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Abstract. This paper presents a novel method, MaskMVS, to solve
depth estimation for unstructured multi-view image-pose pairs. In the
plane-sweep procedure, the depth planes are sampled by histogram
matching that ensures covering the depth range of interest. Unlike other
plane-sweep methods, we do not rely on a cost metric to explicitly build
the cost volume, but instead infer a multiplane mask representation
which regularizes the learning. Compared to many previous approaches,
we show that our method is lightweight and generalizes well without
requiring excessive training. We outperform the current state-of-the-art
and show results on the sun3d, scenes11, MVS, and RGBD test data
sets.
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1 Introduction

Multi-view stereo (MVS) aims at reconstructing depth (or disparity) maps from
a collection of overlapping images, which is a fundamental problem in com-
puter vision. Any progress in the field will have a direct impact on applica-
tions like augmented reality and self-driving cars. Conventional methods often
use hand-crafted features and compute similarity between patches. However,
these approaches may suffer from limitations of the features, especially regard-
ing poorly textured or reflective regions. As deep convolutional neural networks
(CNNs) have shown great success in many vision tasks such as image classi-
fication, it has triggered the interest to overcome the weakness of traditional
methods and improve 3D reconstruction using deep models.

There are already several works that approach two-view stereo using deep
models with successful results (e.g., [10,13]). However, rigid two-view stereo is
a simpler problem than unstructured multi-view stereo, where camera motion
can be arbitrary and varying. Yet, unstructured multi-view stereo is a highly
relevant problem that appears in the context of depth estimation from moving
monocular cameras. In fact, there are already robust and accurate approaches
for real-time tracking of motion (e.g., commercially deployed solutions such as
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Fig. 1. (a) Overall idea of our method: To estimate a depth map with an arbitrary
number of images and known camera poses, we back-project images onto a set of planes
to generate the multiplane masks representation via a convolutional neural network.
The inferred masks are then passed through a second network to reconstruct the final
disparity map. (b) Our method performs well in textureless and varying depth cases.

ARCore by Google and ARKit by Apple) but depth estimation remains a chal-
lenge. For example, some smartphones nowadays contain stereo cameras but the
small baseline due to the size restriction of the device is a limitation for long-
range depth estimation. Thus, multi-view depth estimation is helpful also in such
cases since the additional baseline arising from motion can alleviate some of the
problems.

Recently, various deep learning based multi-view depth estimation methods
have been proposed, e.g. [6,17,21]. They typically discretize the depth space and
utilize a plane-sweep approach to compute a matching cost volume from which
the disparity map is inferred via CNNs. The benefit is that the cost volume based
approach force the network to learn disparity estimation via matching instead
of just learning the single-view cues, which is beneficial for generalization. How-
ever, these methods have also problems: the depth range must be approximately
known in advance and discretization poses an inherent trade-off between depth
resolution and computational complexity. In addition, manually specified fea-
tures and metrics are often used in the construction of the cost volume [17,21]
or the used networks are large and complex hampering computation speed [6].

In this paper, we propose our own plane-sweep based approach, which aims
at avoiding some of the shortcomings of the previous methods. In particular,
our method does not use manually specified features or cost metrics but instead
infers a set of masking planes to regularize the learning of features (Fig. 1). In
addition, we propose selecting intermediate depth planes by depth histogram
matching if the depth range of interest is approximately known a priori. In
comparison to recent approaches like [6], our architecture is relatively simple,
lightweight, and more accurate.
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In summary, the contributions of this paper are: (i) We propose a CNN-
based approach for multi-view stereo depth estimation that does not require
constructing an explicit cost-volume metric; (ii) We propose a way of selecting
intermediate depth-planes by depth histogram matching; (iii) We demonstrate
that the current state-of-the-art in CNN-based MVS can be matched with a
relatively simple and lightweight architecture. This paper is structured as fol-
lows. Sect. 2 goes through the background and covers related approaches. Sect. 3
presents our MaskMVS method in detail. Experiments and ablation studies are
presented in Sect. 4, and this paper is concluded with a discussion in Sect. 5.

