
Open Source Vulnerability Notification

Brandon Carlson1, Kevin Leach2(B), Darko Marinov1, Meiyappan Nagappan3,
and Atul Prakash2

1 University of Illinois at Urbana-Champaign, Urbana, USA
{blcrlsn2,marinov}@illinois.edu

2 University of Michigan, Ann Arbor, USA
{kjleach,aprakash}@umich.edu

3 University of Waterloo, Waterloo, Canada
mei.nagappan@uwaterloo.ca

Abstract. The use of third-party libraries to manage software com-
plexity can expose open source software projects to vulnerabilities. How-
ever, project owners do not currently have a standard way to enable
private disclosure of potential security vulnerabilities. This neglect may
be caused in part by having no template to follow for disclosing such vul-
nerabilities. We analyzed 600 GitHub projects to determine how many
projects contained a vulnerable dependency and whether the projects
had a process in place to privately communicate security issues. We
found that 385 out of 600 open source Java projects contained at least
one vulnerable dependency, and only 13 of those 385 projects had a secu-
rity vulnerability reporting process. That is, 96.6% of the projects with
a vulnerability did not have a security notification process in place to
allow for private disclosure. In determining whether the projects even
had contact information publicly available, we found that 19.8% had no
contact information publicly available, let alone a security vulnerabil-
ity reporting process. We suggest two methods to allow for community
members to privately disclose potential security vulnerabilities.

Keywords: Vulnerable dependency · Security disclosure · Open source

1 Introduction

Open source project maintainers often ignore or overlook important preventative
maintenance tasks, including security scans for vulnerabilities in libraries [16],
even with automated upgrades of libraries [19]. Neglecting such scanning tasks
can impact both the end user and the software maintainer. “Using Components
with Known Vulnerabilities” [23] was listed among the top ten application secu-
rity risks in 2017.

Bug bounty programs can incentivize security disclosures [15] but have not
taken hold as a standard policy. The National Institute of Standards and Tech-
nology is constructing a new process for receiving, analyzing, and responding
c© IFIP International Federation for Information Processing 2019
Published by Springer Nature Switzerland AG 2019
F. Bordeleau et al. (Eds.): OSS 2019, IFIP AICT 556, pp. 12–23, 2019.
https://doi.org/10.1007/978-3-030-20883-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-20883-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-20883-7_2


Open Source Vulnerability Notification 13

to vulnerability disclosures [25], providing at least a guideline for open source
projects to establish their own policies. Such vulnerability disclosure policies are
growing in importance due to the continued increase of information breaches [2].
For example, Equifax recently fell victim to a high-profile breach, resulting from
an unpatched open source dependency (Apache Struts) [24]. In this paper, we
suggest approaches to address this shortcoming in the open source community.

This paper makes the following contributions:

– An empirical study on how many open source projects are using vulnerable
dependencies, contain security policies, and ways for individuals to contact
the open source project.

– A quantitative analysis of the findings from the data collection process using
open source Java projects from GitHub.

– Recommendations for improving security of open source projects through
improved communication among the open source community, security
researchers, and the open source repository providers.

2 Motivating Experience

We were originally motivated by the Equifax breach [24], which was related to a
vulnerable dependency (Apache Struts). GitHub already provides a dependency
scanning tool that will alert project owners if vulnerabilities are discovered in
those dependencies [7]. However, project owners are not required to address such
reports. Indeed, project owners could decide the vulnerability is unexploitable
through their project or that it is not worth the effort to address. In such a
scenario, project owners that ignore reports from dependency scanning tools pose
a risk to the community at large. Thus, we sought to investigate the prevalence
of projects requiring vulnerable versions of Apache Struts.

We used Snyk [26], a dependency scanning tool, to analyze various open
source projects on GitHub for vulnerable dependencies. Indeed, we found many
projects depended on a vulnerable version of Apache Struts. We visited each
such repository to determine if a bug bounty program or disclosure process
was documented. In the majority of cases, projects contained no guidelines for
reporting vulnerabilities. We attempted to communicate this vulnerable depen-
dency through a combination of emails to project owners, opening issues, and
submitting pull requests.

