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Abstract. Diffusion magnetic resonance imaging (diffusion MRI) is a
non-invasive microstructure assessment technique. Scalar measures, such
as FA (fractional anisotropy) and MD (mean diffusivity), quantifying
micro-structural tissue properties can be obtained using diffusion models
and data processing pipelines. However, it is costly and time consuming
to collect high quality diffusion data. Here, we therefore demonstrate
how Generative Adversarial Networks (GANs) can be used to generate
synthetic diffusion scalar measures from structural T1-weighted images
in a single optimized step. Specifically, we train the popular CycleGAN
model to learn to map a T1 image to FA or MD, and vice versa. As an
application, we show that synthetic FA images can be used as a target
for non-linear registration, to correct for geometric distortions common
in diffusion MRI.
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1 Introduction

Diffusion MRI is a non-invasive technique used for studying brain tissue
microstructures. Diffusion-derived scalar maps provide rich information about
microstructural characterization, but there are two major bottlenecks in obtain-
ing these scalar maps. First, it is expensive and time consuming to acquire
high quality diffusion data. Second, the accuracy of the diffusion-derived scalar
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maps relies on elaborate diffusion data processing pipelines, including prepro-
cessing (head motion, eddy current distortion and susceptibility-induced distor-
tion corrections), diffusion model fitting and diffusion scalar calculation. Small
errors occurring at any of these steps can contribute to the bias of the diffusion-
derived scalars. For some advanced diffusion models e.g. mean apparent propa-
gator (MAP) MRI [10], processing of a single slice of the brain can take hours
to finish.

Generative Adversarial Networks (GANs) is one of the most important ideas
in machine learning in the last 20 years [6]. GANs have already been widely
used for medical image processing applications, such as denoising, reconstruc-
tion, segmentation, detection, classification and image synthesis. However, GANs
for medical image translation are still rather unexplored, especially for cross-
modality translation of MR images [7].

Implementations of CycleGAN and unsupervised image-to-image translation
(UNIT) for 2D T1-T2 translation were reported in [13], and results showed
that visually realistic synthetic T1 and T2 images can be generated from the
other modality, proven via a perceptual study. In [2] a conditional GAN was
proposed to do the translation between T1 and T2 images, in which a proba-
bilistic GAN (PGAN) and a CycleGAN were trained for paired and unpaired
source-target images, respectively. The proposed GAN demonstrated visually
and quantitatively accurate translations for both healthy subjects and glioma
patients. A patch-based conditional GAN [9] was proposed to generate magnetic
resonance angiography (MRA) images from T1 and T2 images jointly. Steer-
able filter responses were incorporated in the loss function to extract directional
features of the vessel structure. MR image translation based on downsampled
images was investigated in [3], to reduce scan time. Three different types of
input were fed to the GANs: downsampled target images, downsampled source
images, and downsampled target and source images jointly. It was demonstrated
that the GAN with the combination of downsampled target and source images
as the input outperformed its two competitors in reconstructing higher resolu-
tion images, which resulted in a reduction of the scan time up to a factor of 50.
A 3D conditional GAN [15] was applied to synthesize FLAIR images from T1,
and the synthetic FLAIR images improved brain tumor segmentation, compared
with using only T1 images.

In this work, we explored the possibility to generate diffusion scalar maps
from structural MR images. We propose a new application of CycleGAN [16]; to
translate T1 images to diffusion-derived scalar maps. To the best of our knowl-
edge, this is the first study of GAN-based MR image translation between struc-
tural space and diffusion space. Both qualitative and quantitative evaluations of
generated images were carried out in order to assess effectiveness of the method.
We also show how synthetic FA images can be used as a target for non-linear
registration, to correct for geometric distortions common in diffusion MRI.
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2 Theory

2.1 Diffusion Tensor Model

In a diffusion experiment, the diffusion-weighted signal Si of the ith measurement
for one voxel is modeled by

Si = S0 exp(−bgT
i Dgi), for i = 1, 2, · · · , T, (1)

where S0 is the signal without diffusion weighting, b is the diffusion weighting

factor, D =

⎡
⎣

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

⎤
⎦ is the diffusion tensor in the form of a 3×3 positive

definite matrix, gi is a 3 × 1 unit vector of the gradient direction, and T is the
total number of measurements. Mean diffusivity (MD) and fractional anisotropy
(FA) can be calculated from the estimated tensor, according to

MD = (λ1 + λ2 + λ3)/3, (2)

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

, (3)

where λ1, λ2 and λ3 are the three eigenvalues of the diffusion tensor D. In our
case weighted least squares was used to estimate the diffusion tensor.