2 Related Work

Multi-view stereo reconstruction has been under active research for long and
only recently it has gotten a boost from CNN-based methods. Conventional
MVS algorithms typically seek to design photometric error measures and solve
an optimization task subject to penalizing visual inconsistency (see review in
[3]). The most prominent traditional method is COLMAP [14] which jointly
estimates depths and surface normals by leveraging photometric and geometric
priors. While conventional MVS methods deliver impressive results in the best
case, they fail in poorly textured regions where the photometric consistency is
not reliable. They also cannot use visual cues for depth such as shadows or
lighting, and typically require many frames as input.

The success of convolutional neural networks in computer vision has spawned
a number of methods that leverage the capability of CNNs to learn visual cues.
The extreme case is purely monocular depth estimation [1,12], while left–right
stereo reconstruction [10,13] relies on the 1D correlation layer along the disparity
line. Other approaches use nearby images as the supervision by warping and
computing image reconstruction error [4,20,22], but the CNN-based prediction
still only utilize single view information.

Unlike left–right two-view stereo, images collected from monocular videos
are more unstructured and they also suffer from dynamic moving objects, which
makes the task more challenging. DeMoN [16] can learn depth and motion
for unconstrained image pairs, but it cannot handle multiple images as input.
Current attempts on learned MVS mainly employ plane-sweeping approaches
and regard the depth estimation problem as a multi-class classification prob-
lem [6,19,21]. In practice, these methods employ classical plane-sweep stereo
approaches with a defined cost metric to build a cost volume, and the CNN is
used to infer depth from the cost volume and refine the depth map. For example,
DeepTAM [21] computes the sum of absolute difference (SAD) of 3× 3 patches
between warped image pairs. To increase the density of sampled planes, an adap-
tive narrow band strategy is used. DeepMVS [6] proposed a patch matching net-
work to extract features that can aid in the comparison of patches. To do the
feature aggregation, it considers both an intra-volume feature aggregation net-
work and inter-volume aggregation network. Semantic features from pre-trained
VGG-19 on ImageNet also aids in intra-volume feature aggregation. The Dense-
CRF is used to refine the final depth map. MVDepthNet [17] computes the
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Fig. 2. Overview of our MaskMVS architecture. The MaskNet (left, green) will generate
multi-plane mask maps to represent the probability of real surfaces being hit by a ray
before each plane. Given the mask-based representation and the reference image, the
DispNet (right, red) will learn to predict the disparity map for the reference image.
(Color figure online)

absolute difference directly without a supporting window to generate the cost
volume, as the pixel-wise cost matching enable the volume to preserve detail
information. MVSNet [19] proposes a variance-based cost metric and employ
four-scale 3D CNN to obtain smooth cost volume automatically. DPSNet [7]
concatenate warped image features firstly and use a series of 3D convolutions to
learn the cost volume generation.

Attempts on learned MVS without cost metrics have shown promise in recon-
structing 3D objects. [5] propose a CNN to learn multi-patch similarity directly,
but it still matches patches explicitly. SurfaceNet [8], and LSM [9] use 3D grid
to fuse information. However, due to the volumetric structure, SurfaceNet and
LSM are limited to small-scale reconstructions (see discussion in [19]).

