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Abstract. The problem of varying dynamics of tracked objects, such as
pedestrians, is traditionally tackled with approaches like the Interacting
Multiple Model (IMM) filter using a Bayesian formulation. By following
the current trend towards using deep neural networks, in this paper an
RNN-based IMM filter surrogate is presented. Similar to an IMM filter
solution, the presented RNN-based model assigns a probability value
to a performed dynamic and, based on them, puts out a multi-modal
distribution over future pedestrian trajectories. The evaluation is done
on synthetic data, reflecting prototypical pedestrian maneuvers.

Keywords: Trajectory forecasting · Path prediction · IMM filter ·
Multiple model filter

1 Introduction

The applications of pedestrian trajectory prediction cover a broad range from
autonomous driving, robot navigation, smart video surveillance to object track-
ing. Traditionally, the task of object motion prediction is done by using a
Bayesian formulation in approaches such as the Kalman filter [17], or non-
parametric methods, such as particle filters [4]. Driven by the success of recur-
rent neural networks (RNNs) in modeling temporal dependencies in a variety
of sequence processing tasks, such as speech recognition [10,13] and caption
generation [12,27], RNNs are increasingly utilized for object motion prediction
[2,3,7,15,16]. When relying on traditional approaches, the challenge of varying
dynamics over time is commonly addressed with the Interacting Multiple Model
(IMM) filter [9]. The IMM filter is a well established approach to elegantly com-
bine a set of candidate models into a single context by weighting each individual
model. Each model corresponds to a specific motion pattern and contributes to
the final state estimation depending on its current weight. According to the IMM
filter solution, in this paper an RNN-based IMM filter surrogate is presented. On
the one hand, the presented RNN-based model is able to also provide a confi-
dence value for the performed dynamic and on the other hand can overcome some
limitations of the classic IMM filter. The suggested RNN-encoder-decoder model
generates the probability distribution over future pedestrian paths conditioned
on a dynamic class. The model is based on the work of Deo and Trivedi [11]. For
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the case study of freeway traffic, they used an two branch RNN-encoder-decoder
network for vehicle maneuver and trajectory prediction. Since for vehicle appli-
cations an on-board lane estimation algorithm is mostly available, a stationary
frame of reference, with the origin fixed at the vehicle being predicted, is used
in their work. Although this makes the model independent of road curvature
and independent of how vehicle tracks are obtained, it can not be applied with-
out adjustments for pedestrian motion prediction. Thus, our RNN-based model
infers like classical filters the current position and uses only a single RNN branch
for encoding the maneuver class, the filtered position and the trajectory infor-
mation. In the context of vehicle motion prediction, maneuver or rather dynamic
classes can be better defined than for pedestrians. For example by changing or
keeping the lane. Due to the dynamic behavior of pedestrians, the maneuver
classes are here defined based on the deviation from a straight walking pedes-
trian. The presented network also extends the maneuver network of Deo and
Trivedi [11] with insights from the work of Becker et al. [7] to better adapt to
pedestrian motions.

Moreover, this paper aims to highlight some relations between traditional
multiple model approaches such as the IMM filter and the suggested RNN-based
IMM filter surrogate. By combining the different views on maneuver predictions,
this work contributes to an exploration of the connections between both problem
formulations. The decoder uses the de-noised position estimate and a context
vector, encoding the dynamic classes, to predict future positions. The analysis
is done on synthetic data reflecting prototypical scenarios capturing pedestrians
maneuvers.

In the following, a brief formalization of the problem and a description of the
RNN-based model are provided. The achieved results are presented in Sect. 3.
Finally, a conclusion is given in Sect. 4.

2 RNN-Based IMM Filter Surrogate

The goal is to devise a model that can successfully predict future paths of pedes-
trians and represent alternating pedestrian dynamics, e.g. dynamics that can
transition from a straight walking to a turning maneuver or stopping. Here,
trajectory prediction is formally stated as the problem of predicting the future
trajectories of a pedestrian, conditioned on its track history. Given an input
sequence Z = {(xt, yt) ∈ R

