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Abstract. Spherical Harmonics (SPHARM), when computed from hip-
pocampus segmentations, have been shown to be useful features for dis-
criminating patients with mild cognitive impairment (MCI) from healthy
controls. In this paper we use this approach to discriminate patients with
temporal lobe epilepsy (TLE) from healthy controls and for the first time,
we aim to discriminate TLE patients from MCI ones. When doing so,
we assess the impact of (i) using three different automated hippocam-
pus segmentation techniques and (ii) three human raters with different
qualification providing manual segmentation labels. We find that (only a
fusion of) the considered automated segmentation tools deliver segmen-
tation data which can finally be used to discriminate TLE from MCI,
but for discriminating TLE from healthy controls automated techniques
do not help. Further, the qualification of human segmenters has a deci-
sive impact on the outcome of subsequent SPHARM-based classification,
especially for distinguishing TLE from healthy controls (which is obvi-
ously the more difficult task).

Keywords: TLE · MCI · Spherical Harmonics ·
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1 Introduction

Mild cognitive impairment (MCI) is a condition of cognitive deterioration that
is difficult to classify as normal aging or as a prodromal stage to dementia.
Neuropsychological tests alone are highly valuable but not sufficient to determine
MCI or early stages thereof, since they are not sensitive enough for patients with
subjective complaints and no significant and clinically detectable deficits [33].
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Further, the diagnosis of temporal lobe epilepsy (TLE) was, and still cur-
rently is, based on clinical assessment and electro-encephalographic (EEG) exam-
ination, which is sometimes inconclusive [31].

However, both diseases, i.e., MCI as well as TLE, need to be treated and
handled adequately, in order to prevent massive memory decline or risks due
to seizures [7]. MCI and TLE occur also as a co-morbid disease, when patients
with MCI encounter seizures; moreover, the presentation of cognitive disorders
in the elderly warrants a differential diagnosis of MCI or TLE, since seizures
can mimic confusional episodes of MCI or Alzheimer’s Disease without visible
seizure activity with scalp electroencephalography [23]. Treating these seizures
can restore cognitive functioning of these patients. However, diagnostics based
on invasive electroencephalography bear significant risk and costs.

From a structural point of view, the hippocampus is an area of the brain
that links MCI and TLE as it has been found that both diseases affect the hip-
pocampal structure in some way [14]. It is therefore worth evaluating techniques
for the diagnosis of these conditions that are based on distinctive features of this
brain structure. Segmentation of the hippocampi is, of course, a prerequisite for
such approaches. The hippocampus is atrophic in mild cognitive impairment and
dementia [11], and it is sclerotic in specific subtypes of epilepsy [28], specifically
in TLE. Thus volumetry alone is not sufficient for a discrimination which calls
for shape-based features to be investigated.

For structural characterisation, the amount of time it takes an expert to seg-
ment the hippocampus is a significant obstacle. In a high-resolution magnetic
resonance image, a specialist has to trace the contour of the formation in each
slice and review the result in several dimensions. Even after a certain training,
this might still take about up to one hour per hippocampus - i.e. two hours per
patient. This motivates the use of automated segmentation techniques. A large
variety of techniques and algorithms for automated hippocampus segmentation
have been published over the last years, some of them targeted to specific dis-
ease or deformation classes (see e.g. [2,10,17,20,29,30,34,35,39,40]). The classi-
cal state-of-the-art algorithms for automated hippocampus segmentation [5,24]
are based on multi-atlas segmentation (MAS [15]), with recent upcoming deep
learning-based techniques (e.g. [36] – see also [1] for a review on deep learning-
based brain MRI segmentation techniques).

