
1Introduction

It is a mistake to think about a mathematical model as if it were
the reality. In the physical sciences, where the model often fits
reality very well, this may be a convenient way of thinking that
causes little harm. But in the social sciences, models are often
little better than caricatures.

Ian Stewart
In Pursuit of the Unknown (page 127)

1.1 Stochastics in Finance Theory

Anyone who is occupied with modern financing theory will soon come across terms
such as Brownian motion,1 random processes, measure, and Lebesgue integral.2

Based on the many years of experience we have gained in university teaching,
we claim that some readers do not have sufficient knowledge in this field, unless
they have studied mathematics. Therefore, they may not know what is meant by
probability measures, Brownian motions, and similar terms.

Various Random Processes Time series of share prices generally look very
different from price developments of bonds which can be explained (among other
reasons) by the fact that bonds—in contrast to equities—have a limited term. As
the remaining time to maturity becomes shorter, bond prices always approach their
nominal value,3 while with stocks it is extremely rarely observed that their prices
to stabilize, as shown in Fig. 1.1. The development of the base interest rate of the
European Central Bank in the period between 2009 and 2015 gives a different

1Robert Brown (1773–1858, British botanist).
2Henri Léon Lebesgue (1875–1941, French mathematician).
3We talk about the “Pull-to-par” phenomenon.
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Fig. 1.1 Conceivable share price development
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Fig. 1.2 Development of the ECB’s base interest rate from 2009 to 2015. Source: www.finanzen.
net/leitzins/@historisch

picture in every respect (see Fig. 1.2). In both cases, however, we are dealing with
processes that would undoubtedly be described as random. While the first process
seems to be in constant motion, the second process remains stable over longer
periods of time and jumps up or down at irregular intervals the extent of which
seems unpredictable.

If one now wants to do justice to the developments shown in these illus-
trations with the help of mathematical random processes, one has to resort to
different models. The theory of random processes provides a comprehensive set of
instruments. Mathematicians speak of stochastic processes and distinguish between
Markov, Gauss, and Feller processes, each with several variants. Brownian motions,
belonging to the class of Gaussian processes, are particularly prominent in the
literature on finance theory.4

4Carl Friedrich Gauß (1777–1855), German mathematician.
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Alternatives in Dealing with a New Scientific Terrain If you want to enter a
previously unknown field of knowledge, you inevitably will be confronted with
terms and contexts you have never been exposed to before. There are various
possibilities to cope with the situation. Two typical options are as follows:

A thorough method is to put aside the text that is currently of interest and search
for special sources dealing with the previously unknown terms and concepts. This
can be very time-consuming and students of economics in particular cannot or do
not always want to afford this approach.

Alternatively one can continue studying the material in the hope to gain some sort
of intuitive understanding of the new terms and concepts. This approach is inevitably
superficial. Nevertheless, it may be adequate if the authors are experienced textbook-
writers. However, they usually do not provide sufficient details. After all, one wants
to keep the reader in line and not expect him to specialize in a peripheral field. The
latter approach also has its shortcomings.

1.2 Precision and Intuition in the Valuation of Derivatives

At this point we want to give our readers a first glimpse of how careful you have to
be if you want to be logically consistent with Brownian motions in finance theory.

dt and �t To this end, we start with a discrete model that describes the
development of a share price. We look at any point in time t and ask how we could
describe the change of the share price after the period �t > 0. For example, we can
imagine �t being a day. If we call the change of the current share price �S, this
amount could be modeled by

�S = μ S �t + σ S �z , (1.1)

where S is the current share price. The parameters μ and σ should be any positive
numbers at first.5 �t is—as already mentioned—the change in time, i.e., 1 day. The
variable �z not yet explained should be the change of a random number during
the time interval �t . For example, you could imagine a coin being flipped at the
end of each day: �z will be +2% if heads appear and −1% otherwise. None of
the variables on the right side of Eq. (1.1) is especially “exciting” and therefore
does not require much attention. It should be emphasized, however, that it would be
entirely unproblematic to divide the equation by �t , because mathematically �t is
a real number. With objects such as the real numbers you can perform many other
mathematical operations without having to be particularly careful. For real numbers
certain axioms apply which the mathematical layperson usually is not aware of. But