2|t = 1, . . . , tobs} of Tobs consecutive observed pedes-
trian positions zt = (xt, yt) at time t along a trajectory, the task is to generate
a multi-modal prediction for the next Tpred positions {xt+1,xt+2, . . . ,xt+Tpred}
and to filter the current position xt = (xt, yt). One insight from the work Becker
et al. [7] is that motion continuity is easier to express in offsets or velocities,
because it takes considerably more modeling effort to represent all possible con-
ditioning positions. In order to exploit scene-specific knowledge for trajectory
prediction, additional use of the position information is required. When sufficient
training samples from a particular scene are available, Hug et al. [15] showed that
RNN-based trajectory prediction models are able to capture spatially dependent
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behavior changes only from motion data. However, here the offsets are addition-
ally used for conditioning the network Z = {(xt, yt, δt

x, δt
y) ∈ R

4|t = 2, . . . , tobs}.
Apart from the smaller modeling effort to represent conditioned offsets, the
shift to offsets helps to prevent undefined states due to a limited data range
[7] and it is easier to make better generalizations across datasets. Since, we
analyze the model capabilities on synthetic data reflecting prototypical pedes-
trian maneuvers for a fixed scenario, the amount of training samples is not
restricted. Thus, in order to localize in the reference system position informa-
tion is used to estimate the true position. The future trajectory is denoted with
Y = {(xt, yt) ∈ R

2|t = tobs + 1, . . . , tpred}. The model estimates the conditional
distribution P (Y,xt|Z). In order to identify specific dynamics under M desired
maneuver classes (e.g. turning maneuvers, stopping and straight walking), this
term can be given by:

P (Y,xt|Z) =
M∑

i=1

PΘ(Y,xt|mi,Z)P (mi|Z) (1)

Here, Θ = {Θtobs+1, . . . , Θtpred} are the parameters of a L component Gaus-
sian mixture model Θt = (μt

l ,Σ
t
l , w

t
l )l=1,...,L. By adding the maneuver context in

form of the posterior mode probability, P (mi|Z) ∧= αi the analogy to the classic
IMM filter becomes apparent. For an IMM filter, the mode probability is used to
calculate the mixing probabilities to combine the set of chosen candidate models
into a merged estimate. The time behavior of the basic filter set is modeled as
a homogeneous (time invariant) Markov chain with a fixed transition probabil-
ity matrix (TPM) mij

∧= P (mt
i|mt−1

j ). Under the assumption that M models
describe the variation of the dynamics, the posterior density of the IMM filter
can be written as follows:

P (xt|Z) =
M∑

i=1

PΘIMM
(xt|mi,Z)P (mi|Z) (2)

Here, PΘIMM
(xt|mi,Z) is in the context of an IMM filter a Gaussian distri-

bution and P (mi|Z) ∧= αi is the posterior mode probability for the IMM filter.
As mentioned above, the transition between different dynamics is modeled as a
first order Markov chain for an IMM filter. The law of total probability allows to
compute new mode probabilities based on the transition probabilities. Given the
current mode probabilities and transition probabilities, the mixing probabilities
αi|j for the mixing step of the IMM filter can be calculated. For each model Mi

and Mj , they are calculated as αt−1
i|j = 1

c̄j
mijα

t−1
i with a normalization factor

c̄j =
∑M

i=1 mijα
t−1
i . Then, in the prediction stage, each filter is applied inde-

pendently using the calculated mixed initial condition. Subsequently, the model
probabilities are adapted according to the likelihood of each filter.

RNN-IMM: Whereas an explicit modeling of the switching behavior and the
object dynamics of the IMM filter stands in contrast to an implicit dynamic
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encoding of an RNN-based approach. In order to provide an IMM filter surro-
gate, the proposed model also estimates mode probabilities and filters or rather
de-noises the current position based on noisy observations Z. By writing the
conditional distribution P (Y,x|Z) of the RNN-based approach in form of Eq. 1,
the desired estimates can be inferred from the hidden states of the RNN h. This
formulations does not require to set the parameters of the TPM matrix manu-
ally, which is commonly done based on the mean sojourn time (the mean time
an object stays in a motion type [5,24]) or as stated in the work of Bar-Shalom
[5], an ad-hoc approach to fill the diagonals with values close to one. For the pro-
posed RNN-based IMM filter surrogate (RNN-IMM), the basic architecture is a
recurrent encoder-decoder model. The encoder takes the frame by frame input
sequence Z. The hidden state vector of the encoder is updated at each time step
based on the previous hidden state and the current observation. The generated
internal representation is used to predict mode probabilities αt at the current
time step and xt. With embedding of the current observations, the encoder can
be defined as follows:

et
encoder = EMB(zt;Wee)

ht
encoder = RNN(ht−1

encoder,e
t
encoder;Wencoder)

x̂t,αt
logits = MLP(ht

encoder;Wen)

α̂t =
exp (αt

logits)∑M
j=1 exp (αt

logits,j)

