
Iterative Arrays with Finite Inter-cell
Communication

Martin Kutrib and Andreas Malcher(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,andreas.malcher}@informatik.uni-giessen.de

Abstract. Iterative arrays whose internal inter-cell communication is
quantitatively restricted are investigated. The quantity of communica-
tion is measured by counting the number of uses of the links between
cells. In particular, iterative arrays are studied where the maximum num-
ber of communications per cell occurring in accepting computations is
drastically bounded by a constant number. Additionally, the iterative
arrays have to work in realtime. We study the computational capacity of
such devices. One main result is that a strict and dense hierarchy with
respect to the constant number of communications exists. Due to their
very restricted communication, the question arises whether the usually
studied decidability problems such as, for example, emptiness, finiteness,
inclusion, or equivalence become decidable for such devices. However, by
reduction of Hilbert’s tenth problem it can be shown that all such decid-
ability questions remain undecidable.

1 Introduction

Devices of homogeneous, interconnected, parallel acting automata have widely
been investigated from a computational capacity point of view. Multidimen-
sional devices with nearest neighbor connections whose cells are finite automata
are commonly called cellular automata (CA). The cells work synchronously at
discrete time steps. If the input mode is sequential to a distinguished communi-
cation cell, such devices are called iterative arrays.

In connection with formal language recognition one-dimensional iterative
arrays (IA) have been introduced in [3], where it was shown that the language
family accepted by realtime IAs forms a Boolean algebra not closed under con-
catenation and reversal. In [2] it is shown that for every context-free grammar a
two-dimensional lineartime iterative array parser exists. A realtime IA for prime
numbers has been constructed in [4]. A characterization of various types of IAs
in terms of restricted Turing machines and several results, especially speed-up
theorems, are given in [6,7]. Several more results concerning formal languages
can be found, for example, in the survey [9].

It is obvious that inter-cell communication is an essential resource for itera-
tive arrays and can be measured qualitatively as well as quantitatively. In the
first case, the number of different messages to be communicated by the cells is
c© IFIP International Federation for Information Processing 2019

Published by Springer Nature Switzerland AG 2019

A. Castillo-Ramirez and P. P. B. de Oliveira (Eds.): AUTOMATA 2019, LNCS 11525, pp. 35–47, 2019.

https://doi.org/10.1007/978-3-030-20981-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20981-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-20981-0_3

36 M. Kutrib and A. Malcher

bounded by some fixed constant. IAs with this restricted inter-cell communica-
tion have been investigated in [18,19] with respect to the algorithmic design of
sequence generation. In particular, it is shown that several infinite, non-regular
sequences such as exponential or polynomial, Fibonacci, and prime sequences can
be generated in realtime. In connection with language recognition and decidabil-
ity questions multi-dimensional IAs and one-dimensional (one-way) CAs with
restricted communication have intensively been studied in [10,14,20].

For a quantitative measure of communication in iterative arrays the number
of uses of the links between cells is counted. Additionally, it is distinguished
between bounds on the sum of all communications of an accepting computa-
tion and bounds on the maximum number of communications per cell occurring
in accepting computations. There are quite a few results in the literature with
respect to these measures. Results for (one-way) cellular automata may be found
in [12,13]. In [11,13] also cellular automata are investigated that are restricted
with respect to the qualitative and the quantitative measure. The main results
are in both cases hierarchy results and the undecidability of almost all commonly
studied decidability questions such as emptiness, finiteness, equivalence, inclu-
sion, regularity, and context-freeness. It should be noted that already a finite
amount of communication per cell is sufficient to obtain undecidability results
for cellular automata. First results on iterative arrays with restricted commu-
nication are presented in [15] and comprise again hierarchy results as well as
undecidability results for the above questions. Concerning the measure on the
maximum communication per cell the undecidability results hold as long as at
least a logarithmic number of communications per cells is allowed. Moreover, it is
stated as an open question whether the undecidable questions become decidable
when the allowed communication is even more restricted, namely, to be bounded
by a constant number.

In this paper, we can answer the latter question negatively. In addition,
we establish a strict and dense hierarchy with respect to the constant number
of communications. The paper is organized as follows. In the next section, we
present some basic notions and definitions, introduce the classes of max com-
munication bounded iterative arrays, and give an illustrative example. Then, in
Sect. 3 we show that for every k ≥ 2, IAs with at most k+1 communications per
cell are more powerful than devices with at most k communications per cell. For
k ∈ {0, 1, 2} it turns out that devices with at most k communications per cell
can accept regular languages only. Section 4 is devoted to showing the undecid-
ability of the usually studied decidability questions for IAs working in realtime
with a constant number of communications per cell. This is done by a reduction
of Hilbert’s tenth problem and requires a couple of consecutive constructions of
IAs with a constant number of communications per cell, whereby the goal is to
evaluate a polynomial with integral coefficients given by an instance of Hilbert’s
tenth problem.

