®

Check for
updates

Multi-platform Chatbot Modeling
and Deployment with the Jarvis
Framework

Gwendal Daniel! ™) Jordi Cabot!2, Laurent Deruelle?, and Mustapha Derras?

! Internet Interdisciplinary Institute (IN3),
Universitat Oberta de Catalunya (UOC), Barcelona, Spain
gdaniel@uoc.edu
2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat
3 Berger-Levrault, Pérols, France
laurent.deruelle@berger-levrault.com
4 Berger-Levrault, Labége, France
mustapha.derras@berger-levrault.com

Abstract. Chatbot applications are increasingly adopted in various
domains such as e-commerce or customer services as a direct communi-
cation channel between companies and end-users. Multiple frameworks
have been developed to ease their definition and deployment. They typi-
cally rely on existing cloud infrastructures and artificial intelligence tech-
niques to efficiently process user inputs and extract conversation infor-
mation. While these frameworks are efficient to design simple chatbot
applications, they still require advanced technical knowledge to define
complex conversations and interactions. In addition, the deployment of
a chatbot application usually requires a deep understanding of the tar-
geted platforms, increasing the development and maintenance costs. In
this paper we introduce the Jarvis framework, that tackles these issues
by providing a Domain Specific Language (DSL) to define chatbots in
a platform-independent way, and a runtime engine that automatically
deploys the chatbot application and manages the defined conversation
logic. Jarvis is open source and fully available online.

Keywords: MDE - DSL - Chatbot design + Chatbot deployment

1 Introduction

Instant messaging platforms have been widely adopted as one of the main tech-
nology to communicate and exchange information [9,22]. Nowadays, most of
them provide built-in support for integrating chatbot applications, which are
automated conversational agents capable of interacting with users of the plat-
form [18]. Chatbots have proven useful in various contexts to automate tasks
and improve the user experience, such as automated customer services [32],
© Springer Nature Switzerland AG 2019

P. Giorgini and B. Weber (Eds.): CAiSE 2019, LNCS 11483, pp. 177-193, 2019.
https://doi.org/10.1007/978-3-030-21290-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21290-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-21290-2_12

178 G. Daniel et al.

education [16], and e-commerce [30]. Moreover, existing reports highlight the
large-scale usage of chatbots in social media [29], and emphasize that chatbot
design will become a key ability in IT hires in the near future [12].

This widespread interest and demand for chatbot applications has empha-
sized the need to be able to quickly build complex chatbot applications support-
ing natural language processing [13], custom knowledge base definition [27], as
well as complex action responses including external service composition. How-
ever, the definition of chatbots remains a challenging task that requires expertise
in a variety of technical domains, ranging from natural language processing to a
deep understanding of the API of the targeted instant messaging platforms and
third-party services to be integrated.

So far, chatbot development platforms have mainly addressed the first chal-
lenge, typically by relying on external intent recognition providers, that are nat-
ural language processing frameworks providing user-friendly interfaces to define
conversation assets. As a trade-off, chatbot applications are tightly coupled to
their intent recognition providers, hampering their maintainability, reusability
and evolution.

This work aims to tackle both issues by raising the level of abstraction at what
chatbots are defined, and can be summarized by the following design research
question [31]

Can we improve the development of chatbot applications by abstracting out the
platforms complexity and deployment configurations in order to allow designers
to focus on the logic of the designed chatbot?

In this paper we introduce Jarvis, a novel model-based chatbot develop-
ment framework that aims to address this question using Model Driven Engi-
neering (MDE) techniques. Jarvis embeds a dedicated chatbot-specific modeling
language to specify user intentions, computable actions and callable services,
combining them in rich conversation flows. The resulting chatbot definition is
independent of the intent recognition provider and messaging platforms, and can
be deployed through the Jarvis runtime component on a number of them while
hiding the technical details and automatically managing the conversation. Jarvis
is employed in a joint project with the Berger-Levrault company.

The rest of the paper is structured as follows: Sect. 2 introduces preliminary
concepts used through the article. Section3 shows an overview of the Jarvis
framework, while Sects. 4 and 5 detail its internal components. Section 6 presents
the tool support, and Sect. 7 compare our approach with existing chatbot design
techniques. Finally, Sect.8 summarizes the key points of the paper, draws con-
clusions, and present our future work.

2 Background

This section defines the key concepts of a chatbot application that are reused
through this article.

Chatbot design [19] typically relies on parsing techniques, pattern matching
strategies and Natural Language Processing (NLP) to represent the chatbot

Multi-platform Chatbot Modeling and Deployment 179

knowledge. The latter is the dominant technique thanks to the popularization
of libraries and cloud-based services such as DialogFlow [8] or IBM Watson
Assistant [11], which rely on Machine Learning (ML) techniques to understand
the user input and provide user-friendly interfaces to design the conversational
flow.