Interestingly, in a recent large-scale study on algorithms for computer-aided
diagnosis of dementia based on structural MRI [4], 6 out of 15 considered tech-
niques (including the best performing algorithms) still relied on FreeSurfer seg-
mentations (see Sect. 3) which is the majority of algorithms based on segmen-
tation in this comparison. This massive employment of FreeSurfer in large-scale
studies, although not any more being considered as state-of-the-art, underpins
the need for publicly available and easy-to-use segmentation tools. This also
holds true for the upcoming deep learning-based tools. Recent work [26] also
demonstrates that employing publicly available and cost free segmentation tools
were not able to reproduce MCI vs. control group classification results relying
on a custom (private) hippocampus segmentation tool [13].
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In this paper, we closely follow a shape-based approach originally used to dis-
tinguish hippocampi affected by MCI from those of a healthy control group by
employing spherical harmonics coefficients (SPHARM) as potentially discrimi-
nating features [13,26,32]. However, as major original contribution, we investi-
gate if this approach is suited to differentiate hippocampi affected by TLE from
(i) those affected by MCI (which has never been investigated at all with any
technique) and from (ii) those of a healthy control group, respectively (which
has been done relying on manual segmentations only [9,18,19,21]). In this con-
text, we investigate the impact of using different hippocampus segmentation
approaches: Three cost-free and pre-compiled out-of-the-box hippocampus seg-
mentation software packages as well as three segmentations independently con-
ducted by human raters with different qualifications (the availability of which
can be considered an extremely rare asset). This work discriminates itself from
our earlier work [27] by not relying on the two hippocampi separately, thus not
looking into lateralisation effects, leading to larger datasets and thus increased
statistical result significance.

Section 2 briefly explains how we obtain SPHARM coefficients used to com-
pose feature vectors subject to subsequent classification. In Sect. 3, we first
explain the experimental setup in detail, specifically including the hippocam-
pus segmentation variants and SPHARM coefficient selection strategy employed.
Subsequently, classification results are shown and described. Section 4 concludes
the paper by discussing the observed results.

2 Spherical Harmonics Descriptors in Structural MCI
Characterisation

The features used for classification are based on Spherical Harmonics
(SPHARM). These are a series of functions which are used to represent functions
defined on the surface of a sphere. Once a 3D object has been mapped onto a
unit sphere, it is also possible to describe that object in terms of coefficients for
the basis function of SPHARM. In other words, the SPHARM coefficients can
be used a shape descriptors. In this work we follow the approach described in
[3] in order to obtain coefficients for the hippocampi voxel volumes.

Once a voxel volume for a hippocampus has been obtained, either by auto-
matic or manual segmentation, we first fix the topology of the voxel objects.
This is necessary since, in order to map a 3D object to a sphere, the respective
voxel object must exhibit a spherical topology. Moreover, the voxel dimensions
are adjusted to obtain isotropic voxel. Since the voxel volumes resulting from
MRI scans yield voxels with a size depending on the scan parameters (i.e. often
non-isotropic), we resample the data such that we end up with voxel cubes each
having a side length of 1 mm. Sometimes the segmented data consists of one
large, and two or more disconnected smaller voxel compounds, respectively. In
such a case we determine all voxel compounds and remove all but the largest
one. This step removes small spurious voxel masses which occur quite frequently
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especially in manual segmentation and hinder a mapping of the voxel object to
a sphere.

Based on the resampled and fixed voxel volumes, we generate 3D objects.
While other implementations create objects based on triangular faces, we
decided to use quadriliterals since these more naturally correspond to voxels (see
Fig. 1(a)). The 3D objects are then mapped onto a unit sphere during the initial
parameterisation, which is followed by a constrained optimisation (described in
more detail in [3]). The optimised parameterisation is then used to compute the
SPHARM coefficients (see Fig. 1(b) and (c)).

Fig. 1. Basic principle visualised.

Fig. 2. The process of re-aligning the hippocampus. (a) original orientation (SPHARM
reconstruction up to degree 15), (b) the same reconstruction but only to degree 1, (c)
same as (b) but re-aligned to axes, and (d) the final object, same as (a) but re-aligned
to axes.

