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Abstract. Prominent changes in sulcal morphology and cortical thick-
ness characterize the neurodegeneration in Alzheimer’s disease (AD). A
combination of these measures has a potential of predicting AD and
distinguishing it from mild cognitive impairment (MCI) and cognitively
normal control subjects (CN). The purpose of this study was to propose
a machine learning and pattern recognition approach of combining sulcal
morphology features and cortical thickness measures as biomarkers for
AD. Sulcal features (depth, length, mean and Gaussian curvature, sur-
face area) and cortical thickness measures were extracted from 241 T1
MRI scans from ADNI database (81 AD, 75 MCI, 85 CN). SVM classi-
fiers provided the highest accuracy of 95.0%, 93.0% sensitivity, and 97.0%
specificity (AUC of 0.95) when classifying CN and AD. The majority of
the features were located in the left hemisphere, which in AD is reported
to be more severely affected by atrophy, and to lose gray matter faster
than the right. Results indicate that a combination of sulcal and cortical
features provides high classification results, which are competitive with
the state-of-the-art techniques.

Keywords: Pattern recognition · Alzheimer’s disease · SVM ·
Morphology · Feature extraction

1 Introduction

Computer-assisted diagnosis and prognosis for brain disorders has always been
of great interest in Alzheimer’s disease (AD) [1]. AD, a progressive, neurode-
generative disorder, is characterized by structural brain changes, leading to a
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gradual loss of cognitive functions [2]. Mild cognitive impairment (MCI) is an
intermediate condition between normal ageing and dementia, distinguished by
a cognitive decline greater than expected for a patient’s age and level of educa-
tion, but which does not interfere with the patient’s daily life activities [3]. Some
MCI patients do not convert to AD, and some even return to normal over time,
but there is always a significant risk of AD conversion. In fact, more than half
of MCI individuals do convert within 5 years [3]. MCI is therefore considered a
substantial risk factor for AD.

Distinguishing MCI and cognitively normal (CN) controls from AD with
intent to predict its onset or conversion has in recent years received a great
amount of interest [4–9]. Multiple structural biomarkers, derived from magnetic
resonance imaging (MRI), such as decreases in cortical thickness, in gray and
white matter or subcortical volumes, have been extensively investigated for that
purpose [10–12]. Multimodal studies involving various biomarkers, such as MRI
or positron emission tomography (PET), resulted in high results for distinguish-
ing between AD, MCI, and controls [10,13]. Recent studies using deep learning
approaches to brain imaging analysis have also obtained promising results within
brain disorder diagnosis and prognosis [9,13,14].

The neuroanatomical abnormalities in AD have also been demonstrated to
be reflected in the morphology of cortical sulci (Fig. 2a). They are considered
as boundaries between various functional areas of the brain and are therefore
related to its functional organization. Sulcal morphology is a promising neuro-
logical biomarker in AD and MCI [16–19]. Increase in sulcal widths [15–17] and
reductions in depth [16,19] have been observed in AD as a result of gray matter
atrophy, when compared to normal ageing.

In this paper we postulated that a machine learning and pattern recognition
approach involving a combination of sulcal and cortical features would result
in higher AD classification results than if these features were used separately
from each other. We hypothesized that these measures would be discriminative
in classifying early MCI and AD, and that they would differ in their sensitivity
in detecting the varying levels of brain atrophy in the elderly control subjects,
in the early MCI subjects, and in advanced AD. Finally, we demonstrate the
results of using either sulcal morphology or cortical thickness individually to
distinguish between MCI, AD, and CN.

2 Methods

Sulcal and cortical features were extracted from T1-weighted MRI scans and
used for classification of AD subjects from CN and MCI subjects, in a process
illustrated on Fig. 1, using linear and Gaussian support vector machines (SVM).
Additionally, we individually tested the classification performances of only sulcal
features, as well as only cortical thickness features.
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2.1 Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Principal
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emission tomogra-
phy (PET), other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD).

Fig. 1. Classification workflow: cortical sulci and cortical thickness measures were
extracted from T1-weighted MR images to compute and select the most discriminating
features for classification of AD and early MCI from CN.

