Skip to main content

Polymer Based Micro- and Nanoencapsulation of Agrochemicals

  • Chapter
  • First Online:
Polymers for Agri-Food Applications

Abstract

Agrochemicals such as pesticides and fertilizers have been used to increase agricultural production. Most agrochemicals although highly beneficial, lead to major environmental and ecological damage. At present, controlled release systems such as “encapsulation” are developed to control agrochemicals availability, reduce wastage for sustenance and increased production for agricultural plants. Polymers, due to their tailorable properties can be used in encapsulation. In recent years, micro and nano-encapsulation have shown great promise for a better design release of agrochemicals. New sustainable technologies are being designed via different encapsulation techniques, in order to avoid the loss of crops and increase agricultural productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash, P. C., & Singh, N. (2009). Pesticide use and application: An Indian scenario. Journal of Hazardous Materials, 165(1–3), 1–12. https://doi.org/10.1016/j.jhazmat.2008.10.061.

    Article  CAS  PubMed  Google Scholar 

  • Ammar, A. S. (2018). Nanotechnologies associated to floral resources in agri-food sector. Acta Agronómica, 67(1), 146–159. https://doi.org/10.15446/acag.v67n1.62011.

    Article  Google Scholar 

  • Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641. https://doi.org/10.1038/nnano.2009.242.

    Article  CAS  PubMed  Google Scholar 

  • Bai, J. K., Zhang, Y., & Wang, J. X. (2016). Progress intelligent materials based on enzyme response. International Materials Reviews, 30, 134–139.

    Google Scholar 

  • Bashidzadeh, A., & Olad, A. (2014). Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydrate Polymers, 114, 269–278. https://doi.org/10.1016/j.carbpol.2014.08.010.

    Article  CAS  Google Scholar 

  • Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., Inostroza, N. G., & Rubilar, M. (2014a). Microencapsulation by spray drying of nitrogen-fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 30(9), 2371–2378. https://doi.org/10.1007/s11274-014-1662-8.

    Article  CAS  PubMed  Google Scholar 

  • Campos, E. V. R., de Oliveira, J. L., Fraceto, L. F., & Singh, B. (2014b). Polysaccharides as safer release systems for agrochemicals. Agronomy for Sustainable Development, 35(1), 47–66. https://doi.org/10.1007/s13593-014-0263-0.

    Article  CAS  Google Scholar 

  • Cao, M., Guan, P., Hu, L., & Chen, X. P. (2009). The research progress and influential factors on preparation of microcapsules by w/o/w multiple emulsion-solvent evaporation method. Chemical Bioengineering, 9, 002.

    Google Scholar 

  • Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23. https://doi.org/10.1016/j.btre.2017.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6(3), 628–647. https://doi.org/10.1007/s11947-012-0944-0.

    Article  CAS  Google Scholar 

  • Feng, J. G., Xu, Y., Luo, X. R., Yan, H., & Wu, X. M. (2011). Discussion on the solvent evaporation method for preparation of microcapsules and the development of the pesticides microcapsules. Chinese Journal of Pesticide Science, 13, 568–575.

    CAS  Google Scholar 

  • Forim, M. R., Silva, M. F.d. G. F. d., & Fernandes, J. B. (2012). Secondary metabolism as a measurement of efficacy of botanical extracts: The use of Azadirachtaindica (Neem) as a model, insecticides. In F. Perveen (Ed.),. ISBN: 978–953–307-780-2 Advances in integrated pest management. InTech. https://doi.org/10.5772/27961.

    Google Scholar 

  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry., 60(39), 9781–9792. https://doi.org/10.1021/jf302154y.

    Article  CAS  PubMed  Google Scholar 

  • González Hurtado, M., Rieumont Briones, J., Quintana Owen, P., Bartolo-Perez, P., Soares, B. G., & Cossa, M. M. (2015). Ferlent® a controlled release fertilizer produced from a polymeric material with agronomic benefits. Environmental Engineering and Management Journal, 14(12), 2913–2917.