2.2 CycleGAN

A CycleGAN [16] can be trained using two unpaired groups of images, to trans-
late images between domain A and domain B. A CycleGAN consists of four main
components, two generators (GA2B and GB2A) and two discriminators (DA and
DB). The two generators synthesize domain A/B images based on domain B/A.
The two discriminators are making the judgement if the input images belong to
domain A/B. The translation between the two image domains is guaranteed by

GB2A(GA2B(IA)) ≈ IA (4)
GA2B(GB2A(IB)) ≈ IB (5)

where IA and IB are two images of domain A and B. The loss function contains
two terms: adversarial loss and cycle loss, and can be written as [16]

Ladv = Ea∈A[(DA(a) − 1)2] + Eb∈B [(DB(b) − 1)2] (6)

+ Ea∈A[DB(GA2B(a))2] + Eb∈B [DA(GB2A(b))2] (7)

+ Ea∈A[(DB(GA2B(a)) − 1)2] + Eb∈B [(DA(GB2A(b)) − 1)2], (8)
Lcyc = Ea∈A[|GB2A(GA2B(a)) − a|] + Eb∈B [|GA2B(GB2A(b)) − b|]. (9)

The adversarial loss encourages the discriminators to approve the images of the
corresponding groups, and reject the images that are generated by the corre-
sponding generators. The generators are also encouraged to generate images



492 X. Gu et al.

that can fool the corresponding discriminators. The cycle loss guarantees that
the image can be reconstructed from the other domain, as stated in Eq. 5. The
total loss is the sum of the adversarial loss and the cycle loss, i.e.

Ltotal = Ladv + Lcyc. (10)

2.3 Similarity Measure

The widely used structural similarity (SSIM) measure [4,14] was used to quan-
tify the accuracy of the image translations. SSIM can measure local structural
similarity between two images. The SSIM quantifies the degree of similarity of
two images based on the impact of three characteristics: luminance, contrast and
structure. The SSIM of pixel (x, y) in images A and B can be calculated as [12]

SSIM(x, y) =
(2μwA

μwB
+ c1)(2σwAwB

+ c2)
(μ2

wA
+ μ2

wB
+ c1)(σ2

wA
+ σ2

wB
+ c2)

, (11)

where wA and wB are local neighborhoods centered at (x, y) in images A and B,
μwA

and μwB
are the local means, σwA

and σwB
are the local standard deviations,

σwAwB
is the covariance, c1 and c2 are two variables to stabilize the division. The

mean SSIM (MSSIM = SSIM/Nvoxel) within the brain area can be used as
a global measure of the similarity between the synthetic image and the ground
truth.

3 Data

We used diffusion and T1 images from the Human Connectome Project (HCP)1

[5,11] for 1065 healthy subjects. The data were collected using a customized
Siemens 3T Connectome scanner. The diffusion data were acquired with 3 differ-
ent b-values (1000, 2000, and 3000 s/mm2) and have already been pre-processed
for gradient nonlinearity correction, motion correction and eddy current correc-
tion. The diffusion data consist of 18 non-diffusion weighted volumes (b = 0) and
90 volumes for each b-value, which yields 288 volumes of 145 × 174 × 145 voxels
with an 1.25 mm isotropic voxel size. The T1 data was acquired with a 320×320
matrix size and 0.7 × 0.7 × 0.7 mm isotropic voxel size, and then downsampled
by us to the same resolution as the diffusion data.

1 Data collection and sharing for this project was provided by the Human Connec-
tome Project (U01-MH93765) (HCP; Principal Investigators: Bruce Rosen, M.D.,
Ph.D., Arthur W. Toga, Ph.D., Van J.Weeden, MD). HCP funding was provided by
the National Institute of Dental and Craniofacial Research (NIDCR), the National
Institute of Mental Health (NIMH), and the National Institute of Neurological Dis-
orders and Stroke (NINDS). HCP data are disseminated by the Laboratory of Neuro
Imaging at the University of Southern California.
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4 Methods

Diffusion tensor fitting and MAP-MRI fitting were implemented using C++
and the code is available on Github2. We used a Keras implementation of 2D
CycleGAN, originating from the work by [13], which is also available on Github3.
The statistics analysis was performed in MATLAB (R2018a, The MathWorks,
Inc., Natick, Massachusetts, United States).

We followed the network architecture design given in the original CyceGAN
paper [16]. We used 2 feature extraction convolutional layers, 9 residual blocks
and 3 deconvolutional layers for the generators. For the discriminators we used
4 feature extraction convolutional layers and a final layer to produce a one-
dimensional output. We trained the network with a learning rate of 0.0004. We
kept the same learning rate for the first half of the training, and linearly decayed
the learning rate to zero over the second half. A total of 1000 subjects were used
for training, and 65 subjects were used for testing. An Nvidia Titan X Pascal
graphics card was used to train the network. The experiment protocols and
training times are summarized in Table 1.

Table 1. Experiment protocols used to train and evaluate the CycleGAN

Training data Test data Training time (h)

Experiment 1 1000 subjects 1 slice
per subject

65 subjects 1 slice
per subject

6

Experiment 2 1000 subjects 1 slice
per subject

65 subjects 17 slices
per subject

6

Experiment 3 1000 subjects 17
slices per subject

65 subjects 17 slices
per subject

107

5 Results

5.1 Synthetic FA and MD

Figure 1(a) shows the qualitative results of T1-to-FA image translation for 4 test
subjects. The results show a good match between the synthetic FA images and
their ground truth, for both texture of white matter tracts and global content.
However, when compared with the ground truth, it is observed that the synthetic
FA images have a reduced level of details on white matter tracts. The difference
image shows the absolute error between synthetic and real FA images. Results
of T1-to-MD image translation are shown in Fig. 1(b). The synthetic MD images
demonstrate great visual similarity to the ground truth. The CSF region and its
boundaries are accurately synthesized.