241 1.5T pre-processed T1-weighted magnetization-prepared rapid gradient
echo (MP-RAGE) MRI scans of 85 CN, 75 MCI, and 81 AD subjects were
acquired from the database. The demographics distribution for the three sub-
ject groups is presented in Table 1. The general inclusion/exclusion criteria were
as follows: CN : Mini-Mental State Exam (MMSE) score between 24 and 30
(inclusive), Clinical Dementia Rating (CDR) of 0, non-depressed, non-demented,
with no MCI. MCI : MMSE between 24 and 30 (inclusive), CDR of 0.5, gen-
eral cognition and functional performance sufficiently preserved, negative AD
diagnosis. AD : MMSE score between 20 and 26 (inclusive), CDR of 0.5 or 1.0;
NINCDS/ADRDA criteria for probable AD.

Table 1. Demographic characteristics of CN, MCI, and AD subjects. The age, MMSE,
and CDR scores are represented as mean and standard deviations.

CN MCI AD

Number 85 75 81

Male/Female 47/38 38/37 40/41

Average age (years) 76.1± 5.0 76.5± 6.8 77.8± 7.5

MMSE (score) 29.0± 1.1 26.5± 1.6 19.3± 5.3

CDR 0.0± 0.0 0.5± 0.0 1.3± 0.6

http://adni.loni.usc.edu
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2.2 Sulcal and Cortical Feature Extraction

The T1-weighted MR images were first normalized and resampled to 1 mm3

voxels in SPM12 (Statistical Parametric Mapping software package for analy-
sis of brain imaging data sequences). Then, cerebral sulci were extracted from
the images using Morphologist 2013 pipeline included in the BrainVISA 4.4.0
software platform [20]. BrainVISA is a fully automatic anatomical segmentation
pipeline, which produces a triangular mesh of the inner cortical surface of each
brain hemisphere. Sulcal features were computed and extracted from 24 sulci in
MATLAB R2018b, both the left and the right hemisphere from each of the 241
subjects (Fig. 3). Cortical thickness was computed in FreeSurfer (version 5.3.0).
Thickness was computed as the average distance between the white matter and
the pial surfaces (blue and green outlines, respectively Fig. 2b), along the normal
vectors. In order to compute the sulcal morphology features, a medial surface was
computed for every sulcus, in a process previously described in detail in our previ-
ous work [19]. In brief, sulcal meshes were computed as sets of three-dimensional
vertices. Then we computed medial surfaces from sulcal meshes, consisting of a
ridge and a fundus, as well as the set of new vertices located between the two
faces of a sulcal mesh. For each sulcus, the following medial surface features were
computed: length, mean depth, mean curvature, mean Gaussian curvature, and
surface area. Fig. 4 illustrates the process of extracting the sulcal meshes, and
computing the medial surfaces for subsequent feature extractions.

Fig. 2. (a) 3D view of the brain of a CN subject and the cortical sulci (blue). (b) the
coronal view of the output volumes produced by FreeSurfer. The pial surface is shown
as a green outline encapsulating the cortex, and the white matter is shown as the blue
outline. (Color figure online)
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2.3 Feature Selection and Classification

In total, 310 features were computed for every subject: 70 cortical thickness fea-
tures (34 from each hemisphere, one average thickness per hemisphere), and 240
sulcal features (mean depth, length, mean curvature, mean Gaussian curvature,
medial surface area). Next, a feature selection process was applied in order to
reduce their dimensionality, and select a feature combination that yielded the
best classification results. Feature normalization was applied to standardize the
features by rescaling them to the [0, 1] range (Eq. 1):

Fig. 3. The 24 cortical sulci extracted from each of the 241 subjects.

Xscaled =
X − min(X)

max(X) − min(X)
(1)

where X was the original feature value, and Xscaled was the normalized one.
Forward feature selection was performed, where each iteration of adding one
feature to the SVM classifier was evaluated on the classification accuracy and
a balance index B, defined in Eq. 2 (Garde et al. [21]), which permitted the
extraction of features that maximized the classification accuracy, and at the
same time provided a low difference between the true positives and negatives.