    Article  Google Scholar 

  • Guo, Y. Z. (2014). Study on the preparation and the release mechanism of acetochlor microcapsules produced by interfacial polymerization method. Master’s Thesis, Southwest University, Chongqing, China, April 2014.

    Google Scholar 

  • Gutiérrez, T. J. (2017). Chapter 8. Chitosan applications for the food industry. In S. Ahmed & S. Ikram (Eds.), Chitosan: Derivatives, composites and applications (pp. 183–232). WILEY-Scrivener Publisher. EE.UU. ISBN: 978–1–119-36350-7. https://doi.org/10.1002/9781119364849.ch8.

    Chapter  Google Scholar 

  • Gutiérrez, T. J. (2018a). Biological macromolecule composite films made from sagu starch and flour/poly(ε-caprolactone) blends processed by blending/thermo molding. Journal Polymers and the Environment, 26(9), 3902–3912. https://doi.org/10.1007/s10924-018-1268-6.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J. (2018b). Chapter 55. Processing nano- and microcapsules for industrial applications. In C. M. Hussain (Ed.),. Editorial Elsevier. EE.UU. ISBN: 978–0–12-813351-4 Handbook of nanomaterials for industrial applications (pp. 989–1011). https://doi.org/10.1016/B978-0-12-813351-4.00057-2.

    Chapter  Google Scholar 

  • Gutiérrez, T. J. (2018c). Are modified pumpkin flour/plum flour nanocomposite films biodegradable and compostable? Food Hydrocolloids, 83, 397–410. https://doi.org/10.1016/j.foodhyd.2018.05.035.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 6. Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 2 (pp. 296–322). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108-545-6. eISBN: 978–1–68108-544-9. https://doi.org/10.2174/9781681085449117010009.

  • Hack, B., Egger, H., Uhlemann, J., Henriet, M., Wirth, W., Vermeer, A. W. P., & Duff, D. (2012). Advanced agrochemical formulations through encapsulation strategies? Chemie-Ingenieur-Technik, 84(3), 223–234. https://doi.org/10.1002/cite.201100212.

    Article  CAS  Google Scholar 

  • Han, X., Chen, S., & Hu, X. (2009). Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination, 240(1–3), 21–26. https://doi.org/10.1016/j.desal.2008.01.047.

    Article  CAS  Google Scholar 

  • He, Y., Wu, Z., Tu, L., Han, Y., Zhang, G., & Li, C. (2015). Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109-110, 68–75. https://doi.org/10.1016/j.clay.2015.02.001.

    Article  CAS  Google Scholar 

  • Herniou--Julien, C., Mendieta, J. R., & Gutiérrez, T. J. (2019). Characterization of biodegradable/non-compostable films made from cellulose acetate/corn starch blends processed under reactive extrusion conditions. Food Hydrocolloids, 89, 67–79. https://doi.org/10.1016/j.foodhyd.2018.10.024.

    Article  CAS  Google Scholar 

  • Huang, B., Chen, F., Shen, Y., Qian, K., Wang, Y., Sun, C., Zhao, X., Cui, B., Gao, F., Zeng, Z., & Cui, H. (2018). Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials, 8(2), 102. https://doi.org/10.3390/nano8020102.

    Article  CAS  PubMed Central  Google Scholar 

  • Klier, J., Weichhard, C., & Leiderer, P. (2000). Wetting behaviour of solid and liquid hydrogen films. Physics B: Condensed Matter, 284, 391–392. https://doi.org/10.1016/S0921-4526(99)02784-2.

    Article  Google Scholar 

  • Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C., & Dilbaghi, N. (2014). Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers, 101, 1061–1067. https://doi.org/10.1016/j.carbpol.2013.10.025.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A. S., Gast, A. P., Butun, V., & Steven, P. A. (1999). Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles. Macromolecules, 32(13), 4302–4310. https://doi.org/10.1021/ma981865o.

    Article  CAS  Google Scholar 

  • Li, Y. H., Huang, Y. D., & Liu, Y. Y. (2003). Humidity sensing polymer materials. Materials Science and Technology, 3, 332–336.