3 Methods

The overall architecture of MaskMVS is shown in Fig. 2. The estimation scheme
consists of two parts, MaskNet and DispNet. Given (an arbitrary number of)
image pairs and known camera poses, we back-project images onto virtual planes
to construct the warped volume to feed the MaskNet. The MaskNet will generate
multi-plane mask maps to represent the probability of a surface being hit by each
ray before each plane. Given the mask-based representation and the reference
image, the DispNet learns to predict the disparity map for the reference image.
Our methods will be introduced as follows. Sect. 3.1 presents our novel idea of
depth plane sampling. Sects. 3.2 and 3.3 explain the details of MaskNet and
DispNet, respectively.
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3.1 Histogram-Based Depth Plane Sampling

The selection of virtual planes is important for plane-sweeping methods. Cur-
rent methods generally uniformly sample planes in the depth domain [19,21] or
inverse-depth domain [7,17] between predefined minimum and maximum values.
One principle of plane selection is to achieve higher sampling density for close by
depths and lower density for distant depths, so uniform sampling in the inverse-
depth domain generally produces more accurate predictions (see [7]). However,
both of these sampling methods rely on a fixed depth range, and the ideal depth
ranges for indoor scenes and outdoor scenes are typically different. Some meth-
ods, such as [6], pre-run traditional methods like COLMAP [14] to obtain the
depth range for each input firstly to deal with different scenes.

We propose the idea of selecting planes according to the cumulative his-
togram of depth. This allows us to sample reasonable numbers of depth planes
in both nearby and far away depths when the training set is a mixed data set.
There will be more pixels covering areas closer to the camera in general, so the
histogram of depth distribution is naturally in accordance with the selection
principle mentioned above. We define the depth density and cumulative depth
density functions as

p(di) =
ni

N
and P (di) =

i∑

j=1

p(di), (1)

where ni is the frequency of the depth value di, and N is the total number of
pixels in the training data set. These discrete density functions, p : [0, dmax] →
[0, 1] and P : [0, dmax] → [0, 1], can be seen as the normalized histogram and
normalized cumulative histograms of the depths (we use a binning of 200 points
in the experiments). Based on the cumulative density function, we can choose
a set of depths covering the entire range by considering the inverse cumulative
density function P−1 : [0, 1] → [0, dmax]. By choosing to cover the quantiles
θ1, θ2, . . . , θD of P uniformly, we find a set of depths {di}Di=1 such that di =
P−1(θi), where D is the number of planes.

3.2 MaskNet: Mask-Based Multiplane Representation

Similar to traditional plane-sweep stereo, we firstly construct a warped volume
from each image pair by warping the neighbour image via the fronto-parallel
planes at fixed depths to the reference frame using the planar homography:

H = K
(
R + t

(
0 0 1

di

))
K−1, (2)

where K is the known intrinsics matrix and the relative pose (R, t) is given in
terms of a rotation matrix and translation vector with respect to the neighbour
frame. di denotes the depth value of the ith virtual plane. The input of the
MaskNet has size 3 (1 + D) × H × W consisting of the reference image and
concatenated warped neighbour images from D planes (D+1 RGB images with
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height H and width W ). The output of the MaskNet is a set of mask maps of
size D × H × W .

Traditional plane-sweep based methods need to design a cost metric based
on photo-consistency of warped images to select an optimal depth plane for each
pixel. In that case, the predicted depth maps will be noisy and the accuracy
will be limited by the density of the chosen planes. Instead of using a distance
metric, we propose a novel mask-based multiplane representation to roughly
encode the near–far relationship. In our method, the intuition is that given a
reference image and warped neighbour image on two successive planes, if the
relative position of a warped pixel flips, it tells that the surface will be hit by
the ray between the two planes. To enable the network to learn this, we assign
a supervised binary classification task to the MaskNet, where the ground truth
for masks can be obtained from ground truth depth maps directly. The MaskNet
will predict whether the ray will hit a surface in front of the plane (including on
the plane) or behind the plane for each pixel.

