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Abstract. Cameras are already widely used for inspection and moni-
toring tasks in poultry slaughter houses. In this paper we evaluate the
use of computer vision for broiler carcass weight estimation. We com-
pare the use of 2D image features with 3D features extracted from a
statistical shape model fitted to the image. The statistical shape model
is built from 45 3D scans captured from broiler carcasses collected at a
slaughter house. The use of this 3D prior gave a reduction in mean abso-
lute error compared to 2D features alone and achieved an overall mean
average percentage error of 3.47%. The algorithm can run real time and
was tested on a dataset containing 136,472 images of broilers, captured
at a real production site.
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1 Introduction

The produced amount of poultry meat is increasing as the production gets more
and more automated. 40.6 billion chickens were slaughtered in 2000 which has
increased to 65.8 billion in 2016 [7]. Broilers are slaughtered and cut up almost
entirely by robots and automated equipment at speeds up to 13,500 birds per
hour for one slaughter line [15]. To keep the production line running smoothly
the equipment needs to be adjusted for size and weight.

Broilers are typically weighed with a conveyor scale installed as part of the
processing line. Such scales are typically quite large and maybe require the bird
to be transferred off and back on the conveyor. Maintenance and replacements
require that the line is stopped or that the line bypasses the scale.

The average weight of a flock can be used to adjust the equipment that
cuts up the chicken into breast, legs, and wing parts. The individual size and
weight are used to direct the broiler to the right cut-up station. By setting the
equipment correctly the factory minimises waste and optimises their profits.

Very light or small birds should be removed early, as these are likely sick
or underdeveloped. Trying to eviscerate these birds can cause the equipment to
damage the intestines, causing faecal contamination on the following birds [9].
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Many slaughter houses already have multiple camera systems installed along
the processing line for inspection and monitoring tasks. These are installed in
a non-intrusive manner, so they are relatively inexpensive to install and easily
replaceable. These cameras can be utilised for weight estimation. A 2D image
only shows the size of the bird from a single perspective, but because broilers
are bred to be similar there is a high correlation between size and weight [2].

However, some variation may not be explained in a 2D image, e.g. dimen-
sional changes can happen in the direction towards the camera. The contribution
of this paper is to investigate whether adding 3D features from a 3D prior will
increase the performance of the weight estimation. The prior knowledge consists
of 45 3D scans of broilers gathered at a poultry processing plant. A statistical
shape model (SSM), generated from the 3D scans, is fitted to the 2D image of
the broiler to extract 3D features for the weight estimation.

2 Related Works

Weight estimation from images is especially useful in situations where physical
weighing is not feasible. In production of fresh lettuce, where you can’t uproot
the plants to weigh them, [12] showed that it is possible to estimate the weight
from an image using both morphology and pixel-based methods.

A lot of work has been done in the field of estimating the weight of livestock
in a non-intrusive fashion. The weight is an important parameter in rearing, but
physical weighing requires large scales for animals like cattle and pigs and it can
be a cumbersome affair to weigh hundreds of animals. Work by [13] shows that
live weight of individual pigs can be estimated with an accuracy of 96.2% using
a camera installed over the pig pen. The body area of the pig is found by fitting
an ellipse to the pig’s back which is used in a transfer function to estimate the
weight every minute.

In the fishing industries, [3] showed that good results could be achieved
with an RGB sensor and polynomial regressions when estimating the weight
of salmon. Early work by [19] demonstrated a structured light setup capable of
determining the weight of flatfish as they passed the camera and laser on a con-
veyor. A similar approach was used by [16], but on herring. The structured light
gives a measure of the depth which is useful when estimating volumes, which for
similar objects are highly correlated with the weight.

A similar top view approach was used to estimate the live weight of broil-
ers but using the Kinect sensor to acquire the depth. Using a combination of
2D and 3D features, [17] achieved a relative error of 7.8% across all broilers.
The system was installed in a commercial production setting and operated fully
automatically.
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3 Approach

The goal is to estimate the weight of broilers from 2D images captured in-line
at a poultry processing plant. 2D cameras are already in use in many slaughter
houses for inspection and adding a 3D sensor would increase the complexity and
cost of the weight estimation.

