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Abstract. Real-time motion assessment of the cervical spine provides
an understanding of its mechanics and reveals abnormalities in its motion
patterns. In this paper we propose a vertebral segmentation approach to
automatically identify the vertebral landmarks for cervical joint motion
analysis using videofluoroscopy. Our method matches a template to the
vertebral bodies, identified using two parallel segmentation approaches,
and validates the results through comparison to manually annotated
landmarks. The algorithm identified the vertebral corners with an aver-
age detection error under five pixels in the C3–C6 vertebrae, with the
lowest average error of 1.65 pixels in C4. C7 yielded the largest average
error of 6.15 pixels. No significant difference was observed between the
intervertebral angles computed using the manually annotated and auto-
matically detected landmarks (p > 0.05). The proposed method does
not require large amounts of data for training, eliminates the necessity
for manual annotations, and allows for real-time intervertebral motion
analysis of the cervical spine.
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1 Introduction

Individual motion contributions of the cervical vertebrae provide valuable infor-
mation about the natural neck movement and reveal abnormalities associated
with spinal injuries or medical conditions [1]. Digital videofluoroscopy is an imag-
ing modality which allows a real-time in vivo analysis of unrestricted cervical
motion, otherwise is not possible when using static radiographic images. Cervi-
cal range of motion has been investigated in whiplash-associated disorders [1],
in neck pain [1,2], as well as in healthy subjects [1,3,4], and it has been shown
to be significantly decreased in whiplash and neck pain [1]. New evidence indi-
cates that the cervical joints contributions to the range of motion, previously
thought to be regular and continuous [3], in fact prove to be opposite to the
direction of movement [4–6], and that the vertebral motion patterns to and from
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the end ranges of movement are not mirror images of each other [5,7]. There-
fore, a rotational and translational cervical motion analysis is of considerable
importance.

Motion analysis of the cervical spine requires an annotation of landmarks on
vertebral corners [3]. The majority of studies analyzing cervical joint motion
employed manual and semi-automated approaches for landmark annotations
[3,4,6,8,9,11]. Manual methods have been shown to be highly reliable [4,6,12],
but also time-consuming, and thus impractical for large data analysis. Auto-
matic vertebral tracking studies have used template matching [11,13], Active
Appearance Models [14–16], or feature tracking algorithms [17]. However, these
methods still require manual identification of vertebral landmarks in the first
frames of the videos. Fully automatic landmark identification has been success-
ful in the lumbar spine [8,10,18,19], due to the larger size and better visibility
of the vertebral bodies, or when using imaging modalities providing higher con-
trast and spatial resolution, such as Computed Tomography [15,20,21] or X-ray
[14,16,22]. Nonetheless, these approaches have not been successful when applied
to the cervical vertebrae in fluoroscopic images, due to their smaller size, small
field-of-view, lower image quality, and considerable presence of motion blur.

In this paper we propose a procedure for automatic identification and segmen-
tation of cervical vertebrae in videofluoroscopic sequences. It allows an accurate
computation of vertebral landmarks necessary for a real-time cervical motion
analysis, and eliminates the prerequisite for manual annotation (Fig. 1a) of the
C3–C7 vertebrae.

2 Method

2.1 Experimental Procedure

Four young adult subjects were included in this study: two women (age:
23.5 ± 0.71 years; height: 167.5 ± 17.7 cm; weight: 73.8 ± 26.6 kg, and two men
(age: 25.0 ± 1.4 years; height: 184.5 ± 6.4 cm; weight: 77.5 ± 6.4 kg. Exclusion
criteria were: neck disorders, any neck symptoms up to three months prior to
the study, and possible pregnancy. Fluoroscopic video sequences (Fig. 1a) were
acquired at 25 frames per second, with a resolution of 576× 768 pixels, using
the Phillips BV Libra mobile diagnostic fluoroscopic image acquisition and view-
ing system. For each subject, two average quality fluoroscopic sequences were
recorded: one at the onset of flexion, and one at the onset of extension. The aver-
age source-to-participant distance (C7 spinous process) was 76 cm, and the aver-
age exposure of 45-kV, 208-mA, 6.0-ms X-ray pulses yielded 0.12 mSv per indi-
vidual motion from upright to end-range (PCXMC software, STUK, Helsinki,
Finland). Subjects were asked to sit in the normal upright position and perform
movement in the sagittal plane, starting from the neutral position to the end-
range of movements. They all wore plastic glasses with two small metal bearings
on each side, attached to the glasses by metal wires. The purpose of them was
to serve as external markers of the occiput visible under fluoroscopy (Fig. 1a).
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Fig. 1. (a) Manually annotated corners on the cervical spine, from C3 to C7, with
visible external markers. (b) Marking order for the corners, as well as the posterior and
anterior midpoints (red) which form the mid-planes used for joint angle calculations,
illustrated on the C5, C6, and C7 vertebrae. (Color figure online)

2.2 Automatic Identification of Vertebral Landmarks

The automatic vertebral landmark identification algorithm consisted of the fol-
lowing steps (Fig. 2): template matching; two parallel segmentation methods,
using contrast-limited adaptive histogram equalization and gradient magnitude
approaches; registration of the segmented vertebrae to the template; and iden-
tification of the vertebral corners as landmarks.

