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Abstract. This work analyzes the suitability of classic feature detectors
and descriptors as well as different match filters for matching historical
to modern images. A variety of prominent detector and descriptor com-
binations are evaluated on a new dataset, that is composed of repeat
photographs of various scenes exposed to tremendous change across
years. Results show that a dense keypoint sampling is more effective
than classic feature detection, while several descriptors achieve compa-
rable performances. Yet, more important is an adequate match filter-
ing approach that identifies correct correspondences despite their large
descriptor distances. We show that the standard ratio test is unsuitable
for matching historic to modern image pairs, while other filters based on
keypoint geometry boost performance. Finally, we establish a complete
pipeline including detectors, descriptors and match filtering methods.
Our pipeline shows high performance on challenging image pairs beyond
repeat photography, as our tests on another dataset show.
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1 Introduction

Repeat photography, or rephotography, is the process of retaking an old photo-
graph from the same viewpoint. The resulting picture pair provides a compelling
visualization of the respective location’s change throughout the years. In ecol-
ogy repeat photography is used to document vegetation and climate change
[9,20], glacier melting [12] and geological erosion [13], while sociologists use it to
study urban development and social change [31]. However, even for experienced
rephotographers recapturing the original view “by eye” is often tedious and time
consuming. In practice there are two approaches to support this process. The
first is to match the original and its approximate rephotograph via postprocess-
ing, while the second supports the process of recovering the original viewpoint
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[5]. The full automation of both processes requires the solution to a single under-
lying challenge. This is the automatic identification of similarities between the
original typically historic image and the modern scene. Due to dramatic varia-
tions in lightning and weather, high occlusion and different acquisition devices,
this is a challenging problem. Examples are shown in Fig. 1.

Fig. 1. Rephotographies from our dataset, including a view of a single building, a street
corner lined with houses and a park. All image pairs feature high occlusion due to scene
changes, show variations in lightning, and have been acquired by different cameras.

Feature matching is widely used for image alignment as well as 3D recon-
struction. However, diverse opinions exist whether classic feature detectors such
as SIFT [18] are suitable in the context of historical repeat photography. Bae
et al. [5] and Schindler and Dellaert [25] agree that SIFT fails to match historic
and modern images. Ali and Whitehead [2] instead, claim high performance on
historical and modern image matching for at least some classic detector and
descriptor combinations. Datasets from other studies do not adequately repli-
cate the conditions present in historic repeat photography [14,27]. Overall no
detailed study exists that allows a conclusion whether classic feature detectors
and descriptors are suitable for historic to modern image matching.

This paper presents such a detailed study. First of all we present a new dataset
composed of publicly available rephotographs of Manhattan. This does not only
contain images of single buildings, but also whole streets lined with houses that
are subject to great change across the years. Secondly we analyze the suitability
of a variety of feature detector and descriptor combinations. Afterwards the top
performing detector and descriptor pairs are analyzed in more detail and their
parameters are varied to optimize performance. Furthermore we apply different
match filtering approaches to improve the low precision values faced with most
detector and descriptor combinations.

From our detailed analysis, we draw the following conclusions: (1) We agree
with Fernando et al. [10] and Stylianou et al. [27] and propose a dense sampling of
keypoints instead of the application of classic detectors. (2) RootSIFT and SURF
but also binary descriptors such as BRIEF [8] and LATCH [16] are suitable for
matching historic and modern images. For the latter we recommend increasing
descriptive power by extending descriptor length. (3) Due to high descriptor
distances of correct matches, classic filtering approaches such as the ratio test



376 A.-K. Becker and O. Vornberger

[18] fail in the context of historic repeat photography. Instead the application of
other filtering approaches based on keypoint geometry boosts performance.

Finally we successfully apply our established feature detection, description
and match filtering pipeline to the dataset of Hauagge and Snavely [14]. Thus
the approach we present in this paper is applicable to challenging image pairs
beyond rephotography, including day and night shots and images of varying
rendering style.

