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Abstract. As is well known to all, the training of deep learning model
is time consuming and complex. Therefore, in this paper, a very simple
deep learning model called PCANet is used to extract image features
from multi-focus images. First, we train the two-stage PCANet using
ImageNet to get PCA filters which will be used to extract image fea-
tures. Using the feature maps of the first stage of PCANet, we generate
activity level maps of source images by using nuclear norm. Then, the
decision map is obtained through a series of post-processing operations
on the activity level maps. Finally, the fused image is achieved by uti-
lizing a weighted fusion rule. The experimental results demonstrate that
the proposed method can achieve state-of-the-art fusion performance in
terms of both objective assessment and visual quality.
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1 Introduction

Image fusion is an information fusion of images. It combines different images
obtained by different sensors for the same target or scene, or different images
obtained with the same sensor in different imaging modes or at different imag-
ing times. The multi-focus image fusion is a branch of image fusion. The fused
image can reflect the information of multiple original images to achieve a com-
prehensive description of the target and the scene, making it more suitable for
visual perception or computer processing. Multi-focus image fusion has become
a representative topic since many algorithms have been developed in many fields,
such as remote sensing applications, medical imaging applications and surveil-
lance applications [14]. Conventionally, the multi-focus image fusion algorithms
can be divided into transform domain algorithms and spatial domain algorithms
[15]. Since there are many new algorithms that have been proposed recently, we
would like to divide the existing fusion algorithms into three categories: multi-
scale transform methods, sparse representation (SR) and low-rank representation
based fusion methods, and deep learning based fusion methods.

The multi-scale transform (MST) methods are the most commonly used
methods, such as discrete wavelet transform (DWT) [9], contourlet transform
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(CT) [25], shift-invariant shearlet transform [24] and curvelet transform (CVT)
[5] etc. The basic idea is to perform image transformation on the source images
to get the coefficient representation. Then fuse the coefficients according to a cer-
tain fusion rule to obtain fused coefficients, and finally obtain the fused image
through inverse transformation. All these methods share a “decomposition-
fusion-reconstruction” framework. These methods are good representation of
their structural information, but can only extract limited direction information
and cannot accurately extract the complete contours [26].

In recent years, methods based on sparse representation and low rank rep-
resentation also have significant performance in image fusion. Yin et al. [27]
proposed a novel multi-focus image fusion approach. The key point of this app-
roach is that a maximum weighted multi-norm fusion rule is used to reconstruct
fused image from sparse coefficients and the joint dictionary. And the method
based on saliency detection in sparse domain [16] also has a remarkable result.
Yang el al. [26] combined robust sparse representation with adaptive PCNN is
also an effective method. Liu et al. [20] combined multi-scale transform with
sparse representation for image fusion which overcomes the inherent defects of
both the MST- and SR-based fusion methods. Besides the above methods, Li
et al. [10] proposed a novel multi-focus image fusion method based on dictionary
learning and low-rank representation which gets a better performance in both
global and local structure. Li et al. also achieved significant results from the
perspective of noisy image fusion using the low-rank representation [12].

With the development of deep learning, deep features are used as saliency
features to fuse images. Liu et al. [19] suggested a convolutional sparse repre-
sentation (CSR)-based image fusion. The CSR model was introduced by Zeiler
et al. [28] in their deconvolutional networks for feature learning. Thus, although
CSR is different from deep learning methods, the features extracted by CSR are
still deep features. Liu et al. [18] also applied CNN model to image fusion, which
can be used to generate the activity level measurement and fusion rule. Li et al.
[13] proposed an effective image fusion method using the fixed VGG-19 [23] to
generate a single image which contains all the features from infrared and visible
images. But we all know that the training of deep model is very time consuming
and complicated. And the requirements for hardware conditions are very high.

In this paper, we propose a novel and effective multifocus fusion method
based on PCA filters of PCANet [4] which is a very simple deep learning model.
The main contribution of this paper is using PCANet to extract image features
and using nuclear norm to construct an effective feature space for image fusion. In
particular, the training time of PCANet is shorter than that of other CNN-based
network, and the extracted features can play the same role. The experimental
results demonstrate that the proposed method can obtain state-of-the-art fusion
performance in terms of both objective assessment and visual quality.

