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Abstract. Heartbeat modeling allows to detect anomalies that reflect
the functioning of the heart. Certain approaches face this problem by
using Gaussian Mixture Models (GMMs) and other statistical classifiers
by extracting the fiducial points provided by the MIT-BIH database.
In this work, MIT-BIH database heartbeats are modeled into different
heartbeat types from a single subject by using the Gibbs Sampling (GS)
algorithm. Firstly, a data pre-processing step is performed; this step
involves several tasks such as filtering the raw signals from the MIT-BIH
database and reducing the heartbeat types to five. Secondly, the GS is
applied to the resulting signals of one subject. Thirdly, the Euclidean
distance between each heartbeat type is calculated, and lastly, the Bhat-
tacharyya distance is used to classify heartbeats. The results obtained
by the GS algorithm were also compared to results obtained by apply-
ing the Expectation Maximization (EM) algorithm to the same data-set.
Results allow to conclude that GS is a proper solution for separating
each heartbeat type; by providing a significant difference between each
heartbeat type which can be used for classification.
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1 Introduction

Electrocardiograms (ECG) are measurements of the electricity with which the
heart operates. The QRS complex (which is a deflection on the ECG that states
ventricular contraction and myocardial depolarization) can be used to analyze
the ECGs. According to [1], cardiac disorders can be diagnosed by analyzing the
perturbations in the normal electrical patterns. An arrhythmia is “any distur-
bance in the rate, regularity, site of origin, or conduction of the cardiac electrical
impulse” [1]. An arrhythmia can be a single abnormal beat, or a series of different
beats that cause rhythm disturbances during the whole lifetime of the patient.

The classification of arrhythmias detected in ECG signals has been investi-
gated in different works. There exist several approaches such as linear discrim-
inant classifiers in [2] and Gaussian Mixture Models (GMMs) in [3–5], among
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others. Although their results are promising, accuracy and false positive rates
are not yet unerring. This work subscribes to the electrocardiogram ECG raw
signal treatment for arrhythmia classification and to the Markov Chain Monte
Carlo (MCMC) filtering for ECG nonlinear dynamical modeling; see [6,7]. These
approaches are considered given the difficulty encountered when modeling and
classifying heart diseases because an ECG signal varies for each person, and
“different patients have separate ECG morphologies for the same disease” [8].
Hence, here we consider the intra-patient analysis as a first step, given that the
inter-patient protocol considers different patients with the same disease [9].

2 Heartbeat Dataset Description

For this work, the MIT-BIH Arrhythmia Database was used [10]. According to its
creators, it was the first open access database that provided standard test mate-
rial for arrhythmia detection, and it has been used since 1980. This database
has a total of 48 records of over 30 min long (including records 201 and 202
which belong to the same subject). There are 25 men subjects, and 22 women
subjects; and it includes a wide variety of waveforms, including normal beats,
complex ventricular, junctional and supraventricular arrhythmias and conduc-
tion abnormalities. All heartbeats from each subject are presented as a collection
of amplitudes, along with a file that allows to determine the key positions for
the R waves of each heartbeat type. According to [2], the number of possible
heartbeat types was reduced to the following five types: N, S, V, F, Q. This
types are adopted in this work because they are a recommended standard by
the Association for the Advancement of Medical Instrumentation (AAMI) [8].
The mapping procedure to obtain the N, S, V, F, Q nomenclature is shown in
Table 1, which was obtained from [2].

3 Methodology

Two different methods were tested in this work; namely the GS algorithm, which
is used in this work to generate samples from an ECG; and the EM algorithm
suited for cases in which the data-set is not complete. According to [11], the GS
can be thought of as a stochastic analog of the EM approach, used to obtain
likelihood functions when missing data are present. The difference is that in the
GS, random sampling replaces the expectation and maximization steps. For this
reason, both methods are compared in this work in order to asses whether a
stochastic solution performs better than its iterative analogue.