We are mainly interested in shape differences and thus we want to ignore
orientation differences which are found e.g. in malrotated hippocampi. Instead of
using e.g. rotation invariant SPHARM representations [16] we resort to a classical
alignment procedure, as invariant representation sometimes suffer from a lower
extent of discriminativeness. For alignment, we compute a reconstruction of the
hippocampus object up to SPHARM degree 1 (based on a triangulated sphere).
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This results in an ellipsoid which is aligned with the main orientation of the 3D
object. Using PCA we determine the principal axes of the ellipsoid and rotate the
object such that all hippocampal volumes are always in the coordinate system
of the principal axes (i.e. co-aligned). After the re-alignment we recompute the
SPHARM coefficients up to degree 15 for each re-aligned object and use them for
the subsequent classification process. Figure 2 shows the process of re-aligning a
hippocampal 3D object.

Computing SPHARM coefficients up to degree J , we obtain a total of N
complex coefficients per hippocampus, where N is computed as

N = 3 ∗ (J + 1)2. (1)

Extracting SPHARM coefficients up to degree 15 we end up with 768 coefficients
per hippocampus. We have used a custom MATLAB implementation following
the SPHARM-PDM code (https://www.nitrc.org/projects/spharm-pdm).

The final feature vectors Fi available for the feature selection process are
composed of the absolute coefficient values for the left and right hippocampi:

Fi = (|Cl
i,1|, . . . , |Cl

i,N |, |Cr
i,1|, . . . , |Cr

i,N |), (2)

where Cl
i,n and Cr

i,n denote the n-th coefficient for the left and right hippocampus
of subject i, respectively. These feature vectors contain 1536 coefficients in total
out of which subsets can be selected for actual classification.

3 Experiments

3.1 Experimental Settings

Data. In this work we use 58 T1-weighted MRI volumes, a data set that has
been acquired at the Department of Neurology, Paracelsus Medical University
Salzburg, including patients with mild cognitive impairment (MCI, 20 subjects),
temporal lobe epilepsy (TLE, 17 subjects), and a healthy control group (CG, 21
subjects). These data are a subset of a larger study [25]. We defined patients with
amnestic MCI according to level three of the global deterioration scale for aging
and dementia described by [12]. Diagnosis/ground truth w.r.t. MCI and TLE
was based on multimodal neurological assessment, including imaging (high reso-
lution 3 T magnetic resonance tomography, and single photon emission computed
tomography with Hexamethylpropylenaminooxim), electroencephalography, and
neuropsychological testing.

Hippocampus Segmentations. Manual segmentations have been performed
by 3 experienced raters (one senior neurosurgeon – Rater1 – and two junior
neuroscientists supervised by a senior neuroradiologist – Rater2 & Rater3) on
a Wacom Cintiq 22HD graphic tablet device (resolution 1920 × 1200) using a
DTK-2200 pen and employing the 32-bit 3DSlicer software for Windows (v.
4.2.2-1 r21513) to delineate hippocampus voxels for each slice separately. The

https://www.nitrc.org/projects/spharm-pdm
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raters independently used consensus on anatomical landmarks/boarders of the
hippocampus based on Henry Duvemoy’s hippocampal anatomy [22]. The pro-
cedure used was to depict the hippocampal outline in the view of all planes in
the following order: sagittal – coronal – axial with subsequent cross line control
through all planes.

For automated hippocampus segmentation, in contrast to most of the algo-
rithms presented in literature, e.g. [40], all three employed hippocampus segmen-
tation software packages are already pre-compiled and available for free [25]:

FreeSurfer(FS)1 is a popular set of tools which allow an automated labelling
of subcortical structures in the brain [10]. Such a subcortical labelling is obtained
by using the volume-based stream which consists of five stages [10]. The result
is a label volume, containing labels for various different subcortical structures
(e.g. hippocampus, amygdala, and cerebellum). FreeSurfer is a highly popular
tool in hippocampal analysis to assess clinical hypotheses [6,17,20,35,38] or
to compare to newly proposed segmentation techniques (e.g. [29,30,40]). The
winning algorithm in a recent large-scale study on algorithms for computer-aided
diagnosis of dementia based on structural MRI [4] was based on FS segmentation,
as well as 5 other out of 15 considered techniques in this work.

