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Abstract. Dendrite ellipsoidal neurons are a novel and different alter-
native for classification tasks, giving competitive results compared with
typical classification methods. Based on k-means++ algorithm, the net-
work allows each dendrite to build a hyperellipsoidal in order to assign
each incoming pattern xi = (x1, x2, . . . , xn)T to its respective C class.
The main disadvantage of this training algorithm is the lack of accu-
racy in high dimensional datasets. In this research, we solved this prob-
lem by training the dendrite ellipsoidal neuron using stochastic gradient
descent. Furthermore, electroencephalography data were acquired dur-
ing two mental conditions (imaginary movements of the left and right
hand) in order to test the new training algorithm. The proposed algo-
rithm outperformed the accuracy acquired by a dendrite ellipsoidal neu-
ron based on k-means++ obtaining 76.02% and 62.77%, respectively.
Also, the algorithm was compared with multilayer perceptrons and sup-
port vector machines which are some of the most common classifiers used
to detect motor-related information in brain signals. These achieved an
accuracy of 72.38% and 65.81%, respectively.

Keywords: Dendrite Ellipsoidal Neuron · Motor Imagery ·
Electroencephalography · Multilayer perceptrons · Support vector
machines · Stochastic Gradient Descent · k-means++

1 Introduction

The main objective about pattern classification is to stablish a mathemat-
ical function that associate input patterns xi = (x1, x2, . . . , xn)T to their
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corresponding classes C1, C2, . . . , Cj . This assignation must be as strong as pos-
sible to reduce potential variations in incoming data and must be capable to find
elemental relationships between patterns.

Since 60 years ago, many types of neural networks have been presented for
solving classification tasks and the most common approach is a group of classical
perceptrons which create hyperplanes to divide and associate data by using
synaptic weights, biases and activation functions.

In a common neural network, each neuron can divide the input search space
into two parts. Thereby, appending more neurons in a single layer, the network
has the capacity to learn any complex function [1].

Other type of neural networks less known are Dendrite Morphological Neural
Networks (DMNN) which separate data employing hyperboxes. These neurons
group patterns using minimum or maximum operators to generate the piecewise
boundaries for classification tasks. DMNN have the advantage of being easily
implemented in logic devices.

This research proposes an improvement to a specific type of morphologi-
cal neural networks called Dendrite Ellipsoidal Neuron (DEN) trained with k-
means++ algorithm [2,3]. DEN has shown good performance in low dimen-
sional datasets, requiring few training parameters and it is easy to implement
in logic devices. Although DEN has shown to be efficient, it also has poor per-
formance with high dimensional datasets. All these DEN advantages motivated
us to explore new ideas in order to improve DEN accuracy in high dimensional
datasets.

In this paper, we trained a DEN using Stochastic Gradient Descent (SGD)
[4] implemented as a neural network layer of the Keras library [5] in Python.
Furthermore, in order to test the proposed training algorithm in a high dimen-
sional dataset, Electroencephalography (EEG) data were adquired from eight
able-bodied subjects for classifying Motor Imagery (MI) of the hands into binary
classes (Left vs Right). Contributions of this research are:

– This is the first time that a DEN is trained by SGD.
– Through a series of experiments, we show that the new training algorithm out-

performs the actual DEN accuracy for our dataset, and the accuracy achieved
by some of the most common classifiers for MI.

The rest of the paper is structured as follows: Sect. 2 provides a chronological list
of publications related to previous literature with a comprehensive explanation.
Section 3 describes the methods and materials used to obtain and character-
ize the EEG signals. Section 4 shows the DEN and the proposal architecture.
Section 5 describes the general details of the used classifiers and the experimen-
tal results. In Sect. 6, we give our conclusions and future work.

2 Related Works

Morphological Neural Networks MNN were originally besought by Ritter and
Davidson as a combination between neural networks and image algebra [6–9].
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After this, Arbib published a book where it was taken into account that bio-
logical neurons process the information not only in the neuron cells but also in
the dendrites [10]. Other related works resumed this research [11]. And several
approaches have been proposed based on heuristics to manipulate hyperboxes
not taking into account the dendrite fitness function.

All these techniques create hyperboxes to divide the input space into rect-
angular segments. In addition, in 2017 we presented DEN which changes the
operations performed for MNN dendrites by using the Mahalanobis distance
[12]. The main advantage of the ellipsoidal model is that it creates smoother
decision boundaries and not rectangular regions.

Some other similar approaches to the k-means++ [13] clustering algorithm
and the Mahalanobis distance [12] are elliptical k-means clustering algorithms,
Gaussian Mixture Models (GMM), and classifiers based on the Mahalanobis
distance.