The structure of the rest paper is organized as follows. In Sect. 2, we give
a brief introduction to related work. In Sect. 3, the proposed multi-focus image
fusion method is presented in detail. Section 4 presents the experimental results.
Finally, Sect. 5 concludes the paper and puts forward the future work.
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2 Related Work

In [4], PCANet is a very simple deep learning network which contains three
parts: cascaded principal component analysis (two-stage), binary hashing and
block-wise histograms (output layer). In this architecture, PCA is employed to
learn multistage filter banks. Therefore, this network can be designed and learned
extremely easy and efficient. In this paper, we just use the PCA filters to extract
image features, binary hashing and block-wise histograms are not used. In two-
stage of PCANet [4], the number of filters in the first stage L1 is set as 8, the
number of filters in the second stage L2 is the same. Therefore, we can get 8 image
features in the first stage and 64 image features in the second stage. Considering
the time efficiency and the non redundancy of the data, we just utilize image
features of the first stage to fuse images. Therefore, the explanation of the first
stage of PCANet is introduced as follows.

For each input image of size of m×n, we take k1×k2 patches, and combine
these patches (overlapping) together; i.e., xi,1, xi,2, · · · , xi,mn ∈ Rk1k2 , where
xi,j denotes the j − th vectorized patch in image Ii. Subtracting patch mean
from each patch, we obtain Xi = [x̄i,1, x̄i,2, · · · , x̄i,mn], where x̄i,j is a mean-
centralized patch. Taking the same action for all input images {Ii}Ni=1 (N is the
number of the input images) and putting the results together, we get

X = [X̄1, X̄2, · · · , X̄N ] ∈ RK1K2×Nmn (1)

Assuming that the number of filters in layer i is Li, therefore, L1, is the number
of filters in layer 1. PCA minimizes the reconstruction error, i.e.,

min
V ∈RK1K2×L1

||X − V V TX||2F , s.t.V TV = IL1 (2)

where IL1 is identity matrix of size L1 × L1 and V is a matrix composed of
eigenvectors corresponding to the first L1 eigenvalues of X. Therefore, PCA
filters is expressed as

W 1
l = mapk1,k2(ql(XXT )) ∈ RK1K2 , l = 1, 2, · · · , L1 (3)

where mapk1,k2(v) is a function that maps v to a matrix W ∈ RK1K2 , and
ql(XXT ) is the l−th principal eigenvector of XXT . The leading principal eigen-
vectors capture the main variations of all the mean-centralized training patches.
Therefore we can use PCA filters to extract image features.

3 The Proposed Fusion Method

3.1 Image Features

Considering the generalization performance of the filters, we train the two-stage
PCANet using ImageNet [22] which contains 1000 categories to get PCA filters.
We randomly select 5 images for these 1000 categories, therefore, 5000 images
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in total are used to train PCA filters and all of them are resized to 256×256 and
color images are converted to gray ones. Training PCA filters is implemented
in Matlab R2016b on 3.60 GHz Inter(R) Core(TM) CPU with 64 GB RAM.
We use the filters of the first stage to extract image features. For example, we
use the fixed PCA filters to extract features from the source image, as shown in
Fig. 1.

Fig. 1. (a) is an original image and (b)–(i) are image features obtained by the PCA
filters of the first stage of the PCANet.

In Fig. 1, (a) is a near focused source image. (b)–(i) are image features
extracted by PCA filters, such as texture features, vertical textures, horizontal
textures, point textures, diagonal textures, etc. Obviously, the first few images
extract features from a global perspective, and the subsequent features become
more specific to local significance. Image fusion is the fusion of images with dif-
ferent contents of the same scene into an image. In other words, the saliency
features of different images are extracted and combined into an image. In [3],
to get better performance, the authors remove the first three principal compo-
nents in the Eigenface method. Therefore, the feature extraction before fusion
can reflect the significance of the source image as much as possible. Because of
that, we do an experiment in which there are four cases including all the 8 image
features or discarding the first image feature or discarding second one or both
of them are abandoned.



