
On the Use of Constructs for Rule-Based
Classification: A Case Study

Manuel S. Lazo-Cortés1,2(B), José Fco. Mart́ınez-Trinidad1,
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Abstract. In Rough Set Theory, super-reducts are subsets of attributes
that retain the ability of the whole set of attributes to discern objects
belonging to different classes; reducts are minimal ones. On the other
hand, constructs also allow discerning objects belonging to different
classes but, at the same time, they retain similarities between objects
belonging to the same. Therefore, constructs are a kind of super-reducts
in whose definition inter-class and intra-class information is combined.
This type of super-reduct has been little studied. In this paper, we
present a case study, about the use of constructs instead of reducts for
building decision rules useful for rule-based classification. Our results
show the practical utility of constructs for rule based classification.

1 Introduction

Rough Set Theory makes an effort to examine whether a set of descriptive
attributes is sufficient to classify objects into the same classes as the original
partition. In this effort, super-reducts play an important role. Rough set the-
ory performs analysis and reasoning about data in a data table, in which rows
are objects, columns are attributes, and each cell is the value of an attribute
on an object [9,10]. A decision table is a special data table such that the set
of attributes is the union of a set of condition attributes and a set of decision
attributes (most of the time, only one). The notion of super-reduct plays a fun-
damental role in rough set analysis. Pawlak [10] defined a super-reduct of a
decision table as a subset of condition attributes that has the same classification
ability as the entire set of condition attributes with respect to the set of decision
attributes. Reducts are minimal super-reducts.

On the other hand, constructs [15] take into account more information,
because they preserve discriminating relations between objects belonging to dif-
ferent classes and similarity relations between objects belonging to the same
class. So, constructs are a kind of super-reducts in whose definition inter-class
and intra-class information is combined.

Combining inter-class dissimilarity with intra-class similarity seems interest-
ing because the resulting subsets of attributes (constructs) would ensure not only
c© Springer Nature Switzerland AG 2019
J. A. Carrasco-Ochoa et al. (Eds.): MCPR 2019, LNCS 11524, pp. 327–335, 2019.
https://doi.org/10.1007/978-3-030-21077-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21077-9_30&domain=pdf
https://doi.org/10.1007/978-3-030-21077-9_30


328 M. S. Lazo-Cortés et al.

the ability to distinguish objects belonging to different classes but also recogniz-
ing objects belonging to the same class. This type of super-reduct has been little
studied and to the best of our knowledge, this is the first time the usefulness of
constructs is studied for building classification rules.

In this paper, we present a case study about the use of constructs for build-
ing decision rules useful for a rule-based classifier. The rest of the document
is organized as follows. Section 2 provides the formal definitions of reduct and
construct. Section 3 presents a case study showing the experimental results that
we obtained applying a rule-based classifier when rules are generated through
reducts or constructs. A discussion about these results, as well as a comparison
against other well known rule-based classifiers, is included in this section. Our
conclusions are summarized in Sect. 4.

2 Theoretical Foundations

In this section, we introduce the definitions of reduct and construct under the
same notation.

2.1 Reducts

The main data representation considered in this paper is a decision table, which
is a special case of an information table [9]. Formally, a decision table is defined as

Definition 1 (decision table). A decision table is a pair Sd = (U , At = A∗
t ∪{d})

where U is a finite non-empty set of objects, At is a finite non-empty set of
attributes. A∗

t is a set of conditional attributes and d is a decision attribute indi-
cating the decision class for each object in the universe. Each a ∈ At corresponds
to the function Ia : U → Va called evaluation function, where Va is called the
value set of a. The decision attribute allows partitioning the universe into blocks
(classes) determined by all possible decisions.

Sometimes we will use D for denoting {d}, i.e. ({d} = D).
A decision table can be implemented as a two-dimensional array (matrix),

rows are associated to objects, columns to attributes and cells to values of
attributes on objects.

When considering decision tables, it is important to distinguish between the
so called consistent and inconsistent ones. A decision table is said to be consis-
tent, if each combination of values of descriptive attributes uniquely determines
the value of the decision attribute (i.e. objects for which their value of the deci-
sion attribute are different have a different description according to the descrip-
tive attributes); and inconsistent, otherwise. For the purpose of this paper we
only consider consistent decision tables.

It is important to introduce the definition of the indiscernibility relation.
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Definition 2 (indiscernibility relation). Given a subset of conditional attributes
A ⊆ A∗

t , the indiscernibility relation is defined as IND(A|D) = {(u, v) ∈ U ×U :
∀a ∈ A, [Ia(u) = Ia(v)] ∨ [Id(u) = Id(v)]}

The indiscernibility relation is an equivalence relation, so it induces a parti-
tion over the universe. Being Sd a consistent decision table, the partition induced
by any subset of conditional attributes is finer than (or at maximum equal to)
the relation determined by all possible values of the decision attribute d.

