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Abstract. We report the development and evaluation of brain signal
classifiers, specifically Spiking Neuron based classifiers. The proposal
consists of two main stages: feature extraction and pattern classification.
The EEG signals used represent four motor imagery tasks: Left Hand,
Right Hand, Foot and Tongue movements. In addition, one more class
was added: Rest. These EEG signals were obtained from a database pro-
vided by the Technological University of Graz. Feature extraction stage
was carried out by applying two algorithms: Power Spectral Density and
Wavelet Decomposition. The tested algorithms were: K-Nearest Neigh-
bors, Multilayer Perceptron, Single Spiking Neuron and Spiking Neural
Network. All of them were evaluated in the classification between two
Motor Imagery tasks; all possible pairings were made with the 5 mental
tasks (Rest, Left Hand, Right Hand, Tongue and Foot). In the end, a
performance comparison was made between a Multilayer Perceptron and
Spiking Neural Network.

Keywords: EEG signals · Motor Imagery · Power Spectral Density ·
Wavelet Decomposition · Neural networks · Multi layer perceptron ·
Spiking Neural Network

1 Introduction

Spiking Neural Networks (SNN) are a special class of artificial neural network,
where neurons communicate by sequences of pulses. This type of neuron mod-
els provide a powerful tool for spatio-temporal analysis due to its functionality
based on neuronal biological models. It has been shown that SNN can be applied
not only to all problems solvable by non-spiking neural networks, also SNN are
in fact computationally more powerful than perceptrons and sigmoidal gates
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[10]. Although they offer solutions to different problems in applied engineering,
as is such as fast signal-processing, event detection, classification, speech recog-
nition, currently, they are not very popular in the field of pattern recognition.
Brain-Computer Interfaces (BCI) is a promising research field which provides
a communication between humans and computers by analyzing electrical brain
activity, recorded at the surface of the scalp with electroencephalography. The
key part of a BCI system is how to recognize the mental tasks that a subject
performs by analyzing EEG signals.

In this work we propose using SNN models in the classification of Motor
Imagery (MI [12]) EEG signals. SNN are models with a high degree of realism
and with the advantage of performing an analysis of spatio-temporal information.
A systematic evaluation procedure was carried out to assess the performance of
SNN to differentiate two motor imagery tasks from EEG signals. The results
show that the proposed model achieves an accuracy on average of 81.36% which
is 11.14%, 0.82%, 1.91% superior to the accuracy achieved with MLP (2,1), MLP
(2n + 1, 1), and KNN, respectively.

1.1 Acquisition of EEG Signals

The dataset used in this work was provided by the Institute for Knowl-
edge Discovery (Laboratory of Brain-Computer Interfaces) of the Graz Uni-
versity of Technology, in the event called “BCI Competition IV” (www.bbci.
de/competition/iv/). Figure 1 shows the location of the monopolar electrodes,
in addition to the selection of the 12 channels that were used to carry out the
classification process mentioned in this work. Likewise, detailed information of
the used dataset is shown.

Fig. 1. Technical details of the EEG dataset from the BCI competition IV used in this
work

The dataset is made up of 144 trials from each of the four classes: Left Hand
MI, Right Hand MI, Foot MI and Tongue MI. In addition to this, we took the
initial time window with a duration of 2 s to generate a fifth class, this is called
Rest. MI EEG were extracted from t = 3 s to t = 5 s while Rest were extracted
from t = 0 s to t = 2 s. Having at the end five mental tasks with which the
process of classification will be carried out.

www.bbci.de/competition/iv/
www.bbci.de/competition/iv/
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2 Feature Extraction

In this work, two feature extraction methods were used: Power Spectral Density
(PSD) and Wavelet Decomposition (WD). Each trial is composed of 22 EEG
channels. From these we selected only 12. The theoretical basis of each of these
methods is explained below.