Multi-focus Image Fusion with PCA Filters of PCANet 5

Experimental results show that it is better to discard the first two feature
maps. Therefore we just utilize the last six feature maps to make the activity
level map. This experiment will be introduced in detail in Sect. 4.2.

3.2 Proposed Fusion Method

In this section we will introduce the proposed fusion method in detail. The
framework of the proposed fusion method is shown in Fig. 2.

Fig. 2. The framework of the proposed method.

As shown in Fig. 2, the input images are denoted by Source1 and Source2
respectively the feature extraction of the Source1 and Source2 is carried out
through the pre-trained PCA filters. We just take the last six image features to
calculate the activity level map.

In the [11], authors apply the nuclear norm to the image features. In this
paper, we use nuclear norm [17] which is the sum of the singular values of matrix
to extract the image features to get the activity level maps. This procedure is
shown in Fig. 3.

As shown in Fig. 3, the edge of the feature map is filled with zero, the six
feature maps are concatenated as a 6-channel image feature, and the multi-
channel image feature is processed by nuclear norm. Taking each pixel as the
center, multi-channel block is taken from the same position, and the multi-
channel block is transformed into a two-dimensional matrix. The sum of the
singular values of the matrix is calculated, and the sum value is used to replace
the original pixel point. Therefore, activity level maps are composed of the sum
of singular values.

Mk(x, y) = ||R(F 1:c
k [(x − t) : (x + t), (y − t) : (y + t)])||∗, (4)
c = 6, k ∈ {1, 2}, t = 2

where R(∗) is reshape operation, (x, y) is the position of the pixel, c is channel
number, k is the number of preregistered source image, (2t+ 1) × (2t+ 1) is the
block size, Mk(∗) is the activity level map and F 1:c

k (∗) is c feature maps of the
k − th source image.
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Fig. 3. The procedure of the processing strategy for image features.

Fig. 4. The construction of focus score maps through the silding window technique.

Next, the activity level map is processed to obtain the decision map. Accord-
ing to the reference [21], we process the activity level maps as shown in Fig. 4.

In Fig. 4, for each corresponding pair of blocks which take each pixel as the
center f1 and f2, we calculate the sum of all the coefficients in each of them,
denoted as s1 and s2. If s1 > s2, the corresponding pixel is set as 1, otherwise,
the pixel is set as 0. Finally, we can obtain two complementary focus score maps,
denoted as FSM1 and FSM2. The steps are shown in Eqs. 5 and 6.

FSMk(x, y) =

{
1 if sk > sn

0 if sk ≤ sn , k ∈ {1, 2}, n ∈ {1, 2}, k �= n
(5)
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si = sum(fi), i ∈ {1, 2} (6)

where sum(∗) is the sum of all coefficients in fi.
As focus score maps usually contain some small holes surrounded by the

focused regions, we apply a simple post-processing approach to remove these
regions. We apply a small region removal strategy [18] that the area threshold
is universally set to 0.1 × H × W , where H and W are the height and width of
each source image. Subsequently, we apply morphological closing and opening
operation to the focus score maps. Finally, according to [21], we combine the
two focus score maps into one decision map, that is, for the pixels where the two
focus score maps are complementary, take the value of the first focus score map;
otherwise, the value is 0.5. The final decision map denoted as Dfinal is evaluated
as shown in formula 7.

Dfinal =

{
FSM1(x, y) FSM1(x, y) �= FSM2(x, y)
0.5 FSM1(x, y) = FSM2(x, y)

(7)

Finally, we obtain the Dfinal shown in Fig. 5 (a).

Fig. 5. (a) is Dfinal and (b) is fused image.