Before using the MIT-BIH heartbeat dataset, each heartbeat type had to be
converted into one of the AAMI classes presented in Table 1. Once that this was
achieved, the GS algorithm was used to obtain characteristics of the posterior
distribution for each heartbeat type. Then, the obtained characteristics were used
to calculate the Euclidean distance from each heartbeat type, and finally, the
Bhattacharyya distance was used to classify the signal. This process is discussed
in detail in the following sub-sections.
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Table 1. MIT-BIH arrhythmia database heartbeat types convertion into AAMI heart-
beat classes.

AAMI class Description MIT-BIH heart types

N Non S, V, F, Q class heartbeats Normal Beat (NOR), Left Bundle
Branch Block (LBBB), Right
Bundle Branch Block Beat
(RBBB), Atrial Escape beat (AE),
Nodal/Junctional Escape beat
(NE)

S Supraventricular ectopic beat Atrial Premature beat (AP),
aberrated Atrial Premature beat
(aAP), Nodal/Junctional
Premature beat (NP),
Supraventricula Premature beat
(SP)

V Ventricular ectopic beat Premature Ventricular Contraction
(PVC), Ventricular Escape beat
(VE)

F Fusion beat Fusion of Ventricular and Normal
beat (fVN)

Q Unknown beat Paced beat (P), Fusion of Paced
and Normal beat (fPN),
Unclassified beat (U)

3.1 Pre-processing Step

All heartbeat types were mapped into one of the five AAMI heartbeat classes
mentioned in Sect. 2. Each signal was pre-processed by a band-pass filter to
reduce the influence of muscle noise, interference, and baseline wander. The
chosen values for the filter ranged from 5 Hz to 15 Hz, as suggested by Pan and
Tompkins, due to the fact that this is approximately the desirable band-pass to
maximize the QRS energy, achieving a 99.3% detection of the QRS complex [12].
Hence, we separated each heartbeat by using the R peak location provided by the
MIT-BIH dataset. We followed the Ghorbani et al. statement about separating
heartbeats by using samples 225 ms before the R peak, and 400 ms after the R
peak; yielding 0.65 s for each heartbeat [4]. Therefore, we divided each beat from
81 samples before the R peak (250 ms interval) to 82 samples before the R peak
of the next QRS complex; this is shown in Fig. 1.

3.2 Gibbs Sampling (GS)

GS is an algorithm used to approximate a sequence of observations from a con-
tinuously distributed parameter vector Θ [11]. This algorithm was used under
the assumption that heartbeats can be modeled by observing to which heartbeat
type Probability Density Function (PDF) they approximate better. In order to
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Fig. 1. The P wave (atrial depolarization and contraction) plus the QRS complex and
the T wave (repolarization) [13].

achieve this, a Markov Chain (MC) is created to repeatedly sample the param-
eter sub-vectors Θ1, ..., ΘM , by using the following process. First, the starting
value Θ(0) of the parameter vector Θ is arbitrarily initialized (i.e. all Θ

(0)
i are ran-

domly initialized). Then, the sub-vector Θ
(1)
0 is sampled from the full conditional

of Θ0 with the rest of the Θi sub-vector values randomized in the previous step.
This is done by using Eq. 1 [11]. This process is repeated until each Θ1, ..., ΘM

of the actual sub-vector (i.e. Θj) has been updated, yielding a new Θ(t); where
t stands for the current step (thus t − 1 is the last calculated step).

Θt
1 ∼ P (Θ1 | Θt−1

2 , Θt−1
3 )

Θt
2 ∼ P (Θ2 | Θt

1, Θ
t−1
3 )

Θt
3 ∼ P (Θ3 | Θt

1, Θ
t
2)

(1)

The subsequent Θ(2)s are calculated using Θ(1) instead of the arbitrary Θ(0),
and so on until the sequence Θ(0), ..., Θ(N) is obtained, which is a MC whose
stationary distribution is the posterior distribution of Θ. Once converged to the
stationary distribution, the MC samples the posterior distribution and can be
used to obtain different characteristics of it [14]. For this work, those charac-
teristics were used to calculate each heartbeat PDF and this is explained in
Sect. 3.3.