2 Related Work

Few research concerned with matching historical to modern images has been
presented in the literature. Closely related to this work is the evaluation of Gat
et al. [11] who compared a set of classic feature detectors on repeat photographs
of various mountain landscapes. Unfortunately, no different feature descriptors
are assessed, though other works have shown that often specific detector and
descriptor combinations outperform others [10,14,27]. Ali and Whitehead [2] on
the other hand evaluate various detector and descriptor combinations on their
own dataset, including images of popular sights across different time periods.
Their results depict that even the most successful ORB/SURF combination often
fails for matching historic and modern images separated by large time spans.

Bae et al. [5], who present a software prototype that supports recapturing
of photograph, state that SIFT fails to identify similarities between historic and
modern image pairs and allocate this task to the user. A similar statement is
made by Schindler and Dellaert [25], who sort a collection of historic images
with the help of manual user interaction.

Stylianou et al. [27] analyse feature matching performance over time periods
of five years. They show that the influence of structural changes on matching
is tiny compared to changes in weather and lightning. Yet, five years are a
rather short time span in historic repeat photography. Similarly Valgren and
Lilienthal [30] study the impact of seasonal changes upon localization in outdoor
environments over a period of nine months. Other works [6,14] propose entirely
new features for challenging image pairs, including historic repeat photographs,
as well as day and night images and images of different rendering styles.

In image retrieval further works on matching disparate images, including
historic ones, exist. Shrivastava et al. [26] developed a method for cross domain
image matching based on densely sampled HOG features with learned weights.
Similarly Aubry et al. [4] use the HOG descriptor to align images from multiple
domains to a 3D model. Fernando et al. [10] aim at recognizing the location of an
old photograph given modern labeled images from the Internet. Torii et al. [28]
address the challenge of large-scale place recognition on day and night images
from modern day Tokyo, Both [10,28] propose a combination of dense sam-
pling and RootSIFT for feature detection and description. Anyhow, it remains
unknown whether image representation and classifier training on large datasets
compensate for poor actual descriptor performance.
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3 Evaluation

In this paper we analyze the suitability of classic detectors and descriptors for
matching historic and modern image pairs as they arise during historic repeat
photography. A majority of previous studies revealed that such pairs pose a chal-
lenge to classic detectors and descriptors. Hence, our evaluation not only tests
general performance but also analyses measures to improve it. These include
varying detector and descriptor parameters as well as applying different match
filtering techniques. To compare these measures for a large set of detector and
descriptor combinations we use a two step approach. At first we perform an
initial evaluation applying a large amount of detector and descriptor combina-
tions to our new dataset using default parameters. Afterwards a detailed eval-
uation follows, where we improve matching performance for the top detector
and descriptor pairs. In the following we provide an overview of our dataset, the
evaluation criteria, tested detectors and descriptors and match filters.

3.1 Dataset

Since the datasets used in related studies do not meet the conditions of this work
[14], are not publicly available [11], or both [2], we constructed our own dataset
for this study, which is available online1. This contains 52 rephotographies of
Manhattan from a collection created by Paul Sahner2. The modern photographs
were taken between 2009 and 2013, while the originals span the whole 20th
century. The collection contains a variety of scenes including single buildings,
as well as views of park areas or whole streets lined with houses. For some
examples refer to Fig. 1. Furthermore the scenes are exposed to different amounts
of structural change across the years. Additional variations between image pairs
are caused by changes in lightning and weather as well as different acquisition
devices or rendering styles.

As taken by a professional rephotographer most of the image pairs of the
collection are already well aligned. Yet for further improvement we additionally
computed a homography between all image pairs based on manual selection.

3.2 Evaluation Criteria

Related studies use repeatability, precision, recall [14] and pass rate [11] to eval-
uate detector and descriptor performance.

