
Iterative Arrays with Self-verifying
Communication Cell

Martin Kutrib1(B) and Thomas Worsch2

1 Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
worsch@kit.edu

Abstract. We study the computational capacity of self-verifying itera-
tive arrays (SVIA). A self-verifying device is a nondeterministic device
whose nondeterminism is symmetric in the following sense. Each compu-
tation path can give one of the answers yes, no, or do not know. For every
input word, at least one computation path must give either the answer
yes or no, and the answers given must not be contradictory. It turns out
that, for any time-computable time complexity, the family of languages
accepted by SVIAs is a characterization of the so-called complementation
kernel of nondeterministic iterative array languages, that is, languages
accepted by such devices whose complementation is also accepted by such
devices. SVIAs can be sped-up by any constant multiplicative factor as
long as the result does not fall below realtime. We show that even real-
time SVIA are as powerful as lineartime self-verifying cellular automata
and vice versa. So they are strictly more powerful than the determin-
istic devices. Closure properties and various decidability problems are
considered.

1 Introduction

One of the central questions in complexity and language theory asks for the power
of nondeterminism in bounded-resource computations. In order to gain a better
understanding of nondeterminism it has been viewed as an additional limited
resource at the disposal of time or space bounded computations. The concept
of so-called self-verification at least dates back to the paper [5]. It applies to
automata for decision problems and makes use of stronger notions of acceptance
and rejection of inputs.

A self-verifying device is a nondeterministic device whose nondeterminism is
symmetric in the following sense. Each computation path can give one of the
answers yes, no, or unknown. For every input word, at least one computation
path must give either the answer yes or no, and the answers given must not
be contradictory. So, if a computation path gives the answer yes or no, in both
cases the answer is definitely correct. This justifies the notion self-verifying and

c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

A. Castillo-Ramirez and P. P. B. de Oliveira (Eds.): AUTOMATA 2019, LNCS 11525, pp. 77–90, 2019.

https://doi.org/10.1007/978-3-030-20981-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20981-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-20981-0_6

78 M. Kutrib and T. Worsch

is in contrast to the general case, where an answer different from yes does not
allow to conclude whether or not the input belongs to the language. Here we
study the computational capacity of self-verifying iterative arrays (SVIA).

Self-verifying finite automata have been introduced and studied in [5] and
others mainly in connection with randomized Las Vegas computations. Descrip-
tional complexity issues for self-verifying finite automata have been studied
in [8]. The computational and descriptional complexity of self-verifying push-
down automata has been studied in [7]. Self-verifying cellular automata have
been introduced in [12]. Some of the results in the present paper look very sim-
ilar, but they require different proofs.

The paper is organized as follows. In Sect. 2 we present the basic notation
and the definitions of self-verifying iterative arrays as well as an introductory
example. In general, the symmetric conditions for acceptance/rejection of self-
verifying devices imply immediately the effective closures of the language fam-
ilies accepted under complementation. In Sect. 3 this observation is turned in
a characterization. Moreover, the strong speed-up by a multiplicative constant
is derived for any time-computable time complexity. In Sect. 4 we explore the
computational capacity of realtime SVIAs. In particular, its is shown that even
realtime SVIAs are as powerful as lineartime self-verifying cellular automata and
vice versa. So they are strictly more powerful than deterministic iterative arrays.
Closure properties of the family of languages accepted by realtime SVIAs are
studied in Sect. 5. The family is closed under the Boolean operations, reversal,
concatenation, and inverse homomorphisms, while it is not closed under arbi-
trary homomorphisms. Finally, decidability problems are considered in Sect. 6.
In particular, by a reduction of the emptiness problem it is shown that the
property of being self-verifying is non-semidecidable.

2 Preliminaries and Definitions

We denote the non-negative integers by N. Let Σ denote a finite set of letters.
Then we write Σ∗ for the set of all finite words (strings) consisting of letters
from Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. For the reversal
of a word w we write wR and |w| denotes its length. A subset of Σ∗ is called a
language over Σ. In general, we use ⊆ for inclusions and ⊂ for strict inclusions.

A one-dimensional iterative array is a linear, semi-infinite array of finite state
machines (sometimes called cells) that are identical except for the leftmost one.
All but the leftmost cells are connected to their both nearest neighbors, respec-
tively (see Fig. 1). For convenience we identify the cells by their coordinates,
that is, by non-negative integers. The leftmost cell is distinguished. This so-
called communication cell is connected to its right neighbor and, additionally,
to the input supply which feeds the input sequentially. We assume that once
the whole input is consumed an end-of-input symbol is supplied permanently.
At the outset of a computation all cells are in the so-called quiescent state. The
cells work synchronously at discrete time steps. Here we assume that the com-
munication cell is a nondeterministic finite automaton while all the other cells

Iterative Arrays with Self-verifying Communication Cell 79

are deterministic ones (cf. [1]). Although this is a very restricted case, for easier
writing we call such devices nondeterministic.