B =
| (1 − Specificity) − (1 − Sensitivity) |
[(1 − Specificity) + (1 − Sensitivity)]

(2)

SVM classifiers with a linear kernel and a Gaussian radial basis function ker-
nel were used, with standardized predictor matrices, uniform prior probabilities
for two classes, and a default value for the C parameter (C = 1). We selected a fea-
ture subset based on the SVM classifiers’ accuracy using 10-fold cross-validation
from the set of 310 features. The best feature was added to the feature set,
provided that this feature increased the accuracy, while simultaneously main-
taining the balance index value under 0.4 [21]. All the other remaining features
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Fig. 4. Representation of the steps included in the process of feature extraction (e.g.
depth and length) from sulcal medial surfaces.

were individually tested in conjunction with the previously selected feature. This
iterative procedure was repeated until the classification accuracy would no longer
increase.

The classification procedure was divided into two parts: (1) feature selection
identified a combination of sulcal and cortical features that distinguish between
CN and AD in order to classify CN vs. MCI, and MCI vs. AD; (2) individual
classifications using only sulcal and only cortical features. We performed ten
realizations of 10-fold cross-validations. In each realization, the study population
was randomly divided into ten separate folds, where each fold was used to test
the classifiers’ performance, and the remaining folds were used as the training set.
This procedure was independently repeated ten times, so that any bias possibly
introduced by randomly partitioning the dataset in the cross-validation would
be avoided.

3 Results

The cortical regions in which the atrophic changes were the most sensitive to
classification between CN and AD are shown in Table 2. Six regions were iden-
tified in the left hemisphere, and two in the right. The left hemisphere has been
reported in AD to be more severely affected by atrophy, and to lose gray matter
faster than right, although a faster gray matter loss also occurs in age-matched
healthy controls [2]. The selected features provided the highest CN vs. AD clas-
sification accuracy obtained with a linear SVM classifier (95.0%±0.92 accuracy,
93.0%± 1.00 sensitivity, and 97.0%± 1.30 specificity, 0.95 AUC). The Gaussian
kernel provided a higher AUC, but lower accuracy and specificity (Table 3).

This feature combination was then applied to both the CN vs. MCI and the
MCI vs. AD classifications. We achieved the highest average accuracy of 74.0%
when classifying CN vs. MCI using a linear SVM kernel (67.0% using Gaussian
kernel), and a similar result for the MCI vs. AD classification, also with a linear
SVM (Table 3). The Receiver Operating Characteristic (ROC) curves for the
three classifications using two SVM kernels are shown of Fig. 5: CN vs. AD on
the left, CN vs. MCI in the middle, and MCI vs. AD on the right.
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3.1 Classification with Either Sulcal or Cortical Features

Following the same feature selection procedure, we have identified two additional
sets of features for CN vs. AD, CN vs. MCI, and MCI vs. AD classifications, in
which only sulcal features and only cortical thickness features were used for clas-
sification. Table 4 shows the results using the linear and Gaussian radial basis
function kernels, and the number of selected features. When used separately,
cortical thickness features provided higher classification results than sulcal fea-
tures for CN vs. AD, while sulcal features were more discriminating MCI from
both CN and AD. However, the combination of both sulcal and cortical thickness
yielded higher values of accuracy, sensitivity, specificity, and AUC for all three
classification scenarios, than if these measures were used separately. The linear
kernel SVM classifier provided higher classification results.

Table 2. Cortical regions providing the highest distinction between the CN and AD
groups using a linear SVM classifier. The CN, MCI, and AD values are represented as
mean feature values and their standard deviations.

