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Abstract. Traditional microscopes have been used a long time in hema-
tology for blood analysis, but during the last decade many laborato-
ries have started to replace them with digital microscope systems. The
appearance of blood cells in the digital images is very important to the
end user, ideally they should be identical to how they would look in a
traditional microscope. There are several digital microscope systems on
the market today with various optics and illumination, which means that
images from different systems do not look the same. This is a cumber-
some problem in many ways. For example this means cell classification
networks need to be trained for every single system. In this paper we
investigate the possibility of using deep learning to transform images
between digital systems. The main focus is on a cyclic network setup
where it is possible to transform the images between two systems. We
present two different networks, a cyclic network with a perceptual loss
based on the VGG-16 network and a conditional version of a cyclic gen-
erative adversarial network (GAN). With these networks we obtain very
good results that are better than previous methods for transforming
blood cell images.

Keywords: Deep learning · GAN · Color normalization ·
Blood cell images

1 Introduction

Modern health care is rapidly changing due to advances in artificial intelligence,
and hematology is no exception. Blood analysis is a common tool when screening
for different diseases and confirming diagnoses. The conventional way to analyze
blood is to run it through a so called cell counter and based on the results, if
needed, perform an in-depth analysis of the sample using a traditional micro-
scope. This is time consuming and requires a large number of highly trained
laboratory technicians. A more efficient way to analyze blood is to use a digital
microscope system. For the end user it is very important that digital images of
blood cells look like they would have in a traditional microscope. Digital images
that have not been processed in any way are called raw images, and depending
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on which system the image was captured with they can look quite different.
Two digital systems from CellaVision are used in this paper, the DM1200 from
their third generation of systems and the DM96 from their second generation of
systems. One of the major differences between them is the optics and the illu-
mination. The DM1200 has an LED lamp and the DM96 has a halogen lamp.
From now on the DM1200 will be called system X and the DM96 will be called
system Y. Figure 1 shows a raw image from system X and a raw image from
system Y.

(a) (b)

Fig. 1. Raw images from (a) system X and (b) system Y.

A raw image is not very similar to a microscope image. The process that
makes the raw image resemble the microscope image is called normalization. In
Fig. 2 a comparison between a raw image and a normalized image is shown. The
normalization algorithm first finds a representative background color and uses an
affine transform on the entire image to set this background to a predefined value.
The dynamic of the image is also changed, for example by increasing sharpness
and contrast in the image, especially in the nucleus of the cell, where also some
hue adjustments are made. Using this kind of normalization algorithm it is clear
that images from different systems cannot be normalized the same way because
we want the result to look the same. One solution is to tweak the normalization
algorithms so that each system has its own normalization process. It is however
very hard to obtain results that are similar enough. Today an algorithm called
Hedlund-Morell normalization (below called HM normalization) is used. The
main idea of HM normalization is to segment the image and apply different
transformations to different parts, see [4]. This works fairly well, but the result
is not entirely satisfactory. One problem with the HM normalization is that it
does not perform very well on certain cell types, especially those with red colors.
A better solution would be to transform images from one system to look like
they were captured with another system. Then it would be possible to use the
same normalization algorithm for all systems. Unfortunately the transformation
is not very simple and a global transformation does not work. The main reason
for the complexity of the problem is the different illumination in the systems.
An LED and a halogen lamp have different spectral characteristics which can
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lead to metameric failure [5]. Experts are often used to working with halogen
images and think they look better than LED images.

(a) (b)

Fig. 2. (a) Raw image. (b) Normalized image.

Digital systems often come with analyzing software that uses artificial intel-
ligence to perform different types of analyses. A differential count of white blood
cells (WBCs) is a common analysis. A differential count means counting a pre-
defined number of cells, classifying them into their cell type and the result is the
proportions of each cell type. One way to do the classification of the WBCs is
to use a neural network. Since training neural networks is time consuming and
requires large sets of data labeled by experts it is desirable to be able to use the
same network for images from several systems.

The aim of this paper is to develop a transformation, a color normalization,
between system X and system Y. This should not be confused with the nor-
malization process that makes a raw image look like it would in a microscope.
Our color transformation will be a neural network. The goal is that transformed
images from system X should be visually indistinguishable from images that
were captured with system Y. A secondary goal is that a cell classification net-
work should classify the transformed cell images the same way as their original
counterpart, thus eliminating the need to retrain the classification network. This
paper is based on a Master’s thesis [13].