In order to apply the GS algorithm to the MIT-BIH signals, the Windows
implementation of the Bayesian analysis using GS (WinBUGS software)1 was
employed. It consists of a program capable of automatically tuning the most
suitable Markov Chain Monte Carlo (MCMC) algorithm for a particular model.
A normal distribution was used to explore each heartbeat likelihood type an the

1 https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/.

https://www.mrc-bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/
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mean μ and precision τ variables were used to specify the mean and variance of it.
The mean was updated by multiplying the yt−1 value by a φ normal distribution
with zero mean and a variance of 0.0001. Afterwards, τ was updated from a
gamma distribution with 0.1 mean and 0.0001 variance. Also, a scale parameter σ
was occupied for the gamma distribution and was calculated by using Eq. 2. The
WinBUGS software was called from a script developed in the R programming
language, by using the R2WinBUGS library; and three MCMC chains were used
with 2,600 iterations each, and 100 burn-in iterations (discarded iterations). No
thinning was used (a strategy for reducing auto-correlation in the outputs [15]).

σ =
1√
τ

(2)

As an example of the posterior distribution characteristics obtained, Table 2
shows the posterior distribution characteristics obtained by applying the GS
algorithm to the N-AAMI class heartbeats of subject 208. Three parameters are
recovered; φ, σ, and deviance, from which the mean and standard deviation are
calculated. This values are later used to calculate the proximity between each
heartbeat type and to classify a heartbeat in one of the five AAMI classes.

Table 2. Subject 208 posterior distribution characteristics matrix.

Parameter Mean Standard deviation

φ 0.985 2.941 × 10−4

σ 0.028 3.524 × 10−5

Deviance −1.388 × 106 0

3.3 Euclidean Distance

The posterior distribution characteristics obtained with the process explained
earlier were used to determine the Euclidean distance between every type of
heartbeat. In other words, first the GS was applied to the whole set of heartbeats
of each class separately. Then, those characteristics were compared, by using the
Euclidean distance as shown in Eq. 3 [16].

d(u, v) = || u − v || =
√

(u1 − v1)2 + (u2 − v2)2 + ... + (un − vn)2 (3)

where u and v are the two vectors to be compared. In this case, each vector would
contain the posterior distribution characteristics of the different heartbeat types
recorded in the signal. A matrix was generated, containing the distances of each
heartbeat type. This allowed to better understand the separability of the data.
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3.4 Bhattacharyya Distance

According to [17], the Bhattacharyya distance is used as a class separability
measure. For this work, the Bhattacharyya distance between the p and q classes
(which is applied to the case of two uni-variate normal distributions) was calcu-
lated by using Eq. 4.

DBC(p, q) =
1
4
ln

(
1
4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))

+
1
4

(
(μp − μq)2

σ2
p + σ2

q

)

(4)

where σ2
p and μp are respectively the variance and mean of the p-th distribution,

and p, q are two different distributions.
In this work, the Bhattacharyya distance was used to classify heartbeats

and was calculated between the φ values previously obtained (i.e. mean and
standard deviation values obtained from the posterior distribution characteristics
of each heartbeat). In concrete, the φ values obtained from applying GS to the
whole set of an AAMI class of heartbeats, against the φ values obtained from
the heartbeat to be classified. In other words, the patient heartbeat to be
classified is compared against each of the AAMI class values obtained previously,
to determine to which class it belongs to.