Authors in [14,15] employed elliptical k-means clustering algorithm to dis-
criminate between human and nonhuman faces. For this, they altered k-means
by modifying the normalized Mahalanobis distance to achieve six face pattern
clusters.

GMM is a probabilistic technique focused to approximate almost any con-
tinuous density by using an enough number of Gaussian [16].

3 Methods and Materials

This section describes the experiments carried out to obtain EEG signals from
subjects whom performed MI of both hands and the preprocessing and feature
extraction procedure.

3.1 Experiment Setup

For this study, eight healthy people (three males and five females) aged 25 to 30
participated in an experiment designed to obtain EEG recordings for two mental
tasks:

1. Imagined movements of the left hand and,
2. Imagined movements of the right hand.

These experimental conditions consisted of flexion and extension of the fingers
of the right and left hand mentally without performing the actual movements.
A graphical user interface developed by our team provided the instructions of
the experiment and indicated when the subject had to carry out the mental
imaginations.

The experiment was divided into 16 blocks of a duration of 28 s each. A block
started with a fixation cross shown on the screen for 5 s, followed by a visual cue
of the action to be performed by the participant (3 s). White arrows and a sphere
that moved from the center of the screen to the left or right side of the monitor
represented the different types of tasks, Fig. 1 (Right). Then, the participant had
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to execute for 15 s the imagined movement specified by the interface. Finally, the
word “Rest” was shown on the screen for 5 s, indicating that the subject could
relax or move freely until the beginning of the next block. The software selected
the task of each block randomly. Also, both conditions were balanced, i.e., the
subject performed eight times the “left” task and eight times the “right” task.
In total, an experiment lasted around seven and a half minutes. Fig. 1 (Left)
illustrates the different stages of this paradigm.

During the experiment execution, a g.USBamp amplifier recorded EEG sig-
nals from 12 active electrodes at a sampling rate of 256 Hz (g.tec medical engi-
neering GmbH, Austria). Data were band-pass filtered from 0.1 to 100 Hz, and a
built-in notch filter removed the power supply noise. According to the interna-
tional 10/20 system, the electrode positions used in this experiment were FC3,
FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, and P4. This arrangement was
selected to cover scalp locations that are close to the motor cortex. Additionally,
the ground electrode was located at AFz, and the reference electrode was placed
over the right earlobe.

3.2 Preprocessing and Feature Extraction

The Common Spatial-Pattern (CSP) algorithm was used to characterize the
brain activity of both experimental conditions. This algorithm finds linear com-
binations of the original EEG signals (or band-limited components of the EEG)
so that the variances of the new signals of one condition are maximized, whereas
the variances of the signals of the other condition are minimized. In this way, if
the log-variances of the signals in the projected space are used as features, the
separability between conditions is optimal. In this study, the CSP algorithm was
applied over band-limited components extracted by a filter bank. This strategy
is commonly known as Filter Bank Common Spatial-Pattern (FBCSP).

In the preprocessing stage, a filter bank of gaussian bandpass filters with
a bandwidth of 4 Hz extracted 22 components from the EEG signals (4, 5, 6,
. . . , 25 Hz). Then, the data was separated into epochs or trials of 1 second of
time samples. Trials contaminated by visual or muscular artifacts were identified
and rejected from this study. Finally, the CSP algorithm was used to compute
a new set of signals for each frequency component to increase the separability
between conditions. For each band, the three best spatial filters that maximize
the variances of the “Left” conditions were calculated. Likewise, the three best
spatial filters that maximize the variances of the “Right” conditions were also
computed, associated to a class label y {Left, Right}. The features used in the
classification stage were the log-variances of these time-series. In total, each trial
consisted of 132 new projected signals, x ∈ �132×256.

4 Den Architecture

DEN has the same structure as any other neural network architecture: an input,
a hidden and an output layer, Fig. 2.
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The input layer receives the incoming xi = (x1, x2, . . . , xn)T patterns. The
hidden layer calculates the Mahalanobis distance between the input patterns
and all the hyperellipsoids placed by the dendrites with Eq. 1. Lastly, the out-
put layer assigns patterns to their nearest dendrites which are related to their
corresponding C1, C2, . . . , Cj classes with Eq. 2:

τK = [xi − μk]T
∑ −1

k [xi − μk], (1)

yi = argming(τK), (2)

where xi is a n dimensional vector, τK is a vector with k Mahalanobis distances
and yi is the output vector of each xi pattern.

∑ −1
k is the covariance matrix

and μk is the centroid vector both related with the k hyperellipsoids.