Iterative Arrays with Finite Inter-cell Communication 37

2 Definitions and Preliminaries

We denote the non-negative integers by N. Let Σ denote a finite set of letters.
Then we write Σ∗ for the set of all finite words (strings) consisting of letters
from Σ. The empty word is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. A subset
of Σ∗ is called a language over Σ. For the reversal of a word w we write wR and
for its length we write |w|. For the number of occurrences of a symbol x in w
we use the notation |w|x. A language L over some alphabet {a1, a2, . . . , ak} is
said to be letter bounded, if L ⊆ a∗

1a
∗
2 · · · a∗

k. In general, we use ⊆ for inclusions
and ⊂ for strict inclusions.

A one-dimensional iterative array is a linear, semi-infinite array of identical
deterministic finite state machines, sometimes called cells. Except for the left-
most cell each one is connected to its both nearest neighbors (see Fig. 1). For
convenience we identify the cells by their coordinates, that is, by non-negative
integers. The distinguished leftmost cell at the origin is connected to its right
neighbor and, additionally, equipped with a one-way read-only input tape. At
the outset of a computation the input is written on the input tape with an infi-
nite number of end-of-input symbols to the right, and all cells are in the so-called
quiescent state. The finite state machines work synchronously at discrete time
steps. The state transition of all cells but the communication cell depends on
the current state of the cell itself and on the information which is currently sent
by its neighbors. The information sent by a cell depends on its current state and
is determined by so-called communication functions. The state transition of the
communication cell additionally depends on the input symbol to be read next.
The head of the one-way input tape is moved to the right in each step. With an
eye towards recognition problems the machines have no extra output tape but
the states are partitioned into accepting and rejecting states.

Formally, an iterative array (IA) is a system 〈S, F,A,B,�, s0, bl, br, δ, δ0〉,
where S is the finite, nonempty set of cell states, F ⊆ S is the set of accepting
states, A is the finite set of input symbols, B is the finite set of communica-
tion symbols, � /∈ A is the end-of-input symbol, s0 ∈ S is the quiescent state,
bl, br : S → B ∪ {⊥} are communication functions which determine the informa-
tion to be sent to the left and right neighbors, where ⊥ means nothing to send
and bl(s0) = br(s0) = ⊥, δ : (B ∪ {⊥}) × S × (B ∪ {⊥}) → S is the local tran-
sition function for all but the communication cell satisfying δ(⊥, s0,⊥) = s0,
and δ0 : (A ∪ {�}) × S × (B ∪ {⊥}) → S is the local transition function for the
communication cell.

s0 s0 s0 s0 s0

a1a2a3 · · · an�

Fig. 1. Initial configuration of an iterative array.

38 M. Kutrib and A. Malcher

Let M be an IA. A configuration of M at some time t ≥ 0 is a description
of its global state which is a pair (wt, ct), where wt ∈ A∗ is the remaining input
sequence and ct : N → S is a mapping that maps the single cells to their current
states. The configuration (w0, c0) at time 0 is defined by the input word w0 and
the mapping c0 that assigns the quiescent state to all cells, while subsequent
configurations are chosen according to the global transition function Δ that is
induced by δ and δ0 as follows: Let (wt, ct), t ≥ 0, be a configuration. Then its
successor configuration (wt+1, ct+1) = Δ(wt, ct) is as follows.

ct+1(i) = δ(br(ct(i − 1)), ct(i), bl(ct(i + 1)))

for all i ≥ 1, and ct+1(0) = δ0(a, ct(0), bl(ct(1))), where a = � and wt+1 = λ if
wt = λ, as well as a = a1 and wt+1 = a2a3 · · · an if wt = a1a2 · · · an.

We remark that we obtain the classical definition of IA, if we set B = S and
bl(s) = br(s) = s for all s ∈ S.

An input w is accepted by an IA M if at some time i during the course of
its computation the communication cell enters an accepting state. The language
accepted by M is denoted by L(M). Let t : N → N, t(n) ≥ n + 1 be a mapping.
If all w ∈ L(M) are accepted with at most t(|w|) time steps, then M and L(M)
are said to be of time complexity t.

The family of all languages which are accepted by some type of device X with
time complexity t is denoted by Lt(X). If t is the function n + 1, acceptance
is said to be in realtime and we write Lrt(X). Since for nontrivial computa-
tions an IA has to read at least one end-of-input symbol, realtime has to be
defined as (n + 1)-time. The lineartime languages Llt(X) are defined according
to Llt(X) =

⋃
r∈Q, r≥1 Lr·n(X).

In the following we study the impact of communication in iterative arrays.
The communication is measured by the number of uses of the links between cells.
It is understood that whenever a communication symbol not equal to ⊥ is sent,
a communication takes place. Here we do not distinguish whether either or both
neighboring cells use the link. More precisely, the number of communications
between cell i and cell i + 1 up to time step t is defined by

com(i, t) = |{ j | 0 ≤ j < t and (br(cj(i)) �= ⊥ or bl(cj(i + 1)) �= ⊥) }| .

For computations we now consider the maximal number of communications
between two cells. Let c0, c1, . . . , ct(|w|) be the sequence of configurations com-
puted on input w by some iterative array with time complexity t(n), that is, the
computation on w. Then we define

mcom(w) = max{ com(i, t(|w|)) | 0 ≤ i ≤ t(|w|) − 1 }.