The 3D information should therefore come from prior knowledge. In a pre-
processing step multiple 3D scans of broilers are combined in an SSM. This step
is performed off-line and should only be done once.

The in-line process starts with the image acquisition that captures an RGB
2D image. From this image 2D landmarks are extracted, which are used to fit the
SSM to the broiler in the image. From the fitted SSM 3D features are extracted
and combined with 2D features which are used to estimate the weight of the
broiler. The in-line processing is constrained to a maximum processing time of
266 ms, which corresponds to 13,500 birds per hour.

A flow chart of the system described in this paper is depicted in Fig. 1.

Capture
image

Build SSM

Fit SSM

Extract 2D
features and 
landmarks

Extract
3D features

Estimate
weight2D image

SSM
3D3D3D3D

In-line

Pre-process

Fig. 1. Flow chart of the weight estimation pipeline described in this paper.

4 Statistical Shape Model Generation

Fitting statistical models to images gained traction with the invention of Active
Shape Models (ASM) [6] and Active Appearance Models (AAM) [5]. ASM and
AAM have an inbuilt prior from the shapes used to construct the models.

An SSM captures the underlying physical characteristics of the object and
this is what we are interested in when modelling boilers. By matching the model
to a 2D image, we gain information about the broilers measures in the third
dimension. The proportions of the broiler’s body parts, like breast and drum,
could even lead to a detailed weight estimation of the individual parts.

4.1 Creating 3D Scans of Broilers

45 birds have been collected at a poultry slaughter house and recorded using a
Canon EOS 5DS camera over the course of three weeks to ensure diversity. The
recording setup consisted of a hanger in the centre of a room and the camera was
rotated around the chicken. One full rotation with the camera placed higher than



224 A. Jørgensen et al.

Fig. 2. Sketch of the setup used for capturing images for the 3D scan generation. The
camera is approximately 1 m from the bird.

the chicken and one with the camera placed lower than the chicken. Between 90
and 120 images where captured per bird. See Fig. 2 for a sketch of the setup. The
weight distribution of the collected birds can be seen in Fig. 3. The histogram
shows a gap between 1200 g and 1600 g where no birds have been recorded. This
is not ideal, but not unsurprising as broilers are bred to be slaughtered at specific
weights. The recorded images were fed to the commercially available software,
ContextCapture, which generated the 3D scans. Pieces of coloured tape were
attached to the hanger, two centimetres apart, to ensure the correct scale of the
bird in the 3D scan. Examples of three captured 3D scans can be seen in Fig. 4a,
b and c. Each scan contains between 180,000 and 330,000 vertices.

75
0

85
0

95
0

10
50

11
50

12
50

13
50

14
50

15
50

16
50

17
50

18
50

19
50

20
50

21
50

22
50

Chicken Weight [g]

0

2

4

6

8

10

Fr
eq

ue
nc

y

Fig. 3. Distribution of the weight of all birds used in the SSM.
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4.2 Registering the 3D Scans

The 3D scans were manually trimmed to remove the wings, the knees and the
neck skin as these parts can be very different between birds and therefore difficult
to register. It is also assumed that especially the neck skin and the knees have a
small or constant impact on the total weight. The scans were then smoothed to
remove small bumps on the skin, which would otherwise create very fluctuating
surface normals.

One scan was chosen as the template and scaled down to around 25,000 ver-
tices using a surface simplification method [8]. The template was then registered
to the other scans with a non-rigid iterative closest point method: N-ICP-A [1].
The algorithm assigns an affine transformation to each vertex and starts with a
stiff template to find the global alignment, then gradually reduces the stiffness to
allow more localized deformations. The stiffness is used to regularize the defor-
mation and controlled by penalizing the difference between neighbour vertices’
transformations.