Repeatability assesses feature detector performance. For each detected key-
point the ground truth homography is used to measure whether a corresponding
keypoint at the same location and of similar size exists [21]. In the context of
rephotography often structures disappear and thus their features can no longer
be repeated in the modern image. Instead accidental correspondences arise, since
new structures feature new keypoints. Thus standard repeatability measures

1 https://github.com/AnnKatrinBecker/nyc-grid-dataset.
2 http://www.paulsahner.com, http://www.nyc-grid.com.

https://github.com/AnnKatrinBecker/nyc-grid-dataset
http://www.paulsahner.com
http://www.nyc-grid.com
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many more keypoint correspondences than can actually be returned during the
descriptor based matching process. So that reachable recall rates (number of cor-
rect matches devided by the number of repeated keypoints) drop far below 100%.
To establish a reliable ground truth for repeatability in the context of historic
and modern images requires to annotate each region suffering from occlusion
manually. Thus we refrain from using repeatability and recall in our evaluation.

Precision depicts the ratio of inliers among all corresponding keypoints
returned by the matching process. Compared to repeatability this inlier rate
suffers from very few false positives since it is reliant on descriptor distance.
Average precision depicts the average precision value among the whole dataset.
Unfortunately this value does not provide any information on the precision dis-
tribution.

Pass rate [11] instead, is calculated on the entire dataset and requires min-
imum thresholds for precision and the number of correct matches. Then pass
rate is the percentage of image pairs from the dataset that exceed the appointed
thresholds. Especially if few images show a high number of correct correspon-
dences, while others hardly contain any, pass rate is more meaningful than aver-
age precision. Thus we prefer pass rate in our evaluation.

3.3 Detectors and Descriptors

We aimed at including all detectors and descriptors in our test set that showed
good performance in related studies, including dense sampling [10,14,28], Root-
SIFT [10,28] and the combinations of SURF/U-SURF [30], SIFT/SIFT [14]
and ORB/SURF [2]. Afterwards we extended it with prominent detectors such
as MSER and FAST as well as features only recently proposed (e.g. LATCH,
AKAZE). Furthermore our test set includes fast binary as well as more compu-
tational expensive floating point descriptors.

In summary the detectors compared in this paper include dense sampling,
MSER [19] and FAST [22]. Tested descriptors are U-SURF [7], RootSIFT [3],
BRIEF [8] and LATCH [16]. Moreover the following features are used as detectors
and descriptors: SIFT [18], SURF [7], ORB [24], BRISK [15], AKAZE [1]. We
use the OpenCV implementation of all these features, including their respective
default parameters. Only for ORB we limit the maximum number of keypoints
to 10000 instead of 500.

3.4 Match Filtering Approaches

For match filtering we use classic approaches such as the ratio test [18] and max-
imal descriptor distance. However, as correct matches feature large descriptor
distances in the context of historic and modern image pairs, descriptor dis-
tance is not a well distinguishing feature. Thus we additionally evaluate filtering
approaches beyond descriptor distance. This includes the disparity gradient filter
(DGF) proposed by Roth and Whitehead [23], exclusively based on the geome-
try of keypoints, as well as K-VLD [17], that evaluates both geometric as well
as photometric consistency in the local neighborhood of a keypoint pair.
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Disparity Gradient Filter. Given an image pair the disparity gradient mea-
sures the geometric compatibility of two of its correspondences [29]. Let P1 and
P2 be keypoints in the first image and f(P1) and f(P2) be their correspondences
in the second image, than their disparity gradient

d =
|(P1 − P2) − [f(P1) − f(P2)]|
1
2 |(P1 − P2) + [f(P1) − f(P2)]|

(1)

Fig. 2. Detailed course of applying the disparity gradient filter to individual image
pairs. Both graphs illustrate the severe drop in total matches, while only few correct
matches are discarded. This boosts precision. Beyond our point of termination (vertical
line), precision values increase, but the loss of correct matches becomes more significant.

In case two correspondences conform well their disparity gradient is small. For
general image registration Roth and Whitehead [23] sum up the disparity gra-
dient for each correspondence with respect to each other correspondence. After-
wards correspondences with a high DGS are removed. Both steps are performed
iteratively until the max DGS is less than twice the min DGS.