AHEAD (Automatic Hippocampal Estimator using Atlas-based Delineation2)
is specifically targeted at an automated segmentation of hippocampi [34] and
employs multiple atlases and statistical learning method. After an initial rigid
registration step, a deformable registration is carried out using the Symmetric
Normalisation algorithm. From the result of these steps, the volume is normalised
to the atlas. The hippocampus segmentation from the atlas is then warped back
to the input volume. Based on multiple atlases and a statistical learning method,
the final segmentation is obtained.

Although BrainParser(BP )3 is usually able to label various different subcor-
tical structures, we use a version of BrainParser which is specifically tailored to
hippocampus segmentation. After re-orienting the input volume to the coordi-
nate system of the included, pre-trained atlas, skull stripping is performed. This
is followed by computing an affine transform between the input volume and the
reference brain volume. Then a deformable registration between the input and
the reference volume is carried out. Then, according to the trained atlas, the
input volume is labelled.

We also fuse the segmentation results using voxel-based majority voting
(abbreviated M.V. in the results – a voxel is active in the fused volume if at
least two raters or segmentation tools marked that voxel as belonging to a hip-
pocampus) and STAPLE [37] (abbreviated as STA). Since for human raters there
is hardly a difference between majority voting and STAPLE, the latter results
are not shown.

1 v. 51.0, available at http://surfer.nmr.mgh.harvard.edu.
2 v. 1.0, available at http://www.nitrc.org/projects/.
3 available at http://www.nitrc.org/projects/.

http://surfer.nmr.mgh.harvard.edu
http://www.nitrc.org/projects/
http://www.nitrc.org/projects/
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Feature Selection, Classification, and Evaluation Protocol. Features
used for actual classification are selected from the feature vectors Fi accord-
ing to the degree J of their coefficients. The strategy “CumulaJ” selects all
coefficients with degree ≤ J . Thus, for example, according to Eq. 1 for J = 5,
Cumula5 employs 108 coefficients of degrees J = 1 . . . 5.

For the classification of the features we use the Support Vector Machines
(SVM) classifier [8] with a linear kernel. The choice for this classifier has been
made since the classifier is known to be able to cope very well with high-
dimensional features. However, this classifier does not guarantee that a large
feature set containing a smaller one exhibits better classification when trained
with the larger feature set compared to the smaller one.

To come up with classification accuracy estimation, we apply leave-one-out-
cross-validation (LOOVC) for the feature vectors.

3.2 Experimental Results

Tables 1 and 2 display the overall classification accuracy in percent for our test
data set. Results are shown up to J = 7. Depending on the underlying seg-
mentations, for higher values of J , classification accuracy either decreases (for
the automated techniques and low quality human segmentations) or does not
increase any more (for high quality human segmentations).

The first impression of the results to discriminate TLE from CG (Table 1) is
that there are no bold numbers in the left half of the table, i.e. the employment of
automated segmentation tools does not lead to any decent classification results
using the considered SPHARM approach and most results are hardly superior
to random guessing.

Table 1. Classification results: temporal lobe epilepsy (TLE) vs. healthy control group
(CG) (overall accuracy ≥ 75% in bold).

Automated segmentation Human segmentation

STA M.V AHEAD BP FS M.V Rater1 Rater2 Rater3

Cumula1 55.6 55.3 67.5 56.4 56.4 53.9 66.7 43.6 51.3

Cumula2 50.0 31.6 47.5 56.4 43.6 59.0 79.5 66.7 64.1

Cumula3 50.0 52.6 52.5 46.2 38.5 64.1 76.9 61.5 66.7

Cumula4 47.2 36.8 62.5 66.7 41.0 66.7 79.5 46.2 51.3

Cumula5 50.0 42.1 42.5 64.1 48.7 64.1 79.5 64.1 53.9

Cumula6 61.1 60.5 42.5 69.2 43.6 74.4 79.5 43.6 76.9

Cumula7 47.2 57.9 47.5 71.8 43.6 69.2 82.1 53.9 74.4

Looking at the results of applying individual automated segmentation tools,
BP is clearly the best technique with increasing classification rates for increasing
J (which indicates that also coefficients representing finer detail are still useful),
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while FS and AHEAD based results are on a comparable level and worse than
BP. Applying Majority Voting (M.V.) or STAPLE (STA) to the individual seg-
mentations does not really help, indicating that these are too different to benefit
from fusion strategies.