2 https://github.com/xuagu37/dtb.
3 https://github.com/xuagu37/CycleGAN.

https://github.com/xuagu37/dtb
https://github.com/xuagu37/CycleGAN
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(a) T1-to-FA.

(b) T1-to-MD.

Fig. 1. T1-to-FA/MD image translation results for 4 subjects. First row: True T1
images, second row: true FA images, third row: synthetic FA images, fourth row: Dif-
ference of true and synthetic FA.
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(a) Experiment 1. (b) Experiment 2.

(c) Experiment 3.

Fig. 2. MSSIM results of FA and MD for Experiment 1, 2 and 3. Experiment 1: training
on 1000 subjects, 1 slice per subject, and test on 65 subjects, 1 slice per subject. The
mean MSSIM of synthetic FA and MD across subjects are 0.839 and 0.937, respectively.
Experiment 2: training on 1000 subjects, 1 slice per subject, and test on 65 subjects,
17 slices per subject. The mean MSSIM of synthetic FA and MD across slices are
0.818 and 0.940, respectively. Experiment 3: training on 1000 subjects, 17 slices per
subject, and test on 65 subjects, 17 slices per subject. The mean MSSIM of synthetic
FA and MD across slices are 0.861 and 0.948, respectively. Plots show that synthetic
MD images demonstrate higher accuracy compared to synthetic FA, and that using a
higher number of training slices mostly helps FA synthesis.

Figure 2(a) shows the MSSIM of synthetic FA and MD images for the 65
test subjects. MSSIM values showed high consistency among the different test
subjects. The mean±std intervals of the MSSIM are 0.839 ± 0.014 and 0.937 ±
0.008 for synthetic FA and MD images, respectively. The MSSIM results for
synthetic MD are higher compared to synthetic FA. This may be partly due
to that FA images contain richer structure information, thus it is more difficult
to synthesize (since FA is more non-linear than MD). Figure 2(b) and (c) show
the MSSIM of synthetic FA and MD images for the 17 slices. It can been that
the MSSIM result is sensitive to the slice position, and that a higher number
of training slices leads to higher MSSIM results for the synthetic FA and MD
maps.
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5.2 Non-linear Registration for Distortion Correction

EPI distortions can be corrected by the FSL function topup, for data acquired
with at least two phase encoding directions. However, it is hard to correct for EPI
distortions for data acquired with a single phase encoding direction. A potential
approach would be to generate a synthetic FA map from the undistorted T1
image, and then (non-linearly) register the distorted FA map to the undistorted
synthetic one. This transform can then be applied to all other diffusion scalar
maps. The FA map from EPI distortion corrected data (using topup) can be
regarded as the gold standard. We used FNIRT in FSL to perform the non-
linear registration. Figure 3 shows various FA maps for one test subject. The
FA map from the proposed approach provides a result which is very similar to
the gold standard. The benefit of our approach is that the scan time can be

(a) FA LR. (b) FA RL. (c) FA synthetic.

(d) FA LR registered. (e) FA topup.

Fig. 3. FA LR: FA map from data with left to right phase encoding direction. FA RL:
FA map from data with right to left phase encoding direction. FA synthetic: FA map
from CycleGAN. FA LR registered: FA LR non-linearly registered to synthetic FA. FA
topup: FA map from EPI distortion corrected data (seen as gold standard). The benefit
of using non-linear registration for distortion correction, instead of topup, is that the
scan time is reduced by a factor 2.
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reduced a factor 2, by acquiring data using a single phase encoding direction. It
is of course theoretically possible to register the distorted FA image directly to
the undistorted T1 image, but non-linear registration of images with different
intensity can be rather challenging.

6 Discussion

Translation between structural and diffusion images has been shown using Cycle-
GAN. The synthetic FA and MD images are remarkably similar to their ground
truth. Quantitative evaluation using MSSIM of 65 test subjects shows that the
trained CycleGAN works well for all test subjects, and that training using a
larger number of slices improves the results.

While the synthetic FA images appear realistic, the training of the GAN will
depend on the training data used. For example, if the GAN is trained using data
from healthy controls it is likely that the GAN will be biased for brain tumor
patients, and for example remove existing tumors [1].

Future research may focus on creating other diffusion-derived scalar maps
from more advanced diffusion models, such as mean apparent propagator (MAP)
MRI. In this work, we have only used 2D CycleGAN, but it has been reported
that 3D GANs using spatial information [8] across slices yield better mappings
between two domains (at the cost of a higher memory consumption and a higher
computational cost). A comparison study of image translation using 2D and 3D
GANs is thus worth looking into.
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