5We could make the coefficients μ and σ time-dependent which would not change anything
decisive in our remarks.
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it follows from the axioms that these objects can be used to perform operations
known as addition, subtraction, multiplication, and division even mathematical
laypersons are quite familiar with.6

However, all this changes as soon as we turn to a continuous-time model. If
we call dt a change in time approaching zero, and if dz describes the change in a
random number within such a vanishing interval, and finally if dS is to reflect the
change of the share price, then it is obvious to express dS as

dS = μ S dt + σ S dz . (1.2)

Of course, we can realize that dt will never be exactly zero, otherwise time would
come to a standstill. But what should we imagine when it comes to changing a
random variable within a vanishingly small interval of time? Such a change (i.e.,
dz) can be small, but it could also be relatively large or even disappear entirely if
chance would have it. Under no circumstances should this dz be ignored.

Let us now focus on the object dt . We have stated above that it is of infinites-
imally small size. Which mathematical operations may be performed with it? The
layperson can hardly imagine that a real number�t could lose the property of being
a real number simply because it gets smaller and smaller and is therefore called dt .
However, if the above property was true Eq. (1.2) might not simply be divided by dt .
And in fact, dt is not a real number.7

A First Encounter with Wiener8-Processes We will show what problems can
arise if Eq. (1.2) is treated superficially. To this end, we first write (1.2) in a slightly
different form

dS = μ S dt + σ S dW (1.3)

with dW taking the role of dz. dW is a very special random process known as
Wiener process or Brownian motion. If you want to learn a little more about

6Therefore, an expression of type
∑∞

i=1 �t also makes sense. And if �t > 0 is valid the sum is
infinite because the continued addition of positive real numbers (regardless of their amount) leads
to an infinitely large positive value. We will return to this expression in the next footnote.
7A mathematical layperson can, for example, realize this by trying to evaluate the computation rule∑∞

i=1 dt . Does the expression go towards zero because the objects dt are infinitely small? Or does
it go towards infinity because you add infinitely many of these objects? The solution is simpler than
the layperson might assume. It comes down to the fact that the question was pointless, because the
dt are simply not real numbers. The operation for which the result is asked is purely not allowed.
This expression is as pointless as xdt or 1

dt
.

8The term “Wiener process” presumably does not go back to Norbert Wiener (see footnote 23 on
page 48), but to the German mathematician and physicist Christian Wiener (1826–1896). He could
prove in 1863 that Brownian motion is a consequence of the molecular movements of the liquid by
disproving the biological causes Brown himself suspected.
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this particular random process and restrict yourself to reading standard financial
textbooks, you will learn that dW is a constantly evolving process for which

dW = ε
√

dt with ε ∼ N(0, 1) (1.4)

applies.9 This expresses that the change of the random variable during the infinitesi-
mal small time interval dt results from the product of a standard normally distributed
random number ε and

√
dt .

Value of a Derivative With the continued study of financial textbooks the change
in the value of financial titles, depending on the development of a share price, is
described by the so-called Itō lemma.10 A value of a derivative f (S) depending on
the share price necessarily follows the stochastic process11

df =
(

∂f

∂S
μS + ∂f

∂t
+ 1

2
S2 ∂2f

∂S2 σ 2
)

dt + ∂f

∂S
σS dW. (1.5)

While the reader may not be concerned with the development of (1.5), he may,
however, be interested in its practical application.