In general we follow the approach of Roth and Whitehead [23], while we
apply a softer termination criterion and discard false matches by the following
rule. During each iteration we determine the median DGS and discard all cor-
respondences featuring a DGS greater than the median times a certain factor.
Initially this factor is set to 11

2 . Afterwards it decreases to 1 1
4 , 1 1

8 and so on if

factor ∗ median ≥ max DGS (2)

Furthermore we decrease the factor if less than 1% of correspondences were
eliminated during the last iteration. During initial testing we also realized that
the termination criterion of min DGS ∗ 2 > max DGS is to tight for our image
pairs. Thus after analyzing initial results, see Fig. 2 we changed it to

min DGS ∗ 3 > max DGS (3)

4 Results

4.1 Initial Evaluation

In the initial evaluation we assess the performance of diverse feature detectors
and descriptors on historic and modern image pairs. We apply all possible com-
binations of the feature detectors and descriptors listed in Sect. 3.3 to our new
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dataset. In the case of dense sampling, we apply two variants named Dense10
(dense sampling with a step size and a keypoint radius of 10) and Dense25 (step
size and radius equal 25 as proposed in [14]). For matching keypoints nearest
neighbor search is performed using the hamming distance or L2 norm, depending
on the descriptor used.

Table 1. Set of top ten detector and descriptor combinations after the initial evalua-
tion. All combinations are ranked by pass rate 16 (last column).

Detector Descriptor Prec.(%) pr16(%)
ORB RootSIFT 3.9 96
FAST RootSIFT 3.3 92
SURF RootSIFT 3.9 90
Dense10 RootSIFT 3.8 88
ORB U-SURF 3.1 88

Detector Descriptor Prec.(%) pr16(%)
Dense25 RootSIFT 12.0 83
Dense10 LATCH 2.7 83
ORB BRIEF 2.4 83
FAST BRIEF 1.7 83
FAST LATCH 2.5 81

Previous studies report that it is critical to find enough correct matches at all
for rephotographic image pairs [25]. Thus, initially we refrain from applying any
filters, since these also eliminate correct matches. Of course this leads to poor
precision values. Consequently in the initial evaluation we only use the number
of correct matches to compare feature detectors and descriptors with each other,
while we expect to improve precision during the detailed evaluation.

Therefore, we compute pass rates requiring a minimum number of 16 correct
correspondences, while imposing no threshold on precision. We choose 16 as min-
imum value, since it is the required minimum number of correct correspondences
in [25]. Table 1 depicts the top ten detector and descriptor combinations sorted
by pass rate 16. Note that RootSIFT showed higher or similar performance as
SIFT for all relevant combinations, thus we omit displaying the results of SIFT.
Our further detailed evaluation tried to optimize the performance of these top
combinations.

4.2 Varying Detector and Descriptor Parameters

At first we vary the parameters of dense sampling. Initially we keep the spacing
of 10 pixels and sample dense keypoints with radii of 25, 35 and 50 pixels.
While increasing the keypoint radius to 25 has a positive effect on pass rate,
further increasing the radius to 35 or 50 does not improve but rather diminishes
pass rate. Secondly we decrease keypoint spacing to only 5 pixels so that the
total number of keypoints sampled is increased. Especially in combination with
LATCH this shows a positive impact on pass rate as well, while there is no
significant negative effect on precision.

Thus we decided to consider DENSE5:25/RootSIFT and DENSE5:25/
LATCH in our further evaluation. However, we note that dense sampling requires
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image pairs of similar scale and ideal keypoint scale is related to image resolu-
tion. Hence, if image resolution varies from our dataset (around 800×600 pixel)
other radii may show better performances.

In the case of dense sampling raising the number of keypoints increased per-
formance. Thus, we also analyze the effects of varying keypoint number for other
detectors among the top ten. For ORB we evaluate a restriction of keypoints to
10000, 15000 and 20000, while for SURF we vary the Hessian Threshold from
100 to 50 and 25. In general an increase in the number of sampled keypoints
results in an increase in pass rate, while precision values are hardly effected. Only
for the combination ORB/BRIEF sampling 20000 keypoints diminishes perfor-
mance. We attribute this effect towards the lower descriptive power of BRIEF
as a binary descriptor compared to its floating point counter parts RootSIFT
and U-SURF. Furthermore in the case of SURF detector a Hessian threshold of
50 depicts the best performance. Thus we use ORB20k/RootSIFT, ORB20k/U-
SURF, ORB15k/BRIEF and SURF/RootSIFT with a hessian threshold of 50
for our further evaluation. Since FAST already samples around 15000 keypoints
on each image, we did not change its parameters further.

