ranked features

Generalised 
accuracy (%)

80 dB 25 100
60 dB 75 100
40 dB 100 75.96
20 dB 208 52.55
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mal number of principal components is found by finding the best generalised 
accuracy, for each of the four SNR levels, across the cross-validation training. In 
Fig. 12.19, a comparison of the generalised accuracy and the number of principal 
components, for each of the four SNR levels, is shown. From this graph it 
becomes clear that for each SNR level, there is a range of principal components 
when performance is maximised prior to a decrease of performance as more prin-
cipal components are added. This is explained by the fact that each successive 
principal component explains less and less variance of the original data. Therefore, 
those final components are simply expressing the noise in the data set, with no 
meaningful information contained. The optimal number of components chosen 
for the 80 dB, 60 dB, 40 dB, and 20 dB SNR levels is 10, 10, 11, and 31 principal 
components, respectively.

The classifier performance is then assessed by projecting the test data set onto 
the principal components using the stored projection coefficients found in training. 
In Fig. 12.20, the performance of the classifier is compared at all four of the SNR 
levels. The use of PCA leads to a marked improvement in comparison to using the 
entire raw data set (complete measurement frames), while also significantly reduc-
ing the input data set to at most 31 features. Most notably, at 40 dB SNR, there is an 
increase of almost 10% in the mean accuracy compared to using the complete mea-
surement frames, while decreasing the input feature size from 208 features to only 
11 features. Also, significantly at 60 dB SNR perfect performance is achieved using 
only 10 components. However, as in all previous analyses, the classifier is no better 
than random guesswork at 20 dB SNR.

Fig. 12.18  Performance of the RBF-SVM Classifier at each SNR level using features based on 
Laplacian scores. The number of ranked features offering maximal accuracy is pre-determined 
with this feature set (selection of channels) used to train and set the classifier. Perfect performance 
is achieved at 80 dB SNR with 1.00 ± 0.00 in all metrics, with the use of only 25 features, with 
accuracy >0.97 at 60 dB SNR using 75 features
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12.4.3  �Ensemble Classifier

An ensemble classifier aims to make use of multiple classifiers to make an informed 
decision. Additionally, these classifiers allow for better control of the sensitivity and 
specificity of the classifier performance [58]. In this work, an ensemble classifier 
was created by assigning a classifier to each of the 16 sub-frames for a given com-
plete measurement frame. A voting scheme from each of the 16 classifiers was then 
used for the final classification decision. The design and implementation of this 
ensemble classifier is shown in Fig. 12.21.

Fig. 12.19  A comparison 
of the generalised accuracy 
at the four SNR levels as 
the number of principal 
components is increased. 
The optimal number of 
principal components at 
each SNR level is that 
number giving the highest 
generalised accuracy 
which is 10, 10, 11, and 31 
principal components for 
80 dB, 60 dB, 40 dB, and 
20 dB SNR levels, 
respectively

Fig. 12.20  Comparison of the performance at each of the four SNR levels for the classifier after 
performing PCA. Perfect performance (1.00 ± 0.00 in all metrics) is given at the 80 dB and 60 dB 
SNR levels despite using only 10 components at each point. A near 0.1 (10%) improvement in 
accuracy is seen at the 40 dB SNR level compared to the full measurement frames, but performance 
is approximately 0.5 in all metrics at 20 dB SNR, essentially representing a random classifier
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For each observation, each of the 16 classifiers separately classified the case as 
±1 (bleed or normal). Next, the sensitivity, specificity, and accuracy of the ensemble 
classifier at different threshold points were calculated. A threshold was the mini-
mum number of separate classifiers needed to classify a case as a bleed for it to be 
classified as such; if the number was below this threshold, then the case was classi-
fied as not bleed. The threshold was adjusted from 1 to 16 in steps of 1. This control 
on the sensitivity and specificity allowed for the generation of a ROC curve. In 
Fig. 12.22, a comparison of the ROC curve, at each of the four SNR levels, for the 
ensemble classifier is shown.

