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Abstract. Quantifying tree biomass is a critical process for carbon stock
estimation at the stand, landscape, and national levels. A major chal-
lenge for forest managers is the amount of effort involved to document
carbon storage levels, especially in terms of human labor. In this paper,
we propose a method to quantify the amount of carbon in forest stands.
In our approach, we obtain aerial images from where we build 3D recon-
structions of the terrain. Using the resulting orthomosaics, we identify
individual trees and process their point clouds to extract information
to estimate tree the height and to infer the diameter, which we employ
in allometric equations to compute carbon content. We compare our
results with carbon estimates obtained from allometric equations applied
to manual tree diameter and height measurements.

Keywords: Tree detection · Carbon estimation · Deep learning ·
Remote sensing

1 Introduction

As part of the natural carbon cycle, trees absorb carbon dioxide from the atmo-
sphere, store carbon in wood and bark, and release oxygen back into the atmo-
sphere [8]. Thus, information about carbon stock and forest biomass is crucial
for the development of sustainable forest management programs, including those
aiming to mitigate climate change. However, standard procedures to estimate
the carbon stored in trees require knowledge about specific features, such as
the trunk diameter at breast height (DBH) (typically measured at 1.3 m height)
and the height of trees. There have been some efforts to undertake these tasks
using remote sensing technologies, particularly LiDARs [11,16], or its combina-
tion with cameras [15]. Nevertheless, these approaches make use devices which
may require correspondingly robust infrastructure. More commonly, estimation
of the overall carbon content of vegetation is still a labor-intensive, costly, error-
prone and lengthy task, which includes the need to deploy personnel in the field.
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Fig. 1. Estimating carbon content in a forest stand. We process multispectral photos
from Unmanned Aerial Systems (UAS) to obtain orthomosaics. Our tree detector algo-
rithm uses these orthomosaics as input for determining bounding boxes. We use RGB
images to generate a sparse point cloud for each tree. Once located a tree and measured
its structure, we obtain conventional allometric equations to estimate carbon content.

Thus, there is a need to develop reliable, economical, and fast strategies for the
efficient management of forest resources.

In this paper, we describe a methodology to estimate carbon stocks by detect-
ing and measuring trees in forest stands via an Unmanned Aerial System (UAS)
automatically (see Fig. 1). To identify individual trees, we employ a deep learn-
ing based approach where we create synthetic images for training. To estimate
carbon content, we use aerial photos to reconstruct the scenario applying struc-
ture from motion techniques [12]. From the resulting point cloud, we determined
the tree height and crown diameter, and predicted DBH of the identified trees.
We implemented these methods for tree detection and used allometric equations
to predict carbon content in the forest stand. Finally, we compared with esti-
mates obtained from manual measurements of tree height and DBH. Although
the focus of this paper is the determination of forest carbon, we briefly describe
the tree detection method, which receives full attention in a different document.

We structure the rest of the document as follows. In Sect. 2, we review the
literature covering the problem of carbon estimation in forests. Then, in Sect. 3,
we provide an overview of our deep learning strategy for tree detection. Next, in
Sect. 4, we introduce a model to estimate DBH from height measurements and
the allometric model that computes carbon from estimated and measured DBHs.
Finally, we conclude the document and delineate directions for future research.

2 Related Research

We examine the scientific literature in the areas of carbon estimation, automatic
tree detection, and synthetic images generation, as related to our problem.
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Carbon Estimation. Conventionally, measuring trees for biomass estimation
requires field DBH measurements [4] using tools such as diameter tapes or
calipers while one utilizes Clinometers or laser hypsometers for measuring tree
height [13]. One inputs the measurements into allometric models, which require
ground truth data to solve for parameters. Commonly, predictive models use
these equations to generalize to other trees in similar conditions of soil and fer-
tility, having conventional measures as input parameters [13]. One could calculate
carbon as the product of aboveground biomass and the amount of carbon per
biomass unit in the studied species of tree. Official carbon estimation methods
vary for each country [10]. Escalona et al. [2] estimate the carbon contained by a
stand of Pinus greggii using field measurements. They measure DBH and height
for a tree stand, cut off a dry sample of trees from their study field, and obtain
the total organic carbon using a combustion catalytic oxidation method.