Project owners offered myriad responses. While some did not respond and
some thanked us for the report, one owner requested private communications
over public pull requests or open issues. Unfortunately, attempting personal
contact for other projects resulted in our GitHub account being flagged for spam.
These diverse and sometimes discouraging responses suggest the open source
community could benefit from some standardized practice among open source
projects for reporting such vulnerabilities without facing retribution. Motivated
by this need, we chose to systematically analyze a corpus of open source projects
for vulnerable dependencies and corresponding policies for reporting them.



14 B. Carlson et al.

3 Project Selection and Data Collection

To learn whether open source projects contain both easy to access contact infor-
mation and a security vulnerability reporting policy we selected open source
Java projects from GitHub using seven different sources: (1) Libraries.io’s public
dataset [21]; (2) Legunsen et al. [17]; (3) Munaiah et al. [20]; (4) GitHub trend-
ing Java projects [11]; (5) GitHub and Government list of government-sponsored
open source projects [9]; (6) GitHub and Government list of government-funded,
research-related open source projects [10]; and (7)GitHub and Government list of
civic hackers open source projects [8]. These sources entail a combination of pub-
lic repositories (1 and 4), previously published work (2 and 3), and government-
funded and whitehat hacker projects (5, 6, and 7). We focused on Java projects
because it is a widely used language [12] amenable to our software scanning
infrastructure [26]. Table 1 summarizes the statistics of the projects from each
of these sources.

Table 1. Projects selected by resource

Resource Projects Stars Forks Issues Commits Contributors

Libraries.io [21] 209 141 57 12.6 608.6 12.6

Legunsen et al. [17] 126 244 103 14.5 333.1 11.8

Munaiah et al. [20] 83 2195 685 59.1 545.2 16.6

GitHub trending Java projects [11] 71 2400 923 52.1 1537.5 27.0

Government-sponsored [9] 68 8 7 3.0 648.1 8.1

Government-funded research [10] 22 8 5 2.9 152.0 3.4

Government civic hackers [8] 21 3 3 2.6 2536.4 6.4

Total projects 600

4 Evaluation

We seek to answer the following research questions (RQs):

– RQ1: How prevalent are vulnerable dependencies among our projects?
– RQ2: How common are security notification policies in open source projects?
– RQ3: How available is contact information for open source projects?

4.1 RQ1: Prevalence of Known Vulnerable Dependencies

Finding Vulnerable Dependency Libraries. We used Snyk [26] to scan
each of our 600 Java projects. Snyk maintains a database of libraries and cor-
responding vulnerabilities for each version of each library. These vulnerabilities
are associated with a Common Vulnerabilities and Exposures (CVE) ID or a



Open Source Vulnerability Notification 15

Common Weakness Enumeration (CWE) ID. We say a given project contains a
direct vulnerability if it uses a vulnerable library as reported by Snyk. Similarly,
we say that a project has a transitive vulnerability if a project’s dependency
itself uses a subsequent dependency with a vulnerability as reported by Snyk.
We also used the GitHub API to record statistics (e.g., stars, open issues) for
each project.

Results. In the 600 open source projects we examined, we found an average of
7.8 direct or transitive vulnerabilities per project. Further, we used the severity
scale based on the severity rating provided by Snyk as part of the scanning pro-
cess (derived from CVE and CWE reports). The average number of high severity
vulnerabilities was 4.1 per project, compared to medium severity level vulnera-
bilities which averaged only 3.6 per project, and low severity which averaged 0.1
vulnerabilities per project.

We further categorize these open source projects containing vulnerabilities
based on the severity level of vulnerabilities. A single project may contain mul-
tiple vulnerabilities that range from low to high severity. Overall, we obtained
the following numbers of projects:

– 266 projects used at least one dependency with a high severity vulnerability;
– 202 projects used at least one dependency with a medium severity;
– 39 projects used at least one dependency with a low severity;
– 215 had no known vulnerability.