Let f : N → N be a mapping. If all w ∈ L(M) are accepted with computations
where mcom(w) ≤ f(|w|), then M is said to be max communication bounded
by f . We denote the class of IA that are max communication bounded by some
function f by MC(f)-IA. In addition, we use the notation const for functions
from O(1).

Iterative Arrays with Finite Inter-cell Communication 39

To illustrate the definitions we start with an example. In the next section it
turns out that the non-regular language { anbn | n ≥ 1 } is accepted by some
realtime iterative array using at most three communications per inter-cell link.
The following example reveals that only five communications per inter-cell link
are sufficient to accept the non-semilinear and, hence, non-context-free language
L = { a3n+2�√

n�b2n | n ≥ 1 } in realtime. Moreover, L is a subset of a∗b∗ and,
hence, a letter-bounded language.

Example 1. The language L belongs to Lrt(MC(5)-IA).
The basic idea is to use the construction given in [17] where a cellular automa-

ton is described such that the nth cell enters a designated state s exactly at time
step 2n + √n�. We basically implement this construction, but realize it with
speed 1/2 in contrast to the construction in [17]. Hence, the nth cell enters a
designated state exactly at time step 4n+2√n�. When the communication cell
reads the first b, it sends a signal with maximum speed to the right which arrives
in the nth cell exactly at the moment when state s should be entered. In this case,
another signal is sent with maximum speed to the left and the input is accepted
if the latter signal reaches the communication cell when the end-of-input symbol
is read. Thus, L is accepted by a realtime IA. Moreover, the construction given
in [17] needs three right-moving signals. Thus, four right-moving signals and one
left-moving signal are sufficient to accept L. This shows that the IA constructed
is a realtime MC(5)-IA. �

3 k + 1 Communications Are Better than k

This section is devoted to studying the impact of the precise finite number k
of communications between cells. It turns out that this number in fact matters
unless it is very small. That is, we will obtain an infinite strict hierarchy for k ≥ 2,
whereas the families of languages accepted with 0, 1, and 2 communications per
inter-cell link coincide with the regular languages. We start at the bottom of the
hierarchy.

Proposition 2. The language families Lrt(MC(0)-IA), Lrt(MC(1)-IA), and
Lrt(MC(2)-IA) coincide with the family of regular languages.

Proof. The proof is trivial for MC(0)-IAs. In this case the iterative array has
the computational capacity of the communication cell, that is, of a deterministic
finite automaton. Similarly, the proof is obvious for MC(1)-IAs. The sole commu-
nication on the inter-cell link between the communication cell and its neighbor
sends some information to the right, but this information can never come back
to the communication cell which, thus, is not affected by the communication at
all. We conclude that the computational capacity also for MC(1)-IAs is that of
deterministic finite automata.

Let us now consider MC(2)-IAs. Let the first communication on the inter-cell
link between the communication cell and its neighbor take place at time step
t ≥ 0. Before, all cells to the right of the communication cell are quiescent. So,

40 M. Kutrib and A. Malcher

the information transmitted by the communication causes the quiescent array
to perform some computation and possibly to transmit some information back
to the communication cell. More communications of the communication cell are
useless. The computation performed by the array to the right of the communi-
cation cell only depends on the information transmitted during the first commu-
nication. However, these finitely many cases can be precomputed. Implementing
the transition function of the communication cell so that it simulates the com-
putations of the array in some state register allows to safely remove the first
communication. In this way we obtain an equivalent MC(1)-IA that accepts reg-
ular languages only. Needless to say that a second communication from left to
right is useless and can be omitted as well. ��

The witnesses for the hierarchy are languages whose words are repetitions of
unary blocks of the same size but with alternating symbols. For i ≥ 2 define

Lhi =

{
{ (anbn)

i
2 | n ≥ 1 } if i is even

{ (anbn)� i
2 �an | n ≥ 1 } if i is odd

.

Lemma 3. For i ≥ 2, the language Lhi is accepted by some MC(i + 1)-IA.

Theorem 4. For i ≥ 2, the family Lrt(MC(i)-IA) is strictly included in the
family Lrt(MC(i + 1)-IA)

Proof. For i ≥ 2, the witness language Lhi is used to show the strict inclusion
Lrt(MC(i)-IA) ⊂ Lrt(MC(i + 1)-IA). By Lemma 3, language Lhi is accepted
by some MC(i + 1)-IA in realtime. So, it remains to be shown that Lhi is not
accepted by any MC(i)-IA in realtime.

Let M = 〈S, F,A,B,�, s0, bl, br, δ, δ0〉 be an iterative array accepting Lhi

in realtime. We consider the communications on the inter-cell link between the
communication cell and its neighbor. For clearer writing, we represent a configu-
ration by a pair (w, sĉ), where w ∈ A∗ is the remaining input sequence as usual,
s ∈ S is the state of the communication cell, and ĉ is a mapping that maps cells
j ≥ 1 to their current states.