3.5 Expectation Maximization (EM)

As a means to compare the performance of the GS algorithm against another
method, the EM algorithm was implemented and used for the classification of
heartbeat arrhythmia. According to [18], the EM algorithm is occupied in those
cases where the data set presents incompleteness. In this case, the algorithm was
used to generate a model that allowed to separate the heartbeats into different
PDFs in order to classify them. The PDF of the incomplete data is given by
Eq. 5.

px(x, θ) =
∫

Y (x)

py(y, θ)dy (5)

where py(y, θ) is the corresponding PDF and y contains the complete data sam-
ples, but cannot be directly observed, and θ is an unknown parameter vector.
The Maximum Likelihood Estimate (MLE) of θ is given by Eq. 6.

θ̂ML :
∑

k

δln(py(yk, θ))
δθ

= 0 (6)

Since the y’s are not available, the EM algorithm maximizes the expectation
of the log-likelihood function, conditioned on the observed samples and the cur-
rent iteration estimate of θ [12]. The three steps of the algorithm are enunciated
next.

– Initialization: the GMM parameters are determined by the k-means clustering
algorithm.
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– Expectation (E )-step: the initial parameters are used to determine the prob-
ability that an observation at the (t + 1)th step of the iteration belongs to a
component. This is achieved by using Eq. 7.

Q(θ, θ(t)) = E

[
∑

k

ln(py(yk : θ | X, θ(t)))

]

(7)

– Maximization (M )-step: the component parameters are re-estimated by max-
imizing Q(θ, θ(t)) through the use of Eq. 8.

Q(θ + 1) :
δQ(θ, θ(t))

δθ
= 0 (8)

In order to use the EM algorithm, the pre-processed signals were separated into
each heartbeat class (i.e., they were concatenated into a different vector for each
heartbeat type). Then, the cepstrum vector for each heartbeat was obtained
and its mean value was calculated to use it as an expert to better separate each
heartbeat type. In other words, for each heartbeat contained in a class vector, the
cepstrum was obtained, giving a vector of cepstrums of the same type, then the
mean was obtained, and that scalar value was considered as an expert. During
the classification process, only those amplitudes found in the R point were used,
given they offer a better separation. For each heartbeat type, its corresponding
R point amplitude vector was multiplied by their corresponding expert, and
these vectors were then used by the k-means algorithm to initialize the GMMs.
Finally, to classify a new heartbeat, the Bhattacharyya distance between the
heartbeat to be classified and each heartbeat type vector was calculated, and
the lower distance obtained was then used to decide to which class the heartbeat
belonged to.

4 Results and Discussion

From the 48 patients included in the MIT-BIH Arrhythmia Database, 19 patients
were selected for this work. The subjects that had more than 100 heartbeat
records on two or more heartbeat types were chosen, so that the algorithm had
enough data to classify. Those subjects that did not comply with this condition,
as well as those with pacemakers were discarded. The chosen records were 106,
116, 119, 200, 201, 203, 207, 208, 209, 210, 213, 214, 215, 221, 222, 223, 228,
232 and 233. Most of the selected subjects had the N, S and V type heartbeats,
while only two patients presented the F type too. Almost all analyzed patients
presented an Euclidean distance between the mean and the standard deviation
of the posterior distribution characteristics greater than 1,000,000 (i.e., the mean
and standard deviation of μ, σ and deviance). The shortest distance obtained
was 93,000 belonging to the N - V distance of subject 208.

As mentioned before, the Bhattacharyya distances were used to perform the
beat by beat classification. Only the mean and standard deviation of the φ
posterior distribution characteristics parameter were occupied. The accuracy
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Table 3. Classification accuracy using GS and the Bhattacharyya distance.