Note that some of these sets overlap because some projects contained multiple
vulnerabilities with different severity levels.

Overall, 64.2% (385 of 600) of the projects we examined used at least one
vulnerable dependency. This result is consistent with a recent report that Java
applications are likely to include at least one vulnerable library [29]. Although
a vulnerable library does not necessarily mean that a project using that library
can be exploited, it does represent a risk to the community overall.1 Addition-
ally, OWASP’s 2017 report [23] described how such uncertainty could facilitate
adapting known exploits to many projects.

We note that not all vulnerabilities are exploited equally—CVE reports for a
vulnerability contain a Common Vulnerability Scoring System (CVSS) score [22],
a measure of how exploitable that vulnerability is. We leave the consideration of
CVSS and exploitability for future work.

Based on our results, the open source community is in need of a standard
process of reporting potential security vulnerabilities to open source project
owners. This process would allow the open source community and cyber security
researchers to privately disclose potential security issues in a standardized way.
Such a process could improve the quality and software of open source projects.

1 This effect can be viewed as a dual of herd immunity with immunization—the more
projects use vulnerable libraries, the more risk there is to the community as a whole.



16 B. Carlson et al.

4.2 RQ2: How Common Are Security Notification Policies?

Determining Whether the Open Source Project Has a Security Policy.
We first scanned the project’s README and CONTRIBUTING.md files for the key-
words security, vulnerability, reporting, or disclosure. We also looked
for files whose name contained a keyword. If no such files or keywords existed,
we scanned the owner’s user or group account page on GitHub for links to com-
pany or user webpages or public Wikis. When such pages existed, we (manually)
scanned them for bug bounty or security disclosure policies. In cases where no
such information could be gleaned, we considered that project to have no policy
for reporting security vulnerabilities.

Results. Recall from Sect. 4.1 that 385 of 600 open source projects contained
at least one vulnerable dependency. Of those projects, only 3.4% (13 of 385)
had a security vulnerability reporting process. The other 96.6% (372 of 385)
open source projects which had a vulnerability had no publicly available security
vulnerability reporting process. Overall, out of 600 open source projects, only
3.2% (19 of 600) had some type of security vulnerability reporting process. The
remaining 96.8% (581 of 600) had no security vulnerability reporting process
based on the aforementioned method.

For the remaining 581 projects, there is no standard recourse for reporting
vulnerabilities. Recall from Sect. 2 that opening issues, submitting pull requests,
or attempting private contact can result in unpredictable outcomes (including
losing a GitHub account to the spam flagging system).

For the 19 open source projects that contained a security notification policy,
we manually read through the policy. We broadly categorize these policies as:
bug bounty program, email address, or web form. First, 4 of 19 projects had
a bug bounty program administered through HackerOne [14], which outlined
the process, rules, and scope for an individual reporting a vulnerability. Second,
11 of 19 projects provided an email address to contact in case of a security
vulnerability. Some projects provided a more specific security reporting policy
that a security researcher might follow in reporting potential issues. Third, 1
of 19 projects contained a web form for submitting vulnerabilities. This project
provided a detailed security reporting process. The remaining 3 projects had
unique notification policies that did not fit into these three categories.

Security Policies at Scale. Next, we considered projects from popular hosting
platforms GitHub, GitLab, and BitBucket. We used two curated lists, one for
BugCrowd [1] and one for HackerOne [14], that contained a list of current bug
bounty programs [28]. We searched the bug bounty lists for projects contained
in the Libraries.io’s dataset [21]. Specifically, we used the repository owner name
and project name from Libraries.io to find Bug Bounty programs.