A key observation is that on unary inputs long enough the communication
cell will run into state cycles unless a communication takes place. So, let w ∈ Lhi

be an accepted word whose block length n is long enough.
Assume that no communication takes place while processing the first |S| sym-

bols a from the first block. Recall that by definition we have bl(s0) = br(s0) = ⊥.
Let w = anv with the first letter in v being b. Then on processing the input pre-
fix a|S| the communication cell necessarily enters some state at least twice. That
is, there are 0 ≤ p1, 1 ≤ p2 with p1 + p2 ≤ |S| such that Δp1(anv, s0ĉ0) =
(an−p1v, s1ĉ0) and Δp2(an−p1v, s1ĉ0) = (an−p1−p2v, s1ĉ0). That is, there is a
state cycle of length p2 leading from state s1 to state s1. So, the input an+p2v
is accepted as well. From the contradiction it follows that there is at least one
communication during the first |S| time steps.

Next, we consider the sub-computations that process the last |S| symbols of
a block and the first |S|2 + |S| symbols of the following block. Without loss of

Iterative Arrays with Finite Inter-cell Communication 41

generality, let this factor be a|S|b|S|2+|S|, and so w = ua|S|b|S|2+|S|v. Assume that
no communication takes place (on the inter-cell link between the communication
cell and its neighbor) while processing this factor. Let

Δ|u|(ua|S|b|S|2+|S|v, s0ĉ0) = (a|S|b|S|2+|S|v, sĉ).

Then there are 0 ≤ p1, 1 ≤ p2 with p1 + p2 ≤ |S| such that

Δp1(a|S|b|S|2+|S|v, sĉ) = (a|S|−p1b|S|2+|S|v, s1ĉ1) and

Δp2(a|S|−p1b|S|2+|S|v, s1ĉ1) = (a|S|−p1−p2b|S|2+|S|v, s1ĉ2).

That is, there is a state cycle of length p2 leading from state s1 to state
s1.Continuing the computation without communication yields the existence of
0 ≤ p3, 1 ≤ p4 ≤ |S| with |S| ≤ p1 + p2 + p3 and p1 + p2 + p3 + p4 ≤ 2|S| such
that

Δp3(a|S|−p1−p2b|S|2+|S|v, s1ĉ2) = (b|S|2+2|S|−p1−p2−p3v, s2ĉ3),

Δp4(b|S|2+2|S|−p1−p2−p3v, s2ĉ3) = (b|S|2+2|S|−p1−p2−p3−p4v, s2ĉ4), and

Δp2p4(b|S|2+2|S|−p1−p2−p3−p4v, s2ĉ4) = (b|S|2+2|S|−p1−p2−p3−p4−p2p4v, s2ĉ5).

That is, there is a state cycle of length p4 leading from state s2 to state s2. Since
there are no communications on the factor a|S|b|S|2+|S|, we can replace this factor
by the factor a|S|+p2p4b|S|2+|S|−p2p4 of the same length, and the configurations
to the right of the communication cell develop exactly as before. We obtain the
sub-computations

Δp1(a|S|+p2p4b|S|2+|S|−p2p4v, sĉ) = (a|S|+p2p4−p1b|S|2+|S|−p2p4v, s1ĉ1) and

Δp2(a|S|+p2p4−p1b|S|2+|S|−p2p4v, s1ĉ1) = (a|S|+p2p4−p1−p2b|S|2+|S|−p2p4v, s1ĉ2).

Since the communication cell runs through the state cycle of length p2 leading
from state s1 to state s1 and there is no communication, the sub-computation
continues as

Δp2p4 (a|S|+p2p4−p1−p2b|S|2+|S|−p2p4v, s1ĉ2) = (a|S|−p1−p2b|S|2+|S|−p2p4v, s1ĉ6),

Δp3 (a|S|−p1−p2b|S|2+|S|−p2p4v, s1ĉ6) = (b|S|2+2|S|−p2p4−p1−p2−p3v, s2ĉ7),

Δp4 (b|S|2+2|S|−p2p4−p1−p2−p3v, s2ĉ7) = (b|S|2+2|S|−p2p4−p1−p2−p3−p4v, s2ĉ5).

For the last equation, note that the length of the replaced factor is the same
as of the original factor. That, is the number of steps is the same on both
factors. Moreover, since there is no communication of the communication cell,
during these steps the right part of the configuration develops as before. So, the
configuration of the right part is finally ĉ5.

Since the configurations after processing the original factor and its replace-
ment are identical, the input word with replaced factor not belonging to Lhi

is accepted as well. From the contradiction it follows that there is at least one
communication while processing the factor a|S|b|S|2+|S|.