    Google Scholar 

  • Lin, Y. S. (2016). Synthesis, modification and application in slow-release pesticide of mesoporous MCM-41. Master’s Thesis, Zhongkai University of Agriculture and Engineering, Guangzhou, China, June 2016.

    Google Scholar 

  • Liu, C. J. (1997). General situations of high polymer humidity sensors and its developing direction. Instrumentation Technology Sensing, 12, 1–4.

    CAS  Google Scholar 

  • Liu, G. W. (2012). Modern pesticide formulations processing technology (pp. 1–7). Beijing: Chemical Industry Press.

    Google Scholar 

  • Ma, C. J., & Tao, L. H. (2008). Study on the technology of preparing azoxystrobin microcapsules by complex conservation. Journal of Anhui Agricultural Sciences, 36, 3496–3508.

    Google Scholar 

  • Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113–142.

    Article  CAS  PubMed  Google Scholar 

  • Nagula, S., & Usha, P. B. (2016). Application of nanotechnology in soil and plant system with special reference to nanofertilizers. Advances in Life Sciences, 5(14), 5544–5548.

    Google Scholar 

  • Nair, R. M., Whittall, A., Hughes, S. J., Craig, A. D., Revell, D. K., Miller, S. M., Powell, T., & Auricht, G. C. (2010). Variation in coumarin content of Melilotus species grown in South Australia. New Zealand Journal of Agricultural Research., 53(3), 201–213. https://doi.org/10.1080/00288233.2010.495743.

    Article  CAS  Google Scholar 

  • Navarro-Guajardo, N., García-Carrillo, E. M., Espinoza-González, C., Téllez-Zablah, R., Dávila-Hernández, F., Romero-García, J., Ledezma-Pérez, A., Mercado-Silva, J. A., Pérez Torres, C. A., & Pariona, N. (2017). Candelilla wax as natural slow-release matrix for fertilizers encapsulated by spray chilling. Journal of Renewable Materials, 6(3), 226–236. https://doi.org/10.7569/JRM.2017.634164.

    Article  Google Scholar 

  • Neamaţu, C., Popescu, M., Oancea, F., & Dima, Ş. O. (2015). Synthesis optimization and characterization of microencapsulated N-P-K slow-release fertilizers. Open Chemistry, 13(1), 813–823. https://doi.org/10.1515/chem-2015-0098.

    Article  CAS  Google Scholar 

  • Neamtu, C., Popescu, M., & Dima, Ş.-O. (2015). Leaching and in vitro agrochemical screening for new slow release fertilizers containing N, P, Ca, and Mg. Academic Research Journal of Agricultural Science and Research., 3(3), 45–53. https://doi.org/10.14662/arjasr2015.003.

    Article  Google Scholar 

  • Otsuka, I., Travelet, C., Halila, S., Fort, S., Pignot-Paintrand, I., Narumi, A., & Borsali, R. (2012). Themosponsive self-assemblies of cyclic and branched oligosaccharide-block-poly(N-isopropylamide) diblock copolymers into nanoparticles. Biomacromolecule, 13(5), 1458–1465. https://doi.org/10.1021/bm300167e.

    Article  CAS  Google Scholar 

  • Perez, J. J., & Francois, N. J. (2016). Chitosan-starch beads prepared by ionotropic gelation as potential matrices for controlled release of fertilizers. Carbohydrate Polymers, 148, 134–142. https://doi.org/10.1016/j.carbpol.2016.04.054.

    Article  CAS  PubMed  Google Scholar 

  • Perlatti, B., Bergo, P. L. d. S., Silva, M. F. d. G. F. d., Fernandes, J. B., & Forim, M. R. (2013). Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In S. Trdan (Ed.), Insecticides – Development of safer and more effective technologies, Prof (pp. 523–550). INTECH Open Access Publisher. Available from: http://www.intechopen.com/books/insecticides/development-of-safer-and-more-effective-technologies/polymeric-nanoparticle-based-insecticides-a-controlled-release-purpose-for-agrochemicals.