For this purpose, the MaskNet consists of an encoder–decoder architecture
that shares a similar architecture with [17]. The encoder includes five convolu-
tional layers, and convolutional filter sizes decrease towards deeper layers: 7 × 7
for the first layer, 5 × 5 for the second layer, and 3 × 3 for the following three
layers. There are four skip connections between the encoder and the decoder,
and mask maps are predicted in four scales. All layers are followed by batch
normalization and ReLU except for the mask prediction layers that are followed
by a sigmoid function. Each pixel on each plane has a value in range [0, 1], repre-
senting the predicted probability that the true surface is located in front of the
sampled plane. To support arbitrary length of sequence, we deal with neighbour
images separately and then use average pooling for predicted masks with the
finest resolution to fuse information from different neighbours. We compute the
pixel-wise cross-entropy between the averaged mask map and the ground truth
mask map as loss function to train the MaskNet.

3.3 DispNet: Continuous-Disparity Prediction

To regress continuous depth values, given prediction results from MaskNet and
the reference image, we concatenate them into an input of size (3 + D) × H ×
W to feed the DispNet. The encoder–decoder architecture of our DispNet is
similar to the DispNet in [13]. There are six convolutional layers for the encoder
(3 × 3 filters except for the first two layers, which have a 7 × 7 filter and a
5 × 5 filter, respectively) to extract features, and the decoder will gradually
upsample the feature maps, considering also features from the encoder with six
skip connections. All convolutional layers are followed by batch normalization
and LeakyReLU, and all deconvolution layers are followed by LeakyReLU. Unlike
[17,22] that use scale and sigmoid functions to constrain the range of the output,
our inverse depth prediction layer consists of a convolutional layer and a ReLU
layer to only ensure that predicted inverse depth maps have values larger than
zero for all pixels. The DispNet will generate depth maps in six resolutions and
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Fig. 3. Depth distributions (log-scale) for the four data sets used in training and evalu-
ation. The typical depths in the data are highly dependent on the type of environments
covered (e.g., sun3d covering mostly indoor scenes and scenes11 having high variabil-
ity in the type of scenes covered.)

the finest resolution is the same as in the reference image. During training, the
loss function is defined as the sum of the average L1 loss at different resolutions:

L =
6∑

s=0

ws
1
ns

∑

i

|d̂s,i − ds,i|, (3)

where d̂s,i is the estimated inverse depth at scale s and ds,i is the corresponding
ground truth inverse depth. ns is the number of valid pixels and ws is the loss
weight for scale s. We assign the highest weight for the loss with the finest
resolution as 0.5 and others 0.1.

4 Experiments

Similar to DeepMVS [6], we train our networks with the same data sets as used
in DeMoN [16]. The training data set includes short sequences from real-world
data sets sun3d [18], RGBD [15], MVS (includes Citywall and Achteck-
Turm [2]), and a synthesized data set scenes11 [16]. sun3d consists of a variety
of indoors scenes, RGBD provides scenes of an office and an industrial hall. MVS
data sets include both indoor and outdoor scenes, and the ground truth depth
maps of outdoor scenes are often sparse. scenes11 provides perfect ground truth
but lack realism. Combined, there are 92,558 training samples and each training
sample consists of a sequence of three frames, the ground truth depth map for
the reference frame, and provided ground truth camera poses. The resolution of
the input images is 320 × 240.

Our training procedure consists of two stages as we pre-train the MaskNet
first and then employed the pre-trained parameters of MaskNet to predict masks
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to train the DispNet. For both networks we use the Adam solver [11] with β1 =
0.9 and β2 = 0.999. The learning rate for MaskNet and DispNet is 2 · 10−4

and 10−4, respectively. Our framework is trained using only D = 16 sampled
depth planes as sparse sampling can present the effect of plane selection more
clearly and provide speed-up. The whole framework is implemented on PyTorch
for 500k iterations with a mini-batch size of four.