Formally, a nondeterministic iterative array (NIA, for short) is a system
M = 〈S,Σ, F+, s0,�, δnd, δd〉, where S is the finite, nonempty set of cell states, Σ
is the finite, nonempty set of input symbols, F+ ⊆ S is the set of accepting
states, s0 ∈ S is the quiescent state, � /∈ Σ is the end-of-input symbol, δnd : (Σ ∪
{�}) × S × S → (2S \ ∅) is the nondeterministic local transition function for
the communication cell, δd : S × S × S → S is the deterministic local transition
function for non-communication cells satisfying δd(s0, s0, s0) = s0.

a1a2 · · · an�

s0 s0 s0 s0 s0

Fig. 1. Initial configuration of an iterative array.

A configuration of M at time t ≥ 0 is a pair (wt, ct), where wt ∈ Σ∗ is the
remaining input sequence and ct : N → S is a mapping that maps the single cells
to their current states. The initial configuration (w0, c0) is defined by the given
input w0 ∈ Σ∗ and the mapping c0(i) = s0, i ≥ 0. Subsequent configurations
are computed by the global transition function Δ that is induced by δd and δnd
as follows: Let (wt, ct), t ≥ 0, be a configuration. Then the set of its possible
successor configurations (wt+1, ct+1) is defined as follows:

(wt+1, ct+1) ∈ Δ((wt, ct)) ⇐⇒
{

ct+1(0) ∈ δnd(a, ct(0), ct(1))
ct+1(i) = δd(ct(i − 1), ct(i), ct(i + 1))

for all i ≥ 1, where a = �, wt+1 = λ if wt = λ, and a = a1, wt+1 = a2a3 · · · an

if wt = a1a2 · · · an.
An input w is accepted by an NIA M if at some time step during the course

of at least one computation for w the communication cell enters an accept-
ing state. The language accepted by M is denoted by L(M) = {w ∈ Σ∗ |
w is accepted by M }. Let t : N → N, t(n) ≥ n + 1 be a mapping. If for each
w ∈ L(M) there is an accepting computation with at most t(|w|) time steps,
then M and L(M) are said to be of time complexity t.

In general, the family of all languages which are accepted by some type of
device X with time complexity t is denoted by Lt(X). If t is the function n + 1,
acceptance is said to be in realtime. Since for nontrivial computations an iterative
array has to read at least one end-of-input symbol, realtime has to be defined
as (n + 1)-time. We write Lrt(X) for realtime and Llt(X) for lineartime.

Now we turn to self-verifying iterative arrays (SVIA). Basically, an SVIA
is an NIA, but the definition of acceptance is different. There are now three
disjoint sets of states representing answers yes, no, and neutral. Moreover, for
every input word, at least one computation path must give either the answer yes

80 M. Kutrib and T. Worsch

or no, and the answers given must not be contradictory. In order to implement
the three possible answers the state set is partitioned into three disjoint subsets
S = F+ ∪̇ F− ∪̇ F0, where F+ is the set of accepting states, F− is the set of
rejecting states, and F0 = S � (F+ ∪ F−) is referred to as the set of neutral
states. If M = 〈S,Σ, F+, F−, s0,�, δnd, δd〉 is an SVIA, for each input word
w ∈ Σ∗ and for a corresponding computation c̄ let Sw,c̄ denote the set of states
entered by the communication cell during computation c̄. For the “self-verifying
property” it is required that for each w ∈ Σ∗ and each corresponding c̄, Sw,c̄∩F+

is empty if and only if Sw,c̄ ∩ F− is nonempty.
If all w ∈ L(M) are accepted and all w /∈ L(M) are rejected after at most

t(|w|) time steps, then the self-verifying iterative array M is said to be of time
complexity t.

In the sequel we will often utilize the possibility of iterative arrays to simulate
the data structures pushdown stores (stacks) [2,4], queues, and rings [9] without
any loss of time. Here a ring is a queue that can write and erase at the same
time. For pushdown stores the communication cell simulates the top of the store,
for queues it simulates the front, and for rings the front and the end of the store.

We illustrate the definitions with an example.

Example 1. The nondeterministic context-free language {w ∈ {a, b}∗ | w =
wR } is accepted by the SVIA M = 〈S, {a, b}, F+, F−, s0,�, δnd, δd〉. The basic
idea is to simulate a stack whose top is the communication cell.

We set S = ({s1, s2, s3, s+, s−, s?} × Spd) ∪ {s0} ∪ Ŝpd with F+ = {s+} × Spd

and F− = {s−}×Spd. Here Spd are the register contents used by the communica-
tion cell to manage the top entries of the stack, while Ŝpd are the non-quiescent
states of all but the communication cell, that realize the stack. So, the transition
function δd just realizes the interior of the stack and is omitted here.

The idea of the construction of δnd is summarized in the following table and
described below. Since we didn’t make Spd explicit in detail and since the state
of the right neighbor of the communicating cell is only needed for updating its
part of the stack, the right neighbor state is left out in the table. The current
state of the communication cell is indicated as (si, y···) meaning that at the top
of the stack is a symbol y ∈ {a, b}. A transition to xy··· means that x has been
pushed onto, and a transition to ··· means that y has been popped from the stack.