2 Generative Adversarial Networks (GANs)

In 2014 Goodfellow et al. presented their article “Generative Adversarial Nets”
[2] where they introduce a framework consisting of two networks. One of the
networks is called the discriminator and is used to define a loss function. The
other network is called the generator and this is the network that produces
the results. During training the two networks will compete against each other,
hence the name “adversarial nets”. This paper deals with image transformation
so from now on it is assumed that the generator outputs an image. Given a set of
images the generator’s task is to produce images resembling these images. The
discriminator’s task is to decide if an image is from the real set of images or
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if it is a generated image. The discriminator is shown labeled examples of the
real images as well as images from the generator in order to learn the difference.
Then the generator tries to fool the discriminator by generating images which
are similar to the real images. The generator’s loss function is defined using the
discriminator, if the generated image is assigned a high probability of being real
then the generator’s loss is low and vice versa. The two networks are trained
alternately, competing against each other, forcing both networks to become bet-
ter and better. Figure 3 illustrates the GAN framework, the generator is called
G and the discriminator is called D. A simple application of a GAN would be
to use the well known MNIST dataset to generate images of handwritten digits.
For the case with blood cell images we want the generator to produce images
that looks like they were captured with system Y.

Fig. 3. Illustration of the GAN framework. It consists of two networks, the generator
and the discriminator. The input to the generator is a sample from some noise prior.
The output of the generator is passed along to the discriminator. The discriminator is
trained to separate fake samples from real samples and the generator is trained to fool
the discriminator.

For GANs the loss functions of the networks will not only depend on its own
parameters. Let xi and yi be samples from system X and Y respectively. The
discriminator will try to minimize
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but can only do so by manipulating its own weights, not the generator’s weights.
Similarly, the generator will try to minimize
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but can only do so by manipulating its own weights. This means training the
networks will be more like a game than a traditional optimization problem. The
solution will be a Nash equilibrium which is a local minimum of Ldisc with
respect to the weights of the discriminator and a local minimum of Lgen with
respect to the weights of the generator [3].

The original GAN gives no control over what type of image is being generated,
it just generates an image that looks like it came from the real set of images. In
our case we want to transform the content of an image from system X so that it
looks like it was captured with system Y, but the generator would just generate
an image that looks like it came from system Y with no regards of the content.
To be able to condition the generator on some information Mirza et al. created
the conditional GAN in 2014 [9]. In the MNIST case this additional information
could simply be what digit the generator should produce. In the case of cell
images the generator is conditioned on the image from system X. The generator
is not allowed to change the shape or structure of the cell in the image, so we do
not send any noise which gives us a deterministic transformation from system X
to system Y.

3 Cyclic GANs

A cyclic version of the GAN called cycleGAN is original work by Zhu et al. [15].
In 2017 they proposed a new type of framework which goal was to transform
images between two different domains, without the need of paired data. Figure 4
illustrates the framework. It consists of two generators, G and F , and two dis-
criminators, Dx and Dy. Generator G is a mapping from domain X to Y and
generator F is a mapping from domain Y to X. Discriminator Dx is trained to
separate true images from domain X from fake ones i.e. images transformed by
generator F from domain Y. Dy is trained in a similar fashion but on images
in domain Y. By sending an image through both generators it is possible to
explore a loss based on the difference of the input and the output of the full
cycle. Figure 5 illustrates the idea. The networks are trained to minimize this
loss, called Lcycle defined in (3). This loss combined with the discriminators
is the backbone of this framework. The authors do however experiment with
using this loss in combination with another loss function, called Lidentity. It is
defined as (4) and ensures the generators manage to perform identity mappings.
If G is given an image from domain Y it should preferably output the same
image that was given as input. Same argument with generator F if given input
from domain X. By introducing this loss they could improve the colors of the
transformed images.

Lcycle = ‖y − G(F (y))‖1 + ‖x − F (G(x))‖1 (3)

Lidentity = ‖y − G(y)‖1 + ‖x − F (x)‖1 (4)
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Fig. 4. Overview of the cycleGAN framework.

Fig. 5. Image describing the idea of a forward cycle loss. A sample from domain X
is sent through both generators and is then evaluated how much in l1-norm it differs
from the input.

4 Perceptual Losses

Imagine an image where every other column is black and the other columns are
white, like a zebra pattern. Suppose this is the target image for the generator.
If the generator would produce an image that has the same zebra pattern as the
target image, but shifted one column, then it has clearly captured the content
of the image. Assuming the application is not very sensitive to shifts then this
is a very good result, and the loss function should reflect that. In this case loss
functions like the l1-loss, which is the l1-norm of the difference of the images, are
bad choices since they do not capture perceptual differences between images. The
l1-loss between the target image and the generated image would be the highest
possible value, despite the fact that the generator actually has captured the
stylistic features of the image.