Fig. 2. DEN architecture with an input, a hidden and an output layer.

Once we experimentally observed that DEN has a good performance with
small dimensional datasets but not with high dimensional datasets, we occurred
to the task of setting the hyperellipsoids by using SGD as an optimization
method [4].

To do this, we first implemented the hidden layer (Eq. 1) in a Keras custom
layer [5]. Keras computes gradients by using automatic differentiation which
automatically calculate the function derivatives of a computer program [17].
And then, we removed the output layer (Eq. 2) which could be replaceable by
one or more neurons.

5 Classifiers and Results

This section shows the general details of the used classifiers for the MI classifi-
cation task and the results achieved by them.

The first technique was a Support Vector Machine (SVM) [18] which is one
of the most widespread methods for Brain-Computer Interface (BCI) based on
EEG, as previously mentioned. It is formed by two layers: depending on the
kernel, the first layer is employed for feature extraction and the second layer
creates a hyperplane to separate patterns into two different classes. The goal
of the second layer is to create a hyperplane with optimal margins among the
support vectors.
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In the experiment, we implemented the SVM with a Radial Basis Function
(RBF) kernel; so commonly utilized on BCI based on EEG [19,20]. And we
selected the γ gamma and the C compensation factor by doing a grid sweep in
order to choose the best parameters.

The second classifier was a Multilayer Perceptron (MLP) [21]. This was imple-
mented with two hidden layers, each layer with 100 ReLU neurons and an output
layer with a sigmoid neuron (σ). To decrease the overfitting problem, we applied
dropout with a rate of 0.2 between each layer.

The last classifiers were DEN and DEN trained by SGD (DEN SGD).
DEN SGD architecture was composed by three hyperellipsoids with sigmoid acti-
vation functions in the input layer and a sigmoid neuron in the output layer,
Fig. 3.

Fig. 3. DEN SGD architecture for EEG classification task.

Table 1 presents the accuracy achieved by the four classifiers. It can be appre-
ciated that the SVM always obtained a 100% of accuracy in the training stage.
However, it computed a 65.81% in testing. As can be seen, the SVM has a high
overfitting problem.

Table 1. Experimental results acquired by the SVM, MLP, DEN and SGD DEN clas-
sifiers using our EEG dataset.

SVM MLP DEN SGD DEN

Participant Train Test Train Test Train Test Train Test

P1 100.00 62.99 96.73 70.66 76.02 62.76 91.48 74.50

P2 100.00 64.45 99.42 68.49 83.82 62.70 91.09 72.86

P3 100.00 72.97 98.51 78.96 80.79 64.19 93.46 81.27

P4 100.00 63.24 96.47 68.28 83.36 64.02 94.81 72.60

P5 100.00 62.46 97.74 68.61 92.61 63.66 90.52 73.65

P6 100.00 64.35 98.40 71.54 84.28 63.55 90.94 75.44

P7 100.00 75.59 96.84 82.53 70.34 63.50 97.94 85.03

P8 100.00 60.48 98.40 69.96 75.34 57.79 95.19 72.80

Average 100.00 65.81 97.81 72.38 80.82 62.77 93.18 76.02

STD 0.00 5.06 0.98 5.02 6.41 1.94 2.47 4.31
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DEN achieved the lowest accuracy in training and in testing, 80.82% and
62.77%, respectively.

The best classifiers for this task were the MLP and the SGD DEN. The MLP
acquired an accuracy of 72.38% in testing and the SGD DEN slightly acquired
an improvement with 76.02%. Both presented the overfitting problem, but it was
less with SGD DEN.

Finally, as a comparison of the proposed method with the other classifiers
in statistical terms, it was performed a paired t-test with a significance level
of α = 0.05. Table 2 gives the p-values acquired in the test. The comparisons
between SGD DEN and SVM, MLP and DEN achieved a less value than α, which
indicates that for this dataset SGD DEN has a significantly better performance.

Table 2. P − values of a paired t-test with α = 0.05.

Classifiers P − values

SVM 0.000000136

MLP 0.000007950

DEN 0.000028302

6 Conclusions

In this research, we have implemented SGD to train a DEN and acquired an EEG
dataset from eight healthy participants to test the performance of the proposed
training algorithm. The besought model achieved an enhancement of 13.25%
over the DEN training algorithm and an improvement of 3.64% and 10.21%
compared with the MLP and the SVM, respectively. We invite the reader to
regard an improvement obtained with a shallow architecture which can be easily
implemented in embedded electronic devices. Future work will be the evaluation
of DEN SGD using standard datasets and the implementation of this network
to control external electronic devices.
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