Here, RNN(·) is the recurrent network, h the hidden state of the RNN,
MLP(·) the multilayer perceptron, and EMB(·) an embedding layer. W repre-
sents the weights and biases of the MLP, EMB or respectively RNN. The final
state of the encoder can be expected to encode information about the track his-
tories. For generating a trajectory distribution over dynamic modes, the encoder
hidden state is appended to a one-hot encoded vector corresponding to specific
maneuvers and the filtered current position. Instead of only filtering the posi-
tion, the encoder could also be used to parametrize a mixture density output
layer (MDL). The decoder of the model can be defined as follows:

ht
decoder = RNN(ht−1

decoder[h
t
encoder], x̂

t,αt;Wdecoder)

Ŷ = {(μ̂t
l + x̂tobs , Σ̂t

l , ŵ
t
l )|t = tobs + 1, . . . , tpred} = MLP(ht

decoder;Wde)

The decoder is used to parametrize a mixture density output layer (MDL) or
rather Θ directly for several positions in the future (one distribution for every
time step). Nevertheless, the overall RNN-IMM uses the trajectory prediction
and dynamic classification jointly, the loss function for training is split into three
parts.
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Fig. 1. Visualization of the RNN-based IMM filter surrogate (RNN-encoder-decoder
network) for jointly predicting specific dynamic probabilities and corresponding future
distributions of trajectory positions. The encoder predicts the dynamic probabilities
and the filtered position for the current time step. The decoder uses the context vector
and the position estimate to predict future pedestrian locations.

Dynamic classification is trained to mimimize the sum of cross-entropy losses
of the different M motion model classes:

L(Z)maneuver = −
M∑

j=1

αt
j,GT log(α̂t

j) (3)

Additionally, the encoder is trained by minimizing the filtering loss L(Z)filter

in form of the mean squared error to the ground truth current pedestrian loca-
tions. In case the encoder should generate the parameter of a mixture of Gaussian
or single Gaussian distribution, the negative log likelihood for the ground truth
pedestrian locations can be minimized. Finally, the complete encoder-decoder is
trained by minimizing the negative log likelihood for the ground truth future
pedestrian locations conditioned under the performed maneuver class. The con-
text vector is appended with the ground truth values of the dynamic model or
maneuver classes for each training trajectory. This results in the following loss
function:

L(Z)pred = − log(PΘ(Ŷ|mGT ,Z)P (mGT |Z))

L(Z)pred =
tpred∑

t=tobs+1

− log(
L∑

l=1

ŵt
lN (xt|μ̂t

l + xtobs , Σ̂t
l ;mGT ))

(4)

The overall architecture is visualized in Fig. 1. The context vector combines
the encoding of the track history with the encoding of the alternating dynamic
classes. Together with the filtered position, it is used as input for the decoder.
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Fig. 2. Illustration of typical pedestrian motions. The above images depict the two
chosen maneuver classes of straight walking or rather crossing and stopping. The images
on the left show a person crossing the street. The images on the right show a person
changing from walking to standing at the curbside of the street. In particular changing
from straight walking to stopping [24].

3 Data Generation and Evaluation

This section consists of a brief evaluation of the proposed RNN-IMM. The evalu-
ation is concerned with verifying the overall viability of the approach in maneuver
situations. For initial results, a synthetic test condition is used in order to gain
insight into the model behavior in different typical pedestrian motion types. A
prototypical maneuver performed by a pedestrian, which has important impli-
cations for the field of intelligent vehicles and video surveillance is a stopping or
deceleration maneuver.

Data Generation and Reference Methods: For the first mentioned context
of intelligent vehicles, Schneider et al. [24] performed a comparative study on
recursive Bayesian filters for pedestrian path prediction at short time horizons
(below 2 s). They applied different filters on typical pedestrian motion types.
Although, the comparison was done on the Daimler path prediction dataset, we
evaluate on synthetic data but make use of the provided real data to capture a
similar condition. Firstly, the Daimler path prediction dataset provides only a
maximum amount of 23 sequences for single motion types. As mentioned before,
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in order to avoid problems such as a limited number of training samples and
to gain some insights into a controlled setup, synthetic data is used. Secondly,
the location information is biased in the dataset. Since recursive Bayesian filters
make in their standard formulation no use of the spatial context of a scene, this
does not harm their mutual comparison. However, RNN-based prediction net-
works are able to capture spatially dependent behavior changes [15], thus a fair
comparison is difficult to achieve. The evaluation on the Daimler dataset is done
in an ego-motion compensated reference system. The frame rate of the camera
system inside the recording vehicle is 16 fps and it is taken over accordingly
for our experiments. The pedestrians change their behavior abruptly. Therefore,
the sensible time horizons are short. Here, 8 (0.5 s) consecutive positions are
observed, before predicting the next 8 (0.5 s ), 12 (0.75 s) and 16 (1 s).