Looking at Eqs. (1.3) and (1.5) from this perspective, one can see that the change
in the stock price (dS) as well as the change in the value of the derivative (df )
depend on the variables time (dt) and randomness (dW ). If you now form a hedge
portfolio by buying ∂f

∂S
units of shares and selling one unit of the derivative, the

random influences compensate each other and you actually hold a risk-free portfolio.
If one proceeds this way, one can find a so-called fundamental equation12 for each
derivative from which the risk is entirely eliminated.

Itō-Lemma and Taylor Series There may be readers who want to understand
the relations more precisely. Such readers do not merely take note of the Itō
equation (1.5), but would like to be shown that this equation is correct. Then you
have to get into the mathematical literature that is difficult to comprehend for readers
having only an economic background. In the financial literature, however, we also
like to show ways to understand the Itō lemma in an intuitive way.13 This usually

9Here, once again, there is a certain carelessness in dealing with the infinitesimally small size. If
you want to extract the root from a number, it must not be negative. Therefore, dt ≥ 0 must apply.
Of course the question arises why this relation should be fulfilled.
10Itō Kiyoshi (1915–2008, Japanese mathematician).
11For a European call option the payout function is f (·) depending on the share price, for example
at an exercise price of K

f (x) = max(x − K, 0).

12One also speaks of the Black–Scholes equation.
13For example, see Copeland et al. (2005, p. 964 f.).
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happens in such a way that a function f (S + �S, t + �t) will be approximated at
f (S, t) with the help of a Taylor series.14 The result of such an exercise is

�f ≈
(

∂f

∂S
μS + ∂f

∂t
+ 1

2
S2 ∂2f

∂S2 σ 2
)

�t + ∂f

∂S
σS �W . (1.6)

The reader will easily realize that Eqs. (1.6) and (1.5) are not identical because a
Taylor series usually ends with an approximation error. However, if the approxi-
mation formula (1.6) correctly describes the performance of a derivative, then the
hedge portfolio would not really be risk-free at all, but at best approximately risk-
free without knowing anything about the size of the approximation error. If this
portfolio were now to yield risk-free interest an arbitrage opportunity could exist,
which would nullify the decisive economic argument for deriving the Black–Scholes
equation. The allegedly plausible derivation of the Black–Scholes equation is
therefore anything but unproblematic.

1.3 Purpose of the Book

We want to give a reader, interested in questions of finance theory who has neither
the time nor the interest to attend a complete mathematics course, an understandable
introduction to the stochastic integration calculus or Brownian motion, which is
correct (or at least acceptable) from a mathematician’s perspective.

Many textbook authors make it too easy to deal with the Brownian motion
through intuitive approaches.15 Economic intuition may be important, but it cannot
replace the engagement with mathematical formalism. Worse, pure intuition can
even be economically flawed, as we have just shown.

Our approach is a tightrope walk. We want to present the Brownian motion as
precise as possible without overtaxing the reader with the methodology used in
mathematics. If mathematicians deal with certain problems in one way or another,
there are always good reasons for doing so which can also be explained vividly.

Our approach is not free of problems. We cannot and will not provide a
mathematically precise text because such monographs already exist.16 We do not
concentrate on mathematical precision nor will we deliver extensive mathematical
proofs. Instead we will present substantiated reasons why certain concepts must be
defined or derived in this way and not in any other way. Of course, what we accept
as factually justified is always subjective; and in this respect this text is also an
experiment. In any case, we believe that there is no comparable book on the market
for this type of presentation.