Each registration produces a few sets of vertices with very skewed faces,
especially around the end of the legs due to badly registered vertices. To remove
these faulty faces, it was chosen simply to remove a few vertices around the
end of both legs. The same vertices must be removed from all registered scans
to keep the correspondence between the models. Unconnected vertices are also
removed from all scans. As the last step all scans are set to use the faces from
the template. The resulting meshes for the three birds in Fig. 4a, b and c, can
be seen in Fig. 4d, e and f.

The area around the groin proved difficult to register as there is a large
variation between the birds in this area. This can be seen in Fig. 4a and b, where
there is a big height difference between the backside of the thigh and the end
of the breast bone between the birds. As a result, vertices around the cloaca
were removed. The registered and trimmed scans are now used to generate the
SSM. All scans are aligned with Procrustes analysis [18] without scaling and
flipping. The mean of all scans is then subtracted from the individual scans
before Principal Component Analysis (PCA) is used to model the variation in
the data. Studying the explained variances show that the first seven components
contain more than 95% of the total variation. The mean shape can be seen in
Fig. 5. New samples can now be generated using Eq. 1.

x
3n× 1

= x̄
3n× 1

+ P
3n×m

· b
m× 1

(1)

where x is a new sample, x̄ is the mean shape, P is the eigenvectors found
with PCA and b defines a set of parameters that deform the SSM. n is the
number of vertices in the model and as the vertex coordinates are stored as
x1, y1, z1, x2, y2, z2, ...xn, yn, zn, the number of rows in x, x̄ and P becomes 3n.
m is the number of principal components.
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(a) Bird 8. 1160 g. (b) Bird 26. 1770 g. (c) Bird 33. 1139 g.

(d) Bird 8. 1160 g. (e) Bird 26. 1770 g. (f) Bird 33. 1139 g.

Fig. 4. Three 3D scans created by ContextCapture, top row. Template scan registered
to bird above, bottom row.

5 Fitting the SSM to a 2D Image

All birds are presented the same way, hanging in the legs with the breast facing
the camera. This allows us to lock the yaw and pitch rotation of the SSM reducing
the degrees of freedom in the fitting problem. Due to the way the broilers are
transported on the line, some differences in roll must be expected.

The fitting is done with automatically extracted landmarks. If corresponding
vertices in the SSM are fitted to these landmarks the rest of the model should
match the broiler in the image. Eight landmarks are extracted from the bird
in the 2D image using an IHFood ClassifEYE system [10]. These are the left
and right wing pit, shoulder, hip and groin. The eight points are depicted in
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Fig. 5. Mean of the SSM. Rotated for better viewing.

Fig. 7b. These points were chosen as they could be found most consistently. Eight
corresponding vertices are selected in the SSM. These vertices are handpicked
and only selected once, as they should always correspond to the same landmarks
in the images.

When the landmarks are extracted from the image, Procrustes analysis, with-
out scaling, is used to align the landmarks to the selected vertices in the SSM.
The SSM and image landmarks are now aligned and ready for the model to be
fitted. As the orientation of the SSM is now locked, only the x and y values are
used for the fitting which gives a total of 16 values in x. Equation 1 will now
have the dimensions showed in Eq. 2. Only the seven first principal components
are used.

x
16 × 1

= x̄
16 × 1

+ P
16 × 7

· b
7 × 1

(2)

0 = Pb− (x− x̄) (3)

Equation 3 is an over-determined problem and can therefore have multiple
solutions. b is unknown, but we want to constrain its values to ±3 standard
deviations. As PCA is a linear model, going beyond ±3 standard deviations will
in most cases cause the model to diverge greatly from the true population. b in
Eq. 3 will therefore be solved with an optimiser. The minimisation is done with
SciPy’s [11] minimise method. The algorithm used is L-BFGS-B [4] and each
scalar in b is bound to ±3 standard deviations. Initial values for b are all zeros.