Subject Accuracy

N V S F Total

116 99.56% 98.16% - - 99.50%

119 58.91% 83.55% - - 64.41%

200 49.85% 79.17% 73.33% - 59.44%

201 86.66% 81.81% 21.21% - 80.78%

203 68.72% 54.27% - - 66.56%

207 71.01% 78.73% 88.78% - 74.08%

208 75.16% 87.29% - 93.54% 80.01%

209 80.57% - 65.27% - 78.62%

210 91.20% 80.51% - - 90.40%

213 81.82% 17.27% - 66.57% 75.70%

214 61.58% 49.21% - - 60.18%

215 99.71% 81.70% - - 98.8%

221 90.69% 96% - - 91.55%

222 65.46% - 40.06% - 63.37%

223 74.57% 72.09% 15.06% - 72.44%

228 98.16% 77.34% - - 94.48%

232 64.07% - 35.09% - 41.57%

233 72.15% 51.92% - - 66.66%

results obtained from using the Bhattacharyya distances with GS are presented
in Table 3, where the accuracy was calculated for each heartbeat class, and the
total accuracy is also presented. Recall that all the subjects have a different
number of heartbeat records for each heartbeat type, being the N type the
most frequent in most of the cases. Therefore, the classification performance
is mostly influenced by the results obtained for the N heartbeat types. The
best result was obtained from subject 116, which had an accuracy percentage
of 98.8%. Furthermore, subjects 201 and 223 presented the lowest accuracy in
the S heartbeat type classification, where more than 75% of the heartbeats were
misclassified. This may be caused by a confusion between the S and V heartbeat
types, whose proximity is one of the closest (the S - V Euclidean distance for
subject 201 is 110,691.8; whereas the greatest Euclidean obtained is greater
than 3,000,000 and corresponds to subject 215). Similarly, subject 213 had a low
accuracy in the V class, probably because the V class varies in its morphology,
and may resemble to the N class. Finally, in the case of the subject 201, 97 S
class heartbeats were classified as V class heartbeats, from a total number of 165;
while in the case of the subject 223, the S beats were principally misclassified as
N beats.
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Table 4. Classification accuracy using the EM algorithm.

Subject Accuracy

N V S F Total

116 33.17% 87.88% - - 47.21%

119 80.10% 1.83% - - 76.56%

200 97.64% 83.89% 0% - 92.15%

201 63.60% 99.49% 62.42% - 67.06%

203 75.40% 96.62% - - 78.57%

207 91.70% 99.26% 0% - 89.70%

208 48.99% 90.52% - 94.36% 68.68%

209 7.43% - 96.34% - 18.77%

210 93.47% 92.82% - - 93.42%

213 19.46% 0% - 96.96% 26.83%

214 51.39% 60.93% - - 52.48%

215 47.23.% 100% - - 49.80%

221 60.95% 99.49% - - 67.24%

222 97.18% - 17.22% - 90.45%

223 75.25% 87.94% 0% - 75.45%

228 78.25% 98.61% - - 81.85%

232 92.71% - 12.87% - 30.73%

233 100% 65.66% - - 90.68%

In the case of the results obtained by the EM algorithm, some of the accuracy
results are shown in Table 4. From this table it can be observed that for subjects
200, 207 and 223, the S type heartbeats were completely misclassified. This is
produced by a bad initialization given in the k-means algorithm step. The S
heartbeats in subjects 207 and 223, were clustered in the V type cluster (and
in the case of subject 223, all the S beats were sent to the V type cluster, while
the S type cluster included some heartbeats of type N and V). Furthermore, the
performance drop presented in the N type heartbeats for subject 208 (for the
EM algorithm), may be caused by the fact that the F type is a fusion heartbeat
that occurs when electrical impulses from different sources act upon the same
region of the heart at the same time (i.e., the F type is a fusion of the ventricular
and the normal heartbeat types, which may cause confusion, generating N type
heartbeats to be classified as F type).

5 Conclusions

In the present work we have used the Gibbs Sampling (GS) algorithm to model
heartbeats from individuals in the MIT-BIH Arrhythmia Database according to
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the AAMI classes, and compared its results with the ones obtained by using the
Expectation Maximization (EM) algorithm. The posterior distribution charac-
teristics obtained from the GS algorithm were used for each class separability
and classification. A possible improvement to the results obtained by the GS
algorithm could be the application of an expert to the heartbeat signals to
classify.
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