  • Pinto Reis, C., Neufeld, R. J., Ribeiro, A. J., Veiga, F., & Nanoencapsulation, I. (2006). Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine, 2, 8–21. https://doi.org/10.1016/j.nano.2005.12.003.

    Article  CAS  Google Scholar 

  • Prasad, R., Bhattacharyya, A., & Nguyen, Q. D. (2017). Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Frontiers in Microbiology, 8, 1–13. https://doi.org/10.3389/fmicb.2017.01014.

    Article  Google Scholar 

  • Puoci, F., Iemma, F., Spizzirri, U. G., Cirillo, G., Farmaceutiche, S., Calabria, U., & Cs, R. (2008). Polymer in agriculture. A review, 3(1), 299–314. https://doi.org/10.3844/ajabssp.2008.299.314.

    Article  Google Scholar 

  • Ram, P., Vivek, K., & Kumar, S. P. (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 13(6), 705–713. https://doi.org/10.5897/ajbx2013.13554.

    Article  Google Scholar 

  • Shang, Q., Shang, Z. H., & Ci, S. Y. (2007). HPLC analysis of abamectin nanocapsules suspension concentrate. Agrochemicals, 46, 185–186.

    CAS  Google Scholar 

  • Singh, P. N. D., Atta, S., Bera, M., Chattopadhyay, T., Paul, A., Ikbal, M., & Maiti, M. K. (2015). Nano-pesticide formulation based on fluorescent organic photoresponsive nanoparticles: for controlled release of 2,4-D and real time monitoring of morphological changes induced by 2,4-D in plant Systems. RSC Advances, 5, 86990–86996. https://doi.org/10.1039/c5ra17121k.

    Article  Google Scholar 

  • Song, Q., Mei, X. D., Huang, Q. L., Wang, Z. Y., & Ning, J. (2009). Preparation of abamectin microcapsules by means of emulsion polymerization and it bioactivity. Chinese Journal of Pesticide Science, 11, 392–394.

    CAS  Google Scholar 

  • Suárez, G., & Gutiérrez, T. J. (2017). Chapter 15. Recent advances in the development of biodegadable films and foams from cassava starch. In C. Klein (Ed.), Handbook on Cassava: Production, potential uses and recent advances (pp. 297–312). New York. EE.UU. ISBN: 978–1–53610-307-6: Editorial Nova Science Publishers, Inc..

    Google Scholar 

  • Sun, C. J., Cui, H. X., Wang, Y., Zeng, Z. H., Zhao, X., & Cui, B. (2016). Studies on applications of nanomaterial and nanotechnology in agriculture. Journal of Agricultural Science and Technology, 18, 18–25. https://doi.org/10.13304/j.nykjdb.2015.240.

    Article  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature., 418, 671–677. https://doi.org/10.1038/nature01014.

    Article  CAS  PubMed  Google Scholar 

  • Tolescu, C., Fierascu, I., Neamtu, C., Anton, I., & Fierascu, R. C. (2014). Microencapsulated fertilizers for improvement of plant nutrition. Journal of the Serbian Chemical Society, 79(6), 659–668. https://doi.org/10.2298/jsc131004147t.

    Article  CAS  Google Scholar 

  • Toro-Márquez, L. A., Merino, D., & Gutiérrez, T. J. (2018). Bionanocomposite films prepared from corn starch with and without nanopackaged Jamaica (Hibiscus sabdariffa) flower extract. Food and Bioprocess Technology, 11(11), 1955–1973. https://doi.org/10.1007/s11947-018-2160-z.

    Article  CAS  Google Scholar 

  • Trivedi, R., & Kompella, U. B. (2010). (2010). Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomed-UK, 5(3), 485–505. https://doi.org/10.2217/nnm.10.10.

    Article  CAS  Google Scholar 

  • Vandergheynst, J., Scher, H., Guo, H. Y., & Schultz, D. (2007). Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. BioControl, 52(2), 207–229. https://doi.org/10.1007/s10526-006-9021-9.