(1) δnd(�, (s0,⊥),) � (s+,⊥) accept λ
(2) δnd(x, (s0,⊥),) � (s1, x) push first symbol
(3) δnd(x, (s1, y···),) � (s1, xy···) in s1 continue pushing input symbols
(4) δnd(x, (s1, y···),) � (s2, y···) switch to s2, dropping symbol x
(5) δnd(x, (s1, y···),) � (s2, xy···) switch to s2, without dropping x
(6) δnd(x, (s2, x···),) � (s2, ···) continue in s2 for matching symbols
(7) δnd(�, (s2,⊥),) � (s+,⊥) accept if everything matched
(8) δnd(x, (s2, x̄···),) � (s3, ···) switch to s3 if mismatch (ā = b, b̄ = a)
(9) δnd(x, (s3, y···),) � (s3, ···) drop remaining input symbols

(10) δnd(�, (s3,⊥),) � (s−,⊥) reject since there was a mismatch

Iterative Arrays with Self-verifying Communication Cell 81

Consider the point in time after the SVIA is in state s2 for the first time. Let v
denote the part of the input that has been pushed to the stack at that time and
let u denote the part of the input that still has not been read. Then the input
is vxu if (4) has been used to switch to s2 and the input is vu if (5) was used.

If the communication cell switched from s1 to s2 “at the right time”, that
is |u| = |v|, then it will for the first time see input � and the empty stack ⊥
simultaneously. Obviously, the decision to accept using (7) or to reject using (10)
is the correct one.

If the communication cell switched from s1 to s2 “at the wrong time”, that
is |u| �= |v|, then it cannot decide whether the input is a palindrome. This can
be recognized by the SVIA since either all input symbols have been consumed
but the stack is not empty or the stack is empty but not all input symbols have
been consumed. In this case a correct behavior is obtained by entering state s?
and rules that make the SVIA never leave it again. �

3 Structural Properties and Speed-Up

Though we are mainly interested in fast computations, that is, realtime and lin-
eartime computations, we allowed general time complexities in the definition of
the devices (see [10] for a discussion of this general treatment of time complexity
functions). However, it seems to be reasonable to consider only time complex-
ities t that allow the communication cell to recognize the time step t(n). Such
functions are said to be time-computable. For example, the function t(n) = n+1
is trivially a time-computable time complexity for IAs.

Other examples are time complexities � y
x ·n�, for any positive integers x < y,

polynomials t(n) = nk, and exponential time complexities t(n) = kn, for any
integer k ≥ 2. More details can be found in [13].

In general, the symmetric conditions for acceptance/rejection of self-verifying
devices imply immediately the effective closures of the language families accepted
under complementation. In order to turn this observation in a characterization,
we first give evidence that self-verifying iterative arrays are in fact a general-
ization of deterministic iterative arrays. The proof of a corresponding result for
cellular automata [12] applies here almost literally.

Lemma 2. Any deterministic iterative array with a time-computable time com-
plexity t can effectively be converted into an equivalent self-verifying iterative
array with the same time complexity t.

The proper inclusion Lrt(IA) ⊂ Lrt(NIA) is well known [1]. So, nondeter-
minism strengthens the computational capacity of iterative arrays. On the other
hand, it is an open problem whether the family Lrt(NIA) is closed under com-
plementation. Therefore, the question whether the family Lrt(SVIA) is properly
included in Lrt(NIA), or whether both families coincide, is of natural interest.
Next we turn to relate it to the open complementation closure of Lrt(NIA).

82 M. Kutrib and T. Worsch

Proposition 3. Let t be a time-computable time complexity. The family of lan-
guages L ∈ Lt(NIA), such that the complement L belongs to Lt(NIA) as well,
coincides with the family Lt(SVIA).

Proof. Given a t-time SVIA M , it is straightforward to construct an NIA that
accepts the complement of L(M) with the same time complexity t.

Conversely, let M1 be an NIA accepting L and M2 be an NIA accepting L
with time complexity t. Now a t-time self-verifying iterative array M simu-
lates M1 and M2 on different tracks, that is, it uses the same two channel tech-
nique of [6,14].

Then it remains to define the set of accepting states as F+ = { (s, s′) | s ∈ F1 }
and the set of rejecting states as F− = { (s, s′) | s′ ∈ F2 }, where F1 is the set of
accepting states of M1 and F2 is the set of accepting states of M2. ��

Proposition 3 implies that Lrt(SVIA) is properly included in Lrt(NIA) if and
only if Lrt(NIA) is not closed under complementation; otherwise both families
coincide.

Next, we turn to strong speed-up results for self-verifying iterative arrays
from which follows that realtime is as powerful as lineartime.

Theorem 4. Let k ≥ 1 be a constant and t be a time complexity. Then the
families Lk·t(SVIA) and Lt(SVIA) coincide.