We found that, of the 30,705,634 repositories in Libraries.io’s dataset, only
6,645 open source projects have a bug bounty program. We interpret this as a
sign that the open source community does not have a standard process to report



Open Source Vulnerability Notification 17

Table 2. Location of contact information

Location of contact information Count

Account page 339

README 130

Other locations 12

None 119

security vulnerabilities. Additionally, our analysis suggests that significant effort
is required to find security policies in projects where they do exist. This has the
potential of inducing failures to report vulnerabilities appropriately or at all.

4.3 RQ3: Is Contact Information Available for Open Source
Projects?

Approximating Effort to Discern Point of Contact. We manually
inspected each open source project using the following steps:

1. Check the project’s README file
2. Check the CONTRIBUTING.md file
3. Check the GitHub Wiki page
4. Check on the repository’s account or group page
5. Check any provided website for the project (e.g., in the project description)
6. Check any provided website on the repository’s account or group page
7. Check whether the Top Contributor for the project has their contact infor-

mation publicly available (not just email addresses in Git commits)

We consider a project to have no contact information available if none of
the above steps yield contact information. We used a stopwatch to measure the
approximate time taken to find (or fail to find) contact information.

Results. We discovered 19.8% (119 of 600) of open source projects contained
no publicly available contact information. Among the remaining 481 open source
projects that provided contact information, 27.0% (130 of 481) contained con-
tact information in the README file. The remaining 351 projects required more
thorough investigation to determine contact information.

Table 2 shows the breakdown of where we found contact information for open
source projects. For the majority, we found the contact information on the repos-
itory group’s or top contributor’s account page on GitHub. The next most pop-
ular location was within the README file contained in the repository. For the
remaining open source projects, we found the contact information in a variety
of locations described above.

Table 3 shows the breakdown of different forms of communication we found in
these open source projects. In several cases we found multiple forms of commu-
nication but no preference or priority associated with each form. The majority



18 B. Carlson et al.

Table 3. Type of contact information found

Form of contact information Count

Email 312

Website 108

Gitter 29

Google group or forum 22

Twitter 17

IRC 6

Slack 5

LinkedIn 3

Mailing list 3

List of individual contacts 2

Discordapp 1

of cases had an email address. We note a heterogeneity of communication forms
associated with open source projects, adding to the potential communication
burden associated with reporting vulnerabilities.

We approximated effort required to find contact information by measuring
the time taken to search projects as described above. It took us an average of
44 s (±2.6 s with 95% confidence) to search a project for contact information.
Times ranged from 7 s to 300 s. We observed a bimodal effect with times: projects
would either take a very short time (e.g., if the top of the README happened to
contain contact information) or a very long time (e.g., if it was not clear without
searching through many files in the project).

While 44 s may not seem like a significant burden, Liu et al. [18] showed
that the first 10 s that users observe a newly loaded web page are critical. These
results suggest that a person may lose interest before successfully finding contact
information for an open source project.

5 Recommendations and Discussion

In this section, we discuss two potential approaches to addressing the reporting
of security vulnerabilities of open source projects. First, we suggest introducing a
standardized SECURITY.md file to projects that describes basic contact informa-
tion and disclosure processes for vulnerabilities. Second, we discuss a potential
addition to hosting platforms (such as GitHub) to support private or hidden pull
requests that enable developers or security researchers to disclose vulnerabilities.

5.1 SECURITY.md Mechanism for Vulnerability Notification

Given the dearth of security reporting policies among open source projects,
we recommend the creation of a SECURITY.md file in open source repositories.



Open Source Vulnerability Notification 19

This file would contain contact information and the disclosure policy of an open
source project. Of the 19 open source projects that contained such a policy,
only one of those projects described the policy in the repository itself, while the
remaining 18 projects required additional effort to find the relevant information.

The creation of a SECURITY.md file would provide a solution to the open
source community that is currently lacking a standard process as shown by
both our research and in the Snyk’s report [27]. Additionally, lacking public
information can make it difficult to assess the overall commitment to security
from an open source project and to understand how to disclose newly discovered
vulnerabilities to open source project owners [27].