However, Pereira and Diaz have recently reported that chatbot applications
can not be reduced to raw language processing capabilities, and additional
dimensions such as complex system engineering, service integration, and test-
ing have to be taken into account when designing such applications [24]. Indeed,
the conversational component of the application is usually the front-end of a
larger system that involves data storage and service execution as part of the
chatbot reaction to the user intent. Thus, we define a chatbot as an application
embedding a recognition engine to extract intentions from user inputs, and an
execution component performing complex event processing represented as a set
of actions.

Intentions are named entities that can be matched by the recognition engine.
They are defined through a set of training sentences, that are input examples
used by the recognition engine’s ML/NLP framework to derive a number of
potential ways the user could use to express the intention'. Matched intentions
usually carry contextual information computed by additional extraction rules
(e.g. a typed attribute such as a city name, a date, etc) available to the underlying
application. In our approach, Actions are used to represent simple responses such
as sending a message back to the user, as well as advanced features required by
complex chatbots like database querying or external service calling. Finally, we
define a conversation path as a particular sequence of received user intentions
and associated actions (including non-messaging actions) that can be executed
by the chatbot application.

3 Jarvis Framework

Our approach applies Model Driven Engineering (MDE) principles to the chat-
bot building domain. As such, chatbot models become the primary artifacts
that drive all software (chatbot) engineering activities [4]. Existing reports have
emphasized the benefits of MDE in terms of productivity and maintainability
compared to traditional development processes [10], making it a suitable candi-
date to address chatbot development and deployment. In the following we first
introduce a running example and then we present an overview of our MDE-based
chatbot approach and its main components.

3.1 Running Example

Our case study is a simple example of a multi-platform chatbot aiming to assist
newcomers in the definition of issues on the Github platform, a reported con-
cern in the open source community [15]. Instead of directly interacting with

! In this article we focus on ML/NLP-based chatbots, but the approach could be
extended to alternative recognition techniques.

180 G. Daniel et al.

the GitHub repository, users of our software could use the chatbot to report a
new issue they found. The chatbot helps them to specify the repository to open
the issue in and the relevant class/es affected by the issue, and opens the issue
on their behalf. The chatbot is deployed as a Slack app (i.e. the conversation
between the user and the chatbot takes place on the Slack messaging platform)
and, beyond creating the issue itself, the chatbot sends an alert message to the
repository’s development team channel hosted on the Discord platform.

Although this chatbot is obviously a simplification of what a chatbot for
GitHub could look like, we believe it is representative enough of the current chat-
bot landscape, where chatbots usually need to interact with various input/output
platforms to provide rich user experiences.

In the following we show how this chatbot is defined with the help of the
Jarvis modeling language, and we detail how the runtime component manages
its concrete deployment and execution.

3.2 Framework Overview

Figure 1 shows the overview of the Jarvis Framework. A designer specifies the
chatbot under construction using the Jarvis Modeling Language, that defines
three core packages:

— Intent Package to describe the user intentions using training sentences,
contextual information extraction, and matching conditions (e.g. the intention
to open an issue or the intention to select a repository, in our running example)

— Platform Package to specify the possible actions available in the potential
target platforms, including those existing only on specific environments (e.g.
posting a message on a Slack channel, opening an issue on Github, etc).

Intent Recognition Providers

latform-specific,
Platform-independent (platf pecific)

chatbot definition @ ® O s
ﬁ Instan‘t
Messaging
Jarvis Modeling Language\ Jarvis Runtime Flatjomas
pos Chatbot

Intent Package ’ User

x
uses

Chatbot

Designer
[[Execution Package ’
g =

v

\:[,J\,[[Platform Package] Deployment |'E{§}'
Configuration |-
/)

Fig. 1. Jarvis framework overview

2

External
Services

Multi-platform Chatbot Modeling and Deployment 181

— Execution Package to bind user intentions to actions as part of the chatbot
behaviour definition (e.g. sending a welcome message to the user when he
intents to open a new issue).

These models are complemented with a Deployment Configuration file,
that specifies the Intent Recognition Provider platform to use (e.g Google’s
DialogFlow [8] or IBM Watson Assistant [11]), platform specific configuration
(e.g. Slack and Discord credentials), as well as custom execution properties.

These assets constitute the input of the Jarvis Runtime component that
starts by deploying the created chatbot. This implies registering the user intents
to the selected Intent Recognition Provider, connecting to the Instant Messaging
Platforms, and starting the Faternal Services specified in the execution model.
Then, when a user input is received, the runtime forwards it to the Intent Recog-
nition Provider, gets back the recognized intent and performs the required action
based on the chatbot ezecution model.

This infrastructure provides three main benefits:

— The Jarvis Modeling Language packages decouple the different dimensions of
a chatbot definition, facilitating the reuse of each dimension across several
chatbots (e.g. the Slack platform definition can be reused in all chatbots
interacting with Slack).

— Each sublanguage is totally independent of the concrete deployment and
intent recognition platforms, easing the maintenance and evolution of the
chatbot.