For a low threshold (for example 1), the general trend is that the FP (1  – 
Specificity) rate will be high as the ensemble classifier is very sensitive to bleeds. 
This translates as a high sensitivity at a cost to specificity if the system is not robust. 
At a high threshold (for example 16), sensitivity is lost but specificity is maximised 
as the FN is high, with more classifiers needing to agree on labelling a case as a 
bleed before it is classified as a bleed. The accuracy will lie in between these two 
values of specificity and sensitivity at all threshold points. The trade-off in sensitiv-
ity and specificity is best illustrated at the lower SNR levels of 40 dB and 20 dB. For 
the higher SNR values of 80 dB and 60 dB, there is a threshold (or set of thresholds) 

Fig. 12.21  Example of the design and implementation of the ensemble classifier. The measure-
ment frame for a given case can be divided into sub-frames with the channels from each sub-frame 
used as the input for a separate classifier. The complete set of frames are segregated in this way 
with 16 classifiers trained and tested. Each classifier separately labels a case as ±1 with the aggre-
gate result calculated according to a threshold which can be adjusted
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in the intermediate area where sensitivity, specificity, and accuracy all are 1 ± 0. For 
both the 80 dB and 60 dB SNR levels, this area is centred at a threshold of 10. The 
ROC curve allows the user to select the operating point offering optimal performance, 
which for the proposed application of bleed detection is maximal sensitivity as justi-
fied in Sect. 12.2.2. As shown in Fig. 12.22, the 80 dB and 60 dB SNR levels result 
in an operating point offering the perfect combination of sensitivity and specificity 
both equal to 1. At 40 dB SNR, for example, a maximal sensitivity of just over 0.9 
is achieved with a reduction in specificity to 0.2, with a worse performance given at 
20 dB SNR, which has the performance of a random classifier.

12.5  �Discussion and Conclusions

This chapter illustrates the important role that computational modelling tools have 
in exploring both the feasibility and the challenges in developing technologies that 
tackle important medical problems such as brain bleed detection. Brain haemor-
rhages are a medical emergency that require a prompt and accurate diagnosis prior 

Fig. 12.22  ROC curves for the ensemble classifier at each SNR level. The points on each curve 
correspond to each discrete threshold value, between 1 and 16 (from right to left), with the corre-
sponding line interpolated between the points. The curves illustrate the trade-offs between sensitiv-
ity and specificity possible at each SNR level by changing the operating points. Both the 80 dB and 
60 dB plots offer an operating point of perfect performance (0,1). Performance is reduced at 40 dB 
and is worst at 20 dB SNR as expected. The 20 dB line is approximately that of a random classifier, 
being a diagonal line passing through the points (0,0) and [1]
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to any appropriate treatment being administered. An ideal technological solution 
would be portable, non-invasive, cost effective, and crucially feature a sensitivity to 
the presence of a bleed (with ideally simultaneous high specificity) in the brain. 
Such a technology may be found in EIT coupled with modern machine learning 
algorithms. This work examined the feasibility of EIT coupled with ML to develop 
a bleed/ normal classifier based on EIT measurement frames. The approach removes 
the image reconstruction steps that are challenging to EIT. Further, it is EIT applied 
to a static scene where the most successful EIT modality, time difference EIT, can-
not be applied. The chapter builds on the material presented in earlier works, includ-
ing [14] and particularly [15] where, to our knowledge, such an approach with a 
static scene was investigated for the first time.

The effect of individual variables on performance such as the effect of noise in 
measurement frames, bleed location, bleed size, electrode positioning, and varia-
tions in anatomy was initially summarised in Sect. 12.3. The conclusions drawn 
from this section are: good performance (sensitivity, specificity, and accuracy at or 
near 1) is achievable particularly at 80 dB SNR; the technique is sensitive to new 
bleed locations not seen in the training data (although the simple pre-processing 
step of sorting the measurement values can improve this); the technique robustly 
detects bleeds larger than those trained on, but struggles with those smaller; the 
technique is robust to small changes in electrode positioning; and the technique 
struggles with unseen anatomies, in this case modelled as deviations in the mor-
phology of the head and brain FEM models.

The simple replacement of the linear kernel with a Gaussian RBF kernel resulted 
in improved performance. Although both resulted in perfect sensitivity, specificity, 
and accuracy of 1 ± 0 at 80 dB SNR, the benefit of the RBF kernel is seen at 60 dB 
and 40  dB SNR levels with an increase in the mean accuracy between approxi-
mately 3% and 9%, respectively. This significant improvement in classifier perfor-
mance highlights the need to explore options related to classifier choice and also the 
input feature selection process.