Tree Detection. Automatic tree detection is experiencing a radical change as
researchers explore deep learning approaches as opposed to classical ones [9].
Classical methods for detecting trees relied on the use of crafted features,
including local maxima filtering, template matching, valley-following, watershed,
region growing, and marked point processes [6]. Lately, there has been a surge in
methods to detect and count plants using convolutional neural networks (CNNs).
So far, researchers have employed well-established architectures such as LeNet,
VGG, AlexNet or GoogleNet for classification or regression.

Synthetic Dataset Generation. Deep learning commonly requires vast amounts of
labeled data to train a CNN. As the manual labeling of images is very demand-
ing, the creation of synthetic datasets is attractive for researchers working in
machine learning. Ubbens et al. [17] render 3D models of Arabidopsis thaliana
rosettes and use them to create data sets for training. Han and Kerekes [7] review
simulation methods for multispectral images. To verify models for biomass esti-
mation, Fassnacht et al. [3] simulate canopy height and cover type combining
the SILVA individual-tree forest simulator [14] with real LiDAR point clouds of
individual trees.

3 Tree Detection Using Deep Learning

Our approach to detect trees consists of using multispectral images captured
from UAS to generate the input for a CNN. As a by-product, we obtain the
Digital Elevated Vegetation Map (DVEM), a representation for tree stands. One
problem in deep learning is the existence of a sizable database with exemplary
samples. We solve this problem with the use of synthetic datasets for training.

3.1 The Digital Elevated Vegetation Model

Digital Surface Models (DSMs) and Digital Terrain Models (DTMs) are 2.5D
representations, but while the former gives information about the objects over
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the terrain, the latter gives the bare surface without vegetation or human-made
structures. Also, one could generate indices, such as the Normalized Difference
Vegetation Index (NDVI), to filter out no vegetal elements from the images.
One could calculate the NDVI [18] with the red and near-infrared radiation, for
x = (x, y), where x ∈ [1, w] and y ∈ [1, h], as

NDVI(x) =
NI(x) − RE(x)
NI(x) + RE(x)

. (1)

In our method, we combine the DSM, DTM and NDVI models to define the
Digital Elevated Vegetation Model (DEVM) as

DEVM(x) = (DSM(x) − DTM(x))NDVI(x), (2)

where the subtraction of the DTM from the DSM leaves the objects over the
terrain. The NDVI filters out non-vegetal objects. The DEVM representation
facilitates the generation of synthetic images for the training of deep learning
classifiers.

3.2 Synthetic Dataset Generation

Using the DVEM representation, we proceed to define synthetic images that
closely resemble the treetops (see Fig. 2). We produce a synthetic image I(x)
varying randomly, over uniform distributions, the number n of trees, the position
of their center (xi, yi), and their width ai and bi. We model each tree as a set of at
most mi randomly overlapping domes. We use the following analytic expression
to represent each dome:

D(α, β) = hij · cos
(

απ

2aij

)
· cos

(
βπ

2bij

)
, (3)

for given values of aij , bij , and hij , where α ∈ [−aij , aij ] and β ∈ [−bij , bij ], and
hij is a random gain variable.

(b) Synthetic (a) Real

Fig. 2. Samples of (a) Synthetic and (b) Real DEVM images
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3.3 CNN Architecture

To identify trees in DEVM images, we used DetectNet [1], a CNN that predicts
the bounding box limits and the class probabilities from images in a single pass.
It includes an initial layer that divides an image into a regular cell grid of S × S
elements. Each cell predicts B bounding boxes with their respective confidence
score. Correspondingly, each bounding box consists of predictions for (x, y), the
center of the bounding box; (w, h), the width and height; and the intersection
of the union (IoU) between the predicted and ground truth boxes.

To detect multiple objects in DetectNet during training, we extract the
bounding boxes of each image from the annotations overlaid on the coverage map.
Given the coverage map for object k, Ck(x), for x = (x, y) and 1 ≤ x, y ≤ S,
we set to 1 the positions where objects are present and 0 otherwise. We use the
following loss function for training

loss =
1

2N

N∑
i=1

{∑
x

(
Ct

i (x) − Cp
i (x)

)2 + λ
(∣∣ut − up

∣∣ +
∣∣lt − lp

∣∣)
}

, (4)

where N is the number of objects, λ weights the regularization term, Ct and Cp

are the coverage maps, and u and l are the upper-left and lower-right corners
for the ground truth t and the prediction p.