42 M. Kutrib and A. Malcher

Now we turn to the end of the computation. Assume that no communica-
tion takes place while processing the last 2|S| symbols from the last block, say
these are symbols b. Let w = ubn with the last letter in u being an a. Then
on processing the input suffix b2|S| the communication cell necessarily enters
some state at least twice. Let Δ|u|+n−2|S|(ubn, s0ĉ0) = (b2|S|, sĉ). Then there are
0 ≤ p1, 1 ≤ p2 with p1 + p2 ≤ |S| such that Δp1(b2|S|, sĉ) = (b2|S|−p1 , s1ĉ1) and
Δp2(b2|S|−p1 , s1ĉ1) = (b2|S|−p1−p2 , s1ĉ2). Since the input is accepted, the com-
munication cell enters an accepting state in this state cycle of length p2 (which
cannot be left until the end of the computation) or before. This implies that
input ubn−p2 is accepted as well. From the contradiction it follows that there is
at least one communication during the last 2|S| time steps.

Altogether we have seen that the communication cell of M necessarily com-
municates with its neighbor, or vice versa, during the first |S| steps, during the
last 2|S| steps, and on the factors a|S|b|S|2+|S| and b|S|a|S|2+|S| that include the
block borders. Since there are i − 1 such block borders, in total, there are at
least i + 1 communications for n long enough. ��

4 Undecidability Results for Realtime MC(const)-IAs

In this section, we first show that the question of emptiness is undecidable for
realtime MC(const)-IAs by reduction of Hilbert’s tenth problem which is known
to be undecidable (see, e.g., [8,16]). The problem is to decide whether a given
polynomial p(x1, . . . , xn) with integer coefficients has an integral root. That is,
to decide whether there are integers α1, . . . , αn such that p(α1, . . . , αn) = 0. A
reduction of Hilbert’s tenth problem to show the undecidability of emptiness for
certain two-way counter machines has been used in [5] for the first time. A recent
paper that provides a simulation of counter machines by linear-time one-way
cellular automata is [1]. The basic idea of Ibarra in [5] is to define a language that
encodes all possible values for x1, x2, . . . , xn and evaluates the polynomial p for
that values. Then, a two-counter machine is constructed accepting that language
which is empty if and only if Hilbert’s tenth problem has no solution in the
integers. Such an approach we will in principal use here again. However, since
we are concerned with IAs with constant communication and the input has to
pass the communication cell to be processed by the IA, the definition of the
language that evaluates the polynomial p is much more involved and will be
presented in several steps.

As is remarked in [5], it is sufficient to restrict the variables x1, . . . , xn to
take non-negative integers only. If p(x1, . . . , xn) contains a constant summand,
then we may assume that it has a negative sign. Otherwise, we continue with
p(x1, . . . , xn) multiplied with −1, whose constant summand now has a negative
sign and which has the same integral roots as p(x1, . . . , xn). Such a polynomial
has the following form:

p(x1, . . . , xn) = t1(x1, . . . , xn) + · · · + tr(x1, . . . , xn),

Iterative Arrays with Finite Inter-cell Communication 43

where each tj(x1, . . . , xn), 1 ≤ j ≤ r, is of the form

tj(x1, . . . , xn) = sjx
ij,1
1 · · · xij,n

n with sj �= 0 and ij,1, . . . , ij,n ≥ 0.

Since changing the sequence in which the summands appear does not change
the polynomial, we additionally may assume that the summands are ordered
according to their sign starting with summands having a positive sign. Moreover,
we may assume that a constant term occurs at the end of the sequence only. Thus,
tr = sr, if p contains sr as constant. Finally, let ij =

∑n
k=1 ij,k.

Now, we consider a polynomial p(x1, . . . , xn) with integer coefficients that
has the above form. Let tj with 1 ≤ j ≤ r be a positive term. Then, we define
language L′(tj) over the alphabet {b0, b1, . . . , bij} as

L′(tj) = {b
sj

0 bα1
1 · · · bα1

ij,1
bα2
ij,1+1 · · · bα2

ij,1+ij,2
· · · bαn

ij,1+···+ij,n−1+1 · · · bαn
ij

|
α1, α2, . . . , αn ≥ 0 }.

Similarly, we define languages L′′(tj) over {b0, b1, . . . , bij , c1, . . . , cij−1, $} where
words of L′(tj) are interleaved with c-blocks and a $-block at the end, respec-
tively, whose number of symbols is the product of the number of symbols of
the two preceding blocks. So, the number of $-symbols is an evaluation of
tj(α1, α2, . . . , αn).

L′′(tj) = { b
sj

0 bα1
1 c

sjα1
1 bα1

2 c
sjα2

1
2 bα1

3 c
sjα3

1
3 · · · bα1

ij,1
c
sjα

ij,1
1

ij,1
bα2
ij,1+1c

sjα
ij,1
1 α2

ij,1+1 · · ·

bα2
ij,1+ij,2

c
sjα

ij,1
1 α

ij,2
2

ij,1+ij,2
· · · bαn

ij−1c
sjα

ij,1
1 α

ij,2
2 ···αij,n−1

n

ij−1 bαn
ij

$sjα
ij,1
1 α

ij,2
2 ···αij,n

n |
α1, α2, . . . , αn ≥ 0 }

Finally, L(tj) is defined over {b0, b1, . . . , bij , c1, . . . , cij−1, d, $} as

L(tj) = {wd7|w| | w ∈ L′′(tj) }.