    Article  CAS  Google Scholar 

  • Wang, S.P. (2014). Construction of photosensitive nanocarriers and their photo-responsive characteristic. Master’s Thesis, Zhejiang University, Zhejiang, China, March 2014.

    Google Scholar 

  • Wang, A. Q., Wang, Y., Wang, C. X., Cui, B., Sun, C. J., Zhao, X., Zeng, Z. H., Yao, J. W., Liu, G. Q., & Cui, H. X. (2018). Research progress on nanometer microencapsulation of pesticide. Journal of Agricultural Science and Technology, 20, 10–18.

    Google Scholar 

  • Wen, P., Wu, Z., He, Y., Ye, B. C., Han, Y., Guan, X., & Wang, J. (2016). Microwave-assisted one-step synthesis and characterization of a slow release nitrogen fertilizer with inorganic and organic composites. RSC Advances, 6(44), 37337–37346. https://doi.org/10.1039/c5ra27828g.

    Article  CAS  Google Scholar 

  • Wu, L., & Liu, M. (2008). Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water retention. Carbohydrate Polymers, 72(2), 240–247. https://doi.org/10.1016/j.carbpol.2007.08.020.

    Article  CAS  Google Scholar 

  • Wu, J., Zhou, Y. F., Chen, J., Nie, W. Y., & Shi, R. (2008). Preparation of natural pyrethrum nanocapsule by means of microemulsion polymerization. Polymer Materials Science and Engineering, 24, 35–38.

    CAS  Google Scholar 

  • Xu, L. (2013). Preparation and characteristic analysis of microcapsule controlled releasing agent of pesticide chitosan copolymer. Master’s Thesis, Northeast Agricultural University, Harbin, China, June 2013.

    Google Scholar 

  • Xu, B. B. (2014). Preparation and characterization of magnetic/temperature/ph responsive nanocapsules. Master’s Thesis, Anhui University, Anhui, China, May 2014.

    Google Scholar 

  • Yin, Y., Xu, S., Chang, D., Zheng, H., Li, J., Liu, X., Xu, P., & Xiong, F. (2010). One-pot synthesis of biopolymeric hollow nanospheres by photocrosslinking. Chemical Communications, 46, 8222–8224. https://doi.org/10.1039/c0cc03129a.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Li, M., Fan, T., Xu, Q., Wu, Y., Chen, C., & Huang, Q. (2013). Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. Journal of Polymer Research, 20(3), 107. https://doi.org/10.1007/s10965-013-0107-7.

    Article  CAS  Google Scholar 

  • Zhou, Y. F., Wu, J., Chen, J., & Nie, W. Y. (2007). Applied research of APEP-type polymerizable emulsifier in the preparation of pesticide nanocapsule. Journal of Anhui University, 31, 65–68.

    Google Scholar 

  • Zhou, X. Q., Cao, L. D., Liu, Y. J., & Li, F. M. (2014). Preparation and performance characteristics of azoxystrobin microcapsules. Chinese Journal of Pesticide Science, 16, 213–219.

    CAS  Google Scholar 

  • Zhu-Zhu Li, Shi-Ai Xu, Li-Xiong Wen, Fan Liu, An-Qi Liu, Qing Wang, Hai-Yan Sun, Wen Yu, Jian-Feng Chen. (2006). Controlled release of avermectin from porous hollow silica nanoparticles: Influence of shell thickness on loading efficiency, UV-shielding property and release. Journal of Controlled Release, 111 (1–2),81–88.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Vellore Institute of Technology, Vellore, India for providing the opportunity to write this book chapter.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Chidambaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sinha, T., Bhagwatwar, P., Krishnamoorthy, C., Chidambaram, R. (2019). Polymer Based Micro- and Nanoencapsulation of Agrochemicals. In: Gutiérrez, T. (eds) Polymers for Agri-Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-030-19416-1_2

Download citation

Publish with us

Policies and ethics