At last we vary descriptor length to enhance discriminative power, especially
for binary descriptors. For BRIEF and LATCH we compare descriptor lengths
of 16, 32 and 64 bytes, while for U-SURF we compare a descriptor lengths of 64
and 128 floating point numbers. As expected for binary descriptors increasing
descriptor length shows positive effects on pass rate and precision. For U-SURF
instead changing descriptor length has hardly any effect.

In summary, we remain with the following nine detector and descriptor
combinations for our further evaluation: Dense5:25/RootSIFT, Dense5:25/
LATCH64, ORB20k/RootSIFT, ORB20k/U-SURF, FAST/RootSIFT, SURF/
RootSIFT, FAST/BRIEF64, ORB15k/BRIEF64, FAST/LATCH64.

Fig. 3. Illustration of the performance of different match filtering approaches. In detail
for each detector and descriptor combination results of applying no filter, DGF, K-VLD,
the combination of both and the top performing standard filter (ratio test, maximal
descriptor distance, or their combination) are displayed. For most detector and descrip-
tor combinations pure K-VLD performs a little poorer than DGF in terms of pass rate,
while similar average precision values are reached. Overall applying DGF followed by
K-VLD, shows the best performance for most combinations.
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4.3 Match Filtering

At first we applied the standard ratio test, with thresholds of 0.9, 0.8 [18] and
0.6 [25] for match filtering. However, only a weak threshold of 0.9 leads to slight
performance increase in terms of precision and pass rate. For stricter values there
still is an increase in precision, but this is accompanied by a reduction of correct
correspondences below 16 for a significant number of image pairs.

Secondly, we evaluated the effects of applying a maximal descriptor distance
threshold. Results are similar to those of applying the ratio test. Only very
soft thresholds lead to slight increases in pass rate, while tighter ones diminish
too many correct matches. Also a combination of both, ratio test and maximal
descriptor distance threshold, does not result in promising increases in pass rate
if a precision above 10% is required. Exemplary results are illustrated in the last
column of Fig. 3.

Thirdly we applied the disparity gradient filter (DGF) [23] with our pre-
viously described iteration method and termination criterion. Our evaluation
shows that DGF hardly discards any correct matches while lots of false corre-
spondences are eliminated. Hence, DGF is able to boost precision by factors of 10
to 30, even for extremely low initial precision values beyond 1%, see also Fig. 2.
The number of correct matches on the other hand does not diminish significantly
upon DGF application.

At last we evaluated the performance of K-VLD [17] as a match filter for
historic and modern image pairs. Overall K-VLD performs a little poorer then
DGF in terms of pass rate, even though average precision is similar or slightly
higher than for DGF. For a direct comparison please refer to Fig. 3. For individual
images K-VLD leads to a greater boost in precision, but it also discards more
correct matches. Hence for some image pairs its application results in a drop of
correct matches below 16.

Due to the individual shortcomings of DGF (low precision) and K-VLD (few
correct matches) for individual image pairs, we propose to combine both filters.
At first DGF is used to discard a majority of false correspondences and reach
precision values above 1% or 2%. Afterwards K-VLD is applied to achieve a
further boost in performance. The results of applying this filter combination to
our dataset are displayed in the fourth column of Fig. 3. Compared to single
DGF application a clear performance increase in average precision is visible,
while such is not accompanied by a drop in pass rate as in the case of single
K-VLD use.

In summary the generally low performance of standard filters, such as the
ratio test and maximal descriptor distance, can be ascribed to their dependence
on descriptor distance. This is, since for image pairs featuring major appearance
changes, even correct matches feature high descriptor distances. Thus descriptor
distance is not a distinctive feature between correct and false correspondences
of modern and historic image pairs. Instead, measures such as DGF, exclusively
based on keypoint geometry, and K-VLD, based on photometric as well as geo-
metric measures, are much more effective for filtering correspondences.
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4.4 Application Beyond Rephotography

Finally we verify the applicability of our established pipeline to other challenging
image pairs beyond rephotography and our own dataset. To do so we apply our
top nine detector and descriptor combinations together with our proposed filter-
ing mechanisms to the dataset of Hauagge and Snavely [14]. This is composed
of various challenging image pairs, including day and night images and images
of different rendering styles.