3.3 Fusion Method

With the final decision map Dfinal, the fused image F is calculated by

F = DfinalSource1 + (1 − Dfinal)Source2. (8)

The fused image is shown in Fig. 5(b).
The algorithm is described in Table 1.
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Table 1. Algorithm flow chart

(Input): Two registered source images

(Output): The fused image

(1) Training the two stages of PCANet on ImageNet to get PCA filters
which are used to extract image features

(2) Applying the nuclear norm to image features, the activity level maps
are obtained by Eq. 4

(3) According to Eqs. 5 and 6, the focus score maps are obtained by the
activity level maps. Then, applying a simple post-processing approach
and Eq. 7 to get the final decision map

(4) Finally, the fused image is obtained by Eq. 8

4 Experiments

In this section, we introduce the source images and experimental environment.
There is also a detailed description of Sect. 3.1 and a subjective and objective
comparison between the proposed method and the existing methods.

4.1 Experimental Settings

As introduced in Sect. 3.1, our images sets are denoted as SET1 and SET2 coming
from two references [29] and [10]. There are 15 pairs of source images in SET1
and 20 pairs in SET2. Part of them are shown in Figs. 6 and 7.

Fig. 6. Four pairs of source images from SET1.

Secondly, we compare the proposed method with several existing fusion meth-
ods, including: convolutional sparse representation fusion method (CSR) [19],
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Fig. 7. Four pairs of source images from SET2.

multi-focus image fusion with dense SIFT (DSIFT) [21], multi-focus image fusion
with a deep convolutional neural network (CNN) [18], infrared and visible image
fusion using a deep learning framework (VGG) [13], discrete cosine harmonic
wavelet transform fusion method (DCHWT) [7] and cross bilateral filter fusion
method (CBF) [8].

In order to evaluate our proposed method and existing methods from an
objective perspective, we choose several image quality metrics. These are: Aver-
age Gradient (AG), entropy(EN), Mutual Information (MI) [1], FMI gradient
[6] and the sum of the correlations of differences (SCD) [2].

In our experiment, the sliding window size is 5 × 5 in nuclear norm used for
feature processing and the step is one pixel. The sliding window size is 3 × 3 in
the construction of focus score maps and the step is one pixel as well.

The fusion algorithm is implemented in Matlab R2016a on 3.00 GHz Inter(R)
Core(TM) CPU with 4 GB RAM.

4.2 Feature Selection Experiment

In this section, we will introduce the experiment which is mentioned in Sect. 3.1.
In this two images sets (SET1 and SET2), according to the number of image
features, our method is divided into four cases: (1) all features are used, (2)
discarding the first image feature, (3) discarding the second image feature and
(4) discarding the first two image features. For all the cases, we compare each
other and adopt multiple evaluation indexes as reference, and take the average
value of experimental results of each image as the final, as shown in Tables 2
and 3.

In Tables 2 and 3, the best results are bloded. It can be seen from the two
tables that the distribution of the best results is the same in the four cases of
each data set, but the value of the fourth case is better than or equal to the first
three cases. Therefore, only the last six image features are selected, and the first
two are abandoned.
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Table 2. The AG, EN, MI and FMI gradient average values of the compared methods
and the proposed method for SET1.

SET1 (1) (2) (3) (4)

AG 0.0995 0.0995 0.0999 0.1001

EN 7.2779 7.2766 7.2782 7.2787

MI 14.5558 14.5531 14.5565 14.5575

FMI gradient 0.6634 0.6656 0.6625 0.6646

Table 3. The AG, EN, MI and SCD average values of the compared methods and the
proposed method for SET2.

SET2 (1) (2) (3) (4)

AG 0.1083 0.1083 0.1083 0.1083

EN 7.4127 7.4128 7.4132 7.4132

MI 14.8254 14.8256 14.8263 14.8263

FMI gradient 0.4726 0.4727 0.4728 0.4728

4.3 Image Fusion Results

We use fifteen pairs of source images (SET1) to test comparison methods and the
proposed method. The fused results are shown in Fig. 8, we choose one pair of
source images as an example. And the values of AG, EN, MI and FMI gradient
for fifteen fused images are shown in Tables 4 and 5.

As shown in Fig. 8, we can see, the proposed method has almost the same
fusion performance compared with other classical and novel fusion methods in
human visual system. Therefore we mainly discus the fusion performance with
quality metrics, as shown in Tables 4 and 5.