— The Jarvis Runtime architecture can be easily extended to support new plat-
form connections and computable actions. This aspect, coupled with the high
modularity of the language, fosters new contributions and extensions of the
framework that are further discussed in Sect. 5.

In the following we detail the Jarvis Modeling Language (Sect.4) and
Jarvis Runtime components (Sect. 5), and we show how they are used to define
and deploy our example chatbot over multiple platforms.

4 Jarvis Modeling Language

In the following we introduce the Jarvis Modeling Language, a chatbot Domain
Specific Language (DSL) that provides primitives to design the user intentions,
execution logic, and deployment platform of the chatbot under construction.

The DSL is defined through two main components [17]: (i) an abstract syntax
(metamodel) defining the language concepts and their relationships (generalizing
the primitives provided by the major intent recognition platforms [1,8,11]), and
(ii) a concrete syntax in the form of a textual notation to write chatbot descrip-
tions conforming to the abstract syntax®. In the following we use the former to
describe the DSL packages, and the latter to show instance examples based on
our running case study. A modeling IDE for the language is also introduced in
our tool support.

2 A graphical notation sharing the same metamodel is left as further work.

182 G. Daniel et al.

4.1 Intent Package

Figure 2 presents the metamodel of the Intent Package, that defines a top-level
IntentLibrary class containing a collection of IntentDefinitions. An IntentDefini-
tion is a named entity representing an user intention. It contains a set of Training
Sentences, which are input examples used to detect the user intention underly-
ing a textual message. Training Sentences are split into TrainingSentenceParts
representing input text fragments—typically words—to match.

Each IntentDefinition defines a set of outContexts, that are named containers
used to persist information along the conversation and customize intent recog-
nition. A Context embeds a set of ContextParameters which define a mapping
from TrainingSentenceParts to specific EntityTypes, specifying which parts of
the TrainingSentences contain information to extract and store. A Context also
defines a lifespan representing the number of user inputs that can be processed
before deleting it from the conversation, allowing to specify information to retain
and discard, and customize the conversation based on user inputs.

IntentDefinitions can also reference inContexts that are used to specify
matching conditions. An IntentDefinition can only be matched if its referenced
inContexts have been previously set, i.e. if another IntentDefinition defining
them as its outContexts has been matched, and if these Contexts are active with
respect to their lifespans. Finally, the follow association defines IntentDefinition
matching precedence, and can be coupled with inContext conditions to finely
describe complex conversation paths.

Intent intents Intent outContexts Context parameters Context
Library Definition g -) Par 1
. + name : String N
+name : String +name : String inContexts+| + lifeSpan : Integer +name : String
+ entity - Enti
4 N 0.1 entity : EntityType
0.1
- training follows
<<Enumeration>> | sentences . textFragment
EntityType -
ini arts ini
ANY DATE TrainingSentence o p TrainingSentencePart
CITY [..] 1.1 + part: String

Fig. 2. Intent package metamodel

Listing 1 shows an example instance of the Intent Package from the running
example introduced in Sect.3.1. The model defines the IntentLibrary Example,
that contains three IntentDefinitions: OpenNewIssue, SpecifyRepository, and
SpecifyClass.

OpenNewIssue is a simple IntentDefinition that does not follow any other
intent nor require inContert value, and thus will be the first intent matched
in the conversation. It contains three training sentences specifying alternative
inputs used to initiate the conversation. The SpecifyRepository intent follows
the OpenNewIssue one, and defines one outContext RepositoryContext, with a

Multi-platform Chatbot Modeling and Deployment 183

lifespan of 5, and a single parameter name. Note that this example shows the
two syntax variants used to define parameters, the first one (line 13) is an inline
definition, while the second one (line 14-21) is an explicit definition that matches
the user input replacing the MyRepo fragment. While inline definitions are simpler
to specify, explicit definitions allow to express advanced matching rules, such
as parameters spanning over multiple TrainingSentenceParts or multi-context
parameters.

Finally, the SpecifyClass IntentDefinition defines a single training sentence,
and the inContext rule specifying that the RepositoryContext must be active
in order to match it. This implies that the SpecifyRepository IntentDefinition
must have been matched in the last 5 interactions, according to the context’s
lifespan.

Listing 1. Example Intents for the Github Case Study

library Example

1

2

3 OpenNewlssue {

4 inputs {

5 "I want to create an issue”, “Open an issue”, "New issue”
6}

7

8 SpecifyRepository follows OpenNewlssue {

9 inputs {

10 “In repository (RepositoryContext:name=@any)”,
11 ”The issue is located in repo MyRepo”,

12 ”MyRepo”

13

14 outContext “RepositoryContext™ (lifespan=5) {
15 param name <— "MyRepo” (@any)

16

17 3}

18 SpecifyClass {

19 inputs {

20 “In class (ClassContext:name=@any)”

21

22 inContext “RepositoryContext”

23}

4.2 Platform Package

The Platform Package (Fig.3) defines the capabilities of a given implementation
platform (e.g. Slack, Discord, and Github) through a set of ActionDefinitions and
InputProviderDefinitions.