Fig. 2. Procedure workflow for an automatic identification of the cervical vertebral
landmarks.
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Template Matching: A binary template was created to represent an average
shape of the cervical vertebrae (Fig. 5a). Videofluoroscopic sequences of subjects
in neutral position were preprocessed with a local range filter. Canny edge detec-
tion (sensitivity thresholds [0.02, 0.05]) and a morphological closing (spherical
structuring element, radius of 2 pixels) were then performed. Next, the binary
template was matched to the preprocessed image at every location, and the can-
didate locations where the template matched the vertebrae were identified by
means of the following criteria: Dice similarity coefficient (DSC) > 0.34 (Eq. 1);
average pixel intensity range [100, 150]; entropy threshold > 1.99; gray-level
co-occurrence matrix properties: contrast range [0.045, 0.12], correlation range
[0.93, 0.98], energy range [0.2, 0.34], and homogeneity range [0.94, 0.98].

DSC =
2 |X ∩ Y |
|X| + |Y | (1)

In Eq. 1 for the Dice coefficient, |X| was the number of pixels in the template
image and |Y | the number of pixels in the candidate locations. The identified
candidate locations were then edge-, and contrast-enhanced using a power law
transformation (γ = 1.1, c = 1). Finally, a quadratic anisotropic diffusion fil-
ter was applied. At the end of this step, regions-of-interest (ROIs) around the
vertebral bodies were identified for segmentation, using two parallel approaches
(Fig. 2), both of which were applied only to these ROIs.

Segmentation 1 - Contrast-Limited Adaptive Histogram Equalization:
First, a contrast-limited adaptive histogram equalization (CLAHE) algorithm
was applied in order to enhance the contrast in the identified gray-scale candidate
ROIs (Fig. 3). The candidate locations were sharpened to enhance the contrast
of the edges. Next, adaptive thresholding was applied to 3-by-3 neighborhoods
of the vertebral ROIs to filter the noise, while simultaneously preserving the
edges. The gray-level co-occurrence matrix was calculated once more and adap-
tive thresholding was applied to the scaled image. The resulting images were
processed in three parallel pathways (Fig. 3). In (1), a fourth order Butterworth
bandpass filter was applied (cut-off frequencies: [5, 71]), and the residual noise
was removed through binarization (threshold = 0.99). The holes in the binarized
objects were filled using morphological filling. In (2), no image filtering was
applied before binarization and morphological hole filling. In (3), the vertebral
edges were computed using Canny edge detection (sensitivity thresholds [0.02,
0.05]). The three images were fused together, so that the pixels constituting
the vertebral edges were kept in the fused images if and only if they had the
same value of 1 (white) at the same pixel locations. Finally, this step concluded
with morphological opening and then closing. The results of Segmentation 1 are
illustrated in Fig. 5b.

Segmentation 2 - Gradient Magnitude: In Segmentation 2 (Fig. 4), a
gradient magnitude was applied to the fluoroscopic images, filtered with a
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Fig. 3. The workflow of Segmentation 1 procedure using contrast-limited adaptive
histogram equalization.

quadratic anisotropic diffusion filter. The images were then filtered using an edge-
preserving, local Laplacian filter (σ = 0.9, α = 0.1). The vertebral ROIs were
then sharpened to enhance the contrast along the edges (radius = 3; sharpening
strength = 2, minimum contrast threshold = 0). Next, adaptive thresholding was
applied for binarization, and morphological opening and closing for filling the
holes and bridging the edges in the segmented vertebrae. The results of Segmen-
tation 2 are illustrated in Fig. 5c.

Fig. 4. The workflow of Segmentation 2 procedure using the gradient magnitude.

Template Registration: At the beginning of this step, each vertebral ROI was
segmented using the two aforementioned segmentation procedures. In order to
quantitatively determine which of them provided the best results, the template
image (Fig. 5a) was matched once again with the vertebral boundaries by means
of affine registration (Fig. 5d and e). The registration was optimized by means
of mean squared error, with a regular step gradient descent configuration, initial
step length of 0.01, and 1000 iterations. The segmentation result with the highest
DSC (Fig. 6a) was selected.
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Fig. 5. (a) Binary template; (b) representative examples of Segmentation 1 and (c) of
Segmentation 2; (d) and (e) results of template registrations to vertebrae segmented
in (b) and (c), respectively.