In Tables 4 and 5, the best results are bloded, the second-best results are
marked in red. We can see, in most cases, the proposed method has good indi-
cators.

We also make the same comparison on SET2 which contains 20 pairs of source
images. The fused results are shown in Fig. 9, we choose one pair of source images
as an example as well. And the values of AG, EN, MI and SCD for twenty fused
images are shown in Tables 6 and 7.

As shown in Fig. 9, we can see, from human visual perspective, there is almost
no significant difference in the fusion results between these methods. Therefore
we evaluate the fusion results objectively, as shown in Tables 6 and 7.

In Tables 6 and 7, the best results are bloded, the second-best results are
marked in red. We can see, in most cases, the proposed method has good indi-
cators as well.
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Fig. 8. The examples of fused results. (a) Source image a; (b) Source image b; (c) csr;
(d) dsift; (e) cnn; (f) vgg; (g) DCHWT; (h) cbf; (i) The proposed method.

Fig. 9. The examples of fused results. (a) Source image a; (b) Source image b; (c) csr;
(d) dsift; (e) cnn; (f) vgg; (g) DCHWT; (h) cbf; (i) The proposed method.
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Table 4. The AG, EN, MI and FMI gradient values of the compared methods and the
proposed method for 10 pairs source images from SET1.

SET1 CSR DSIFT CNN VGG DCHWT CBF OURS

image1 AG 0.0957 0.0985 0.0985 0.0805 0.0934 0.0914 0.0982

EN 7.4689 7.4712 7.4711 7.4447 7.4585 7.4583 7.4709

MI 14.9377 14.9424 14.9422 14.8895 14.9170 14.9167 14.9419

FMI gradient 0.4700 0.8761 0.8757 0.8430 0.8001 0.8488 0.8738

image2 AG 0.0302 0.0308 0.0308 0.0216 0.0277 0.0275 0.0309

EN 6.4619 6.4814 6.4788 6.4307 6.4734 6.4687 6.4826

MI 12.9238 12.9628 12.9575 12.8615 12.9468 12.9374 12.9652

FMI gradient 0.2548 0.5554 0.5358 0.3678 0.3464 0.3835 0.5683

image3 AG 0.1030 0.1043 0.1059 0.0830 0.0994 0.0957 0.1063

EN 7.2904 7.2950 7.3017 7.2823 7.2933 7.2774 7.3012

MI 14.5808 14.5899 14.6035 14.5647 14.5866 14.5548 14.6025

FMI gradient 0.5254 0.7039 0.7068 0.6359 0.5960 0.6355 0.7065

image4 AG 0.0816 0.0847 0.0830 0.0538 0.0804 0.0780 0.0846

EN 6.6060 6.6587 6.6534 6.5660 6.6780 6.6504 6.6571

MI 13.2120 13.3174 13.3068 13.1321 13.3560 13.3009 13.3142

FMI gradient 0.4966 0.6379 0.6348 0.5315 0.4561 0.5624 0.6350

image5 AG 0.0638 0.0656 0.0644 0.0442 0.0589 0.0614 0.0674

EN 7.3596 7.3394 7.3430 7.3093 7.4217 7.3300 7.3324

MI 14.7192 14.6787 14.6860 14.6185 14.8434 14.6600 14.6648

FMI gradient 0.4603 0.6355 0.6294 0.5278 0.4359 0.5324 0.6424

image6 AG 0.0841 0.0865 0.0865 0.0616 0.0806 0.0766 0.0865