2.1 Power Spectral Density (PSD)

The Power Spectral Density (PSD) of the EEG signals have been used as fea-
tures to recognize among movement phases. This is because it has been well
established the spectral power changes in the motor-related brain rhythms dur-
ing execution, imagination o attempt to perform movements [2,11,14]. In addi-
tion, PSD is one of the most robust methods to estimate the spectral power
and one of the standard approaches to compute frequency-based features from
EEG signals recorded during motor tasks [13]. The PSD was computed based on
the Welch’s averaged modified periodogram method in five band of frequency:
1–4 Hz, 5–8 Hz, 9–12 Hz, 13–30 Hz and 1–30 Hz at a resolution of 1 Hz using
Hanning-windowed. After this, a PSD matrix is obtained where the number of
rows corresponds to each frequency analyzed and each column corresponds to
each electrode (PFreqNoXChannelsNo). The values of this matrix were normalized
in a range of 0 to 1. To reduce the number of PSD values, the following operation
was performed: features = PT f ; where f is a vector that contains the frequency
values (fFreqNo). Therefore, the number of the features for each electrode is 60.

2.2 Discrete Wavelet Transform (DWT)

The DWT method is a method of decoding subbands using a wavelet type func-
tion, in this work we used the wavelet function known as Symlet 5. The discrete
signal to be decomposed is passed through filters with different frequency of cut
and a process of decimation. When a signal passes through these filters, it is
split into two bands. The low pass filter extracts the common information of
the signal. The high pass filter extracts the detail information of the signal. The
output of the low pass filter is then decimated by two. The DWT is computed
by successive low pass and high pass filtering of the discrete time-domain sig-
nal. This decomposition process was carried out up to level 5 to each channel
in each of the trials. At the end, 6 new signals were obtained from each of the
channels (D1, D2, D3, D4, D5 and A5), so 72 signals were obtained. In order
to reduce the number of features, the variance was calculated in each of these
signals, obtaining at the end, 72 features.

3 Classification

Five different classification models were employed in this work, K-Nearest Neigh-
bors (KNN), two models of Multilayer Perceptron (MLP), Single Spiking Neu-
ron (SSN) and Spiking Neural Network (SNN). Below we explain how the SNN
works, it is a method that is not commonly used with brain signals.
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3.1 Spiking Neurons

At present, it is known that biological neurons communicate through the gener-
ation and propagation of electrical pulses also called action potentials or spikes.
This feature is the central paradigm of a theory of spiking neural models (SNN).
In the work of Ponulak et al. [15] show that the spiking models present three
main properties: (1) Information coming from many inputs and only produce a
single spiking output; (2) Their probability of firing is increasing by excitatory
inputs and decreased by inhibitory inputs; (3) Its dynamics are characterized
by state variables, when they reach a certain state, the model generates one or
more pulses. The spiking neuron model described by Izhikevich (IZ) was selected
for the SNN. This model has a good biological realism as well as low computa-
tional cost. The IZ model is described by two differential equations as [7], Euler’s
method was used for solving the model and its parameters were set in order to
reproduce the behaviour of regular spiking neurons:

v′ =
k(v − vr)(v − vt) − u + I

C
(1)

u′ = a(b(v − vr) − u) (2)

if v > vpeak, then v ←− c, u ←− u + d

where v is the membrane potential, u is the recovery current, I is a vector with
the input current arriving to the neuron, C is the membrane capacitance, vr is
resting membrane potential, vt is the instantaneous threshold potential, k is the
rheobase resistance, vpeak is the spike cutoff value, a is a recovery time constant,
b is the input resistance, c is the voltage reset value and d is the outwards minus
inwards currents during spike which affect the after-spike behavior of the model
[7]. In this work, a behavior of regular spiking neurons is used for the SN model
[7]. In order to achieve this, IZ parameters are set according to Fig. 2.

Fig. 2. Description of the Izhiquevich model parameters

In this type of neuronal models, the simulation must be performed using
numerical methods to solve the differential equations that compose it.