(a) Trunk DBH (b) Total height (b) Crown Diameter

Fig. 3. Conventional measures of trees: (a) trunk DBH is the diameter of the trunk at
a standard height of 1.30 m, also known as diameter at breast height; (b) total height
of the tree from the ground to the top; and (c) approximated diameter of the crown
from a zenithal viewpoint.

4 Carbon Content Estimation

A common practice in silviculture is to compute the carbon content from the
tree trunk DBH using allometric equations (Fig. 3). In our approach, we infer a
tree’s DBH using the tree height we obtain from the 3D SfM reconstruction and
the location information from our tree detector. Using its location bounding box,
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Fig. 4. We use the cloud of points in the resulting bounding boxes to estimate the
height from DSM as the difference between the maximum and minimum height values.

we calculate a tree’s height from the DSM, computing the difference between the
maximum and the minimum height values (see Fig. 4).

To estimate the DBH for a tree, we define an allometric relationship between
the DBH and the height. Firstly, we obtain paired ground truth data from field
inventorying, where we use a metric tape to measure the height and DBH from
a set of trees in a forest stand (see Fig. 5). In our approach, we propose to model
the relationship between height, h, and DBH, d, as

d(h) = d1h
2 + d2h. (5)

We estimate the value for the coefficients d1 and d2 using least squares and
forcing a constraint making the DBH zero whenever the height equals zero.

To obtain the amount of carbon for Pinus greggii, Escalona et al. [2] cut and
heated 20 six year old trees. Measuring the trees’ DBH and height, they arrived
to a quadratic allometric equation expressed as

c(x) = c1x
2 + c2x, (6)

where c1 = 3287, c2 = 147.36, and x = d2h combines DBH and height. Replacing
the definition of x in (6) and expanding d by (5), we arrive to the expression

c(h) = hd(h)2(c1hd(h)2 + c2). (7)

In SfM, where we find the structure by pointwise correspondence, the algo-
rithms tend to underestimate tree height. Given an estimated tree height h, we
correct it using

ĥ = αh + β, (8)

where α = σg/σe and β = μg −αμe are scale and bias factors, and σg and σe and
μg and μe correspond to the standard deviation and mean of the distribution
of measured and estimated heights, respectively. A summary of the data flow is
described in the Algorithm 1.

5 Experimental Results

For our experiments, we mounted a Parrot-Sequoia Micasense camera on a 3DR
Solo quadcopter and flew over Las Mancañas, a 0.76 ha leaf-on(Pinus greggii)
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Call : ce ← carbonContent (hg, dg, he)
Inputs : The ground truth height, hg, and DBH, dg, and estimated treetop

height he.
Outputs: ce, the individual trees’ carbon content and e, the RMS value

estimation

// calibrate measurement tree height

[α, β] ← calibrate (hg, dg); // use (8)

for i = 1; i < n do
// split the data between training and testing[
htrain
g , htest

g

]
← split (hg);

[
dtrain
g , dtest

g

]
← split (dg);[

htrain
e , htest

e

]
← split (he);

// Estimate carbon content for the ground true sample

// Correct treetop height

ĥtest
e ← αhtest

e + β;
// Fit a quadratic equation with null intercept

d ← fit
(
htrain
g , dtrain

g

)
; // use (5)

// Estimate the DBH for the test set

dtest
e ← d1

[
htest
e

]2
+ d2h

test
e ;

// Estimate carbon content for the test sample

Cei ← carbon
(
htest
e , dtest

e

)
; // use (7)

end
// compute carbon content and rms value

cg ← carbon (hg, dg); // use (7)

ce ← CT
e 1; e = rms(cg, ce);

Algorithm 1. A model to estimate carbon content from treetops height.

pine field with a mean distance between the trees of 5.9 m. The sampling area is
located in Guanajuato, Mexico in the coordinates 20◦58’40.”N 100◦16’31.2”W.
We flew at an altitude of 30 m in a double grid procedure with 85% of overlap
between adjacent images along the paths of rows and columns followed by one
spiral flight approximating the center of the sampled area. In this landscape,
the Parrot-Sequoia produced 2,212 multispectral and RGB images with spectral
response peaking in wavelengths of 550 nm (Green), 660 nm (Red), 735 nm (Red
Edge, RE) and 790 nm (Near Infrared, NI) (see Fig. 5).