We can find several definitions of reduct (see for example, [8]), nevertheless,
according to the aim of this paper, we refer to reducts assuming the classical
definition of discerning decision reduct [10] as follows.

Definition 3 (reduct for a decision table). Given a decision table Sd, an
attribute set R ⊆ A∗

t is called a reduct, if R satisfies the following two con-
ditions:

(i) IND(R|D) = IND(A∗
t |D);

(ii) For any a ∈ R, IND((R − {a})|D) �= IND(A∗
t |D).

All attribute subsets satisfying condition (i) are called super-reducts.

This definition ensures that a reduct has no lower ability to distinguish
objects belonging to different classes than the whole set of attributes, being min-
imal with regard to inclusion, i.e. a reduct does not contain redundant attributes
or, equivalently, a reduct does not include other super-reducts. The original idea
of reduct is based on inter-class comparisons.

2.2 Constructs

As noted before, reducts are defined from an inter-class object comparison point
of view. They ensure preserving the ability to discern between objects belonging
to different classes. The novelty of the concept of construct (introduced by Sus-
maga in 2003 [15]) is the combination of inter-class and intra-class comparisons
in such a way that a resulting subset of conditional attributes would ensure not
only the ability to distinguish objects belonging to different classes, but also
preserves certain similarity between objects belonging to the same class.

Let us now consider the following similarity relation defined between objects
belonging to the same class in a decision table Sd = (U , A∗

t ∪ {d}).
Definitions 4 and 5 were introduced by Susmaga [15], here we reformulate

them for homogeneity in the notation.

Definition 4 (similarity relation). Given a subset of conditional attributes A ⊆
A∗

t , the similarity relation is defined as SIM(A|D) = {(u, v) ∈ U × U : [Id(u) =
Id(v)] and ∃a ∈ A [Ia(u) = Ia(v)]}.

If a pair of objects belongs to SIM(A|D) then these objects belong to the
same class and they are indiscernible on at least one attribute from the set A.

The definition of construct may be stated as follows.
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Definition 5 (construct). Given a decision table Sd, an attribute set C ⊆ A∗
t is

called a construct, if C satisfies the following conditions:

(i) IND(C|D) = IND(A∗
t |D);

(ii) SIM(C|D) = SIM(A∗
t |D);

(iii) For any a ∈ C, IND((C−{a})|D) �= IND(A∗
t |D) or SIM((C−{a})|D) �=

SIM(A∗
t |D);

So, a construct is a subset of attributes that retains the discernment between
any pair of objects belonging to different classes as well as the similarity of
objects belonging to the same class. Alike reducts, a construct is minimal, which
means that removing any attribute from it would result in making any (or both)
of the conditions given by (i) and (ii) invalid.

Example 1. Given the decision table M , where U = {u1, u2, u3, u4, u5, u6, u7,
u8}, A∗

t = {a1, a2, a3, a4} and D = {d}.

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 d

u1 blue 0 TX 0 1
u2 blue 1 NY 1 1
u3 white 0 NY 2 1
u4 white 1 TX 0 1
u5 blue 1 IL 3 2
u6 black 1 FL 4 2
u7 red 1 AL 3 3
u8 red 0 IL 1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From this decision table, we have that {a2, a3}, {a1, a4}, {a1, a3} and {a3, a4}
are the reducts. Notice that {a2, a3} does not fulfill the definition of construct,
since 0 = Ia2(u3) �= Ia2(u4) = 1 and NY = Ia3(u3) �= Ia3(u4) = TX being
Id(u3) = Id(u4) = 1. In fact, none of the reducts is a construct for this deci-
sion table; the only construct for M is {a1, a2, a3}. {a1, a2, a3} is a super-reduct
because it contains {a1, a3} which is a reduct (it also contains {a2, a3}), there-
fore {a1, a2, a3} fulfills condition (i) in Definition 5. For each pair of objects in
the same class, we have that blue = Ia1(u1) = Ia1(u2), 0 = Ia2(u1) = Ia2(u3),
TX = Ia3(u1) = Ia3(u4), NY = Ia3(u2) = Ia3(u3), 1 = Ia2(u2) = Ia2(u4),
white = Ia1(u3) = Ia1(u4), 1 = Ia2(u5) = Ia2(u6) and red = Ia1(u7) = Ia1(u8).
Therefore, {a1, a2, a3} fulfills condition (ii) in Definition 5. Finally it is not dif-
ficult to verify that {a1, a2, a3} is minimal.

3 Case Study

In this section, we will show a case study about the use of constructs instead of
reducts for building decision rules useful for a rule-based classifier.