If tj with 1 ≤ j ≤ r is a negative and non-constant term, the definition
of L(tj) is identical except for the fact that each symbol $ is replaced by
some symbol # and b

sj

0 is replaced by b
|sj |
0 . If tr is a constant term, we define

L(tr) = {#|sr|d7|sr|}.

Example 5. Let tj(x1, x2, x3, x4) = 3x2
1x2x4. Then, sj = 3, ij,1 = 2, ij,2 = 1,

ij,3 = 0, ij,4 = 1, and ij = 4, L′(tj) = { b30b
α1
1 bα1

2 bα2
3 bα4

4 | α1, α2, α4 ≥ 0 } and

L′′(tj) = { b30b
α1
1 c3α1

1 bα1
2 c

3α2
1

2 bα2
3 c

3α2
1α2

3 bα4
4 $3α2

1α2α4 | α1, α2, α4 ≥ 0 }.
For example, to evaluate tj(2, 3, x3, 2) = 3 ·22 ·3 ·2 = 72 we consider the word

b30b
2
1c

6
1b

2
2c

12
2 b33c

36
3 b24$

72d7·138 ∈ L(tj) and to evaluate tj(2, 1, x3, 2) = 3·22 ·1·2 = 24
we consider the word b30b

2
1c

6
1b

2
2c

12
2 b3c

12
3 b24$

24d7·64 ∈ L(tj). �

Let us start our construction with three lemmas that will be essential in the
sequel.

44 M. Kutrib and A. Malcher

Lemma 6. An MC(const)-IA can effectively be constructed that shifts an input
of the form w ∈ a+b+c+ into its cells within 2|w| time steps.

Lemma 7. An MC(const)-IA can effectively be constructed that accepts every
w ∈ { anbmcn | n,m ≥ 1 } within 5|w| time steps.

Lemma 8. An MC(const)-IA can effectively be constructed that accepts every
w ∈ { anbmcn·m | n,m ≥ 1 } within 7|w| time steps.

Lemma 9. The language L(tj) belongs to Lrt(MC(const)-IA) for each term tj
with 1 ≤ j ≤ r.

Proof. We describe the construction of a realtime MC(const)-IA accepting L(tj),
where tj is a positive term. The construction for negative non-constant terms is
identical except for exchanging $ by #. If tj is a negative constant term, L(tj)
is a regular language and can be accepted by a realtime MC(const)-IA using its
communication cell only.

A realtime MC(const)-IA for L(tj) basically computes four tasks.

1. Check the correct format of the input and check whether there are exactly sj

symbols b0.
2. Check whether the length of every c-block is the product of the lengths of

its two preceding blocks.
3. Check whether the number of d’s is equal to seven times the length of the

preceding input.
4. Check the equal number of symbols bij,1+···+ij,k−1+1, . . . , bij,1+···+ij,k for

every 1 ≤ k ≤ n.

The first task can be done by the communication cell which rejects the input
in case of a wrong format or a wrong number of b0’s. For the second task we
use the construction described in Lemma 8 multiple times. Having stored the
complete input other than the d’s in the array, the communication cell sends a
signal with maximum speed to the right which starts in the b0-block as well as
in every c-block an instance of the construction given in Lemma8 which checks
whether the length of every c-block and of the last $-block is the product of
the lengths of its two preceding blocks. Whenever an error is encountered an
error signal is sent to the left which rejects the input. Since there is only a finite
number of c-blocks, we have to keep track of a finite number of instances of the
construction of Lemma 8 which in addition are distributed over the array and
at most two instances are overlapping. Since one instance can be realized by an
MC(const)-IA, we obtain that the finite number of such instances can be realized
by an MC(const)-IA as well. It has been shown in Lemma 8 that the total time
for one instance is bounded by seven times the length of the input. Hence, we
can conclude that, for some input wd∗ with w ∈ L′′(tj), time 7|w| is sufficient to
accomplish the second task. This time is provided by the number of d’s whose
correct number is checked in the third task as follows. The communication cell
sends a signal C with speed 1/6 to the right which is reflected at the cell carrying
the last $ and is sent back to the left with maximum speed. The third task is

Iterative Arrays with Finite Inter-cell Communication 45

successful if and only if C arrives again at the communication cell when the
end-of-input symbol � is read for the first time.

Finally, we have to accomplish the fourth task. Here, we have to check for
every 1 ≤ i ≤ n whether each of a finite number, say ni, of different b-symbols,
say {bli , bli+1, . . . , bli+ni−1} is exactly αi. This can basically be realized by imple-
menting ni−1 instances of the construction given in Lemma 7. The first instance
checks that the number of symbols bli is equal to the number of symbols bli+1,
the second instance checks that the number of symbols bli+1 is equal to the num-
ber of symbols bli+2, and so on. If all checks are positive for every 1 ≤ i ≤ n,
the fourth task is accomplished and requires at most t =

∑n
i=1 5αi(ni − 1)

time steps due to Lemma 7. Let wd7|w| with w ∈ L′′(tj) be the input. Then,∑n
i=1 αi(ni − 1) is bounded by |w|. Hence, t ≤ 5|w| and the number of d’s pro-

vided gives enough time to accomplish the fourth task in realtime. Since n and
all ni for 1 ≤ i ≤ n are fixed numbers depending on tj , we need only a finite
number of instances of the construction given in Lemma7 each of which can
be realized by an MC(const)-IA. Hence, we obtain that the fourth task can be
realized by an MC(const)-IA.