The final part of this work examined methods that moved the nature of the clas-
sifier input away from raw or minimally processed measurement frames with a view 
to increasing computational efficiency through intelligent feature selection that 
reduced dimensionality. Approaches used included processing of the measurement 
frames to create sub-frame means, near and far sub-frame channels, using Laplacian 
scores and PCA to extract specific features, and examining an ensemble classifier 
with thresholding to control the sensitivity to bleeds. A summary of the perfor-
mance of these different classifiers, at the 60 dB and 40 dB SNR levels, where per-
formance was mostly impacted, is shown in Tables 12.2 and 12.3, respectively. For 
all classifiers, the 80 dB SNR level yielded perfect classification results, whereas at 
20 dB SNR all classifiers performed at essentially a guess level.

Each of the methods described in Sect. 12.4 significantly reduced the dimension-
ality of the input data to the classifier. The sub-frame means approach reduced the 
input data size to only 16 features, however suffered from poor performance when 
the SNR levels dropped below 80  dB, with a decrease in the mean accuracy of 
almost 25% in comparison to using all 208 features even at 60 dB SNR.
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The near and far sub-frame channels gave an approximate 50% reduction in 
dimensionality. Using the near sub-frame channels preserved the classifier perfor-
mance when in comparison to the full data set, whereas the far channels led to a 
reduction in the mean accuracy of almost 15% at 40 dB SNR. These results imply, 
as was hypothesised, that the near sub-frame channels are more important for clas-
sifier performance.

Using the Laplacian scores to rank and choose features led to similar classifier 
performance using all 208 features at all SNR levels. However, at 80, 60, and 40 dB, 
the input features were reduced to only 25, 75, and 100 features respectively.

The use of PCA to extract and select features, in combination with the RBF-
SVM classifier, lead to the best overall results, with mean accuracy values of 100% 

Table 12.2  Summary of different classifier performance at 60 dB SNR (all metrics reported as the 
mean ± standard deviation of the sensitivity (Sens.), specificity (Spec.), and accuracy (Acc.) with 
a perfect score being 1.00 ± 0.00)

Sens. Spec. Acc.

Classifier type Lin. 0.95 ± 0.01 0.96 ± 0.01 0.95 ± 0.01
RBF 0.99 ± 0.00 0.97 ± 0.00 0.98 + 0.00
Mean 0.71 ± 0.02 0.82 ± 0.03 0.76 ± 0.01
Near 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Far 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
Laplac. 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.00
PCA 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Ensemb. 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

All classifiers used RBF kernel except when labelled ‘Linear’. Linear (Lin.): Linear kernel with 
full measurement frames as the classifier input; RBF: RBF kernel with full measurement frames as 
the classifier input; Mean: Sub-frame means as classifier input; Near: Near sub-frame channels as 
input; Far: Far sub-frame channels as classifier input; Laplacian (Laplac.): Optimal number of 
ranked features as determined by Laplacian filtering used as classifier input; PCA: Optimal num-
ber of principal components used as classifier input; Ensemble (Ensemb.): Results correspond to 
the threshold offering maximal sensitivity

Table 12.3  Summary of different classifier performance at 40 dB SNR (all metrics reported as the 
mean ± standard deviation of the sensitivity (Sens.), specificity (Spec.), and accuracy (Acc with a 
perfect score being 1.00 ± 0.00)

Sens. Spec. Acc.

Classifier type Lin. 0.71 ± 0.02 0.70 ± 0.02 0.70 ± 0.01
RBF 0.82 ± 0.02 0.76 ± 0.02 0.79 ± 0.00
Mean 0.56 ± 0.04 0.54 ± 0.04 0.55 ± 0.03
Near 0.75 ± 0.02 0.81 ± 0.02 0.78 ± 0.03
Far 0.66 ± 0.01 0.65 ± 0.02 0.65 ± 0.01
Laplac. 0.85 ± 0.02 0.75 ± 0.03 0.80 ± 0.01
PCA 0.93 ± 0.00 0.83 ± 0.01 0.88 ± 0.00
Ensemb. 0.61 ± 0.04 0.77 ± 0.05 0.69 + 0.01

All classifiers used RBF kernel except Linear. Abbreviations of the classifier type are consistent 
with Table 12.3
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and 88.26% at the 60 dB and 40 dB SNR levels. This marks a 1.25% and 8.91% 
improvement over using all 208 features, while only needing the first 10 and 11 
components, at 60 dB and 40 dB SNR, respectively.