Proof. A given (k · t)-time SVIA M is simulated by a t-time SVIA M ′ as follows.
Basically, M ′ performs two tasks in parallel on different tracks.

For the first task, assume that the input is fed to the communication cell
of M ′ in k-symbol blocks, that is, k input symbols in each step. Then each k
cells of M ′ are grouped together into one cell. In this well-known way the iterative
array M ′ can simulate k steps of M in one step. That is, this task of M ′ has time
complexity t and the self-verifying property, since M has time complexity k · t
and the self-verifying property.

The second task of M ′ is to make the assumption for the first task true. To
this end, it simulates a ring store whose front (and end) is the communication
cell. Now the communication cell starts to guess k input symbols in every step.
These symbols are fed to the first task. Additionally, the communication step
guesses when the end-of-input symbol appears. From that time step on no further
input symbols are guessed. In order to verify that the guesses are correct, the k
symbols are entered at the end of the ring store respectively. In each step, the
symbol at the front of the ring is removed and compared with the actual input
symbol. If both match, the guessed symbol is correct, otherwise it is not. In
case of a mismatch or a wrongly guessed number of input symbols the second
task remains in a neutral state. If it has guessed the input correctly, it enters a
positive state.

Finally, M ′ accepts if and only if the second task guesses the input correctly
and the first task accepts. That is, if the actual input is accepted by M . The
iterative array M ′ rejects if and only if the second task guesses the input correctly
and the first task rejects. That is, if the actual input is rejected by M . So, M ′

has the self-verifying property. ��

Iterative Arrays with Self-verifying Communication Cell 83

Corollary 5. The families Lrt(SVIA) and Llt(SVIA) coincide.

4 Computational Capacity

The first question in connection with the computational capacity of realtime
SVIA is the impact of the (restricted) nondeterminism. Does it increase the
capacity? More precisely, we are interested in the question whether the comput-
ing power of realtime SVIA is strictly stronger than that of realtime IA.

Example 1 shows that the mirror language is accepted by a realtime SVIA.
However, by using a completely different algorithm the language is accepted by
some deterministic realtime IA as well [3]. So, it cannot be used as a witness for
the strictness of the inclusion Lrt(IA) ⊂ Lrt(SVIA). Nevertheless, the strictness
follows from a more general result below and is stated in Proposition 10.

Corollary 6. The family of languages accepted by self-verifying pushdown
automata is strictly included in the family Lrt(SVIA).

In order to discuss further comparisons we now turn to results that show the
strong computational capacity of realtime SVIA.

While iterative arrays fetch their input sequentially through the communica-
tion cell, so-called cellular automata obey a parallel input mode. In a preinitial
step their cells fetch an input symbol. That is, there are as many cells as input
symbols. So, a two-way cellular automaton (CA) is a linear array of identical
finite automata which are numbered 1, 2, . . . , n. Except for border cells the state
transition depends on the current state of a cell itself and those of its both near-
est neighbors. Border cells receive a boundary symbol # on their free input lines.
An input w is accepted by a cellular automaton if at some time step during some
computation the leftmost cell enters an accepting state. For cellular automata,
realtime is defined to be t(n) = n. Cellular automata whose first state transitions
are nondeterministic, whose further transitions are deterministic, and that have
the self-verifying property (SVCA) are studied in [12].

Lemma 7. The family Llt(SVIA) is included in Lrt(SVCA).

Lemma 7 gives an upper bound for languages accepted by lineartime SVIA.
It shows that a sequential input mode and one nondeterministic cell can be
traded for parallel input mode and all cells nondeterministic once only. In fact,
the upper bound is sharp, that is, the converse is also true.

Lemma 8. The family Llt(SVCA) is included in Lrt(SVIA).

Proof. The possibility to speed-up SVCAs by a constant factor is shown in [12].
That is, Llt(SVCA) = Lrt(SVCA). So, given some realtime SVCA M with state
set S and set of input symbols Σ, we construct an equivalent realtime SVIA M ′

as follows. Basically, M ′ works in three phases. First it guesses and generates
a configuration that represents the fourfold packed initial configuration of M .
Then this packed part is synchronized. Finally, the synchronized cells simulate M

84 M. Kutrib and T. Worsch

0

n+1
4 − 1

t = 0 t = n+1
4 t = 3n+1

4 − 1 t = n+ 1

fir
in
g

guessing synchronization simulation

packing

verification

Fig. 2. Simulation phases.

whereby four steps are simulated in one step. The phases are depicted in Fig. 2.
In parallel, the guesses are verified.

Phase 1: Let n denote the length of the input. In the following we assume
that n+1 is a multiple of four. The generalization of the simulation to the other
cases is a straightforward adaption.