A Platform is defined by a name, and provides a path attribute that is used by
the Jarvis Runtime component (see Sect.5) to bind the model to its concrete
implementation. A Platform holds a set of ActionDefinitions, which are signa-
tures of its supported operations. ActionDefinitions are identified by a name and
define a set of required Parameters. A Platform can be abstract, meaning that it
does not provide an implementation for its ActionDefinitions but it represents,
instead, a family of similar platforms. This feature allows to define chatbots in
a more generic way.

3 DialogFlow uses a default lifespan value of 5 that allows 5 unrecognized user inputs
before forgetting the conversation contexts.

184 G. Daniel et al.

As an example, the Chat Platform in Listing 2 is an abstract platform that
defines three ActionDefinitions: PostMessage, PostFile, and Reply. The first
two ActionDefinitions require two parameters (the message/file and the chan-
nel to post it), and the third one defines a single parameter with the content
of the reply. The Github Platform (Listing3) defines a single ActionDefinition
OpenIssue with the parameters repository, title, and content.

A Platform can extend another one, and inherit its ActionDefinitions. This
mechanism is used to define specific implementations of abstract Platforms. As
an example, the concrete Slack and Discord Platforms extend the Chat one
and implement its ActionDefinitions for the Slack and Discord messaging appli-
cations, respectively.

Finally, InputProviderDefinitions are named entities representing message
processing capabilities that can be used as inputs for the chatbot under design.
Messaging Platforms typically define a default provider, that can be comple-
mented with additional providers with specific capabilities (e.g. listen to a spe-
cific channel or user). Note that default providers are implicitly set in the Plat-
form language.

Listing 2. Chat Platform Example Listing 3. Github Platform Example

Abstract Platform Chat 1
path ”jarvis.ChatPlatform” 2
actions 3

PostMessage (message, channel) 4

5
6
7

Platform Github

path “jarvis.Github”

PostFile (file, channel)
Reply (message)

actions
Openlssue(repository, title,

content)
Platform Slack extends Chat

path “jarvis.SlackPlatform”
Platform Discord extends Chat
path ”jarvis.DiscordPlatform”

— OV U AW —

—_—

providers {* extends 0.1 xextends 0.1

InputProvider |* Platform . required
Definition < actions Action parameters| Parameter

default | * name : String o Definition | g
+ name : String provider + path : String
1 +abstract : Boolean

7| + key : String

+ name : String

Fig. 3. Platform package metamodel

4.3 Execution Package

The Ezecution Package (Fig.4) is an event-based language that represents the
chatbot execution logic.

An FEzxecutionModel imports Platforms and IntentLibraries, and specifies the
IntentProviderDefinitions used to receive user inputs. The EzecutionRule class

Multi-platform Chatbot Modeling and Deployment 185

Platform *| InputProviderDefinition B intent
[0 Platform
1. [Execution
usedProviders .
imports hd imports
ActionDefinition ExecutionModel IntentLibrary
4 1))
I_ links
2 M rulelntent -
Parameter 5 ExecutionRule IntentDefinition
=1 * 1
ruleActions 4 °)
parameter S
* I * m *
. g
ParameterValue Action >z Context
r parameter . § 3
Values return ¢
value Variable
1 arial 0.1
. . . refers
Expression VariableDeclaration ContextParameter
+ name : String 1 0.1
L% g Zﬁ referredBy
I I | *
BinaryOperation [] Literal [] VariableAccess

Fig. 4. Execution package metamodel

is the cornerstone of the language, which defines the mapping between received
IntentDefinitions and Actions to compute.

The Action class represents the reification of a Platform ActionDefinition
with concrete ParameterValues bound to its Parameter definitions. The value
of a ParameterValue is represented as an Ezpression instance. Jarvis Ezecution
language currently supports Literals, Unary and Binary Operations, as well as
Variable Accesses that are read-only operations used to access ContextParame-
ters.

An Action can also define an optional returnVariable that represents the
result of its computation, and can be accessed from other Actions through Vari-
ableAccess Expressions, allowing to propagate information between computed
actions. Finally, an Action can also contain onErrorActions, which are specific
Actions that are executed when the base one errored.

Listing 4 shows the FEzecution model from our running example. It imports
the Example IntentLibrary, the generic Chat Platform, as well as the concrete
Github and Discord Platforms. Note that Jarvis Ezecution language allows to
import both concrete and abstract Platforms, the concrete implementations of
the latter can be specified to the Jarvis Runtime component (see next section).