The ensemble classifier approach offered a trade-off between sensitivity and 
specificity depending on the threshold used. At 80 dB and 60 dB, a wide region 
centred around a threshold of 10 offered perfect sensitivity, specificity, and accu-
racy. However, this method fails to match the performance of using all the input 
features at 40 dB.

This work has demonstrated promise in the approach of using EIT measurement 
frames coupled with ML for bleed detection. Careful consideration and experimen-
tation in regard to measurement frame processing, choice of ML algorithm, and 
parameters can significantly improve performance. These areas alone merit further 
study as well as the testing with a more realistic multi-layered computational model 
and physical phantom. Encouragingly, EIT hardware with SNR levels at or near 
80 dB exist, which adds to the hope that computational results can be translated into 
real world models [59]. EIT is already a valuable imaging tool in time changing 
scenes but has the potential to be a valuable modality in cases with static patholo-
gies such as brain bleeds with innovative methods such as those presented in this set 
of studies. We encourage researchers to further build on and develop these ideas and 
paradigms in order to make a measurable impact in tackling important medical 
problems and improving patient outcomes.

Acknowledgements  The research leading to these results has received funding from the European 
Research Council under the European Union’s Horizon 2020 Programme/ERC Grant Agreement 
BioElecPro n.637780, Science Foundation Ireland (SFI) grant number 15/ERCS/3276, the 
Hardiman Research Scholarship from NUIG, the charity RESPECT, the Irish Research Council 
GOIPD/2017/854 fund, and the People Programme (Marie Curie Action) of the European Union’s 
Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement no. 
PCOFUND-GA-2013-608728.

References

	 1.	Velayudhan, V. Stroke imaging: Overview, computed tomography, magnetic resonance imag-
ing [Internet]. Medscape. [cited 2016 Oct 19]. Available from: http://emedicine.medscape.
com/article/338385-overview

	 2.	Ovbiagele, B., & Nguyen-Huynh, M. N. (2011). Stroke epidemiology: Advancing our under-
standing of disease mechanism and therapy. Neurotherapeutics, 8(3), 319–329.

	 3.	Donnan, G. A., Fisher, M., Macleod, M., & Davis, S. M. (2008). Stroke. The Lancet, 371(9624), 
1612–1623.

	 4.	Birenbaum, D., Bancroft, L. W., & Felsberg, G. J. (2011). Imaging in acute stroke. The Western 
Journal of Emergency Medicine, 12(1), 67–76.

	 5.	Faul, M., & Coronado, V. (2015). Epidemiology of traumatic brain injury. In  Handbook of 
clinical neurology [Internet] (pp. 3–13). Elsevier. [cited 2018 Sep 19]. Available from: http://
linkinghub.elsevier.com/retrieve/pii/B9780444528926000015.

	 6.	NICE (National Institute for Health and Care Excellence). Head injury overview [Internet]. 
nice.org.uk. [cited 2016 Oct 19]. Available from: https://pathways.nice.org.uk/pathways/
head-injury

12  Brain Haemorrhage Detection Through SVM Classification of Electrical…

http://emedicine.medscape.com/article/338385-overview
http://emedicine.medscape.com/article/338385-overview
http://linkinghub.elsevier.com/retrieve/pii/B9780444528926000015
http://linkinghub.elsevier.com/retrieve/pii/B9780444528926000015
http://nice.org.uk
https://pathways.nice.org.uk/pathways/head-injury
https://pathways.nice.org.uk/pathways/head-injury


242

	 7.	Kim, J.  J., & Gean, A. D. (2011). Imaging for the diagnosis and management of traumatic 
brain injury. Neurotherapeutics, 8(1), 39–53.

	 8.	Lee, B., & Newberg, A. (2005). Neuroimaging in traumatic brain imaging. NeuroRx, 2(2), 
372–383.

	 9.	Shen, D., Zhang, D., Young, A., & Parvin, B. (2015). Editorial: Machine learning and data 
mining in medical imaging. IEEE Journal of Biomedical and Health Informatics, 19(5), 
1587–1588.

	10.	Giger, M. L. (2018). Machine learning in medical imaging. Journal of the American College 
of Radiology, 15(3), 512–520.