So, during the first n+1
4 time steps the communication cell of M ′ guesses

four input symbols in every step. Additionally, the communication cell guesses
a mapping (Σ ∪ {#}) × {a} × (Σ ∪ {#}) → S for each (guessed) input sym-
bol a ∈ Σ. These mappings are used for the simulation of the nondeterministic
first transitions of the cells of M . The blocks of four input symbols together
with the corresponding mappings are shifted to the right such that each of the
leftmost n+1

4 cells gets one block of symbols and mappings. When the commu-
nication cell guesses the end-of-input symbol the first phase ends.

In order to verify that the guesses are correct, the four symbols are entered
at the end of a ring store respectively. In each step, the symbol at the front of
the ring is removed and compared with the actual input symbol. If both match,
the guessed symbol is correct, otherwise it is not. In case of a mismatch or a
wrongly guessed number of input symbols the computation blocks in a neutral
state.

Phase 2: At time step n+1
4 + 1 the communication cell initiates an FSSP

synchronization of the leftmost n
4 cells. The blocks of four input symbols together

with the corresponding mappings arrive at their destination cells 0 ≤ i ≤ n+1
4 −1

at time 2i+1. The initial signal for the FSSP arrives at cell i at time n+1
4 +1+i >

2i+1. So, each cell starts Phase 2 after finishing Phase 1. Altogether, Phase 2 is
finished when all cells are synchronized at time n+1

4 +1+2 · n+1
4 −2 = 3 · n+1

4 −1.
Phase 3: Due to the compressed representation, M ′ can simulate M with

fourfold speed. In order to simulate the nondeterministic transitions which the
cells of M perform during the first time step, the cells of M ′ apply the nonde-

Iterative Arrays with Self-verifying Communication Cell 85

terministically guessed mappings to its local configurations. Thus, M ′ simulates
the nth step of M at time step 3 · n+1

4 − 1 + n+1
4 = n.

Since the verification of the guessed input takes n+1 time steps, we conclude
that the total time complexity of M ′ is t(n) = n + 1, that is realtime.

Finally, M ′ accepts if and only if the input has been guessed correctly and M
accepts, and it rejects if and only the input has been guessed correctly and M
rejects. Since M has the self-verifying property, M ′ is self-verifying as well. So,
we have L(M ′) = L(M). ��

Lemmas 7 and 8 reveal the equality of the next theorem.

Theorem 9. Llt(SVCA) = Lrt(SVCA) = Lrt(SVIA) = Llt(SVIA).

In particular, now we can deduce that even the restricted nondetermin-
ism gained in considering a self-verifying communication cell strictly increases
the computational capacity of realtime iterative arrays. That is, the inclusion
Lrt(IA) ⊂ Lrt(SVIA) is strict.

Proposition 10. The family Lrt(IA) is strictly included in Lrt(SVIA).

Proof. The relations Lrt(IA) ⊂ Llt(IA) = Llt(CA) are known (see, for exam-
ple, [10]). Since Llt(IA) ⊆ Llt(SVIA) the assertion follows. ��

Theorem 9 shows that a sequential input mode and one nondeterministic cell
can be traded for parallel input mode and all cells nondeterministic once only,
and vice versa. To this end, it does not matter whether the computations are
in realtime or lineartime. But what about the world beyond lineartime? Are
self-verifying arrays stronger than deterministic ones? Or weaker than nonde-
terministic ones? The open question of the strictness of one of the inclusions
Llt(IA) ⊆ Lrt(SVIA) ⊆ L (SVCA) ⊆ L (NCA) is strongly related to famous
open problems in complexity theory (see [11]). Note that at the top of this hier-
archy are devices that may have an exponential time complexity (due to the
space bound).

5 Closure Properties

Here we turn to explore the closure properties of the family of realtime SVIA
languages. They are summarized in Table 1. We start with the Boolean opera-
tions.

Proposition 11. The family of languages accepted by realtime SVIA is closed
under complementation, union, and intersection.

The closure under reversal is of crucial importance. It is an open problem for
Lrt(CA) and, equivalently, for Llt(OCA) (OCAs are CAs where information can
only be passed from right to left, that is, the new state of a cell does not depend
on that of its left neighbor). Moreover, it is linked with the open closure property
under concatenation for the same family and, hence, with the question whether
lineartime CAs are more powerful than realtime CAs. It is known that the family
Lrt(IA) is not closed under reversal, while the family Llt(IA) is closed.

86 M. Kutrib and T. Worsch

Proposition 12. The family of languages accepted by realtime SVIA is closed
under reversal.

Proof. Given some realtime SVIA M , Theorem 9 says that there is an equivalent
lineartime SVCA M ′ with transition functions δnd and δd.

Now, the arguments of the local transition functions are interchanged. That
is, δ′

d(s3, s2, s1) is defined to be δd(s1, s2, s3), and δ′
nd(s3, s2, s1) is defined to be

δnd(s1, s2, s3). The resulting device M ′′ with transition functions δ′
nd and δ′

d.
accepts the reversal L(M)R at the rightmost cell. Then the result is sent as a
signal to the leftmost cell. Altogether, M ′′ is still a lineartime SVCA and, thus,
L(M)R ∈ Llt(SVCA) = Lrt(SVIA). ��
Proposition 13. The family of languages accepted by realtime SVIA is closed
under concatenation.