Two of the proposed classification models use Spiking Neurons: the model
called Single Spiking Neuron uses only one neuron to perform classification
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(a) SSN (b) SNN [2,1]

Fig. 3. Arquitecture of the two Spiking models used to classify MI from EEG

(Fig. 3a), the second model called Spiking Neural Network uses a small net-
work of neurons formed by a hidden layer with two neurons and a single output
neuron (Fig. 3b).

These models were optimized using the Particle Swarm Optimization (PSO)
algorithm [8]. In this method each particle of a population is taken as a set of
possible weights for the SNN model, with this we proceed to make a certain
number of iterations and at the end we take the best solution (set of weights)
found during this process.

3.2 Multilayer Perceptron (MLP)

The multilayer perceptron is an artificial neural network formed by multiple
layers, this allows solving non-linear separable problems. The MLP consists of
L layers, without counting the input layer, each layer contains a certain number
of perceptrons, it is not necessary that all the layers have the same number of
perceptrons, this is known as the structure of the neural network, It is considered
a hyperparameter. Each perceptron is consists of two parts: (1) The dot product
and (2) The activation function. This transfer function can be different in each
layer and when using the delta rule as a base, this function must be differentiable
without having to be linear. We used two models of MLP, both with a single
hidden layer, the first of them only has two neurons in the hidden layer and the
second uses 2n + 1 neurons in the hidden layer, n is the number of features.
Figure 4 shows the configuration of the proposed neural network models.

(a) [2,1] (b) [2n+1,1]

Fig. 4. Arquitecture of the two MLP models used to classify MI from EEG
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3.3 Evaluation Procedure

For each subject, the set of trials was randomly partitioned in 75% for training
and 25% for testing. To measure performance, the metrics Accuracy, Cohen’s
Kappa score and F1-score were computed. Accuracy was computed as:

Acc =
TP + TN

TP + TN + FP + FN

where TP, TN, FP and FN are true positives, true negatives, false positives,
and false negatives, respectively. F1 is the weighted average of the precision and
recall and was computed as [5]:

f1 = 2 × precision × recall

precision + recall

where precision = TP/(TP + FP ) and recall = TP/(TP + FN).
Cohen’s kappa measures the agreement between two raters who each classify

N items into C mutually exclusive categories. The definition of k is: k = Po−Pe

1−Pe

where Po is the relative observed agreement among raters (identical to accu-
racy), and Pe is the hypothetical probability of chance agreement, using the
observed data to calculate the probabilities of each observer randomly seeing
each category.

4 Recognition of Motor Imagery Tasks from EEG Signals

The binary classification process was implemented with the four mentioned clas-
sifiers, in all possible pairs using the five mental tasks. This dataset consists of 9

Table 1. Classification results for subject “A09”

Accuracy (%)

MLP [2,1] MLP [2n+1,1]

PSD Wavelet D PSD Wavelet D

Classes Acc Kappa F1 Acc Kappa F1 Acc Kappa F1 Acc Kappa F1

Rest vs Left H. 83.33 0.67 0.83 77.78 0.56 0.80 84.72 0.69 0.85 79.17 0.58 0.77
Rest vs Right H. 80.56 0.61 0.81 65.28 0.31 0.72 83.33 0.67 0.84 72.22 0.44 0.73
Rest vs Foot 86.11 0.72 0.86 70.83 0.42 0.70 84.72 0.69 0.85 72.22 0.44 0.70
Rest vs Tongue 70.83 0.42 0.68 59.72 0.19 0.59 75.00 0.50 0.74 61.11 0.22 0.60