Corner Detection: The corners of the segmented vertebrae (Fig. 6a) were
located by determining the largest Euclidean distance between all the points
of the vertebral boundary (Fig. 6b). The four corners obtained in this process
were then selected as vertebral landmarks (Fig. 6c). The results of the corner
detection are shown in red in Fig. 7, superimposed on a fluoroscopic image with
manually annotated vertebral corners (blue).

Fig. 6. (a) Segmented vertebral body; (b) two largest Euclidean distances within the
vertebral boundary; (c) vertebral corners.

2.3 Manual Annotation of Vertebral Corners

For the purpose of validating the algorithm, vertebral corners were also man-
ually annotated on the fluoroscopic images in C3–C7 (Fig. 1a). Additionally,
intervertebral joint angles were computed using the automatically detected and
manually annotated vertebral corners. The marking procedure is described in
detail in Plocharski et al. [12]. Briefly, four corners were manually marked on
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the C3–C6 vertebrae at points where lines through soft or cancellous corners
intersect with the outer edges of the compact bone. Figure 1b illustrates the
placement and the order of the markings. Due to the fact that C7 is often par-
tially obscured in fluoroscopic recordings, it was only marked with two points
on the superior cancellous corners under the superior vertebral plate [12]. In
order to compute the cervical joint angles, we incorporated the vertebral land-
mark methodology developed by Frobin et al. [3]. A line connecting the posterior
and anterior midpoints, defined as equidistant points between corners 1 and 4,
and 2 and 3 respectively (red points in Fig. 1b) formed a mid-plane, which was
used for angle computation between two adjacent vertebrae (angles θ1 and θ2,
Fig. 1b). The C6/C7 angle was computed between the C6 mid-plane and a line
going through the two corners of C7. All angles were calculated as four-quadrant
inverse tangents of the determinant and dot product of the two direction vectors,
measured counterclockwise from the posterior to the anterior midpoints in the
range from 0◦ to 180◦ [12].

3 Results

Figure 7 illustrates the automatically identified (red), and manually annotated
vertebral corners (blue) on C3–C7. For C3–C6 vertebrae, the automatic detection
method provided locations in close proximity to the manual annotations. A few
inaccurate detections of the first and fourth corners were observed in C3 (Fig. 7a
and g), and in the second and fourth corners of C6 (Fig. 7a, d, and d). Corner
detection of C7 yielded somewhat inferior results to, especially for the second
corner (Fig. 7d, h), likely due to an absence of clear vertebral edges. For each
vertebral corner, we compared point coordinates of the automatically identified
corners and the corresponding manual annotations. Error was calculated as the
average Euclidean distance between the two corresponding corners in (n = 8)
fluoroscopic images (Eq. 2):

Error =
1
n

n∑

n=1

√
(xA − xM )2 + (yA − yM )2 (2)

where (xA, yA) was the automatically detected corner, and (xM , yM ) was the
manually annotated one. Table 1 illustrates the mean errors and standard devia-
tions in pixels. Errors smaller than five pixels were deemed acceptable. Addition-
ally, a one-tailed t-test was computed for every automatically identified corner to
test the null hypothesis that the average detection error was equal to or smaller
than five pixels. The p-values for all tests are shown in Table 1. Statistical analy-
sis was performed in SPSS (IBM Statistics, v.25). All data in Tables 1 and 2 was
initially tested for normality using the Shapiro-Wilk test. Normality of the data
was confirmed (p > 0.05). Statistical analysis indicates that the average corner
detection errors were not significantly larger than five pixels. Table 2 illustrates
the intervertebral angles, computed using the approach illustrated in Fig. 1b,
using both the manually annotated and the automatically detected vertebral
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Fig. 7. Automatically located (red) and manually annotated vertebral landmarks
(blue) in the four subjects, at the onset of extension ((a), (b), (c), (d)) and flexion
((e), (f), (g), (h)). (Color figure online)

corners. A paired-sample t-test was computed for each joint to determine if the
angles obtained using the two approaches differed significantly. No significant
difference was found between the two methods (p > 0.05 for all cervical joints).
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Table 1. Detection errors (pixels) computed for each corner in the C3–C7 vertebrae
in the eight fluoroscopic images, as well as in average for every vertebra.