Hemisphere Region Feature CN MCI AD

Left Entorhinal cortex Cortical thickness 3.29 (0.32) 2.91 (0.48) 2.43 (0.51)

Posterior occipito-temp.

lateral sulcus

Sulcal curvature 0.03 (0.01) 0.04 (0.01) 0.05 (0.02)

Olfactory sulcus Sulcal curvature −0.033 (0.01) −0.030 (0.01) −0.030 (0.01)

Polar temporal sulcus Sulcal depth 11.12 (1.61) 9.98 (1.44) 9.98 (1.66)

Rostral anterior

cingulate cortex

Cortical thickness 2.79 (0.25) 2.76 (0.28) 2.60 (0.28)

Marginal frontal sulcus Sulcal Gaussian

curvature

−0.016 (0.01) −0.02 (0.01) −0.022 (0.02)

Right Medial orbitofrontal

cortex

Cortical thickness 2.30 (0.18) 2.20 (0.16) 2.09 (0.22)

Central sulcus Sulcal length 113.00 (6.50) 112.86 (5.55) 112.35 (6.03)

Table 3. Classification results for CN, MCI, and AD subjects obtained with the two
types of SVM kernels using ten realizations of 10-fold cross-validations. Results are
shown as means and standard deviations.

Classification SVM Accuracy (%) Sensitivity (%) Specificity (%) AUC

CN vs. AD Linear 95.0± 0.92 93.0± 1.00 97.0± 1.30 0.95± 0.00

Gaussian 91.2± 1.03 93.0± 0.93 89.3± 1.40 0.96± 0.01

CN vs. MCI Linear 74.0± 2.04 70.3± 2.40 77.4± 2.45 0.79± 0.02

Gaussian 67.0± 0.83 70.0± 1.70 64.0± 1.78 0.71± 0.01

MCI vs. AD Linear 74.2± 1.38 77.2± 2.25 71.0± 0.87 0.80± 0.01

Gaussian 72.4± 0.82 74.0± 0.90 71.0± 1.94 0.77± 0.01
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4 Discussion

In this paper we propose a machine learning and pattern recognition approach
of integrating sulcal morphology and cortical thickness measurements for classi-
fication of AD and MCI. Linear and Gaussian SVM classifiers were trained with
a selection of sulcal and cortical thickness features to classify CN vs. AD, CN
vs. MCI, and MCI vs. AD. Additionally, separate sulcal and cortical features
were individually tested for classification performance in these three classifica-
tion scenarios.
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Fig. 5. ROC curves for the CN vs. AD (left), CN vs. MCI (middle) and MCI vs.
AD (right) classifications. Dashed lines represent random classification, blue curves
represent the linear kernel SVM, and red curves illustrate the performance of the
Gaussian kernel SVM. (Color figure online)

SVMs with different kernels were chosen due to their high performances in
high dimensional feature spaces [8,22–24]. Cali et al. [23] reported no statistically
significant differences between early-stage AD classification using Näıve Bayes,
Logistic Regression and SVMs, but the SVMs outperformed the other classi-
fiers with a combination of sulcal measures, cortical thickness, cortical volume,
subcortical volumes and the MMSE score. Similarly, we obtained the highest
classification results with linear SVM. Daliri [22] obtained a superior classifica-
tion rate when using linear over Gaussian kernel SVM. Polynomial and sigmoid
kernels provided even lower AD-classification rates, and thus were not imple-
mented in our study. To evaluate the classifiers, we used 10-fold cross-validation,
a statistical method for validating a predictive model by partitioning the original
data into a training set, and a test set to evaluate its classification performance
by averaging over ten iterations.

Our results confirmed that the combination of the sulcal and cortical mea-
sures were highly discriminative between CN and early MCI and AD subjects.
The CN vs. AD classification yielded the 10-fold cross-validated, averaged accu-
racy of 95.0%, sensitivity of 93.0%, and specificity of 97.0% (0.95 AUC) with
a linear SVM classifier. Suk et al. [9] used a deep ensemble learning of sparse
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Table 4. Comparison between the classification results obtained with only sulcal fea-
tures, only with cortical thickness measurements, and the combination of sulcal features
and cortical thickness measurements.