EN 7.4277 7.4376 7.4329 7.3518 7.3876 7.3755 7.4398

MI 14.8554 14.8753 14.8658 14.7036 14.7751 14.7509 14.8796

FMI gradient 0.4674 0.6220 0.6130 0.5232 0.4817 0.5214 0.6288

image7 AG 0.0863 0.0886 0.0881 0.0584 0.0828 0.0810 0.0888

EN 7.2580 7.2547 7.2560 7.1865 7.2582 7.2496 7.2538

MI 14.5160 14.5095 14.5120 14.3731 14.5165 14.4992 14.5077

FMI gradient 0.4735 0.6185 0.6168 0.5181 0.4543 0.5143 0.6183

image8 AG 0.1001 0.1034 0.1025 0.0823 0.0952 0.0922 0.1036

EN 7.1272 7.1448 7.1421 7.1041 7.1199 7.1133 7.1445

MI 14.2544 14.2895 14.2842 14.2082 14.2397 14.2266 14.2891

FMI gradient 0.6411 0.7085 0.7120 0.6778 0.6451 0.6702 0.7123

image9 AG 0.1066 0.1066 0.1102 0.0860 0.1018 0.0966 0.1114

EN 7.8323 7.8322 7.8376 7.8287 7.8366 7.8351 7.8402

MI 15.6645 15.6643 15.6751 15.6574 15.6733 15.6701 15.6803

FMI gradient 0.6611 0.6925 0.6955 0.6615 0.6406 0.6622 0.6941

image10 AG 0.1107 0.1155 0.1133 0.0718 0.1058 0.1041 0.1160

EN 7.7827 7.7933 7.7870 7.7251 7.7747 7.7747 7.7946

MI 15.5655 15.5866 15.5741 15.4502 15.5494 15.5494 15.5893

FMI gradient 0.5423 0.5972 0.5965 0.4940 0.4871 0.5248 0.5983
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Table 5. The AG, EN, MI and FMI gradient values of the compared methods and the
proposed method for another 5 pairs source images from SET1.

SET1 CSR DSIFT CNN VGG DCHWT CBF OURS

image11 AG 0.0728 0.0750 0.0747 0.0511 0.0693 0.0694 0.0753

EN 7.0322 7.0689 7.0222 6.9620 7.0523 7.0690 7.0245

MI 14.0644 14.1377 14.0443 13.9240 14.1047 14.1379 14.0491

FMI gradient 0.4372 0.5947 0.6411 0.5459 0.4384 0.4996 0.6282

image12 AG 0.0876 0.0906 0.0887 0.0561 0.0818 0.0863 0.0908

EN 7.3282 7.3379 7.3295 7.2406 7.3064 7.3195 7.3404

MI 14.6565 14.6758 14.6589 14.4811 14.6127 14.6391 14.6809

FMI gradient 0.5249 0.6159 0.6122 0.5273 0.4943 0.5375 0.6165

image13 AG 0.0967 0.1001 0.0997 0.0762 0.0929 0.0954 0.1000

EN 7.3415 7.3738 7.3740 7.3687 7.3879 7.3705 7.3741

MI 14.6830 14.7475 14.7479 14.7375 14.7758 14.7411 14.7483

FMI gradient 0.6839 0.8539 0.8547 0.8322 0.7497 0.8369 0.8537

image14 AG 0.1780 0.1853 0.1830 0.1000 0.1647 0.1626 0.1860

EN 7.2781 7.3062 7.2926 6.9421 7.1410 7.1515 7.3102

MI 14.5561 14.6124 14.5852 13.8841 14.2819 14.3030 14.6204

FMI gradient 0.5753 0.6085 0.6000 0.4231 0.4283 0.4798 0.5961

image15 AG 0.1514 0.1557 0.1540 0.1014 0.1364 0.1405 0.1554

EN 7.5571 7.4203 7.4427 7.5480 7.7075 7.5827 7.4144

MI 15.1142 14.8407 14.8854 15.0960 15.4149 15.1654 14.8289

FMI gradient 0.5039 0.5899 0.5847 0.4870 0.4180 0.5044 0.5972

Table 6. The AG, EN, MI and SCD values of the compared methods and the proposed
method for 10 pairs source images from SET2.