The situation is different for the results when basing SPHARM classification
on human rater segmentations. There is a clear trend that Rater1, being the
most qualified human rater, provides segmentations that lead to sensible classi-
fication results (increasing up to 82% for J = 7). Rater3 achieves some useful
results as well, but lower (≤77%) and for J = 6, 7 only, while Rater2 stays below
67%. Overall, the differences among the human raters in terms of achieved clas-
sification accuracy are considerable and applying fusion techniques does not lead
to useful results (i.e. better than Rater2 and Rater3 in most settings, but clearly
inferior to the Rater1 results).

Table 2. Classification results: temporal lobe epilepsy (TLE) vs. mild cognitive impair-
ment (MCI) (overall accuracy ≥ 75% in bold).

Automated segmentation Human segmentation

STA M.V AHEAD BP FS M.V Rater1 Rater2 Rater3

Cumula1 80.6 84.2 73.7 57.9 52.6 75.7 56.8 70.3 62.2

Cumula2 75.0 71.1 68.4 63.2 65.8 67.6 81.1 70.3 81.1

Cumula3 75.0 60.5 71.1 42.1 60.5 56.8 81.1 81.1 73.0

Cumula4 72.2 79.0 65.8 50.0 60.5 59.5 83.8 70.3 67.6

Cumula5 63.9 57.9 73.7 47.4 65.8 62.2 81.1 75.7 62.2

Cumula6 55.6 68.4 68.4 42.1 65.8 62.2 86.5 81.1 62.2

Cumula7 52.8 65.8 71.1 44.7 63.2 56.8 83.8 78.4 70.3

Considering the results to discriminate TLE affected hippocampi from those
affected by MCI (see Table 2), we see a different picture. Automated segmen-
tation tools at least deliver useful segmentations for classification when fusion
techniques are applied (for small values of J only, again indicating that only
coarser details contribute useful information for classification). Also the relation
among the individual tools is different, with the clear ranking as AHEAD best,
followed by FS, and BP worst (note that this is almost inverse to the classifica-
tion task before).

Concerning manual segmentations, we notice a somewhat similar behaviour
as before. Again, Rater1 (with the highest qualification) is the best, while for
this classification task, segmentations of Rater2 also lead to quite decent classi-
fication results for higher values of J . Except for J = 2, Rater3 segmentations
are the worst. Again, fusion of human segmentation results does not reach the
classification results of the individual segmentations, except for J = 1 (but on a
moderate level).
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4 Discussion and Conclusion

The obtained results indicate that discriminating TLE patients from healthy con-
trols is far more difficult that discriminating TLE patients from MCI patients.
In the former case, only human segmentation (and only that provided by the
most qualified human rater) leads to SPHARM coefficients that can be used
to discriminate the two classes with reasonable accuracy. In this case, contrast-
ing to the case of discriminating MCI affected patients from healthy controls
[26], also applying fusion among the human segmentations does not work prop-
erly (obviously the segmentations are too different to benefit from fusion [25]).
For discriminating TLE patients from healthy controls, the considered auto-
mated segmentation tools do not lead to sensible classification results under
the employed SPHARM-methodology, neither applied individually, nor under
fusion techniques (which might also explain the non-existence of corresponding
publications).

The situation is different for the second case (i.e. discriminating TLE patients
from MCI patients). While employing individual automated tools does not work,
fusing the corresponding segmentations and using the lower order SPHARM
coefficient for classification is successful. Obviously, the shape difference is so
fundamental, that it is reflected in the coarse grain SPHARM details of the
automated tools segmentations’ in some complementary manner. The best qual-
ified human rater’s segmentations again lead to best classification results, but
also the two other human raters achieve useful accuracy for some settings. Thus,
the fundamental differences are also grasped by the less qualified human raters
segmentations. As in the first case, human segmentations seem to be too different
to provide useful results under fusion (see also [25] for corresponding segmenta-
tion result analysis confirming this assumption).
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