The defined ExecutionModel specifies a single InputProviderDefinition that
will receive user inputs from the Chat Platform. Resulting IntentDefinitions are
handled by three EzecutionRules following the conversation path. The first one
(lines 8-9) is triggered when the OpenNewIssue IntentDefinition is matched, and
posts a simple Reply message starting the conversation. The second one (lines

186 G. Daniel et al.

11-13) matches the SpecifyRepository IntentDefinition, and posts two Replies:
the first one echoing the provided RepositoryContext.name ContextParame-
ter, and the second one asking the user to specify the class related to the issue.
Finally, the third FzecutionRule is triggered when the SpecifyClass IntentDef-
inition is matched, and performs three Actions on different platforms: the first
one posts a Reply through the Chat Platform and displays the gathered Con-
textParameter values, the second one relies on the Github Platform to open a
new issue by accessing the name of the Repository and the corresponding Class
from the context, and the third one posts a reminder message on the Discord
channel used by the development team. Note that the second Action defines an
onError clause that prints an error message to the user if the chatbot was not
able to compute the openIssue action.

Listing 4. Chatbot Execution Language Example

1 import library Example

2 import platform Chat

3 import platform GithubModule

4 import platform DiscordModule

5

6 listen to Chat

7

8 on intent OpenNewlssue do

9 Chat.Reply(”Sure, 1’1l help you to write it! Which repository would you like to
report an issue for?”)

10

11 on intent SpecifyRepository do

12 Chat.Reply (" Alright, I have noted that your issue is related to repository {
$RepositoryContext.name}”)

13 Chat.Reply ("Which class is affected by the issue?”)

14

15 on intent SpecifyClass do

16 Chat.Reply (”Ok! I am opening an issue in repository {$RepositoryContext.name}
for the class {$ClassContext.name}, thanks!”

17 GithubModule. openIssue({ SRepositoryContext.name}, {$ClassContext.name}, “There
is an issue in class {$ClassContext.name}”)

18 on error do Chat.Reply(”I can’t open the issue on the repository, please

try again later”)

19 DiscordModule . PostMessage (A new issue has been opened on repository {

$RepositoryContext.name}”, “dev—channel”)

5 Jarvis Runtime

The Jarvis Runtime component is an event-based execution engine that
deploys and manages the execution of the chatbot. Its inputs are the chatbot
model (written with the Jarvis Modeling Language) and a configuration file
holding deployment information and platform credentials. In the following we
detail the structure of this configuration file, then we present the architecture of
the Jarvis Runtime component. Finally, we introduce a dynamic view of the
framework showing how input messages are handled by its internal components.

5.1 Jarvis Deployment Configuration

The Jarvis deployment configuration file provides runtime-level information to
setup and bind the platforms with whom the chatbot needs to interact either

Multi-platform Chatbot Modeling and Deployment 187

to get user input or to call as part of an action response. Listing5 shows a
possible configuration for the example used through this article. The first part
(lines 1-4) specifies DialogFlow as the concrete IntentRecognitionProvider ser-
vice used to match received messages against IntentDefinitions, and provides
the necessary credentials. The second part of the configuration (lines 5—6) binds
the concrete Slack platform (using its path attribute) to the abstract Chat used
in the Ezecution model (Listing4). This runtime-level binding hides platform-
specific details from the Ezecution model, that can be reused and deployed over
multiple platforms. The last part of the configuration (lines 7-10) specifies plat-
form credentials.

Listing 5. Chatbot Deployment Configuration Example

1 Intent Recognition Provider Configuration

2 jarvis.intent.recognition = DialogFlow

3 jarvis.dialogflow.project = <DialogFlow Project ID>
4 jarvis.dialogflow.credentials = <DialogFlow Credentials>
5 / Abstract Platform Binding

6 jarvis.platform.chat = jarvis.SlackPlatform

7 Concrete Platform Configuration

8 jarvis.slack.credentials = <Slack Credentials>

9 jarvis.discord.credentials = <Discord Credentials>
10 jarvis.github.credentials = <Github Credentials>

5.2 Architecture

Figure 5 shows an overview of the Jarvis Runtime internal structure, includ-
ing illustrative instances from the running example (light-grey). The JarvisCore
class is the cornerstone of the framework, which is initialized with the Con-
figuration and ExecutionModel previously defined. This initial step starts the
InputProvider receiving user messages, and setups the concrete IntentRecogni-
tionProvider (in our case DialogFlow) employed to extract RecognizedIntents,
which represent concrete instances of the specified IntentDefinitions.

The input FEzecutionModel is then processed and its content stored in a
set of Registries managing IntentDefinitions, Actions, and Platforms. The Plat-
formRegistry contains PlatformlInstances, which correspond to concrete Platform
implementations (e.g. the Slack platform from the running example) initialized
with the Configuration file. PlatformlInstances build Actionlnstances, that con-
tain the execution code associated to the ActionDefinitions defined in the Intent
language, and are initialized with Actions from the FEzecution model. These
ActionInstances are finally sent to the ActionRunner that manages their execu-
tion.

The JarvisCore also manages a set of Sessions, used to store Context infor-
mation and ActionInstance return variables. Each Session defines an unique
identifier associated to a user, allowing to separate Context information from
one user input to another.