14Brook Taylor (1685–1731, British mathematician).
15In addition, what intuition means in scientific discourse is not at all clear, see Kruschwitz et al.
(2010, p. 370 ff).
16See for example Karatzas and Shreve (1991), Huang (1989), Harrison (1990), Revuz and Yor
(1999), Musiela and Rutkowski (2005).
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When writing their scientific texts, economists want readers to understand why
certain assumptions and definitions are formulated in this way and not differently.
If one looks at texts written by mathematicians, on the other hand, corresponding
efforts are usually lacking. It is often hard to understand why complex issues are
developed in exactly this way and not in any other way. Our book deals with
mathematical problems of interest to economists. Therefore, we want to try to
increase the readability of our explanations for this target group by explaining why
mathematicians often use quite complicated ways to arrive at certain results. For
example, it is not immediately obvious why one has to deal with σ -algebras in
order to be able to define the concept of measure reasonably. Nor is it possible
to understand without further explanation why the point-by-point convergence of
functions is not a particularly suitable candidate for the concept of convergence.
In this book we want to present important issues in such a way that they can be
understood by readers who are not immediately familiar with the subject.

We will briefly address several ideas which deserve a thorough examination.

Two Notations for a Brownian Motion We will begin with a statement that may
surprise economists: Eq. (1.7) is nothing else but another representation of Eq. (1.3)

S(t) − S(0) =
∫ t

0
μ S(s) ds +

∫ t

0
σ S(s) dW(s) . (1.7)

Equations (1.3) and (1.7) are expressing just the same. Mathematicians like to speak
of stochastic differential equations or also of stochastic integral equations in this
context.17 Let it be clear that “H2O,” “dihydrogenium oxide,” and “water” are one
and the same. However, when writing down chemical formulas, there are certain
rules that prescribe how to deal with the chemical elements named H and O. Thus,
“H” stands for a hydrogen atom, while “O” denotes an oxygen atom. The low-set
number 2 also has a certain meaning. And it is not irrelevant whether this number is
attached to the hydrogen atom or to the oxygen atom. However, we do not want to
strain the comparison with chemical formulas here.18

17We will go into more detail on page 9.
18Our readers may know similar things from the field of mathematics. So you can either write

f ′(x) = a

or

lim
h→0

f (x + h) − f (x)

h
= a

or

df (x)

dx
= a .

It is always the same. But anyone who believes that the mathematically (mark you) perfectly correct
equation

df (x) = a dx
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We now return to the equivalence of Eqs. (1.3) and (1.7). Usually economists are
not exposed to the form of (1.7). And that is precisely the reason why it is worth
taking a closer look at this equation.

The Symbol dW(s) The terms dW(s) and dS are not objects with which you can
easily carry out transformations. The “differential” dW(s) is not defined as you
define a derivative, a limit, or an integral. This expression is found in stochastic
analysis exclusively in connection with equations of the form (1.3) or (what is
the same) equations of type (1.7). If we want to make another comparison with
chemical formulas, the low-set number 2 can prove helpful. This number only
appears in chemical formulas and it will never be placed as the very first sign in
such a representation. The reason is that the low-set number is always preceded by
the chemical element in the molecule (representing the quantum of atoms). Without
any chemical element the expression like 2 does not make any sense. Similarly,
dW(s) is inextricably linked to a stochastic integral (1.7).

A Known Integral What mathematical statement can be made of a stochastic
differential equation in the form of (1.7)? To this end we will take a closer look
at the two integrals on the right side of this equation. First we recognize the term

∫ t

0
μ S(s) ds. (1.8)

This is a definite integral.19 So if μ S(s) is a “normal” function, this integral
describes the area under the function within the limits of the [0, t] interval. In
Fig. 1.3 we give a schematic representation for this integral. For a mathematician,
this raises a host of other questions.20 In the context of a conventional education
in economics, these questions are dealt with shallowness such that the student may
feel sufficiently safe to analyze economic problems adequately.

A Strange Integral It is much more complicated with the second term in Eq. (1.7)

∫ t

0
σ S(s) dW(s). (1.9)

can be obtained by simply multiplying the last equation by dx is wrong. It, too, is only another
spelling of the identities mentioned, the so-called differentials. Someone who succumbs to such
errors is also not immune from making serious mistakes when dealing with stochastic differential
equations.
19We will talk about a Riemann integral later, see page 71.
20Examples are the following: under what conditions does this integral exist? Is the integral over a
sum equal to the sum of the individual integrals? Can any continuous function be integrated?
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Fig. 1.3 The integral
∫ t

0 μS(s) ds as the colored area under the function μS(s) in the interval
[0, t]

This expression looks like a definite integral, but we will immediately understand
that it can no longer be interpreted by the area under a function as shown in Fig. 1.3.