We suggest an adaptation of an existing RFC, “A Method for Web Secu-
rity Policies” [6], modified for an open source repository. We suggest using the
SECURITY.md file in the root of a repository to contain basic contact informa-
tion (email addresses) and optionally contain text describing the security policy,
encryption, and contribution guidelines for the project. Such a file could help
inform the community and cyber security researchers with an effective way to
report vulnerabilities as they are discovered.

Adding SECURITY.md provides a beneficial method for standardization of
vulnerability reporting processes. This recommendation also helps to fix an issue
that was discovered in the 2017 Open Source Survey by GitHub where one of the
largest issues was “Incomplete or confusing documentation” [13]. Additionally,
by including this file in an open source project’s repository, it shows that the
project has a commitment to improving the security of the project.

Furthermore, Williams and Dabirsiaghi [29] suggest using a vetting process
when choosing whether to use a project’s library or source code. Considering
the majority of open source projects currently do not have a security reporting
process, the addition of the SECURITY.md would fulfill Williams and Dabirsiaghi’s
recommendation [29] by providing a way to vet projects.

5.2 Adapting Hosts to Facilitate Security Disclosures

As an alternative to SECURITY.md, open source hosting platforms could provide
new features to facilitate communication of vulnerabilities. For example, based
on our experience described in Sect. 2, we suggest the creation of a “verified
researcher” tags to be associated with an account that has built a reputation for
submitting pull requests or issues that disclose security vulnerabilities. These
tags would allow project owners to evaluate contributor account reputation.
As another example, hosting platforms could provide features for submitting
private/hidden pull requests and issues that would be visible to project owners
but not fully public.

Our recommendations seek to increase the interaction between the open
source communities and vulnerability research communities. Establishing better
interaction would reduce burden on reporting vulnerabilities and vetting contrib-
utors (e.g., by focusing on the requests from verified accounts). The increased
interaction could help improve security in open source projects.



20 B. Carlson et al.

6 Related Work

We draw inspiration for standardized security policies from several sources.
RFC2142 [3] suggests that organizations maintain a security@domain mail-

box that is used for security bulletins and questions. However, it does not specify
where or how such information should be made known publicly. We build upon
this work by suggesting standardized locations for security policy information
to be placed in an open source software repository.

Foudil and Shafranovich [6] suggest placing a security.txt file in the root
of a web server that allows websites to define security policies. Such information
could define how owners can be contacted with security concerns or how a bug
bounty program would work. We build on this work by suggesting SECURITY.md
be added to open source repositories.

Snyk’s report [27] investigated the top 400,000 public repositories on GitHub
to see if there was any documentation for basic security information for the
open source projects. No details were made available in the report about the
process they used to look for such information, which programming languages
they considered, or a definition for basic security information. Additionally, the
report did not propose a solution to this problem, but instead highlighted a
current problem in the open source community. In our work we focused on one
programming language, Java, and outlined how we selected open source projects
and gathered information. Additionally, we proposed a recommendation on how
to improve the current lack of security vulnerability reporting process in open
source projects.

Decan et al. [4] mined statistics about security vulnerabilities from over
600,000 open source projects. They found that 50% of security vulnerabilities
survive to 30 months after being introduced. However, they also found that 50%
of vulnerabilities were fixed within 1–2 months after discovery. This statistic
suggests that having a mechanism in place to disclose vulnerabilities could help
contribute to more rapidly fixing vulnerabilities.

GitHub already informs project owners about potentially vulnerable depen-
dencies included in a project by examining commit messages and CVEs [7].
However, GitHub’s technique only works for those projects that adopt GitHub’s
file format for describing dependencies, which is language-specific and limited to
Java, JavaScript, .NET, Python, and Ruby. It still does not address the issue
of how researchers or other developers (who may have developed other ways to
detect vulnerable dependencies) could privately disclose potential vulnerabilities.