To build the set of decision rules to be used in a rule-based classifier, we used
the tools included in the software RSES ver. 2.2.2 [3], which has been widely
used in the literature, see for example [2,11,12].
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In RSES, once the reducts of a decision table have been computed, each
object in the training sample is matched against each reduct. This matching
gives as result a rule having in its conditional part, the attributes of the reduct,
each one associated with the values of the currently considered object, and in
its decision part it has the class for this training object.

At classifying an unseen object through the generated rule set, it may happen
that several rules suggest different decision values. In such conflict situations a
strategy to reach a final result (decision) is needed. RSES provides a conflict
resolution strategy based on voting. In this method, when the antecedent of
the rule matches the unseen object, a vote in favor of the decision value of
its consequent is cast. Votes are counted and the decision value reaching the
majority of the votes is chosen as the class for the object.

This simple method may be extended by assigning weights to rules. In RSES,
this method (known as Standard Voting) assigns as weight for a rule the num-
ber of training objects matching the antecedent of this rule. Then, each rule
votes with its weight and the decision value reaching the highest weight sum is
considered as the class for the object.

In the same way that was explained above for reducts, in order to obtain a set
of decision rules based on constructs, RSES was used. This was done by loading
the set of constructs as if they were reducts, with the format corresponding to
this type of file.

For our case study, we used the lymphography dataset, taken from the UCI
Machine Learning Repository [1]. We selected this dataset to compare the results
with those reported in [7]. We randomly generated two folds in order to perform
two-fold cross validation. Characteristics of both the lymphography dataset and
the folds used in our experiments can be seen in Table 1.

We used the sets of all reducts and all constructs for creating decision rules.
Reducts and rules were computed by using RSES [14]. Constructs were computed
by using the typical testor computation algorithm CT-EXT [13], following [6].

Table 1. Characteristics of the lymphography dataset and the two folds used in our
experiments

Attributes Classes Objects Objects per class

K1 K2 K3 K4

18 4 148 2 81 61 4

Fold 1 74 1 40 31 2

Fold 2 74 1 41 30 2

For each fold, we compute the sets of all reducts and all constructs. Table 2
shows the number of reducts and constructs computed for each fold.

The number of reducts and constructs is large enough to make it difficult
to select the best ones. At this point, it is important to emphasize that, from a
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Table 2. Number of reducts and constructs for each fold of the lymphography dataset

Fold Reducts Constructs

1 530 1431

2 317 970

practical point of view, the simple number of reducts and constructs is an infor-
mative indicator of the quality of the regularities found in the data. Although
the reducts and constructs are few, the regularities can be strong. On the other
hand, when the amount of reducts or constructs become large, the reducts and
constructs generated are usually of low quality, since they tend to be a large
number of combinations of attributes that satisfy the definitions. Of course, it
is still possible that some of these reducts and constructs are really good, but
detecting them is difficult due to the search in a large set is time consuming.

In Table 3, it can be seen the minimum, average, and maximum length of
reducts and constructs, for both folds.

Table 3. Length of reducts and constructs for the lymphography dataset

Fold Length Reducts Constructs

1 Minimum 5 6

Average 7.3 8.1

Maximum 10 11

2 Minimum 5 6

Average 7 7.8

Maximum 9 10

We can observe that, as previously reported in [15], this dataset produces
more constructs than reducts, and also the constructs tend to contain more
attributes than the reducts.

We generate a set of reduct-based rules for the set of all reducts, as well as a
set of construct-based rules considering all constructs. Table 4 shows information
about the sets of rules. The third column contains the number of rules, the
subsequent four columns show the number of rules per class; and the three final
columns show the minimum, average and maximum number of objects matching
the antecedent of the rules (support of the rules). As it can be seen in these last
three columns, for no rule more than seven objects matched the antecedent of
the rule. Moreover, from the average (penultimate column), it can be seen that
for most rules only one object matched the antecedent of the rule.

We apply, over the two folds, the RSES Standard Voting rule-based classifier
and compute the average of the classification accuracy obtained in each fold.
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Table 4. Characteristics of the rules generated for the lymphography dataset

Fold Set Rules Rules per class Support

K1 K2 K3 K4 Min Mean Max

1 Reducts 34958 530 18411 14957 1060 1 1.1 6

Constructs 95797 1431 50585 41194 2862 1 1.1 6

2 Reducts 21138 317 11578 8620 623 1 1.1 5

Constructs 62759 970 34913 25742 1914 1 1.1 7

Table 5 shows the results obtained in terms of accuracy in average when reduct-
based rules were used in the Standard Voting classifier. Additionally, in Table 5,
we show the confusion matrix as well as the true positive rate and the accuracy
obtained by the Standard Voting rule-based classifier for each class. On average,
the Standard Voting rule-based classifier using reduct-based rules obtained an
accuracy of 0.73.