	11.	Brattain, L. J., Telfer, B. A., Dhyani, M., Grajo, J. R., & Samir, A. E. (2018). Machine learning 
for medical ultrasound: Status, methods, and future opportunities. Abdominal Radiology (NY), 
43(4), 786–799.

	12.	Shen, D., Wu, G., & Suk, H.-I. (2017). Deep learning in medical image analysis. Annual 
Review of Biomedical Engineering, 19(1), 221–248.

	13.	Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in 
healthcare: Past, present and future. Stroke Vascular Neurology, 2(4), 230–243.

	14.	McDermott, B., O Halloran, M., Porter, E., & Santorelli, A. (2018). Brain haemorrhage detec-
tion through SVM classification of impedance measurements. In  2018 40th annual inter-
national conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 
Honolulu, Hawaii, United States: IEEE.

	15.	McDermott, B., O’Halloran, M., Porter, E., & Santorelli, A. (2018). Brain haemorrhage detec-
tion using a SVM classifier with electrical impedance tomography measurement frames. 
Stoean R, editor. PLoS One, 13(7), e0200469.

	16.	Brown, B. (2003). Electrical impedance tomography (EIT): A review. Journal of Medical 
Engineering & Technology, 27(3), 97–108.

	17.	Alberts, B. (Ed.). (2002). Molecular biology of the cell (4th ed.). New York: Garland Science. 
1548 p.

	18.	Holder, D., & Institute of Physics (Great Britain) (Eds.). (2005). Electrical impedance tomog-
raphy: methods, history, and applications. Bristol/Philadelphia: Institute of Physics Pub. 456 
p. (Series in medical physics and biomedical engineering).

	19.	Adler, A., & Boyle, A. (2017). Electrical impedance tomography: Tissue properties to image 
measures. IEEE Transactions on Biomedical Engineering, 64(11), 2494–2504.

	20.	Adler, A., Grychtol, B., & Bayford, R. (2015). Why is EIT so hard, and what are we doing 
about it? Physiological Measurement, 36(6), 1067–1073.

	21.	Horesh, L., Gilad, O., Romsauerova, A., Arridge, S., & Holder, D. (2005). Stroke type differ-
entiation by multi-frequency electrical impedance tomography – a feasibility study. In  Proc 
IFMBE (pp. 1252–1256).

	22.	Dowrick, T., Blochet, C., & Holder, D. (2015). In vivo bioimpedance measurement of healthy 
and ischaemic rat brain: Implications for stroke imaging using electrical impedance tomogra-
phy. Physiological Measurement, 36(6), 1273–1282.

	23.	Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill. 414 p. (McGraw-Hill 
series in computer science).

	24.	Santorelli, A., Porter, E., Kirshin, E., Liu, Y. J., & Popovic, M. (2014). Investigation of classifi-
ers for tumour detection with an experimental time-domain breast screening system. Progress 
In Electromagnetics Research, 144, 45–57.

	25.	Conceicao, R. C., O’Halloran, M., Glavin, M., & Jones, E. (2010). Support vector machines 
for the classificaion of early-stage breast cancer based on radar target signatures. Progress In 
Electromagnetics Research B, 23, 311–327.

	26.	Oliveira, B., Godinho, D., O’Halloran, M., Glavin, M., Jones, E., & Conceição, R. (2018). 
Diagnosing Breast Cancer with Microwave Technology: Remaining challenges and potential 
solutions with machine learning. Diagnostics (Basel), 8(2), 36.

	27.	Golnaraghi, F., & Grewal, P. K. (2014). Pilot study: Electrical impedance based tissue clas-
sification using support vector machine classifier. IET Science, Measurement and Technology, 
8(6), 579–587.

B. McDermott et al.



243

	28.	Gur, D., Zheng, B., Lederman, D., Dhurjaty, S., Sumkin, J., Zuley, M. (2010). A support 
vector machine designed to identify breasts at high risk using multi-probe generated REIS 
signals: A preliminary assessment. In: Manning DJ, Abbey CK, editors. [cited 2018 Jan 
18]. p.  76271B.  Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?
doi=10.1117/12.844452.

	29.	Laufer, S., & Rubinsky, B. (2009). Tissue characterization with an electrical spectroscopy 
SVM classifier. IEEE Transactions on Biomedical Engineering, 56(2), 525–528.

	30.	Shini, M. A., Laufer, S., & Rubinsky, B. (2011). SVM for prostate cancer using electrical 
impedance measurements. Physiological Measurement, 32(9), 1373–1387.