A perceptual loss function can be defined by using a pre-trained classification
network. These kinds of losses have been used in many different applications, for
example removing visual signs of rain and snow [14], generating an image with
higher resolution than the original image [8] and to combine the content of one
image with the style of another [7]. All of these applications have a loss function
that uses the output from an intermediate layer of a pre-trained classification
network. It is a type of loss function which has proven to give high quality
images. Figure 6 shows an illustration of this loss with the VGG network [12]
as the pre-trained network. The idea is to send the generated image as well as
the target image through the classification network and compare higher level
features. Some intermediate layer φj is chosen as the output layer. This drives
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the generator towards producing images with similar feature representation as
the target images [14]. One way to define the actual loss is to take some norm
of the difference between the feature representations. In [7] they make use of the
Gram matrix to define a perceptual loss that captures stylistic features of the
image.

Fig. 6. Illustration of the idea of having a perceptual loss function based on a pre-
trained network, in this case VGG.

5 Methodology

5.1 Pre-processing of Data

Data was augmented by rotating some of the images 90◦, 180◦ and 270◦. The
rotated images look exactly like real data since there is no specific way a cell is
positioned on a slide. Our data consists of 9810 cells that were captured with both
system X and system Y and then paired and cropped in order to match as closely
as possible pixel-wise. The number of each cell type in our data is approximately
the same. The data was split into a training set (80%), a validation set (10%)
and a test set (10%).

5.2 Conditional CycleGAN (ccGAN)

We have tried a conditional version of the cycleGAN which we call ccGAN (short
for conditional cycleGAN). The difference from the original cycleGAN is that
we define a loss function (5) that uses paired data. The complete loss function
(6) for one generator in ccGAN consists of a loss coming from the discriminator
(2), the cycle loss (3), the identity loss (4) and the paired loss (5), where the λi’s
are the weights of the loss functions. In our training we used λ1 = 1 and λi = 10
for i = 2, 3, 4. The choice of λ’s was based on experiments where we got better
results when focusing less on the loss coming from the discriminator.

Lpaired(xp, yp) = ‖yp − G(xp)‖1 + ‖xp − F (yp)‖1 (5)

Ltot = λ1Lgen + λ2Lcycle + λ3Lidentity + λ4Lpaired (6)
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5.3 Perceptual Cycle Network (pcNet)

We have defined a new framework called a perceptual cycle network (pcNet) and
it is based on the cyclic idea from the cycleGAN and a perceptual loss based
on the VGG network. We only keep the cyclic part from the cycleGAN, i.e. two
generators but no discriminators. The pre-trained VGG-16 network is also used,
but it is not part of the training in the sense of getting its weights updated,
it only serves as an evaluation network for the perceptual loss function. In this
implementation φj (an intermediate layer in VGG-16) is extracted after the fifth
max-pooling layer, see Table 1 in [12] for a full overview of the VGG-16 network.
In Fig. 7 the setup of the framework is shown. The loss function which generator
F is trained against is defined in (7) where the λi’s are the loss weights. The loss
for generator G is constructed in a similar way. The cycle loss, identity loss and
the paired loss are the same as for the ccGAN. The loss Lfeat defined in (8) is
the feature reconstruction loss using the Gram matrix from [7]. For this network
we used the same loss weights for all losses, λi = 10 for i = 1, 2, 3, 4.

Ltot = λ1Lcycle + λ2Lidentity + λ3Lpaired + λ4Lfeat (7)

Lfeat(xp, yp) = ‖Gφ
j

(
F (yp)

) − Gφ
j (xp)‖2F (8)

Fig. 7. Cyclic network with two generators and no discriminators.

5.4 Network Architectures

Generator. The architecture of all generators are the same, it is inspired by the
Pix2Pix paper [6] where they use a network based on the U-Net [11]. Figure 8
shows an overview of the architecture. The skip connections make it possible
to share information between layers which is very common in image mapping
when the input image shares structure with the target image. The generator
consists of encoding blocks and decoding blocks. An encoding block consists of
a convolution followed by a batch normalization and a Leaky ReLU activation
function. The size of the convolution kernel is 5×5 and the stride is 2. A decoding
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block starts with upsampling, then a transposed convolution, a batch normal-
ization followed by a ReLU activation function. A disadvantage of transposed
convolutions is that artifacts such as checkerboard patterns can appear when
the kernel size and stride do not match [10]. In our generator we have separated
the transposed convolution with stride 2 into an upsampling process followed
by a transposed convolution with stride 1. Our generator has approximately 20
million parameters which is almost twice the size of our discriminator.