SET2 CSR DSIFT CNN VGG DCHWT CBF OURS

image1 AG 0.0610 0.0620 0.0619 0.0511 0.0581 0.0566 0.0629

EN 6.8647 6.8664 6.8666 6.8466 6.8634 6.8757 6.8813

MI 13.7294 13.7329 13.7333 13.6932 13.7269 13.7515 13.7625

SCD 0.3889 0.3904 0.4100 0.1841 0.3089 0.3125 0.4547

image2 AG 0.1027 0.1068 0.1059 0.0766 0.1004 0.0967 0.1072

EN 7.5038 7.5141 7.5124 7.4793 7.5054 7.4957 7.5101

MI 15.0075 15.0281 15.0248 14.9586 15.0108 14.9915 15.0202

SCD 0.4366 0.4905 0.4874 0.2553 0.3523 0.3579 0.4678
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Table 6. (continued)

SET2 CSR DSIFT CNN VGG DCHWT CBF OURS

image3 AG 0.0935 0.0964 0.0956 0.0717 0.0910 0.0842 0.0968

EN 7.5205 7.5364 7.5349 7.5020 7.5246 7.5151 7.5353

MI 15.0410 15.0727 15.0698 15.0040 15.0493 15.0301 15.0706

SCD 0.4293 0.4772 0.4724 0.2408 0.3511 0.3021 0.4690

image4 AG 0.1004 0.1047 0.1031 0.0749 0.0984 0.0912 0.1052

EN 7.5335 7.5542 7.5519 7.4801 7.5406 7.5263 7.5589

MI 15.0669 15.1083 15.1037 14.9602 15.0812 15.0527 15.1178

SCD 0.4219 0.4560 0.4506 0.2456 0.3571 0.3238 0.4549

image5 AG 0.0901 0.0925 0.0920 0.0744 0.0862 0.0819 0.0932

EN 7.6695 7.6756 7.6746 7.6517 7.6625 7.6558 7.6786

MI 15.3390 15.3512 15.3491 15.3033 15.3251 15.3116 15.3571

SCD 0.4387 0.4799 0.4751 0.2102 0.3346 0.2636 0.5088

image6 AG 0.0841 0.0859 0.0841 0.0625 0.0818 0.0746 0.0866

EN 7.0884 7.1263 7.1241 7.0883 7.1538 7.1222 7.1340

MI 14.1768 14.2525 14.2482 14.1766 14.3077 14.2444 14.2681

SCD 0.2906 0.3302 0.3242 0.1949 0.2628 0.2270 0.3384

image7 AG 0.0746 0.0764 0.0762 0.0557 0.0729 0.0674 0.0773

EN 7.2883 7.3089 7.3078 7.2659 7.3073 7.3024 7.3154

MI 14.5767 14.6179 14.6156 14.5318 14.6146 14.6047 14.6309

SCD 0.2584 0.3168 0.3158 0.1857 0.2257 0.1927 0.3129

image8 AG 0.1696 0.1745 0.1726 0.1140 0.1653 0.1560 0.1746

EN 7.4343 7.4531 7.4498 7.3585 7.4415 7.4157 7.4554

MI 14.8686 14.9063 14.8997 14.7171 14.8830 14.8314 14.9109

SCD 0.6795 0.6972 0.6933 0.4368 0.6029 0.6116 0.6972

image9 AG 0.1495 0.1543 0.1530 0.1034 0.1459 0.1378 0.1550

EN 7.6738 7.6883 7.6870 7.6179 7.6707 7.6535 7.6855

MI 15.3475 15.3767 15.3739 15.2358 15.3415 15.3070 15.3710

SCD 0.5786 0.6140 0.6088 0.3674 0.4962 0.4928 0.5813

image10 AG 0.1150 0.1183 0.1176 0.0875 0.1115 0.1030 0.1185

EN 7.4619 7.4853 7.4830 7.4326 7.4903 7.4785 7.4884

MI 14.9239 14.9705 14.9660 14.8652 14.9806 14.9570 14.9767

SCD 0.4442 0.4912 0.4881 0.2396 0.3422 0.2873 0.4888
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Table 7. The AG, EN, MI and SCD values of the compared methods and the proposed
method for another 10 pairs source images from SET2.