For generating synthetic trajectories of a basic maneuvering pedestrian, ran-
dom agents are sampled from a Gaussian distribution according to a preferred
pedestrian walking speed [26] (N (1, 38m, 0.37m)) from the distribution of start-
ing positions of the corresponding Daimler dataset sequences. During a single
trajectory simulation the agents can perform a stopping maneuver or cross the
street. Figure 2 illustrates such maneuvers with example images from the Daim-
ler dataset [24]. For mapping the pedestrian detections to a vehicle-motion com-
pensated ground plane, Schneider et al. used on-board sensors for velocity and
yaw rate and a stereo camera system to compute the median disparity. Due
to the non-linear observation model based on a perceptive camera model, an
inevitable linearized extension for the Kalman and IMM filter observation models
are required. Here, the observation uncertainty of the position sensor is assumed
to be Gaussian distributed rt ∼ N (0, 0.01m) in the compensated reference sys-
tem. Thus, the standard formulation of the Bayesian filters are well suited for this
task. For the stopping maneuver or rather the event of deceleration till standing,
a mean sojourn time of 1 s with a standard deviation of 0.1 s is used. As long as
a person moves in a straight line at a reasonably constant speed, their dynamics
can be captured with a Kalman filter using a constant velocity model. During the
maneuver, the relation to one fixed process model describing the dynamics fails
due to an additional deceleration. Similar to Schneider et al. [24] or Kooij et al.
[21], the reference IMM filter is set up by combining two basic models, in partic-
ular, the constant velocity (CV) and the constant acceleration (CA) model. For
avoiding side effects due to independent motions in different directions, see for
example [6], only the crossing direction, from the vehicle perspective, the lateral
motion is considered. Following the aforementioned explanations, the IMM-RNN
is compared to an IMM filter with two motion models (CV, CA), a Kalman fil-
ter with a single CV model, a Kalman filter with a single CA model, and as
baseline to a linear interpolation. Also correspondingly to Schneider et al., the
process noise q is determined by Q(t) = Q0(t)q, where q ∈ {σCV , σCA} are
spectral densities (continuous time variances) of the process noise, describing
the changes in velocity or respectively in acceleration over a sampling period Δt
(CV:

√
Q22 =

√
Δt · q; CA:

√
Q33 =

√
Δt · q, see for example [23]). Based on

this process noise model, the optimal process noise parameters for the different
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chosen filters (IMM filter (CV, CA), Kalman filter CV, CA) on the Daimler
dataset are for the two IMM filter models σIMM,CV = 0.70, σIMM,CA = 0.80
and for the single Kalman filters σCV = 0.77 and σCA = 0.44 [24]. These param-
eters are consistent with the suggested practical setting in Bar-Shalom [5] and
the chosen sojourn time for the simulation.

As mentioned above, a definition of maneuver classes for pedestrians is harder
to establish than for vehicles. Hence, the main interest is here to detect the
deviation from a standard behavior, and whether the pedestrian is in a normal
mode. A set of deviation in velocity, deceleration, along with the tangential
ground truth trajectory is used to assign a maneuver label to a time step of
a single trajectory. Thus, the RNN-IMM and IMM filter have a similar basic
dynamic model set description. As the distribution over the trajectories for the
RNN-IMM is captured with a Gaussian mixture model, the maneuver description
for a single model can still be multi-modal. Since the IMM filter predicts a multi-
modal distribution in form of a combination of the uni-modal model specific
prediction, in the presented results the RNN-IMM is set to also only predict
conditioned on a single maneuver class a uni-modal Gaussian distribution.

Implementation Details: The model has been implemented using Tensorflow
[1] and is trained for 2000 epochs using ADAM optimizer [19] with a decreas-
ing learning rate, starting from 0.01 with a learning rate decay of 0.95 and a
delay factor of 1/10. During the learning rate adaption, the number of epochs
is multiplied by the delay factor. For the experiments, the RNN variant Long
Short-Term Memory (LSTM) [14] is used.

Results and Analysis: In Fig. 3, predictions for two different preformed
motion types are depicted for 8 future positions weighted by the predicted
maneuver probability. In the shown images the positions are normalized to start
at the origin. The resulting multi-modal prediction is visualized as a heatmap.
On the left, it can be seen that for a crossing sequence with straight walking the
RNN-IMM mainly uses the corresponding straight walking model. On the right,
where the deceleration started, the straight walking probability is visibly lower
and the predicted distribution maximum is very close to the last observation.
For the quantitative evaluation, 1000 noisy trajectories have been synthetically
generated, where 80% are used for training and 20% for the comparison to the
recursive Bayesian filters. The results are summarized in Table 1.