Altogether, by implementing the different tasks in parallel in different tracks
we obtain a realtime MC(const)-IA which accepts its input if and only if all four
tasks have been accomplished successfully. ��

In Lemma 9 we have described how an evaluation of a term tj can be simu-
lated. Our next step is to simulate an evaluation of the given polynomial p. To
this end, we have to put the evaluations of the single terms together. This will
be done by concatenating certain regular languages around each language L(tj).
Finally, the intersection of all these sets is considered which leads to an evalua-
tion of all terms on the same input and thus to an evaluation of p.

Let us consider the following regular languages Rk depending on the sign of
the term tk. We set Rk = b∗

0b
∗
1c

∗
1 . . . b∗

ik−1c
∗
ik−1b

∗
ik
$∗d∗ if sk > 0, Rk = #∗d∗ if tk

is the negative constant, and Rk = b∗
0b

∗
1c

∗
1 . . . b∗

ik−1c
∗
ik−1b

∗
ik
#∗d∗ otherwise. Then,

we define

L̃(tj) = { aα1
1 · · · aαn

n w1w2 · · · wr | α1, . . . , αn ≥ 0, wi ∈ Ri, 1 ≤ i ≤ r, i �= j,

wj = w′
jd

7|w′
j |, and w′

j = b
sj

0 bα1
1 c

sjα1
1 bα1

2 c
sjα2

1
2 bα1

3 c
sjα3

1
3 · · ·

bα1
ij,1

c
sjα

ij,1
1

ij,1
bα2
ij,1+1c

sjα
ij,1
1 α2

ij,1+1 · · · bα2
ij,1+ij,2

c
sjα

ij,1
1 α

ij,2
2

ij,1+ij,2
· · ·

bαn
ij−1c

sjα
ij,1
1 α

ij,2
2 ···αij,n−1

n

ij−1 bαn
ij

$sjα
ij,1
1 α

ij,2
2 ···αij,n

n }

and consider L̃(p) =
⋂r

j=1 L̃(tj).
We can observe that each language L̃(tj) consists of the language L(tj),

which evaluates tj(x1, x2, . . . , xn), and the concatenation of the regular sets
R1R2 · · · Rj−1 to the left and Rj+1 · · · Rr to the right. Additionally, each word
of L̃(tj) starts with the substring aα1

1 aα2
2 · · · aαn

n which determines the variables
x1, x2, . . . , xn to be evaluated. Since L̃(p) is the intersection over all terms of the

46 M. Kutrib and A. Malcher

polynomial p, L̃(p) simulates all those terms on the same input α1, α2, . . . , αn.
Thus, L̃(p) denotes an evaluation of the given polynomial p whereby evalua-
tions of positive and negative terms are encoded by $-symbols and #-symbols,
respectively.

Lemma 10. The language L̃(p) belongs to Lrt(MC(const)-IA).

Finally, we set L(p) = {we4|w| | w ∈ L̃(p), |w|$ = |w|# } for some new
alphabet symbol e.

Lemma 11. The language L(p) belongs to Lrt(MC(const)-IA).

Proof. To accept L(p) three checks are performed in parallel. First, it is verified
that the prefix w belongs to L̃(p) using the construction given in Lemma 10,
which says in addition that the construction can be realized by an MC(const)-IA
in realtime. Second, to check the correct number of e’s the communication cell
starts in the first time step a signal E1 with speed 1/2 to the right and starts
another signal E2 when the first e is read with maximum speed to the right.
When both signals meet, some signal E3 is sent back to the left with speed 1/3
and has to arrive at the communication cell when the end-of-input symbol �
is read for the first time. Clearly, the second task can be done by a realtime
MC(const)-IA. The third task is to check the equal number of $- and #-symbols.
The basic idea here is to implement again the construction given in Lemma 7.
Since the terms of the given polynomial p are ordered with respect to their sign,
we know that blocks of $-symbols are followed by blocks of #-symbols. In between
these blocks there are blocks of other alphabet symbols which have to be ignored.
In a straightforward modification of the constructions given in Lemmas 6 and
7 we first enqueue a finite number of $-blocks in one queue and then a finite
number of #-blocks in a different queue. If both queues have an equal length, the
third task is accomplished. According to Lemmas 6 and 7 we know that the third
task can be done by an MC(const)-IA and needs at most 5|w| time steps. Due
to the e-symbols provided the overall length of the input is 5|w| which implies
that the third task can be accomplished in realtime.

Altogether, the input is accepted when all three task have successfully been
done and we obtain that L(p) is accepted by a realtime MC(const)-IA. ��

Now, all prerequisites are done and we obtain the following undecidability
results for realtime MC(const)-IAs.