Fig. 8. Illustration of the generator architecture. The number in each block is the
number of filters in the convolution layer.

Discriminator. The generators in the ccGAN are never trained solely against
the discriminators, the total loss function is a combination of norm-based losses
between two images and the loss given by the discriminator. The losses based on
norms are good at capturing low frequency data, but might have problems with
more general stylistic features of an image. The idea is that the discriminator
will encourage the generation of high frequency information in the images by
penalizing lack of high frequency data. A discriminator called “PatchGAN” was
proposed in [6] and it has a receptive field of 70 × 70 pixels, small “patches”.
Each patch should capture the local style of the image. The output from the
discriminator is the average of the result of the evaluation of each patch being real
or fake. Our patch discriminator has about 11 million parameters and consists
of 5 blocks that start with a convolutional layer, then a batch normalization
followed by a Leaky ReLU activation. The convolutions have kernel size 4 × 4
and the stride is 2 for the first 3 blocks and 1 for the last 2 blocks. There is
no batch normalization for the first and last block. The final activation function
before the mean layer is a sigmoid instead of a Leaky ReLU. Figure 9 shows a
simple illustration of our discriminator.
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Fig. 9. Illustration of the discriminator architecture. The first blocks are regular con-
volution - batch normalization - Leaky ReLU blocks. The last block has a sigmoid
activation function and a mean layer. The number in each block is the number of
filters in the convolution layer.

5.5 Additional Training and Implementation Details

The frameworks used were Tensorflow and Keras. Both networks were trained
for 50000 iterations with a batch size of 4 for the ccGAN and a batch size
of 2 for the pcNet. The optimizer was Adam with a learning rate of 0.0002,
otherwise default Keras parameters [1]. All the training was performed on an
NVidia GeForce GTX 1080 Ti GPU. Every iteration of training of the ccGAN
starts with training the discriminators, then the weights of the discriminators
are frozen and each generator is trained while the other generator’s weights are
frozen. The pcNet is trained in a similar fashion, but since it does not have any
discriminators it just consists of alternately training each generator.

6 Results and Conclusions

The results obtained in this paper are satisfactory and better than previous
methods. It is very hard for a person to see any differences between a transformed
image and its original counterpart. It is even harder to decide if an image is real
or transformed when shown a single image. One problem with human evaluation
is that it is subjective, but it is hard to come up with a metric that measures the
important characteristics of this type of image. Popular metrics like PSNR (peak
signal-to-noise ratio) and SSIM (structural similarity) do not seem to correlate
with how good a person thinks the images are. The goal is however that the user
should not be able to distinguish between transformed and real images and we
think we have achieved that. Figure 10 shows a comparison of the two different
networks. Experts think that pcNet is slightly better than ccGAN, but both are
better than the current method.

The current method used is the HM normalization. Since the HM normaliza-
tion does not only transform the image, it also normalizes it, we had to normalize
our transformed images to be able to compare. Figure 11 shows the same images
as Fig. 10 but normalized. The structure of the HM normalized cells are very
good, but the colors could be better, especially for the cell type eosinophils
(the cell type in the first row). Our transformation takes approximately 300 ms
on a CPU (Intel Core i7-7700 at 3.60 GHz) and 10–20 ms on a GPU (NVidia
GeForce GTX 1080 Ti). The advantage of the HM normalization compared to
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Fig. 10. Comparison of all networks with different raw cell images from the test set.

Fig. 11. Comparison of all networks with different normalized cell images from the test
set.
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our networks is that it is a lot faster, which of course is very important when
implementing it in an actual system.

A cell classification network was used to classify both real images and their
transformed counterpart. We do not necessarily care whether the classification
is correct or not, the goal is that the real images and the transformed images
are classified as the same cell type. This evaluation was performed by using
981 image pairs. The results were 88.6% of the pairs were classified the same for
pcNet and 85.2% were classified the same for ccGAN. These results do agree with
the experts visual evaluation of the network. To improve classification further it
could be possible to use a layer from CellaVisions actual classification network
instead of or in combination with VGG to define a perceptual loss.
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