Error Metrics. In our evaluations, we use three common measures: (i) L1-
rel, (ii) L1-inv, and (iii) sc-inv (see, e.g., [1]). The two L1 metrics are the mean
absolute relative difference and mean absolute difference in inverse depth, respec-
tively. They are given in terms of

L1-rel =
1
n

∑

i

|di − d̂i|
d̂i

and L1-inv =
1
n

∑

i

∣∣∣∣
1
di

− 1

d̂i

∣∣∣∣ , (4)

where di [meters] is the predicted depth value, d̂i [meters] is the ground truth
value, n is the number of pixels for which the depth is available. The third,
scale-invariant metric, is given as:

sc-inv =

√√√√ 1
n

∑

i

z2i − 1
n2

( ∑

i

zi

)2

(5)

where zi = log di − log d̂i. The L1-rel metric normalizes the error, L1-inv metric
gives more importance to close depth values and sc-inv is a scale-invariant metric.

4.1 Ablation Study: The Effect of Plane Selection

As the training set is a mixed data set that consists of both indoor scenes,
outdoor scenes, and synthesized scenes, the depth ranges of image samples vary
with type of data set. Figure 3 shows the distribution of depth for different sets
separately. To examine the effects of plane selections, we conducted an ablation
study for our method. We compare two options for plane selection: uniform
sampling in the inverse-depth space and uniform sampling in the distribution
space. Namely, to uniformly sample D = 16 planes in the inverse-depth space
from dmin = 0.5 m to dmax = 50 m, the ith depth plane is given by:

1
di

=
(

1
dmin

− 1
dmax

)
i

D − 1
+

1
dmax

. (6)

To uniformly sample planes in the distribution space of the whole data set, we
set θmin = 0.1 and θmax = 1, then the ith depth plane is given by:

θi = θmin + (θmax − θmin)
i

D
, such that di = P−1(θi), (7)

where i ∈ {0, 1, ...,D − 1}. Figure 4a shows the two sampling schemes. The
curve is the cumulative histogram of depth of the whole mixed data set and the
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Fig. 4. Setup and results for the ablation study. In (a), the upper figure shows the
chosen depth plane depths for the histogram-based sampling and the bottom shows
the depths for inverse depth based sampling. In (b), we show qualitative compari-
son between the two depth plane selection methods used in combination with our
MaskMVS.

vertical lines present sampled depths. The higher slope of the curve corresponds
to denser distribution of objects. It shows that using histogram-based sampling
successfully gives planes within the range with higher slope, and the density is
also higher in the closer areas than distant areas.

The evaluation results in Table 1 shows that selecting histogram-based planes
perform much better in outdoor and synthesized scenes as it has more planes
put in for distant depths. The performance of indoor scenes remains comparable
with using inverse-depth sampled planes as it still samples densely-enough in
close by depths. Figure 4b shows comparison of the disparity maps from the two
sampling approaches. Generally, using histogram-based sampling can provide
good quality of prediction in both small-scale and large-scale depth scenes even
with sparse depth planes. The last row in the figure shows that our methods
with both sampling strategies give good predictions, but using histogram-based
sampling failed to capture small objects like cans on the table in the close areas.
It is mainly because our sampled planes started from the value farther than 1 m,
while the office scenes in RGBD contain many objects within 1 m (see the first
bump of RGBD in Fig. 3a); conversely, inverse-space sampled planes are very
dense within the range, so its prediction captures these details well.

4.2 Comparisons

We provide both qualitative and quantitative comparisons to the state-of-the-art
by evaluating using unstructured view pairs from the test sets in MVS, sun3d,
RGBD, and scenes11. We compare our methods with two CNN-based multi-
view stereo methods (DeepMVS [6] and MVDepthNet [17]) and one traditional
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Table 1. Comparison results between MVDepthNet, DeepMVS, COLMAP, and our
method. We outperform other methods in most of the data sets and error metrics
(smaller better).