The performance is compared with the final displacement error (FDE) (see
for example [22]) of the lateral motion (from the vehicle perspective) for three
different time horizons, in particular 8 steps (0.5 s), 12 steps (0.75 s) and 16
steps (1 s). These results show that the presented RNN-IMM is able to faster
capture the change in dynamic for the synthetically generated data. In terms
of the single motion models (CV vs. CA), one can observe the benefits for the
CA in capturing the deceleration. The IMM filter combines both and shows an
improvement. Hence, the aim of this paper is more on highlighting the relation
between traditional multiple model approaches and the suggested RNN-based
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Fig. 3. Visualization of the predicted multi-modal distributions of future position as
heatmap. (Left) Density plots for crossing or rather straight walking examples. (Right)
Density plots for stopping examples in which the maximum of the predicted distribution
is visible close to the last observation.

IMM filter surrogate, it should be mentioned that RNN-based approaches are
designed to receive input data for every time step, whereas Bayesian filters are
well suited for handling missing observations. Especially with such a short ini-
tialization time, this can be crucial. One argument towards a learning based
RNN-IMM is that we only choose the maneuver definition based on deviation
of standard straight walking. The engineering task of finding the best model set
up for IMM filters and their extensions can lead to an improved behavior (see
for example Keller et al. [18]) in specific maneuver situations, but is also very
tedious to find a good setting. It should also be mentioned that recent work
like the approaches of Kooij et al. [20] show options how to further improve the
prediction performance by including scene context and using more cues than
pedestrian point kinematics (e.g. head orientation, gaze, body tilt, articulated
body information).

In summary, the presented RNN-IMM is able to also provide a confidence
value P (mi|Z) ∧= αi for the performed dynamic, but avoids modeling the
dynamic transitions with a fixed transition probability matrix P (mt

i|mt−1
j ). Sim-

ilar to the provided mode probabilities of IMM filters, this can be used for further
processing steps or rather applications (see for example [8,25]). Further, instead
of choosing the basic filter set, the prediction model is learned. In case there exists
some well known model for describing the standard dynamic of the desired tar-
get, only deviations from the known dynamic can be used to define additional
maneuver classes. This study on synthetically generated data shows, that by
exploiting the connections between different views on maneuver prediction some
perspectives on overcoming respective limitations can be gained.
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Table 1. Results for the comparison between the proposed RNN-IMM and an IMM
filter with two motion models (CV, CA), a Kalman filter with a single CV model, a
Kalman filter with a single CA model, and using linear interpolation on the simulated
maneuver situations. The prediction is done for 8, 12, and 16 time steps conditioned
on 8 observations for a frame rate of 16 fps.

8/8 8/12 8/16
Approach FDE [m] σFDE [m] FDE [m] σFDE [m] FDE [m] σFDE [m]
RNN-IMM 0.0309 0.0404 0.0427 0.0817 0.0517 0.0941

IMM filter (CV,CA) 0.0674 0.0602 0.1188 0.1255 0.1862 0.1915
Kalman filter (CA) 0.0796 0.0638 0.1575 0.1137 0.2386 0.1696
Kalman filter (CV) 0.1578 0.1601 0.2890 0.2965 0.4701 0.4700
Linear interpolation 0.1587 0.1610 0.2903 0.2978 0.4724 0.4718

4 Conclusion

In this paper, an RNN-encoder-decoder model, which can be interpreted as an
IMM filter surrogate, has been presented. The RNN-IMM is able to jointly pre-
dict specific motion probabilities and corresponding distributions of future pedes-
trian trajectory. The model capabilities were shown on synthetic data that were
reflecting typical pedestrian maneuvers. By conditioning on specific dynamic
models or rather deviation from standard behavior, the model makes it possible
to generate additional information in terms of an assigned maneuver proba-
bility similar to an IMM filter, but reduces the amount of explicit modeling
of filter parameters (e.g. the dynamic transitions matrix). Thus, the presented
RNN-IMM helps to reduce the amount of hard-coded engineering of traditional
multiple model filter such as the IMM filter.
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2018. LNCS, vol. 11131, pp. 138–153. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-11015-4 13

8. Becker, S., Münch, D., Kieritz, H., Hübner, W., Arens, M.: Detecting abandoned
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