7 Limitations

Our recommendation to add a SECURITY.md file may be a burden for project
developers to properly maintain. Additionally, older or abandoned open source
projects may not add new files. In this case, the only option for a security
researcher is to leave a public issue or pull request on the open source project
so that future users of the project are made aware of the security vulnerability



Open Source Vulnerability Notification 21

and have a way to fix it prior to using the project. We note there is currently
a limit—but no transparency!—on how many issues or pull requests a security
researcher can make before an account is flagged for spam.

Our other recommendation is that open source hosting platforms provide
new features for reporting security vulnerabilities. The limitation is that open
source project owners cannot do it just themselves as with the SECURITY.md file.

8 Conclusion

Both the open source community and the providers of open source repositories
need a method to communicate security vulnerabilities, which would both give
a voice to project owners about how they want disclosures to occur, and give
service providers (e.g., GitHub) better understanding of user needs.

In this study, we evaluated three different aspects of 600 open source Java
projects: (1) how frequently open source projects use known vulnerable libraries,
(2) whether open source projects contain security vulnerability reporting policies
and what kind of policy is it, and (3) how much effort is required to find contact
information for an open source project. Our findings showed a high ratio of
the open source projects currently contain at least one vulnerable dependency.
Although this does not guarantee the vulnerability can be exploited, it does show
that there is at least some risk to the project and its users until the dependency
can be updated to a non-vulnerable version. Additionally, with the exception of
19 open source projects, the majority of projects lacked some kind of security
vulnerability reporting process that was easily accessible. Finally, the majority
of open source projects studied did have some kind of contact information, but
it was often not easy to find, and there is no guarantee that contact information
found would be the correct person or group to contact about potential security
vulnerabilities.

To address the current shortcomings of security reporting policies in open
source projects, we proposed one recommendation to create a SECURITY.md file
that would contain the necessary details about the open source project’s security
reporting policy and who to contact when (or if) a potential security vulnerability
is discovered. To encourage the adoption of SECURITY.md, we could create a
website in similar to securitytxt.org [5] to gain feedback from the open source
community to improve the concept of SECURITY.md. Another recommendation is
for open source hosting platforms to provide new features for private disclosure
of vulnerabilities. Many challenges remain in the process of reporting potential
security vulnerabilities to the open source community.

Acknowledgments. We thank Snyk [26] for providing us access to their tool and
data. This material is based upon work partially supported by the US Air Force
Research Laboratory under Contract FA8750-15-2-0075 and US National Science
Foundation under Grant Nos. CNS-1646305, CNS-1646392, CNS-1740897, and CNS-
1740916.



22 B. Carlson et al.

References

1. BugCrowd: Bugcrowd. https://www.bugcrowd.com
2. Cavusoglu, H., Cavusoglu, H., Raghunathan, S.: Efficiency of vulnerability disclo-

sure mechanisms to disseminate vulnerability knowledge. IEEE TSE 33, 171–185
(2007)

3. Crocker, D.: Mailbox Names for Common Services, Roles and Functions. RFC 2142,
Internet Engineering Task Force (1997). http://www.rfc-editor.org/rfc/rfc2142.txt

4. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities
in the npm package dependency network. In: MSR (2018)

5. Foudil, E., Shafranovich, Y.: securitytxt.org. https://securitytxt.org
6. Foudil, E., Shafranovich, Y.: A method for web security policies. Technical report,

Internet Engineering Task Force (2018). https://datatracker.ietf.org/doc/html/
draft-foudil-securitytxt-03

7. GitHub: About security alerts for vulnerable dependencies. https://help.github.
com/en/articles/about-security-alerts-for-vulnerable-dependencies

8. GitHub: GitHub and government civic hackers projects. https://government.
github.com/community/#civic hackers

9. GitHub: GitHub and government open source projects. https://government.github.
com/community/

10. GitHub: GitHub and government research projects. https://government.github.
com/community/#research

11. GitHub: GitHub trending Java open source projects. https://github.com/
trending/java

12. GitHub: Octoverse. https://octoverse.github.com/projects#languages
13. GitHub: Open source survey. https://opensourcesurvey.org/2017
14. HackerOne: HackerOne. https://hackerone.com
15. HackerOne: Vulnerability disclosure policy basics: 5 critical components. https://

www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-
Components

16. Kula, R.G., German, D.M., Ouni, A., Ishio, T., Inoue, K.: Do developers update
their library dependencies? ESE 23, 384–417 (2018)