MVDepth-16 DeepMVS COLMAP Ours (hist) Ours (inv.)

scenes11

L1-rel 0.2352 0.3755 0.7205 0.1475 0.2144

L1-inv 0.0292 0.0495 0.0936 0.0231 0.0308

sc-inv 0.3207 0.5810 0.7814 0.2483 0.2985

MVS

L1-rel 0.3835 0.8217 0.9921 0.2669 0.4030

L1-inv 0.1384 0.1065 0.1812 0.1377 0.1600

sc-inv 0.3427 0.5325 0.6892 0.3001 0.3100

sun3d

L1-rel 0.1840 0.8604 1.8499 0.1797 0.1611

L1-inv 0.0865 0.1317 0.4511 0.0818 0.0808

sc-inv 0.2013 0.4992 1.1219 0.1916 0.1769

RGBD

L1-rel 0.1628 0.5066 2.2992 0.1748 0.1572

L1-inv 0.0789 0.1717 0.5593 0.0846 0.0802

sc-inv 0.2360 0.5238 1.2970 0.2304 0.2062

multiview stereo method (COLMAP [14]). The original MVDepthNet is trained
with 64 planes and a larger data set (covering also the standard test samples in
the sets). In order to make a fair comparison, we retrained the MVDepthNet with
our training data set and 16 planes. The results are reported in Table 1. Our pre-
dictions have significantly lower errors in scenes11 and MVS, and comparable
performance in sun3d and RGBD. The improvement of the outdoor scenes and
synthesized scenes can be explained by the consideration of far depth planes. As
mentioned in Sect. 4.1, almost half of the scenes of RGBD include objects closer
than 1 m that is below our histogram-based sampling range, so the performance
is slightly worse. We also evaluated the inference time for CNN-based models
on a desktop workstation (NVIDIA GTX 1080 Ti, i7-7820X CPU and 63 GB
memory; average over 100 predictions): DeepMVS 5.81 s, MVDepth-16 0.063 s,
ours 0.089 s. The running time of our model is comparable to MVdepth-16 but
our accuracy is better. Both models are significantly faster than DeepMVS.

Figure 5 shows qualitative comparisons between MVDepthNet, DeepMVS,
COLMAP, and our MaskMVS approach. It should be noted that our method is
the only method that can capture the small objects in the top left of the third
row and the bottom left of the last row. Moreover, our method provide more
accurate prediction for close areas (see the brightest parts of ground truths) in
the first row and the fourth row.
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Fig. 5. Qualitative comparisons between different algorithms on the MVS, Scenes11,
Sun3d, and RGBD test sets. The traditional COLMAP method fails in low-texture
environments. Our methods successfully captures small objects in close areas and pro-
vides better shape estimates for objects in far areas at the same time. Missing values
in ground truth are shown in black.

5 Discussion and Conclusions

We have proposed a novel CNN-based architecture for multi-view stereo depth
estimation that is inspired by traditional plane-sweep algorithms without the
need of constructing an explicit cost-volume metric. Instead, we designed a
binary classification task for our MaskNet and used the mask-based multiplane
representations to aggregate information from multiple views and exploit geo-
metric relationships. Moreover, we discussed the effect of depth selection and
proposed a novel way of sampling depth planes based on histogram matching.
Our ablation study showed that uniformly sampling in the distribution domain
can deal with both small depths such as indoor scenes and large depths such as
in outdoor scenes, even with sparsely sampled planes. As the running time will
drop when reducing the number of planes, our proposed sampling method can
be beneficial for real-time systems that have restrictions on computation time
and memory. Moreover, compared to traditional multi-view stereo methods, our
approach can handle low-texture inputs and does not need iterative refinement;
compared to other CNN-based methods that also employ a plane-sweep scheme,
our method do not need to compute any distance metrics, which makes our
method time-efficient.
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As ideal plane selection can lead to better prediction, one direction to improve
our architecture might be adjusting depth planes according to inputs automati-
cally. It should be noted that using predicted mask maps from our MaskNet, the
depth distribution can be roughly estimated. Then it is possible to obtain uni-
form samples in distribution domain by just 1D linear interpolation. This might
offer the possibility for varying sampled depth planes with different scenes in the
future. Codes are available at https://github.com/AaltoVision/MaskMVS.
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