Theorem 12. Emptiness is undecidable for realtime MC(const)-IAs.

Proof. By applying Lemma 11 we can construct a realtime MC(const)-IA M
accepting language L(p) given a polynomial p(x1, . . . , xn). Moreover, the language
L(M) = L(p) is empty if and only if the polynomial p(x1, . . . , xn) has no solu-
tion in the non-negative integers Since Hilbert’s tenth problem is undecidable, the
emptiness problem for realtime MC(const)-IAs is undecidable as well. ��
Corollary 13. The questions of finiteness, infiniteness, equivalence, and inclu-
sion are undecidable for realtime MC(const)-IAs.

Iterative Arrays with Finite Inter-cell Communication 47

References

1. Carton, O., Guillon, B., Reiter, F.: Counter machines and distributed automata
a story about exchanging space and time. In: Baetens, J.M., Kutrib, M. (eds.)
AUTOMATA 2018. LNCS, vol. 10875, pp. 13–28. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92675-9 2

2. Chang, J.H., Ibarra, O.H., Palis, M.A.: Parallel parsing on a one-way array of
finite-state machines. IEEE Trans. Comput. C–36, 64–75 (1987)

3. Cole, S.N.: Real-time computation by n-dimensional iterative arrays of finite-state
machines. IEEE Trans. Comput. C–18(4), 349–365 (1969)

4. Fischer, P.C.: Generation of primes by a one-dimensional real-time iterative array.
J. ACM 12, 388–394 (1965)

5. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

6. Ibarra, O.H., Palis, M.A.: Some results concerning linear iterative (systolic) arrays.
J. Parallel Distrib. Comput. 2, 182–218 (1985)

7. Ibarra, O.H., Palis, M.A.: Two-dimensional iterative arrays: characterizations and
applications. Theor. Comput. Sci. 57, 47–86 (1988)

8. Jones, J.P., Matijasevič, Y.V.: Proof of recursive unsolvability of Hilbert’s tenth
problem. Am. Math. Mon. 98, 689–709 (1991)

9. Kutrib, M.: Cellular automata and language theory. In: Meyers, R.A. (ed.) Ency-
clopedia of Complexity and Systems Science, pp. 800–823. Springer, Berlin (2009).
https://doi.org/10.1007/978-0-387-30440-3

10. Kutrib, M., Malcher, A.: Computations and decidability of iterative arrays with
restricted communication. Parallel Process. Lett. 19(2), 247–264 (2009)

11. Kutrib, M., Malcher, A.: On one-way one-bit O(1)-message cellular automata.
Electr. Notes Theor. Comput. Sci. 252, 77–91 (2009)

12. Kutrib, M., Malcher, A.: Cellular automata with sparse communication. Theor.
Comput. Sci. 411(38–39), 3516–3526 (2010)

13. Kutrib, M., Malcher, A.: One-way cellular automata, bounded languages, and min-
imal communication. J. Autom. Lang. Comb. 15(1/2), 135–153 (2010)

14. Kutrib, M., Malcher, A.: Cellular automata with limited inter-cell bandwidth.
Theor. Comput. Sci. 412(30), 3917–3931 (2011)

15. Malcher, A.: Hierarchies and undecidability results for iterative arrays with sparse
communication. In: Baetens, J.M., Kutrib, M. (eds.) AUTOMATA 2018. LNCS,
vol. 10875, pp. 100–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-92675-9 8

16. Matijasevič, Y.V.: On recursive unsolvability of Hilbert’s tenth problem. In: Logic,
Methodology and Philosophy of Science, IV (Proceedings of the Fourth Interna-
tional Congress, Bucharest, 1971), North-Holland, pp. 89–110 (1973)

17. Mazoyer, J., Terrier, V.: Signals in one-dimensional cellular automata. Theor. Com-
put. Sci. 217(1), 53–80 (1999)

18. Umeo, H., Kamikawa, N.: A design of real-time non-regular sequence generation
algorithms and their implementations on cellular automata with 1-bit inter-cell
communications. Fundam. Inf. 52, 257–275 (2002)

19. Umeo, H., Kamikawa, N.: Real-time generation of primes by a 1-bit-communication
cellular automaton. Fundam. Inf. 58, 421–435 (2003)

20. Worsch, T.: Linear time language recognition on cellular automata with restricted
communication. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776,
pp. 417–426. Springer, Heidelberg (2000). https://doi.org/10.1007/10719839 41

https://doi.org/10.1007/978-3-319-92675-9_2
https://doi.org/10.1007/978-3-319-92675-9_2
https://doi.org/10.1007/978-0-387-30440-3
https://doi.org/10.1007/978-3-319-92675-9_8
https://doi.org/10.1007/978-3-319-92675-9_8
https://doi.org/10.1007/10719839_41

	Iterative Arrays with Finite Inter-cell Communication
	1 Introduction
	2 Definitions and Preliminaries
	3 k+1 Communications Are Better than k
	4 Undecidability Results for Realtime MC(const)-IAs
	References