Figure 6 shows how these elements collaborate together by illustrating the
sequence of operations that are executed when the framework receives a user
message. To simplify the presentation, this sequence diagram assumes that all

188 G. Daniel et al.

IntentRecognition Recognized " Intent registeredintents
. definition _—
Provider _ Intent Definition

1

IntentRegistry

+ extract(input : String) : Intentinstance

1

[
1
recognitionProvider ‘ N .
configuration

JarvisCore

Context InputProvider Configuration

1

1.*

+ initialize(c : Configuration, m: ExecutionModel)
+ handlelnput(i : String)

+ newlnput(in : String)

. [‘ + process(i : Recognizedintent)
contexti J sessions T runner
1

Session PlatformRegistry ActionRunner ActionRegistry
+id : UUID[* N N N N
+get(a : Action) + execute(a : ActionInstance, + get(i : Recognizedintent)
: PlatformInstance s : Session) : Action
T
i registered registered
| «| Platforms N Actions

PlatformInstance ActionInstance

Action

action + ActionInstance(a : Action,

+ build(a : Action, s : Session) Instances s : Session)

: Actionlnstance

Fig. 5. Jarvis runtime engine architecture overview

the internal structures have been initialized and that the different registries have
been populated from the provided EzecutionModel.

User inputs are received by the framework through the InputProvider’s
newlnput method (1), that defines a single parameter ¢ containing the raw text
sent by the user. This input is forwarded to the JarvisCore instance (2), that calls
its IntentRecognitionProvider’s extract method (3). The input is then matched
against the specified IntentDefinitions, and the resulting RecognizedIntent (4) is
returned to the JarvisCore (5).

The JarvisCore instance then performs a lookup in its ActionRegistry (6)
and retrieves the list of Actions associated to the RecognizedIntent (7). The
JarvisCore then iterates through the returned Actions, and retrieves from its
PlatformRegistry (8) their associated PlatformInstance (9). The user’s Session
is then retrieved from the JarvisCore’s sessions list (10). Note that this process
relies on both the user input and the Action to compute, and ensures that a
client Session remains consistent across action executions. Finally, the Jarvis-
Core component calls the build method of the PlatformInstance (11), that con-
structs a new ActionInstance from the provided Session and Action signature
(12) and returns it to the core component (13). Finally, the JarvisCore compo-
nent relies on the ezecute method of its ActionRunner to compute the created
ActionInstance (14) and stores its result (15), in the user’s Session (16).

Note that due to the lake of space the presented diagram does not include
the fallback logic that is triggered when the computation of a ActionInstance
returns an error. Additional information on fallback and on error clauses can be
found in the project repository.

Multi-platform Chatbot Modeling and Deployment 189

. . :IntentRecognition 5 . :Action :Platform :Action
:InputProvider - -JarvisCore - -
Provider Registry Registry Runner
T T
| | | |
1 | 1
(1) newlnput(i) (2) handlelnput(i) ————————»| !
[— (3) extract(i) !
|
|
(4) create :Recognized }
Intent !
|
77777] |
/ (8) rintent-—=— (6) get(rintent)
»

| 4(7) actions
.

]
(10) getSess‘ion(i, action)

! (12) create

:(11) build(action, session‘)ﬂjw
i o

Loop ———(8) get(action)
[action in actions] S .
N (9) platform :Platform
Instance

fffff (13) alnstance T
! H
(14) execute(alnstance, session) 2
< (15) result
(1S)Llp- ion(session, result)
T

Fig. 6. Runtime engine sequence diagram

6 Tool Support

The Jarvis framework is open source and released under the Eclipse Public
License v2%. The source code of the project and the Eclipse update site are
available on Github®, which also includes a wiki providing installation instruc-
tions as well as developer resources to extend the framework.

The concrete syntax of the Jarvis modeling language is implemented with
Xtext [2], an EBNF-based language used to specify grammars and generate the
associated toolkit containing a meta-model of the language, a parser, and textual
editors. The provided editors support auto-completion, syntactic and semantic
validation, and can be installed from the Jarvis Eclipse update site.

The Jarvis Runtime engine is a Java library that implements all the exe-
cution logic presented in this paper. In addition, Jarvis provides a full imple-
mentation of the IntentRecognitionProvider interface for Google’s DialogFlow
engine [8], as well as the concrete PlatformInstance implementations for the
Slack, Discord, and Github platforms used in the running example. The run-
time component can be downloaded and deployed on a server as a standalone
application, or integrated in an existing application using a dedicated Maven
dependency.

* https://www.eclipse.org/legal /epl-2.0/.
5 https://github.com /SOM-Research /jarvis.

https://www.eclipse.org/legal/epl-2.0/
https://github.com/SOM-Research/jarvis

190 G. Daniel et al.

7 Related Work

Our chatbot modeling approach reuses concepts from agent-oriented software
engineering [14] and event-based system modeling [26] and adapts them to the
chatbot/conversational domain. As far as we know, Jarvis is the first attempt
to provide a fully platform-independent chatbot modeling language.