	31.	Schlebusch, T., Nienke, S., Leonhardt, S., & Walter, M. (2014). Bladder volume estimation 
from electrical impedance tomography. Physiological Measurement, 35(9), 1813–1823.

	32.	Dunne, E., Santorelli, A., McGinley, B., Leader, G., O’Halloran, M., & Porter, E. (2018). 
Supervised learning classifiers for electrical impedance-based bladder state detection. 
Scientific Reports, 8(1), 5363.

	33.	McDermott, B., O’Halloran, M., Santorelli, A., McGinley, B., & Porter, E. (2018). 
Classification applied to brain haemorrhage detection: Initial phantom studies using electrical 
impedance measurements. In  Proceeding of the 19th international conference on biomedical 
applications of electrical impedance tomography. Edinburgh.

	34.	Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.
	35.	Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines: And 

other kernel-based learning methods. Cambridge; New  York: Cambridge University Press. 
189 p.

	36.	Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin 
classifiers. In  Proceedings of the fifth annual workshop on Computational learning theory – 
COLT ’92 [Internet] (pp.  144–152). Pittsburgh: ACM Press. [cited 2018 Oct 4]. Available 
from: http://portal.acm.org/citation.cfm?doid=130385.130401.

	37.	Standring, S., Ananad, N., & Gray, H. (Eds.). (2016). Gray’s anatomy: The anatomical basis 
of clinical practice (41st ed.). Philadelphia: Elsevier. 1562 p.

	38.	Zhang, J., Yang, B., Li, H., Fu, F., Shi, X., Dong, X., et al. (2017). A novel 3D-printed head 
phantom with anatomically realistic geometry and continuously varying skull resistivity dis-
tribution for electrical impedance tomography. Scientific Reports [Internet], 7(1). Available 
from: http://www.nature.com/articles/s41598-017-05006-8.

	39.	Avery, J., Aristovich, K., Low, B., & Holder, D. (2017). Reproducible 3D printed head tanks 
for electrical impedance tomography with realistic shape and conductivity distribution. 
Physiological Measurement, 38(6), 1116–1131.

	40.	Grozny. Thingiverse – Human Head [Internet]. [cited 2017 Feb 15]. Available from: http://
www.thingiverse.com/thing:172348

	41.	Dilmen, N. NIH 3D print exchange- brain MRI [Internet]. [cited 2017 Feb 15]. Available from: 
https://3dprint.nih.gov/discover/3DPX-002739

	42.	Adler, A., & Lionheart, W. R. B. (2006). Uses and abuses of EIDORS: An extensible software 
base for EIT. Physiological Measurement, 27(5), S25–S42.

	43.	Schoeberl, J.  Netgen [Internet]. Vienna: Vienna University of Technology; Available from: 
https://ngsolve.org/

	44.	Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with 
built-in pre- and post-processing facilities. International Journal for Numerical Methods in 
Engineering, 79(11), 1309–1331.

	45.	MATLAB 2017A [Internet]. Natick: The MathWorks Inc. Available from: https://
uk.mathworks.com/

	46.	Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R. GNU Octave version 4.2.2 manual: A 
high-level interactive language for numerical computations [Internet]. 2018. Available from: 
https://www.gnu.org/software/octave/doc/v4.2.2/

	47.	Grychtol, B., Adler, A. FEM electrode refinement for electrical impedance tomography. In: 
2013 35th annual international conference of the IEEE Engineering in Medicine and Biology 

12  Brain Haemorrhage Detection Through SVM Classification of Electrical…

http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.844452
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.844452
http://portal.acm.org/citation.cfm?doid=130385.130401
http://www.nature.com/articles/s41598-017-05006-8
http://www.thingiverse.com/thing:172348
http://www.thingiverse.com/thing:172348
https://3dprint.nih.gov/discover/3DPX-002739
https://ngsolve.org/
https://uk.mathworks.com/
https://uk.mathworks.com/
https://www.gnu.org/software/octave/doc/v4.2.2/


244

Society (EMBC) [Internet]. IEEE; 2013. p. 6429–6432. Available from: http://ieeexplore.ieee.
org/document/6611026/

	48.	Autodesk. Fusion 360 [Internet]. Mill Valley: Autodesk. Available from: https://www.autodesk.
com/products/fusion-360

	49.	Broderick, J. P., Brott, T. G., Duldner, J. E., Tomsick, T., & Huster, G. (1993). Volume of intra-
cerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke, 24(7), 
987–993.