Table 2. Comparison with the results of Hauagge and Snavely [14]

(a) Mean average precision of [14].

GRID SIFT SYM-I SYM-G

Self-Sim. 0.29 0.14 0.12 0.16
SIFT 0.49 0.21 0.28 0.25
SYMD 0.41 0.22 0.20 0.25
SIFT-SYMD 0.58 0.28 0.35 0.36

(b) Average precision of our pipeline.

none DGF K-VLD both

Dense5:25/RootSIFT 0.24 0.69 0.79 0.84
Dense5:25/LATCH64 0.13 0.71 0.77 0.85
ORB20k/RootSIFT 0.11 0.56 0.58 0.71
ORB20k/U-SURF 0.10 0.64 0.65 0.74

Table 2 depicts the average precision of our top four combinations, without
match filtering, after applying DGF or K-VLD and the combination of both.
Overall the average precision values reached on the dataset of Hauagge and
Snavely [14] are higher than those achieved for our own dataset reported in
Fig. 3. Hence as expected, our dataset is more challenging due to the presence
of major structural changes.

Fig. 4. Comparison of results for individual image pairs from [14]. At the top the image
pairs and their respective recall and precision curves for dense sampling as reported
by [14] are displayed. At the bottom the precision values of a variety of our detector
and descriptor combination reached after match filtering are shown. For the majority
of image pairs our proposed pipeline reaches high precision values

The mean average precision values reached by [14] are repeated in Table 2.
Unfortunately, their mean average precision values are not directly comparable
to our average precision reached after filtering, since they applied a variety of
ratio thresholds for filtering and report mean average precision of all these tests.
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Anyhow, there is a distance of more than 0.25 between their mean average
precision values for dense sampling (GRID) and the average precision values
after DGF and K-VLD application for our top two combinations using dense
sampling. This suggests that our proposed pipeline outperforms the approach of
[14] in matching image pairs containing high appearance variations. To confirm
this we also compared the performance of both approaches on individual image
pairs, which have shown to be extremely challenging based on the results of [14].
A subset of these image pairs is displayed in Fig. 4. These examples show that
for a majority of image pairs, that feature rather low precision and recall curves
in [14], our pipeline is able to generate high precision values after match filter
application.

5 Conclusion

In this work we analyzed the suitability of classic feature detectors and descrip-
tors for matching historical and modern image pairs. In this context we created
a new challenging publicly available dataset, composed of rephotographies of a
variety of scenes exposed to moderate up to tremendous change across years. Our
evaluation results show that selective feature detection is not suitable if image
pairs contain great variations. More effective is a dense sampling of keypoints. As
descriptors overall RootSIFT and SURF but also the binary descriptors BRIEF
and LATCH show the highest feature matching performance. Furthermore we
discovered that a suitable match filtering approach is much more important than
the individual classic detector and descriptor combination used. In detail filters
based on descriptor distance are not suitable in the presence of great appear-
ance changes. Instead the application of filters based on geometry such as the
disparity gradient filter [23] or K-VLD [17] boost performance.

In summary, we established a complete pipeline including detectors, descrip-
tors and matching filtering methods. This also shows high performance in match-
ing challenging image pairs beyond historic repeat photography as our compari-
son on another dataset showed. However, even after application of our pipeline,
we only reach pass rates of 70% to 90% if we presume a minimum number
of 16 correct matches and precision values above 10%, remember Fig. 3. Given
these requirements, between 10% to 30% of image pairs of our dataset remain
unmatchable. Consequently further research and possibly completely new fea-
ture matching approaches are required to match even the most challenging his-
toric repeat photographs. Further more the performance of feature detectors and
descriptors in more natural non urban environments still needs to be assessed.
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