Left H. vs Right H. 77.78 0.56 0.78 87.50 0.75 0.89 79.17 0.58 0.79 75.00 0.50 0.75
Left H. vs Foot 84.72 0.69 0.85 93.06 0.86 0.93 81.94 0.64 0.82 84.72 0.69 0.85
Left H. vs Tongue 86.11 0.72 0.85 87.50 0.75 0.88 86.11 0.72 0.84 88.89 0.78 0.90
Right H. vs Foot 73.61 0.47 0.72 75.00 0.50 0.74 76.39 0.53 0.74 69.44 0.39 0.72
Right H. vs Tongue 86.11 0.72 0.86 76.39 0.53 0.77 86.11 0.72 0.86 75.00 0.50 0.76
Foot vs Tongue 70.83 0.42 0.72 75.00 0.50 0.74 73.61 0.47 0.74 72.22 0.44 0.75

SSN SNN [2,1]

PSD Wavelet D PSD Wavelet D

Classes Acc Kappa F1 Acc Kappa F1 Acc Kappa F1 Acc Kappa F1

Rest vs Left H. 84.72 0.69 0.85 87.50 0.75 0.86 90.28 0.81 0.90 83.33 0.67 0.84
Rest vs Right H. 83.33 0.67 0.83 68.06 0.36 0.63 90.28 0.81 0.90 68.06 0.36 0.68
Rest vs Foot 79.17 0.58 0.76 87.50 0.75 0.87 86.11 0.72 0.86 87.50 0.75 0.87
Rest vs Tongue 83.33 0.67 0.84 76.39 0.53 0.69 86.11 0.72 0.84 79.17 0.58 0.77

Left H. vs Right H. 83.33 0.67 0.81 80.56 0.61 0.83 83.33 0.67 0.84 88.89 0.78 0.90
Left H. vs Foot 93.06 0.86 0.93 91.67 0.83 0.92 93.06 0.86 0.93 94.44 0.89 0.95
Left H. vs Tongue 90.28 0.81 0.90 86.11 0.72 0.85 93.06 0.86 0.93 91.67 0.83 0.91
Right H. vs Foot 63.89 0.28 0.63 65.28 0.31 0.60 66.67 0.33 0.66 66.67 0.33 0.63
Right H. vs Tongue 79.17 0.58 0.75 73.61 0.47 0.68 77.78 0.56 0.76 77.78 0.56 0.75
Foot vs Tongue 73.61 0.47 0.72 76.39 0.53 0.75 75.00 0.50 0.76 76.39 0.53 0.76
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subjects (A01 to A09). In this stage, the performance of the SSN and SNN was
compared against accuracy of the MLP models.

In the BCI area, it has been found that the best way to perform the recog-
nition of MI tasks in EEG signals is to carry it out for each of the subjects [16].
At present, the way to generalize the recognition of patterns in signals of this
type has not been found. This can be attributed to the differences in the neural
connections that the brain of each subject presents. Therefore, it is important
to start with the analysis of a test subject. Table 1 shows the accuracy values
obtained with the EEG signals of the A01 Subject for each pair of classes in the
four classification methods.

The best results obtained for each pair of classes are highlighted, in most of
the classification scenarios an accuracy above 90% was obtained, the best results
are observed with the SNN models; only in the Left H. vs Right H. scenario the
MLP showed the best performance. The best result obtained with the Spiking
Neuron was 97.22% for the Right H. vs Tongue scenario, this occurs when a single
neuron or a network of neurons of the Spiking type is used. In the case of the
data from this test subject it can be seen that the feature extraction algorithm
called PSD shows better results, however this does not always happen.

The same classification process was carried out with the data of each one
of the test subjects. Table 2 shows a summary of the accuracy results obtained
with each proposed method. The best results obtained in each test subject are
again highlighted in this table.

In most scenarios, the models based on Spiking neurons presented the best
results, in 7 of the 9 participants they surpass the performance of the MLP
models, however, in the two remaining subjects the Spiking Neurons show results
close to MLP models. It should be noted that in this work a basic Spiking neuron
model is used, since it does not receive pulse trains, only the features in a constant
way over the simulation time of the neuronal activity.

Below is the average across all subjects (Table 3) for each classifier in each
classification scenario.