So far, chatbot development has been mostly performed by means of directly
defining the chatbot intentions and responses within a specific chatbot plat-
form such as DialogFlow [8], Watson Assistant [11] or Lex [1]. They all provide
an online interface that allows to specify the user intentions, the conversation
path, and the contextual information to be maintained through the conversa-
tion, and offer excellent natural language processing capabilities. However, they
all have limited integration capabilities with other platforms. Any complex chat-
bot response (beyond purely giving a text-based answer) requires manual coding
and API management, making them unfit for non-professional developers.

Bot coding frameworks like Microsoft Bot Frameworks [20] provide a set of
programming libraries to implement and deploy chatbot applications. They usu-
ally facilitate the integration with intent recognition engines and some messaging
platforms, but still require manual integration of those and any other external
service. Other platforms like Botkit [3] or some low-code platforms [5,21,28] pre-
define a number of integrations with major messaging platform. While this helps
if we are aiming at building simple conversational chatbots they still need to be
tightened to one of the above platforms (for powerful language skills, e.g. for
intent recognition) and require, as before, manual coding of advanced chatbot
action. Finally, a few low-code platforms such as FlowXO [7] also provide sup-
port for triggering actions within the conversation. However, they are typically
defined as a closed environment that cannot be easily extended by the designer
with new actions and/or intent recognition platforms.

Conversely, Jarvis proposes an MDE approach that combines the benefit of
platform-independent chatbot definition, including non-trivial chatbot actions
and side effects, together with an easy deployment on any major chatbot plat-
form for optimal natural language processing. Moreover, the extensibility of our
modular design facilitates the integration of any external API and services as
input/output source of the chatbot. These integrations can be shared and reused
in future projects. On the other hand, Jarvis’ generic chatbot design may hide
useful platform-specific features that are not supported by all the vendors (e.g.
DialogFlow’s small talk). This could be addressed by adding a step in the design
process that would refine Jarvis’ platform independent model into a platform-
specific model where designers could enrich the bot with specific features of the
platform.

8 Conclusion

In this paper we introduced Jarvis, a multi-platform chatbot modeling frame-
work. Jarvis decouples the chatbot modeling part from the platform-specific

Multi-platform Chatbot Modeling and Deployment 191

aspects, increasing the reusability of the conversational flows and facilitating
the deployment of chatbot-enabled applications over a variety of chatbot service
providers. The runtime component can be easily extended to support additional
platform-specific actions and events.

Jarvis is the core component of an industrial case study in collaboration
with Berger-Levrault that aims to generate chatbots for citizen portals (chat-
bots’ mission is to help citizens navigate the portal to autonomously complete a
number of city-related obligations). As part of this project we plan to perform a
detailed evaluation of the expressiveness of the chatbot modeling language and
the overall usability and productivity of the framework relying on evaluation
techniques such as [23,25].

We also plan to enrich the Jarvis framework with advanced conversation
capabilities such as intent recognition confidence level and conditional branch-
ing that are not supported for the moment. We are also exploring the sup-
port of generic events such as webhooks and push notifications. This would
allow the modeling of reactive bots that can actively listen and respond to non-
conversational events as well (e.g. a bot that wakes up as soon as a new issue
is created on Github and immediately engages with the user to help clarifying
the issue description). We are also studying how to extend our approach to sup-
port chatbot deployment over smart assistants such as Amazon Alexa. Another
future work is the extension of the presented DSLs to support variation points at
the metamodel level allowing to generate families of chatbots, e.g. using product
line techniques [6].

Acknowledgement. This work has been partially funded by the Electronic Compo-
nent Systems for European Leadership Joint Undertaking under grant management No.
737494 (MegaMR#t2 project) and the Spanish government (TIN2016-75944-R project).

References

1. Amazon: Amazon Lex Website (2018). https://aws.amazon.com/lex/

2. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2013)

3. Botkit: Botkit Website (2018). https://botkit.ai

4. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-
tice. Synth. Lect. Softw. Eng. 1(1), 1-182 (2012)

5. Chatfuel: Chatfuel Website (2018). https://chatfuel.com/

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, vol.
3. Addison-Wesley, Reading (2002)

7. FlowXO: FlowXO Website (2019). https://flowxo.com/

Google: DialogFlow Website (2018). https://dialogflow.com/

9. Grinter, R.E., Palen, L.: Instant messaging in teen life. In: Proceedings of the 5th
CSCW Conference, pp. 21-30. ACM (2002)

10. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices
in industry: social, organizational and managerial factors that lead to success or
failure. SCP 89, 144-161 (2014)

®

https://aws.amazon.com/lex/
https://botkit.ai
https://chatfuel.com/
https://flowxo.com/
https://dialogflow.com/

192

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

G. Daniel et al.

IBM: Watson Assistant Website (2018). https://www.ibm.com/watson/ai-
assistant/

Gartner Inc.: The Road to Enterprise AI. RAGE Frameworks (2017)