Proof. Let L1, L2 ∈ Lrt(SVIA). If the empty word belongs to L1 then lan-
guage L2 belongs to the concatenation and vice versa. Since the family of lan-
guages accepted by realtime SVIA is closed under union, it remains to consider
languages L1, L2 ∈ Lrt(SVIA) that do not contain the empty word. Let M1

and M2 be realtime SVIA that accept L1 and L2.
Since the family Lrt(SVIA) is closed under reversal, there is a realtime

SVIA MR
2 that accepts the reversal LR

2 of L2.
A realtime SVIA M that accepts the concatenation L1 · L2 works as follows.

First we describe two tasks that are performed by M in parallel.
Basically, the first task is to read the input and to simulate M1. In addition,

the input is stored into a ring whose front is the communication cell. Moreover,
in any simulation step, M tests whether it would accept or reject the input
prefix read so far by checking if it would accept or reject when the next input
symbol were the end-of-input symbol �. If the current input prefix is accepted
or rejected, the input symbol stored into the ring is marked suitably.

The second task is to guess the reversal of the input symbol by symbol. The
guessed reversal is stored into a pushdown store whose top is the communication
cell. Additionally, the realtime SVIA MR

2 is simulated on the guessed input.
Similarly as for the first task, if the current prefix of the guessed input would be
accepted or rejected, the guessed input symbol stored into the pushdown store
is marked suitably.

Let x1x2 · · · xn be the actual input. It is stored in the ring when the end-
of-input symbol appears. At that time, let y1y2 · yn be the content of the push-
down store (from top to bottom). Clearly, M has guessed the reversal of the
input correctly if and only if x1x2 · · · xn = y1y2 · · · yn. So, after having read the
end-of-input symbol, the SVIA M verifies the guessed reversal of the input by
successively removing symbols from the ring and pushdown store and testing
whether they match. If M detects any mismatch it blocks in a neutral state.

Now, assume that the reversal of the input has been guessed correctly.
Already while verifying the guesses by successively scanning the ring and the

queue, the SVIA M tests whether for some 1 ≤ i ≤ n − 1 input symbol xi is

Iterative Arrays with Self-verifying Communication Cell 87

marked by the simulation of M1 and symbol yi+1 is marked by the simulation
of MR

2 .
Case 1: x1 · · · xn ∈ L1L2, say x1 · · · xi ∈ L1. Then there are computations by

M1 accepting x1 · · · xi and by MR
2 accepting ynyn−1 · · · yi+1 = xnxn−1 · · · xi+1

= (xi+1 · · · xn)R. Having M accept an input iff xi is marked by M1 and symbol
yi+1 is marked by MR

2 makes M accept all words in L1L2.
Case 2: x1 · · · xn /∈ L1L2. In this case for each i either x1 · · · xi /∈ L1 or

xn · · · xi+1 /∈ LR
2 or both. That means that for each i there are computations

by M1 and MR
2 for the respective inputs such that at least one of both rejects.

Hence, there will be a computation for M which correctly explicitly rejects an
input, if for any two adjacent cells always at least one of them is marked rejecting.

In any other case, the leftmost cell remains in a neutral state.
For the computation on input of length n the SVIA M takes n + 1 steps to

read (and guess) the input for the tasks, and further n + 1 steps to verify the
guesses and test the markings. So, M works in lineartime which ca be sped-up to
realtime. ��

Next, we turn to the operations homomorphism and inverse homomorphism.

Proposition 14. The family of languages accepted by realtime SVIA is not
closed under arbitrary homomorphisms.

Proof. It is shown in [12] that every recursively enumerable language would be
contained in the family Lrt(SVOCA) if the family were closed under arbitrary
homomorphisms. Since Lrt(SVOCA) ⊆ Lrt(SVCA) = Lrt(SVIA) the same is
true for the family Lrt(SVIA), a contradiction due to the time bound. ��
Proposition 15. The family of languages accepted by realtime SVIA is closed
under inverse homomorphisms.

The closure properties of Lrt(SVIA) with respect to iteration (Kleene star)
and non-erasing homomorphisms are open problems. They are settled for non-
deterministic devices since, basically, for iteration it is sufficient to guess the
positions in the input at which words are concatenated, and for non-erasing
homomorphism it is sufficient to guess the pre-image of the input. However,
self-verifying devices have to reject explicitly if the input does not belong to
the language. Intuitively, this means that they have to ‘know’ that all possible
guesses either do not lead to accepting computations or are ‘wrong.’

6 Decidability Questions

First we note that the membership problem is obviously decidable for SVIAs
obeying a time-computable time complexity.

On the other hand, in [10] it is observed that for any language family
that effectively contains Lrt(IA), the problems emptiness, universality, finite-
ness, infiniteness, regularity, and context-freeness are not semidecidable. Since
we know Lrt(IA) ⊂ Llt(IA) ⊆ Llt(SVIA) = Lrt(SVIA) we derive the next
corollary.