Classification Results Sulcal Cortical Both

Linear
SVM

Gaussian
SVM

Linear
SVM

Gaussian
SVM

Linear
SVM

Gaussian
SVM

CN vs. AD Number of features 8 8 9

Accuracy 86.2% 76.0% 91.7% 88.5% 96.4% 92.3%

Sensitivity 82.8% 69.0% 88.9% 87.6% 94.0% 91.3%

Specificity 89.6% 82.4% 94.2% 90.5% 99.0% 92.8%

AUC 0.87 0.82 0.94 0.94 0.95 0.98

CN vs. MCI Number of features 13 7 11

Accuracy 87.0% 82.1% 79.3% 73.7% 89.4% 84.4%

Sensitivity 86.3% 85.0% 70.4% 72.0% 89.1% 82.3%

Specificity 87.1% 79.0% 86.9% 76.0% 89.4% 86.0%

AUC 0.85 0.85 0.79 0.78 0.89 0.84

MCI vs. AD Number of features 9 6 8

Accuracy 80.1% 75.0% 79.4% 68.5% 86.0% 81.5%

Sensitivity 82.8% 74.2% 80.1% 72.0% 85.3% 81.7%

Specificity 76.8% 75.3% 78.9% 64.3% 87.1% 81.3%

AUC 0.78 0.76 0.81 0.74 0.83 0.83

regression models and obtained a maximum accuracy of 91.02% for CN vs. AD
and 73% for CN vs. MCI classifications, using 10-fold cross-validation. Choi et al.
[13] studied the brain metabolism using amyloid PET imaging and achieved an
86.6% accuracy with an SVM, and a 96.0% accuracy using a deep convolutional
neural network, when classifying AD from controls. Beheshti et al. [25] used an
approach for feature selection based on the t-test and a Fisher Criterion, using a
voxel-based morphometry technique to compare the global and local gray mat-
ter differences in AD subjects and healthy controls using SVM. They reported
a 96.32% accuracy using a 10-fold cross validation.

Furthermore, our results show that the features discriminating between CN
and advanced AD provide relatively low accuracies when distinguishing early
MCI from CN (77.2% accuracy with linear kernel), or advanced AD (73.3%
accuracy with Gaussian kernel SVM). These inferior results may be due to the
fact that the spread of atrophy in AD is hypothesized to be a non-linear process,
and thus the structural cortical changes that distinguish AD from controls may
be less sensitive to separate the controls from early MCI. Classification results
reported in Table 3 suggest that the features characterizing an advanced atrophy
of an AD patient are not as sensitive at detecting the differences between the
brain of an early MCI subject and a control. They appear to be even less sensitive
in distinguishing between early MCI and advanced AD.

Biomarker studies aiming at distinguishing between AD and normal controls
often use either sulcal [15–17] or cortical features [11,12]. However, the novelty
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of study is in combining these MRI-derived features, but also at analyzing them
separately on the same data set, even though we acknowledge that some studies
[13,25] outperform our classification results. In our previous work [6] we aimed
to identify the sulcal and cortical features to distinguish between stable MCI
subjects and those converting to AD in order to identify features predicting
AD-conversion. The separate feature selection process employed in this study
revealed that sulcal features alone were superior to the cortical thickness at dis-
tinguishing early MCI from both AD and CN. This is likely due to the structural
brain changes and regional volume losses being a natural part of normal ageing,
occurring both in the cognitively normal elderly, and in AD patients. Therefore,
cortical thickness alone may not be a sufficient biomarker, since a certain level of
atrophy was already present in these two groups. In advanced AD, brain atrophy
is highly pronounced, thus making cortical thickness a more sensitive biomarker
(91.7% vs. 86.2%). However, sulcal features were the most sensitive for classify-
ing early MCI from AD and CN. This indicates that sulcal morphology could
be a potentially powerful biomarker in conjunction with cortical thickness for
early-stage detection of neurodegenerative disorders.

5 Conclusion

The main contribution of this machine learning and pattern recognition study is a
finding that a combination of sulcal morphology and cortical thickness measure-
ments provides high classification results in discriminating between AD, MCI,
and elderly control subjects. These results are competitive with the state-of-the-
art techniques. Moreover, sulcal features were observed to be more sensitive at
distinguishing MCI from AD and CN than cortical thickness, suggesting their
potential as a structural biomarker for early detection of AD.
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