Table 5. Confusion matrix for the Standard Voting rule-based classifier for the lym-
phography dataset using reducts

K1 K2 K3 K4 No. of objects Accuracy

K1 0 1 1 0 2 0.00

K2 2 62 14 3 81 0.77

K3 1 14 46 0 61 0.75

K4 0 2 1 0 4 0.00

Total 148 0.73

True positive rate 0.00 0.78 0.74 0.00

We repeat the procedure, but now considering constructs instead of reducts.
Table 6 shows the results obtained in terms of accuracy in average when
construct-based rules were used in the Standard Voting classifier. On average,
the Standard Voting rule-based classifier using reduct-based rules obtained an
accuracy of 0.78.

As we can see from Tables 5 and 6, when considering rules generated from
constructs instead of reducts, the classification accuracy was improved.

Finally, taking into account that we are evaluating the practical utility of
using constructs for a rule-based classifier, we wanted to compare the results
obtained by rule-based classifiers based on reducts or constructs against those
obtained with other well-known rule-based classifiers widely used in the litera-
ture. We select RIPPER [4] and SLIPPER [5]. These classifiers were run using
the KEEL Software Suite [16].
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Table 6. Confusion matrix for the Standard Voting rule-based classifier for the lym-
phography dataset using constructs

K1 K2 K3 K4 No. of objects Accuracy

K1 0 1 1 0 2 0.00

K2 2 69 9 1 81 0.85

K3 2 13 46 0 61 0.75

K4 0 1 2 0 4 0.00

Total 148 0.78

True positive rate 0.00 0.82 0.73 0.00

Table 7 shows the results obtained by each compared classifier in ascending
order. As we can see construct-based Standard Voting classifier got the best
result.

Table 7. Accuracy of four rule-based classifiers for the lymphography dataset

Algorithm Accuracy

RIPPER 0.69

Reducts based Standard Voting 0.73

SLIPPER 0.76

Constructs based Standard Voting 0.78

4 Conclusions

As we have discussed along the paper, reducts and constructs constitute two
different contributions to the attribute reduction problem in Rough Set Theory.

The main purpose of the research reported in this paper is the discussion
through a case study of the possible advantages that we can obtain when using
constructs instead of reducts, for generating classification rules. Our experimen-
tal results allow concluding that constructs are an alternative for building rules
which can improve the classification accuracy of the rules built from reducts.
Even more, the classification results are better than other rule-based classifiers
widely used in the literature. These results motivate to delve into the advantages
of using either reducts or constructs, specially it may be interesting to study the
development of methods to generate rules from a subset of reducts or constructs
instead of considering the rules generated by the whole set.
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2018. LNCS, vol. 10880, pp. 23–30. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-92198-3 3

8. Miao, D.Q., Zhao, Y., Yao, Y.Y., Li, H.X., Xu, F.F.: Reducts in consistent and
inconsistent decision tables of the Pawlak rough set model. Inf. Sci. 179(24), 4140–
4150 (2009)

9. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)
10. Pawlak, Z.: Rough sets. In: Theoretical Aspects of Reasoning About Data, pp.

315–330. Kluwer Academic Publishers, Dordrecht (1992)
11. Rana, H., Lal, M.: A rough set theory approach for rule generation and validation

using RSES. Int. J. Rough Sets Data Anal. 3(1), 55–70 (2016)
12. Rana, H., Lal, M.: A comparative study based on rough set and classification via

clustering approaches to handle incomplete data to predict learning styles. Int. J.
Decis. Support Syst. Technol. 9(2), 1–20 (2017)

13. Sanchez-Diaz, G., Lazo-Cortes, M., Piza-Davila, I.: A fast implementation for the
typical testor property identification based on an accumulative binary tuple. Int.
J. Comput. Intell. Syst. 5(6), 1025–1039 (2012)

14. Skowron, A., Bazan, J., Szczuka, M., Wroblewski, J.: Rough set exploration system
(version 2.2.2). http://logic.mimuw.edu.pl/∼rses/

15. Susmaga, R.: Reducts versus constructs: an experimental evaluation. Electron.
Notes Theor. Comput. Sci. 82(4), 239–250 (2003)

16. Triguero, I., et al.: KEEL 3.0: an open source software for multi-stage analysis in
data mining. Int. J. Comput. Intell. Syst. 10, 1238–1249 (2017)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/11427834_2
https://doi.org/10.1007/978-3-319-19264-2_5
https://doi.org/10.1007/978-3-319-19264-2_5
https://doi.org/10.1007/978-3-319-92198-3_3
https://doi.org/10.1007/978-3-319-92198-3_3
http://logic.mimuw.edu.pl/~rses/

	On the Use of Constructs for Rule-Based Classification: A Case Study
	1 Introduction
	2 Theoretical Foundations
	2.1 Reducts
	2.2 Constructs

	3 Case Study
	4 Conclusions
	References