17. Legunsen, O., Hassan, W.U., Xu, X., Roşu, G., Marinov, D.: How good are the
specs? A study of the bug-finding effectiveness of existing Java API specifications.
In: ASE (2016)

18. Liu, C., White, R.W., Dumais, S.: Understanding web browsing behaviors through
Weibull analysis of dwell time. In: SIGIR (2010)

19. Mirhosseini, S., Parnin, C.: Can automated pull requests encourage software devel-
opers to upgrade out-of-date dependencies? In: ASE (2017)

20. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating GitHub for engineered
software projects. ESE 22, 3219–3253 (2017)

21. Nesbitt, A., Nickolls, B.: Libraries.io open source repository and dependency meta-
data (2017)

22. NIST: National vulnerability database (2018). https://nvd.nist.gov
23. OWASP Foundation: Top ten security risks. https://www.owasp.org/index.php/

Category:OWASP Top Ten 2017 Project
24. Podjarny, G.: Open source vulnerabilities tripped Equifax, how can you defend

yourself? https://snyk.io/blog/equifax-breach-vulnerable-open-source-libraries
25. Rapid7: NIST cyber framework updated with coordinated vuln disclosure

processes. https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-
include-coordinated-vuln-disclosure-processes

https://www.bugcrowd.com
http://www.rfc-editor.org/rfc/rfc2142.txt
https://securitytxt.org
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-03
https://datatracker.ietf.org/doc/html/draft-foudil-securitytxt-03
https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://help.github.com/en/articles/about-security-alerts-for-vulnerable-dependencies
https://government.github.com/community/#civic_hackers
https://government.github.com/community/#civic_hackers
https://government.github.com/community/
https://government.github.com/community/
https://government.github.com/community/#research
https://government.github.com/community/#research
https://github.com/trending/java
https://github.com/trending/java
https://octoverse.github.com/projects#languages
https://opensourcesurvey.org/2017
https://hackerone.com
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://www.hackerone.com/blog/Vulnerability-Disclosure-Policy-Basics-5-Critical-Components
https://nvd.nist.gov
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_2017_Project
https://snyk.io/blog/equifax-breach-vulnerable-open-source-libraries
https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-include-coordinated-vuln-disclosure-processes
https://blog.rapid7.com/2017/12/19/nist-cyber-framework-revised-to-include-coordinated-vuln-disclosure-processes


Open Source Vulnerability Notification 23

26. Snyk: Snyk. https://snyk.io
27. Snyk: The state of open source (2017). https://snyk.io/stateofossecurity
28. Tetelman, A.: bounty-targets-data (2018). https://github.com/arkadiyt/bounty-

targets-data
29. Williams, J., Dabirsiaghi, A.: The unfortunate reality of insecure libraries. https://

www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries

https://snyk.io
https://snyk.io/stateofossecurity
https://github.com/arkadiyt/bounty-targets-data
https://github.com/arkadiyt/bounty-targets-data
https://www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries
https://www.contrastsecurity.com/the-unfortunate-reality-of-insecure-libraries

	Open Source Vulnerability Notification
	1 Introduction
	2 Motivating Experience
	3 Project Selection and Data Collection
	4 Evaluation
	4.1 RQ1: Prevalence of Known Vulnerable Dependencies
	4.2 RQ2: How Common Are Security Notification Policies?
	4.3 RQ3: Is Contact Information Available for Open Source Projects?

	5 Recommendations and Discussion
	5.1 SECURITY.md Mechanism for Vulnerability Notification
	5.2 Adapting Hosts to Facilitate Security Disclosures

	6 Related Work
	7 Limitations
	8 Conclusion
	References