To train DetectNet, we generated a synthetic-labeled dataset of 12,500 syn-
thetic DEVM images. We trained DetectNet through ten epochs, using transfer
learning from a model previously trained with the KITTI database [5]. At refine-
ment, we utilized the synthetic dataset, splitting the 12,500 images into a set of
10,000 images for training and 2,500 images for validation.

To test our carbon content measurement model, we obtained ground truth
for the sampled area through a field inventorying of 60 trees, measuring their
DBH and height. The trees have an average height of 211.53 cm with a standard



112 D. Pulido et al.

(a) Las Mancañas, 3D reconstruction
representation of the sampled area,
highlighted in red.

(b) Using metric tape to measure cir-
cumference of tree trunk at a standard
height of 1.30 m, which is used to cal-
culate DBH ground truth.

Fig. 5. Ground truth measurement for DBH estimation (Color figure online)

(a) Overlapped treetops height (b) Tape measured versus SfM esti-
mated treetops height

(c) Treetops height adjustment (d) Treetops height measured versus
estimated

Fig. 6. Tree height adjustment. SfM underestimates tree height (a)–(b). We apply a
correction factor based on the offset and spread (c). The linear correlation coefficient
(d) with respect to the manual measurements is satisfactory.

deviation of 26.47 cm and an average DBH of 4.64 cm with a standard devia-
tion of 1.70 cm. To measure the height of the detected trees, we automatically
extracted sub-images from the DSM for the 60 detected bounding boxes. For each
of these sub-images, we calculated the height as the difference of the maximum
and the minimal depth values. SfM techniques tend to underestimate the tree-
tops height. Figure 6(a)–(b) illustrates the treetops height distributions and plot
for the tape measured and SfM process, respectively. The mean and standard
value for the tape measured and the SfM estimated height is (2.12 m, 1.73 m)
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and (0.26 m, 0.25 m), respectively. We computed adjustment variables α and
β, as described in (8), as 1.08 and 0.25, respectively. Figure 6(c)–(d) shows the
resulting adjustment. The linear correlation coefficient for the heights is 0.999.

To estimate the carbon content, we iteratively selected random partitions of
the data, into training and testing sets, to adjust the coefficients of (5) before
computing the carbon content. In the end, we evaluated (7) using both the
ground truth values and the estimated ones. In Fig. 7, we illustrate the ground
truth carbon content, with the blue dotted line, and the estimated carbon content
with a box plot diagram. Our method estimates that the mean carbon content
for the tree stand is 0.84 kg (50.4 kg for the forest stand), while the ground truth
estimation is 0.94 kg (56.4.4 kg for the forest stand), the RMS value is 0.58 kg.

Fig. 7. Carbon estimation. The blue line represents the ground truth carbon content
for the sample forest stand, while the boxplot includes the mean values, maximum and
minimum value, and standard deviation for the estimated values. (Color figure online)

Conclusion

In this paper, we introduce a methodology to estimate carbon content in a
forest stand using the photogrammetry measurements of trees taken by a UAS.
We demonstrate that a system built out of this methodology can successfully be
scaled up by estimating the carbon content of a parcel of Pinus greggii. During
the development of this research, we introduce a tree detection method based
on the use of a CNN. The DEVM representation made it possible to develop a
strategy to construct synthetic ground truth data useful for training, alleviating
the need for labeling ground truth data. Our method reduces the resources that
are necessary to obtain those measures with classical approaches with on-field
personnel.

In the future, we are planning to develop models for carbon estimation cir-
cumventing the use of allometric equations based on DBH. As we are aiming
to increase the precision of our estimation, we may rely on the use of biomass
change over time.
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