SET2 CSR DSIFT CNN VGG DCHWT CBF OURS

image11 AG 0.0648 0.0659 0.0655 0.0514 0.0633 0.0564 0.0668

EN 7.0320 7.0404 7.0403 7.0350 7.0517 7.0474 7.0494

MI 14.0641 14.0808 14.0805 14.0700 14.1033 14.0949 14.0988

SCD 0.2500 0.2893 0.2872 0.1565 0.2039 0.1383 0.3036

image12 AG 0.0974 0.1021 0.1013 0.0704 0.0961 0.0929 0.1025

EN 7.0401 7.0711 7.0645 6.9295 7.0319 7.0393 7.0748

MI 14.0802 14.1423 14.1290 13.8590 14.0637 14.0786 14.1497

SCD 0.5151 0.5549 0.5428 0.3314 0.4740 0.5025 0.5680

image13 AG 0.0987 0.1004 0.0998 0.0732 0.0964 0.0877 0.1014

EN 7.3394 7.3571 7.3556 7.2960 7.3530 7.3302 7.3625

MI 14.6787 14.7143 14.7112 14.5920 14.7060 14.6604 14.7249

SCD 0.3363 0.3954 0.3924 0.2185 0.2910 0.2449 0.3896

image14 AG 0.0759 0.0785 0.0783 0.0606 0.0750 0.0694 0.0795

EN 7.5955 7.6102 7.6092 7.5695 7.5959 7.5907 7.6135

MI 15.1910 15.2205 15.2185 15.1390 15.1919 15.1814 15.2271

SCD 0.3024 0.3691 0.3654 0.1918 0.2647 0.2125 0.3563

image15 AG 0.1042 0.1055 0.1048 0.0809 0.1005 0.0935 0.1069

EN 7.4169 7.4124 7.4136 7.4118 7.4299 7.4162 7.4172

MI 14.8339 14.8247 14.8273 14.8237 14.8598 14.8325 14.8345

SCD 0.5054 0.5398 0.5271 0.2756 0.3836 0.3345 0.5414

image16 AG 0.1145 0.1184 0.1167 0.0847 0.1119 0.1020 0.1182

EN 7.1316 7.1596 7.1567 7.0791 7.1452 7.1368 7.1655

MI 14.2631 14.3193 14.3135 14.1582 14.2903 14.2736 14.3311

SCD 0.4453 0.4715 0.4653 0.2518 0.3731 0.3083 0.4888

image17 AG 0.1594 0.1647 0.1629 0.1113 0.1561 0.1437 0.1649

EN 7.7790 7.7817 7.7819 7.7329 7.7720 7.7647 7.7796

MI 15.5579 15.5634 15.5638 15.4657 15.5439 15.5293 15.5593

SCD 0.5938 0.6160 0.6082 0.3571 0.4972 0.4140 0.5970

image18 AG 0.1432 0.1487 0.1475 0.0994 0.1408 0.1344 0.1493

EN 7.4088 7.4331 7.4294 7.2854 7.3958 7.3940 7.4385

MI 14.8176 14.8662 14.8588 14.5707 14.7915 14.7881 14.8770

SCD 0.6146 0.6398 0.6353 0.3933 0.5504 0.5599 0.6375

image19 AG 0.1061 0.1123 0.1111 0.0717 0.1077 0.1030 0.1125

EN 7.4622 7.4888 7.4841 7.3596 7.4674 7.4627 7.4922

MI 14.9245 14.9775 14.9682 14.7193 14.9349 14.9253 14.9844

SCD 0.4075 0.4311 0.4283 0.2667 0.3727 0.3592 0.4323

image20 AG 0.0840 0.0854 0.0852 0.0615 0.0810 0.0759 0.0860

EN 7.6188 7.6243 7.6239 7.5925 7.6142 7.6128 7.6271

MI 15.2377 15.2486 15.2478 15.1850 15.2284 15.2255 15.2542

SCD 0.2762 0.3566 0.3338 0.2151 0.2503 0.2719 0.3670
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5 Conclusion

In this paper, we propose a novel fusion method based on PCANet. First of
all, we utilize the PCA filters to extract image features of source images, and
then we apply the nuclear norm to process the image features in order to get
activity level maps. Through a series of post-processing operations on activity
level maps, the decision map is obtained. Finally, the fused image is obtained
by utilizing a weighted fusion rule. The experimental results demonstrate that
the proposed method can obtain state-of-the-art fusion performance in terms of
both objective assessment and visual quality.
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