Similarly, in 7 of 10 classification scenarios, the SNN exceeded the MLP
models, in most cases with the 80% accuracy. The best classification scenario
was Rest vs. Right Hand where an average performance of 89.20% was obtained
with the Single Spiking Neuron.

One aspect to highlight is that state of the art just reports the classification
of two specific mental tasks: Left Hand VS. Right Hand [1,3,4,6,9]. So the binary
classification of each possible pair with the five mental tasks together with the
using of the SNN in the area of the classification of biological signals, are the
two main contributions of this paper, we want to emphasize that there is the
possibility of using another type of MI tasks, not only of the superior members.

Below in Table 4 is a comparison with the classification results presented
in the state of the art, it is necessary to clarify that the subject in each work
is not the same, therefore the performance of the proposed models can not be
compared directly. The same thing happens with the number of trials used to
train and evaluate.
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Table 3. Mean Accuracy across all subjects

Accuracy (%)

Classes
KNN
(K=9)

MLP
[2,1]

MLP
[2n+1,1] SSN

SNN
[2,1]

Rest vs Left H. 75.15 86.11 84.88 88.58 87.96
Rest vs Right H. 74.54 86.11 86.73 89.20 86.73
Rest vs Foot 72.07 83.02 82.10 88.89 87.81
Rest vs Tongue 74.38 82.41 82.56 87.65 88.43

Left H. vs Right H. 62.96 75.62 71.76 72.84 73.92
Left H. vs Foot 69.44 80.71 79.32 80.25 80.71
Left H. vs Tongue 71.30 81.17 78.70 80.09 81.64
Right H. vs Foot 66.51 78.86 78.24 75.31 73.77
Right H. vs Tongue 71.60 79.94 78.40 79.94 80.56
Foot vs Tongue 64.20 71.45 71.76 70.83 70.22

Mean 70.22 80.54 79.44 81.36 81.17

Table 4. State of art (Motor Imagery)

Left Hand vs Right Hand

Feature extraction Classifier Accuracy (%)

Ahangi2013 [1] Wavelet Decomposition KNN 84.28%

Naive Bayes 68.75%

MLP 74%

LDA 87.86%

SVM 88.57%

Han2013 [6] Wavelet + CSP (10 channels) FLDA 93%

SVM 90.9%

KNN 92.9%

AsensioCubero2013 [3] LDB + CSP FLDA 75%

DBI 63%

LDB + LCT FLDA 64%

DBI 71%

Belhadj2016 [4] CSP (2 features) FLDA 89.4%

CSP (10 features) 89.4%

Ma2016 [9] RCSP Decision Tree 79.8%

KNN 92.5%

LDA 95.4%

PSO - SVM 97%

Virgilio2018 [16] CSP KNN 90.6%

SVM 87.8%

MLP 93.3%

DMNN 87.2%

Proposal methods (A09) PSD/DWT MLP [2,1] 87.50%

MLP [2n+1,1] 79.17%

SSN 83.33%

SNN 88.89%
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One of the main objectives of this work is to show the potential of the SNN
as a model for classifying signals of this type. As can be seen, the performance
of Spiking neural models competes with the results shown in the state of the art,
although they do not have patterns with enough spatio-temporal information.
It is important to note that these models are conformed with a neuron (SSN)
and with 3 neurons (SNN).

5 Conclusions and Further Work

This work provides an approach to perform the classification of five different
mental tasks, showing the binary discrimination between each pair of classes
using two methods of feature extraction commonly used in the BCI area. Also,
the use of SNN provided favorable results, showing that with a small number of
neurons, an acceptable discrimination process can be obtained for the efficiently
implementation of systems controlled by EEG signals.

It was observed that it is not possible to distinguish which feature extrac-
tion method provides better results. The cause of this may be the characteristics
of each test subject, each test subject responds differently to the mental tasks
evaluated. Another point to emphasize is that this type of neurons show accept-
able results even when the features used do not contain enough spatio-temporal
information, which, as mentioned above, this kind of neurons have the ability to
analyse spatial-temporal information.
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