In Fig. 1.3 we find the time s on the abscissa. This makes sense because s is a
variable that can assume any value from zero to infinity. σ S(s) is also a function
that assigns a numerical value σ S(s) to the time s between zero and infinity. It
has to be emphasized that the function will not be integrated over time s! Instead,
the integration now takes place, as it is formally called, “over a Brownian motion
W(s).” For a non-mathematician this type of integration probably remains a great
mystery.

An integration over a Brownian motion could only be understood as shown in
Fig. 1.3 if the object W(s) should be treated as a real number. Real numbers have
the property that they can be arranged in ascending or descending order. If you
look at the real numbers, you can use a real line. In Fig. 1.3 this real line plays an
important role because it corresponds to the abscissa.

The Brownian motion W(s) is anything but a real number. Rather, it is a very
large—even infinitely large—set of continuous functions that can be represented
graphically as (time-dependent) paths. To understand this in more detail, look at
Fig. 1.4 which illustrates the development of Brownian paths. In the figure you see
two possible paths. In order to establish the analogy to the classical integral, these
paths had to be arranged on a real line. We would have to clarify which of the two
paths is further to the left or further to the right. Obviously, this is not possible.
Brownian paths simply cannot be arranged one after the other on a real line. There
is also no “smallest Brownian motion,” which could correspond to zero. It remains
absolutely mysterious how one could illustrate the “abscissa” of a stochastic integral
of the form (1.3) analogous to Fig. 1.3. We will address this mystery in this book.

As indicated on page 7 we will now address the terms “stochastic differential
equation” and “stochastic integral equation.” Equation (1.3) is called differential
equation because it contains the term dW , while Eq. (1.7) is a stochastic integral
equation. The statement that Eqs. (1.3) and (1.7) are equivalent in content must
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0

Fig. 1.4 Two realizations of a Brownian motion

irritate a non-mathematician, because it is difficult to accept that a differential
equation is the same as an integral equation. But the irritation goes even further
if one looks at the object dW and interprets it as the “differential of the Brownian
motion.” But what should be the differential of Brownian motion? As will be shown
later a Brownian motion is an infinitely large set of continuous functions which can
rarely be differentiated at any point.21 The fact that equations such as (1.3) persist
in the literature, although important terms are actually “mathematically absurd,” can
only be explained from the history of this theory. Often these equations were created
by physicists and not by mathematicians. Although physicists usually manage to
avoid fundamental mathematical errors, their crude procedures are frequently put on
a solid mathematical foundation in later years. If they finally succeed the “wrong”
spelling established long time ago will not be excluded from the everyday life of
physics.22

Readers interested in the historical backgrounds of the Brownian motion are
invited to refer to the Figs. 1.5 and 1.6.

21See page 95.
22A famous example is the distribution theory from physics. Before it could be represented
mathematically error-free with the help of the Schwartz spaces, the calculations of the users (above
all Oliver Heaviside) were notorious for their carelessness in formalism. Dirac wrote: “It seemed
to me that when you’re confident that a certain method gives the right answer, you didn’t have to
bother about rigour.” Quoted from Peters (2004, p. 106).
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Fig. 1.5 It was Albert Einstein (1878–1959), who was the first to publish a physical theory for the
Brownian motion in 1905. An earlier piece of work by Louis Bachelier (1870–1946) from the year
1900, in which Brownian motions were applied to financial markets, remained entirely unnoticed
for a long time



12 1 Introduction

Fig. 1.6 Facsimile of the original article by Brown (1828). It contains neither a drawing nor a
formula
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