Once b is found, it can be inserted in Eq. 1 to generate the new sample that
fits the broiler in the 2D image. b’s size comes from the number of principal
components used, so the resulting model will still be in 3D although b was
found using only 2D points.

The resulting fit for three broilers can be seen in Fig. 6.
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Fig. 6. The SSM fitted to three different images. Red dots are vertices in the model.
(Color figure online)

6 Features

The weight can be calculated from the volume of the fitted 3D model, if the
density of a chicken is constant across all parts. We cannot just assume this,
however, and perhaps more importantly, we know that the chicken’s cavity is
empty after the evisceration. We will therefore extract multiple 3D and 2D fea-
tures to estimate the weight.

One 3D feature is indeed the volume, which is calculated as the sum of all
tetrahedrons formed by the faces of the SSM and the origin which is placed
roughly in the centre of the SSM. The SSM is not a closed surface so the volume
will not be what one might expect from a chicken.

The remaining 3D features are areas and distances on the surface of the
SSM. Because there is point correspondence between all fitted SSMs, areas can
be calculated from the same set of vertices every time, as it is just the location of
these vertices that have changed. The surface area is the sum of all faces spanned
by these vertices. The area features include the left and right breast, left and
right upper thigh and a band around each drum.

The same principle is used for distance features. Pre-specified vertices make a
path that is used to calculate the distance between two points on the surface. This
path is the shortest in the mean shape, but because the vertices move individually
when the SSM is fitted to the 2D image, it is not necessarily the shortest path
in the fitted SSM. It is however much faster to calculate the distance of a fixed
path than searching for the shortest path between two vertices for every fit.
The distance features include the path from the collarbone to the bottom of the
breast, the circumference of each drum and the path from each wing pit to the
centre of the breast. In total 12 3D features are extracted from the fitted SSM.

2D features are extracted using an IHFood ClassifEYE system outputting a
total of 23 features. These features are primarily area features like the area of
the chest, but also distances like the distance from wing pit to wing pit.

All features are augmented by finding the square root and squaring each of
them. This is done to introduce some non-linearities. With augmentation there
are 36 3D features and 69 2D features.
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7 Data Acquisition

2D images of broilers are recorded with a Jai BB-141GE RGB camera installed
at a slaughter house in Chesterfield, England. The images are recorded after
defeathering and evisceration where the broilers are transported sideways hang-
ing in their legs with the breast facing the camera. Their weight is measured
with a LINCO 520 Weigh Transfer [14] mechanical weight with an accuracy of
±0.25%. The weight is paired with the images and will function as ground truth.
An example of a captured image can be seen in Fig. 7a. All 2D images have been
recorded over the course of four days. Images of broilers weighing less than 800 g
or more than 2200 g are discarded, to ensure that the 2D images are in the same
weight range as the broilers used for the SSM. The remaining 136,472 images
are randomised and 102,412 images are used for training and 34,060 images are
used for testing.

(a) Image recorded with the 2D
camera.

(b) Landmarks used to fit the SSM
to the image.

Fig. 7. Captured 2D image with and without landmarks.

8 Results

Performance are measured for 2D features only (2D), 3D features only (3D) and
for a combination of 2D and 3D features (2D3D). The number of features used
to train the regression models are listed in Table 1. All features are normalised
by subtracting the mean and dividing by the standard deviation. Both the mean
and the standard deviation are calculated using only the training samples.

The regression model chosen for comparison is a linear robust regression. The
robust variant means the linear model is fitted iteratively and for each iteration
data points are weighted based on their residual value. Outliers will be down
weighted and therefore have a smaller effect on the fit. The resulting errors of
the regression models are listed in Table 1. The error gets smaller by combining
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Table 1. Results for the linear regression models. Mean Absolute Error (MAE) and
Mean Absolute Percentage Error (MAPE) are reported.