	50.	Hemphill, J. C., Bonovich, D. C., Besmertis, L., Manley, G. T., Johnston, S. C., & Tuhrim, S. 
(2001). The ICH score: A simple, reliable grading scale for intracerebral hemorrhage edito-
rial comment: A simple, reliable grading scale for intracerebral hemorrhage. Stroke, 32(4), 
891–897.

	51.	Hun Wi, Sohal, H., McEwan, A. L., Eung Je Woo, & Tong In Oh. (2014). Multi-frequency 
electrical impedance tomography system with automatic self-calibration for long-term moni-
toring. IEEE Transactions on Biomedical Circuits and Systems, 8(1), 119–128.

	52.	Jehl, M., Avery, J., Malone, E., Holder, D., & Betcke, T. (2015). Correcting electrode modelling 
errors in EIT on realistic 3D head models. Physiological Measurement, 36(12), 2423–2442.

	53.	Li, Y., Santorelli, A., Laforest, O., & Coates, M. (2015). Cost-sensitive ensemble classifiers 
for microwave breast cancer detection. In  2015 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP) [Internet] (pp.  952–956). South Brisbane: IEEE. 
[cited 2018 Oct 9]. Available from: http://ieeexplore.ieee.org/document/7178110/.

	54.	Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2010). A practical guide to support vector classification. 
p. 16.

	55.	He, X., Cai, D., & Niyogi, P. (2005). Laplacian Score for Feature Selection. In NIPS’05 
Proceedings of the 18th International Conference Neural Information Process System 
(pp. 507–514). Vancouver.

	56.	Dunne, E., Santorelli, A., McGinley, B., Leader, G., O’Halloran, M., & Porter, E. (2018). Image-
based classification of bladder state using electrical impedance tomography. Physiological 
Measurement, 39(12), 124001

	57.	Conceição, R. C., O’Halloran, M., Glavin, M., & Jones, E. (2011). Evaluation of features and 
classifiers for classification of early-stage breast cancer. Journal of Electromagnetic Waves and 
Applications, 25(1), 1–14.

	58.	Li, Y., Porter, E., Santorelli, A., Popović, M., & Coates, M. (2017). Microwave breast can-
cer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation. 
Biomedical Signal Processing and Control, 31, 366–376.

	59.	Avery, J., Dowrick, T., Faulkner, M., Goren, N., & Holder, D. (2017). A versatile and reproduc-
ible multi-frequency electrical impedance tomography system. Sensors, 17(2), 280–280.

Open Access   This chapter is licensed under the terms of the Creative Commons Attribution 4.0 
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons license and 
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative 
Commons license, unless indicated otherwise in a credit line to the material. If material is not 
included in the chapter's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder.

B. McDermott et al.

http://ieeexplore.ieee.org/document/6611026/
http://ieeexplore.ieee.org/document/6611026/
https://www.autodesk.com/products/fusion-360
https://www.autodesk.com/products/fusion-360
http://ieeexplore.ieee.org/document/7178110/
http://creativecommons.org/licenses/by/4.0/

	Chapter 12: Brain Haemorrhage Detection Through SVM Classification of Electrical Impedance Tomography Measurements
	12.1 Introduction
	12.2 Technologies
	12.2.1 Electrical Impedance Tomography
	12.2.2 Support Vector Machine (SVM) Classifiers
	12.2.3 Computational Modelling Techniques

	12.3 SVM Applied to Raw EIT Measurement Frames with Analysis of the Effect of Individual Variables on SVM Performance
	12.3.1 The Effect of Noise
	12.3.2 Effect of Bleed Location
	12.3.3 Effect of Bleed Size
	12.3.4 Effect of Electrode Positioning
	12.3.5 Effect of Normal Variation in Between-Patient Anatomy

	12.4 SVM Applied to EIT Processed Measurement Frames
	12.4.1 Radial Basis Function Kernel Compared to Linear Kernel
	12.4.2 Frame Pre-processing
	Sub-frame Means
	Near and Far Sub-frame Channels
	Laplacian Scores
	Principal Component Analysis

	12.4.3 Ensemble Classifier

	12.5 Discussion and Conclusions
	References