88 M. Kutrib and T. Worsch

Table 1. Closure properties of the language family Lrt(SVIA) in comparison with the
families Lrt(IA) and Llt(IA), where hλ denotes λ-free homomorphisms.

Family ∪ ∩ R · ∗ hλ h h−1

Lrt(SVIA) ✓ ✓ ✓ ✓ ✓ ? ? ✗ ✓

Lrt(IA) ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Llt(IA) ✓ ✓ ✓ ✓ ? ? ? ✗ ✓

Corollary 16. The problems emptiness, universality, finiteness, infiniteness,
inclusion, equivalence, regularity, and context-freeness are not semidecidable for
realtime IAs and thus for realtime SVIAs.

In [12] it is shown that the problem to decide whether a given realtime one-
way cellular automaton is self-verifying or not is undecidable. Unfortunately,
the result has no direct implications for the same question for iterative arrays.
However, the undecidability for cellular automata is shown by a reduction of the
emptiness problem. We turn to prove the undecidability for iterative arrays as
well. Moreover, we use a reduction of the emptiness and universality problem,
but the reduction itself is different. Since general iterative arrays do not have
neutral or rejecting states (only accepting and non-accepting states), there is no
partitioning of the state set. So, the decidability can be asked for a given fixed
partitioning or for the existence of a partitioning. We first consider the latter
question.

Theorem 17. Given a realtime (non)deterministic iterative array M with state
set S and accepting states F+, it is not even semidecidable whether there exists
F− ⊆ (S \ F+) such that M is an SVIA with respect to the sets F+ and F−.

Proof. Let M0 = 〈S,Σ, F+, s0,�, δnd, δd〉 be an arbitrary realtime IA. We safely
may assume that a cell which has left the quiescent state will never enter the
quiescent state again. This behavior can be implemented by adding a new state
that plays the role of the quiescent state. If necessary, the new state can be
entered instead of s0.

We modify M0 to M1 = 〈S′, Σ′, F ′
+, s0,�, δ′

nd, δ
′
d〉 by adding a new input

symbol $ and two new states p+ and p0. So, we set S′ = S ∪ {p+, p0}, Σ′ =
Σ ∪ {$}, and F ′

+ = F+ ∪ {p+}. The intention is that a $ in the input causes the
IA to simulate a step on the end-of-input symbol � (in restricted form) and to
reinitialize the computation by letting the cells enter the quiescent state again
(which is impossible in M1). Therefore, the transition function δ′

nd is basically
δnd extended by transitions for the input symbol $ and the states p+ and p0.
When a $ appears in the input, the communication cell enters state p+ if it could
enter an accepting state on the end-of-input symbol �. For all s1, s2 ∈ S,

δ′
nd($, s1, s2) = {p+} if δnd(�, s1, s2) ∩ F+ �= ∅.

Otherwise it enters state p0: δ′
nd($, s1, s2) = {p0} if δnd(�, s1, s2) ∩ F+ = ∅. In

state p+ or p0 the computation continues as it would from the very beginning.

Iterative Arrays with Self-verifying Communication Cell 89

For p ∈ {p+, p0}, all a ∈ Σ′ ∪ {�}, and all s ∈ S′, δ′
nd(a, p, s) = δ′

nd(a, s0, s0). In
order to implement the reinitialization of the other cells, recall that δd drives no
non-quiescent cell into the quiescent state. So, we can utilize the quiescent state
as a signal sent by the communication cell. The signal causes the reinitialization
of the cells passed through. So, the transition function δ′

d is basically δd extended
as follows. For p ∈ {p+, p0} and all s1, s2 ∈ S,

δ′
d(p, s1, s2) = s0, δ′

d(s0, s1, s2) = s0, δ′
d(s1, s0, s2) = δ(s1, s0, s0).

Therefore L(M1) consists of all concatenations of $ separated words ui such
that at least one ui is in L(M0). In particular L(M1) ∩ Σ∗ = L(M0).

We claim that there exists F ′
− ⊆ (S′ \ F ′

+) such that the iterative array
M2 = 〈S′, Σ′, F ′

+, F ′
−, s0,�, δ′

nd, δ
′
d〉 is self-verifying if and only if L(M0) is empty

or coincides with Σ∗. Observe that L(M2) = L(M1) because both have the same
set of accepting states.