Model # Features MAE MAPE

2D 23 (69) 47.22 g 3.53%

3D 12 (36) 63.49 g 4.72%

2D3D 35 (105) 46.37 g 3.47%

2D and 3D features and mean absolute error is reduced by 1.80% compared to
2D alone. The mean absolute error in percent is 3.47. An unpaired t-test was
performed on the 2D and 2D3D residuals to investigate whether this reduction
is significant, which the resulting p-value of 0.0129 strongly indicates.

As there are no studies done on the same dataset, we will compare our
results to related weight estimation papers. Weight estimation of herring by [16]
achieved an R2 of 0.980 using structured light to extract 3D features and had a
sample size of 179. They used 2D and 3D features where our method achieved an
R2 of 0.963 using 2D and pseudo 3D features. In work by [13], weight estimation
of pigs, they got an R2 of 0.962 working on multiple frames extracted from a
video. They did however track the weight of individual pigs as it grew over 13
days where as we sample and estimate the weight once.

The coefficient of determination, R2, is also used to investigate the individual
features’ correlation with the weight and the 3D features generally have a higher
correlation than the 2D features. The top five correlated 2D and 3D features can
be seen in Table 2.

Table 2. R2 for the top 5 2D and 3D features with respect to the weight.

2D features Aug. R2 3D features Aug. R2

PitLeft2PitRight
√
x 0.808 LeftPit2BreastMid

√
x 0.855

BreastArea x 0.788 RightPit2BreastMid
√
x 0.852

SaddleArea x 0.779 Volume x 0.845

BreastHeight
√
x 0.774 LeftBreastArea

√
x 0.834

SaddleHeight
√
x 0.755 BreastHeight

√
x 0.833

8.1 Timing

The system should be able to operate in-line at production speeds up to 13,500
birds per hour. That is 266 ms of available processing time per bird and the exist-
ing 2D pipeline already takes an average time of 125 ms. This includes landmark
extraction.

In this work we have added the SSM fitting and 3D feature extraction to
the existing pipeline. The code is implemented in python 3.6 using NumPy and
Numba for speed-up where possible. Timing showed that the average processing
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time for fitting the SSM and extracting 3D features was just 7 ms per image.
This is clearly within the remaining 141 ms, so the 3D features can easily be
added to the already existing analysis. The test was performed on an i7-4770K
CPU running at 3.7 GHz.

9 Conclusion

The results showed that the mean absolute error is reduced by 1.80% by adding
3D features from the SSM to the existing 2D features extracted directly from
the image. A t-test was used to ensure that the results were significant.

Investigating R2 for the individual features, showed that the 3D features were
more correlated with the weight than the 2D features. It is however very likely
that there is a high collinearity between the 3D features as the overall weight
estimation error were higher when comparing the regression models using either
3D or 2D features.

The SSM was fitted to the 2D image using only 8 landmarks. This meant
the SSM could be fitted very quickly, in just a couple of milliseconds, allowing
the entire fit and 3D feature extraction to run real time. The soft curves and the
bland textures of the broiler made it difficult to extract more than these eight
landmarks and especially the landmarks around the wings proved to be volatile.
The angle of the wings could deviate a lot on some birds, which have a large
impact on the wing pit and shoulder landmarks. Figure 4a is a good example of
how different wings can look on some birds. All 3D features depend on the fit, so
a bad fit would lead to bad 3D features. For future work it would be interesting
to try a more robust way to fit the SSM to the 2D image.

Constructing an SSM is a time-consuming task. Capturing 90–120 images of
each broiler is a tedious job and building the 3D scans is computationally expen-
sive and therefore also time consuming. After this comes the manual process of
inspecting and trimming the scans before they can be registered to each other,
which also is computationally expensive.

Many steps in this process can however be automated which will make it
easier to expand the SSM with more broilers and therefore more variance. For
this paper we built the statistical model from 45 3D scans of broilers, which we
used to estimate the weight of over 100,000 birds. 45 3D scans can clearly not
represent the variation of the true population, but the results indicate that the
weight estimation error can be reduced by adding prior knowledge and it is our
belief that an SSM with more 3D scans can improve the performance further.
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