Corner Vertebra

C3 C4 C5 C6 C7

Error p Error p Error p Error p Error p

1 4.96± 3.04 0.51 2.73± 1.92 0.99 3.65± 2.93 0.88 2.81± 2.07 0.99 6.73± 7.41 0.27

2 1.43± 1.44 0.99 1.32± 0.83 1.00 1.15± 1.07 1.00 5.54± 7.29 0.42 5.57± 4.50 0.37

3 3.25± 4.79 0.83 0.79± 0.42 1.00 1.27± 0.98 1.00 0.66± 0.70 1.00 N/A N/A

4 3.31± 4.55 0.84 1.77± 2.13 1.00 2.30± 2.18 1.00 3.40± 2.47 0.95 N/A N/A

Average 3.24± 3.74 0.99 1.65± 1.60 1.00 2.09± 2.13 1.00 3.10± 4.19 0.99 6.15± 5.95 0.23

Table 2. Intervertebral joint angles obtained using the manual and automatic methods.
All values are presented in degrees.

Motion Subject C3/C4 C4/C5 C5/C6 C6/C7

Manual Auto. Manual Auto. Manual Auto. Manual Auto.

Onset of
extension

1 2.07 9.90 1.64 −4.72 −3.88 0.99 10.60 7.26

2 1.17 2.41 2.48 6.94 5.17 −5.80 10.22 11.67

3 0.06 1.34 2.02 7.64 9.88 7.51 14.31 12.47

4 3.28 2.24 −0.93 −6.18 2.32 −0.46 4.58 23.08

Onset of
flexion

1 −3.41 −1.19 −2.73 −7.51 −0.38 −1.50 12.75 15.78

2 2.98 4.42 −0.60 −0.46 1.93 2.11 5.62 11.18

3 −1.49 6.69 6.37 5.41 9.34 5.64 11.08 12.15

4 3.36 0.15 0.62 6.05 −1.95 −18.46 3.92 26.83

p 0.15 0.88 0.13 0.12

4 Discussion

Vertebral landmarks are a requirement for range of motion analysis, which is a
crucial tool for understanding the spine joint mechanics [1]. The time-consuming
process of manual landmark annotations is still a prerequisite of the state-of-
the-art automatic vertebral tracking algorithms [11,17,19,20]. In this paper we
propose a method to automatically identify and segment the C3–C7 vertebral
bodies in videofluoroscopic images, and to detect the vertebral landmarks nec-
essary for cervical joint motion analysis. We compare this automatic detection
method with manually annotated vertebral landmarks.

Results from Table 1 showed the average detection error under five pixels in
the C3–C6 vertebrae, with the lowest average error of 1.65 ± 1.60 pixels in the
C4 vertebra. The one-sample, one-tailed t-test for each of the average detection
errors of the four corners in C3–C7 vertebrae revealed that the errors were not
significantly greater than five pixels. Given the spatial resolution of 576× 768
pixels, five pixels corresponded to respectively 0.9% and 0.7% of the height and
width of the images. However, the average errors for C7 vertebrae were larger
than the other vertebrae. A possible explanation may be partial occlusion, a
lower contrast, and a lack of well-defined edges on the C7. The joint angles results
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for C3–C7 were also not significantly different from the angles computed with
the manually annotated corners (p > 0.05). This suggests that the presented
method can be suitable for large data analysis of cervical joint motion using
automatic tracking algorithms.

Comparison of these results with other work is difficult, since similar verte-
bral landmark detection methods in the cervical spine using videofluoroscopic
sequences were not found in literature. A similar study by Xu et al. [14] used a
combination of Haar-like features and Active Appearance Models training algo-
rithms for automatic segmentation of cervical vertebrae in X-ray images. They
obtained the lowest average error of 4.79 pixels. Al-Arif et al. reported the lowest
average median error of 2.08 mm using Haar-like features in radiographic images
[20], and the lowest average error of 0.7688 mm using Active Shape Models with
Random Classification Forest in X-ray images [16]. Automatic approaches to
detect and label the vertebral landmarks have also been developed using deep
learning [23,24]. However, they require large data sets and high quality imag-
ing modalities, such as CT or MRI, and thus are not directly comparable to
fluoroscopic sequences of the cervical spine.

The following limitations to this study need to be addressed. First, a larger
number of participants would be beneficial. Secondly, the fluoroscopic images
were of relatively good quality, and thus we did not evaluate the ability of our
approach to automatically identify the cervical corners in images with higher
degrees of image blurring. However, the aim of this approach was vertebral detec-
tion at the onset of movement, with stationary subjects in a neutral position,
and thus motion blur was not expected to occur. Finally, our approach did not
aim to detect C1 or C2. C1 does not have the vertebral body and is seldom used
in most vertebral analyses, while C2 is often obscured and its corners are often
not visible.

5 Conclusion

The proposed method to automatically detect and segment the cervical verte-
brae allows a computation of the vertebral landmarks for a real-time interver-
tebral motion analysis in videofluoroscopy. It also eliminates the necessity for
a manual annotation of the C3–C7 vertebrae for automatic landmark tracking.
Additionally, our approach does not require large datasets necessary for training
the algorithm to be able to detect the vertebrae, as is the case in deep learning
approaches.
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