Jackson, P., Moulinier, I.: Natural Language Processing for Online Applications:
Text Retrieval, Extraction and Categorization, vol. 5. John Benjamins Publishing,
Amsterdam (2007)

Jennings, N.R., Wooldridge, M.: Agent-oriented software engineering. In: Hand-
book of Agent Technology, vol. 18 (2001)

Kavaler, D., Sirovica, S., Hellendoorn, V., Aranovich, R., Filkov, V.: Perceived
language complexity in GitHub issue discussions and their effect on issue resolution.
In: Proceedings of the 32nd ASE Conference, pp. 72-83. IEEE (2017)

Kerlyl, A., Hall, P., Bull, S.: Bringing Chatbots into Education: Towards Natural
Language Negotiation of Open Learner Models. In: Ellis, R., Allen, T., Tuson,
A. (eds.) Applications and Innovations in Intelligent Systems XIV, pp. 179-192.
Springer, London (2007). https://doi.org/10.1007/978-1-84628-666-7_-14

Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Pearson Education, London (2008)

Klopfenstein, L.C., Delpriori, S., Malatini, S., Bogliolo, A.: The rise of bots: a
survey of conversational interfaces, patterns, and paradigms. In: Proceedings of
the 12th DIS Conference, pp. 555-565. ACM (2017)

Masche, J., Le, N.-T.: A review of technologies for conversational systems. In:
Le, N.-T., Van Do, T., Nguyen, N.T., Thi, H.A.L. (eds.) ICCSAMA 2017. AISC,
vol. 629, pp. 212-225. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
61911-8_19

Mayo, J.: Programming the Microsoft Bot Framework: A Multiplatform Approach
to Building Chatbots. Microsoft Press, Redmond (2017)

Mendix: Mendix Website (2018). https://www.mendix.com/

Nardi, B.A., Whittaker, S., Bradner, E.: Interaction and outeraction: instant mes-
saging in action. In: Proceedings of the 3rd CSCW Conference, pp. 79-88. ACM
(2000)

Pereira, J., Diaz, O.: A quality analysis of Facebook Messenger’s most popular
chatbots. In: Proceedings of the 33rd SAC Symposium, pp. 2144-2150. ACM (2018)
Pereira, J., Diaz, O.: Chatbot dimensions that matter: lessons from the trenches.
In: Mikkonen, T., Klamma, R., Herndndez, J. (eds.) ICWE 2018. LNCS, vol. 10845,
pp. 129-135. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91662-0-9
Radziwill, N.M., Benton, M.C.: Evaluating quality of chatbots and intelligent con-
versational agents. arXiv preprint arXiv:1704.04579 (2017)

Rozsnyai, S., Schiefer, J., Schatten, A.: Concepts and models for typing events
for event-based systems. In: Proceedings of the 1st DEBS Conference, pp. 62—70.
ACM (2007)

Shawar, A., Atwell, E., Roberts, A.: FAQchat as in information retrieval system. In:
Proceedings of the 2nd LTC Conference, pp. 274-278. Wydawnictwo Poznanskie,
Poznan (2005)

Smartloop: Smartloop Website (2018). https://smartloop.ai/

Subrahmanian, V.S.; et al.: The DARPA Twitter bot challenge. arXiv preprint
arXiv:1601.05140 (2016)

Thomas, N.T.: An E-business chatbot using AIML and LSA. In: Proceedings of
the 5th ICACCI Conference, pp. 2740-2742. IEEE (2016)

https://www.ibm.com/watson/ai-assistant/
https://www.ibm.com/watson/ai-assistant/
https://doi.org/10.1007/978-1-84628-666-7_14
https://doi.org/10.1007/978-3-319-61911-8_19
https://doi.org/10.1007/978-3-319-61911-8_19
https://www.mendix.com/
https://doi.org/10.1007/978-3-319-91662-0_9
http://arxiv.org/abs/1704.04579
https://smartloop.ai/
http://arxiv.org/abs/1601.05140

31.

32.

Multi-platform Chatbot Modeling and Deployment 193

Wieringa, R.J.: Design Science Methodology for Information Systems and Soft-
ware Engineering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43839-8

Xu, A., Liu, Z., Guo, Y., Sinha, V., Akkiraju, R.: A new chatbot for customer
service on social media. In: Proceedings of the 35th CHI Conference, pp. 3506—
3510. ACM (2017)

https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8

	Multi-platform Chatbot Modeling and Deployment with the Jarvis Framework
	1 Introduction
	2 Background
	3 Jarvis Framework
	3.1 Running Example
	3.2 Framework Overview

	4 Jarvis Modeling Language
	4.1 Intent Package
	4.2 Platform Package
	4.3 Execution Package

	5 Jarvis Runtime
	5.1 Jarvis Deployment Configuration
	5.2 Architecture

	6 Tool Support
	7 Related Work
	8 Conclusion
	References