If L(M0) is empty then L(M1) is empty. Therefore, the communication cell
will never enter an accepting state from F ′

+. So, we safely may set F ′
− = (S′\F ′

+)
and obtain that M2 is self-verifying. Similarly, if L(M0) = Σ∗ then L(M1) = Σ′∗,
and we safely may set F ′

− = ∅ to obtain a self-verifying IA.
Now assume that L(M0) and, thus, L(M2) neither be empty nor contain

all words over the input alphabet. Then there exists some u ∈ L(M0) and
some v /∈ L(M0). We consider the computation of M2 on input u$v. Since
M0 accepts u, the IA M2 enters an accepting state while processing the input
prefix u$ (its computation is a simulation of M0 on u�). Then the computation
of M2 is reinitialized and continues with a simulation of M0 on input v. Since
v /∈ L(M0), in this phase, M2 cannot accept v either. However, since it already
was in an accepting state and its overall answer is already yes, M2 cannot enter a
contradictory rejecting state in this phase either. This implies that the commu-
nication cell of M2 on input v will only assume neutral states and, thus, neither
accept nor reject v. That is, M2 is not self-verifying and the claim follows.

From the construction of M2 and the claim we conclude that the semidecid-
ability of the problem in question implies the semidecidability of the emptiness
or universality problem for realtime IAs contradicting Corollary 16. ��

What about the undecidability if we provide a partitioning of its state set?
Can we test if this partitioning makes the IA self-verifying? The answer is no,
since for a given realtime iterative array with accepting state set F+ there are
only finitely many partitions induced by setting F− ⊆ (S \ F+). All these could
be tested in parallel. Now the problem in question can be semidecided if the test
is successful for at least one partitioning.

Corollary 18. Given a realtime (non)deterministic iterative array M with state
set S and partitioning S = F+ ∪̇F− ∪̇F0, it is not semidecidable whether M is
an SVIA with respect to the partitioning.

By Lemma 2 any deterministic iterative with a time-computable time com-
plexity can effectively be made self-verifying. But it is non-semidecidable whether

90 M. Kutrib and T. Worsch

it already is self-verifying. This non-semidecidability carries immediately over to
nondeterministic iterative arrays. However, it is an open problem whether any
nondeterministic iterative with a time-computable time complexity can effec-
tively be made self-verifying. In fact, it is an open problem whether the family
of languages accepted by realtime nondeterministic iterative arrays is closed
under complementation or not.

References

1. Buchholz, Th., Klein, A., Kutrib, M.: Iterative arrays with limited nondeterministic
communication cell. In: Words, Languages and Combinatorics III, pp. 73–87. World
Scientific Publishing (2003)

2. Buchholz, Th., Kutrib, M.: Some relations between massively parallel arrays. Par-
allel Comput. 23, 1643–1662 (1997)

3. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Trans. Comput. C–18, 349–365 (1969)

4. Čulik II, K., Yu, S.: Iterative tree automata. Theoret. Comput. Sci. 32, 227–247
(1984)

5. Ďurǐs, P., Hromkovič, J., Rolim, J.D.P., Schnitger, G.: Las Vegas versus determin-
ism for one-way communication complexity, finite automata, and polynomial-time
computations. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 117–128. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0023453

6. Dyer, C.R.: One-way bounded cellular automata. Inf. Control 44, 261–281 (1980)
7. Fernau, H., Kutrib, M., Wendlandt, M.: Self-verifying pushdown automata. In:

Non-Classical Models of Automata and Applications (NCMA 2017). books@ocg.at,
vol. 329, pp. 103–117. Austrian Computer Society, Vienna (2017)

8. Jirásková, G., Pighizzini, G.: Optimal simulation of self-verifying automata by
deterministic automata. Inf. Comput. 209, 528–535 (2011)

9. Kutrib, M.: Cellular automata - a computational point of view. In: Bel-Enguix, G.,
Jiménez-López, M.D., Mart́ın-Vide, C. (eds.) New Developments in Formal Lan-
guages and Applications. SCI, vol. 113, pp. 183–227. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78291-9 6

10. Kutrib, M.: Cellular automata and language theory. In: Meyers, R. (ed.) Encyclo-
pedia of Complexity and System Science, pp. 800–823. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-30440-3

11. Kutrib, M.: Complexity of one-way cellular automata. In: Isokawa, T., Imai, K.,
Matsui, N., Peper, F., Umeo, H. (eds.) AUTOMATA 2014. LNCS, vol. 8996, pp.
3–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18812-6 1

12. Kutrib, M., Worsch, T.: Self-verifying cellular automata. In: Mauri, G., El Yacoubi,
S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115,
pp. 340–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-
8 31

13. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theoret.
Comput. Sci. 217, 53–80 (1999)

14. Smith III, A.R.: Real-time language recognition by one-dimensional cellular
automata. J. Comput. Syst. Sci. 6, 233–253 (1972)

https://doi.org/10.1007/BFb0023453
https://doi.org/10.1007/978-3-540-78291-9_6
https://doi.org/10.1007/978-0-387-30440-3
https://doi.org/10.1007/978-3-319-18812-6_1
https://doi.org/10.1007/978-3-319-99813-8_31
https://doi.org/10.1007/978-3-319-99813-8_31

	Iterative Arrays with Self-verifying Communication Cell
	1 Introduction
	2 Preliminaries and Definitions
	3 Structural Properties and Speed-Up
	4 Computational Capacity
	5 Closure Properties
	6 Decidability Questions
	References

