
Catch & Release: An Approach
to Debugging Distributed Full-Stack

JavaScript Applications

Kijin An(B) and Eli Tilevich

Software Innovations Lab, Virginia Tech, Blacksburg, USA
{ankijin,tilevich}@cs.vt.edu

Abstract. Localizing bugs in distributed applications is complicated
by the potential presence of server/middleware misconfigurations and
intermittent network connectivity. In this paper, we present a novel app-
roach to localizing bugs in distributed web applications, targeting the
important domain of full-stack JavaScript applications. The debugged
application is first automatically refactored to create its semantically
equivalent centralized version by gluing together the application’s client
and server parts, thus separating the programmer-written code from con-
figuration/environmental issues as suspected bug causes. The centralized
version is then debugged to fix various bugs. Finally, based on the bug fix-
ing changes of the centralized version, a patch is automatically generated
to fix the original application source files. We show how our approach can
be used to catch bugs that include performance bottlenecks and memory
leaks. These results indicate that our debugging approach can facilitate
the challenges of localizing and fixing bugs in web applications.

Keywords: Full-stack JavaScript applications ·
Distributed computing · Debugging

1 Introduction

Most programmers abhor debugging, due to its arduous, wasteful, and tedious
nature. It can be much harder to debug distributed applications than central-
ized ones. Distributed systems suffer from partial failure, in which each con-
stituent distributed component can fail independently. In addition, non-trivial
bugs, including performance bottlenecks and memory leaks, can be caused by
server/middleware misconfigurations or intermittent network connectivity rather
than by any problems in the programmer-written code. Programmers need novel
debugging approaches that can pinpoint whether the cause of a non-trivial bug
in a distributed application is indeed in the programmer-written code.

To alleviate the challenges of debugging distributed applications, we present
a novel debugging approach that takes advantage of automated refactoring to

c© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 459–473, 2019.
https://doi.org/10.1007/978-3-030-19274-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-19274-7_32

460 K. An and E. Tilevich

remove much of the uncertainty of distributed execution from the debugged pro-
grams. Our approach first transforms a distributed application into its seman-
tically equivalent centralized version by applying our domain-specific refactor-
ing, Client Insourcing, which automatically moves a server-based remote func-
tionality to the client, replacing middleware communication with local function
calls. Client Insourcing is a refactoring, as the resulting centralized application
retains its execution semantics. Then standard debugging techniques are applied
to debug this centralized application. After the bug is localized and fixed, our
approach generates a patch that is applied to the faulty part of the distributed
application. We call our approach Catch & Release or CandoR for short, as it
catches bugs in the centralized version of a distributed application, and after
fixing the bugs, releases the application for its continued distributed execution.

We implement CandoR for the important domain of full-stack JavaScript
applications, in which both the client and server parts are written and maintained
in JavaScript, and evaluate its effectiveness in fixing two important types of
bugs known to be prevalent in this domain: memory leaks and performance
bottlenecks. Our evaluation applies our approach to localize and fix bugs that
were previously found in third-party applications. We verify the correctness and
value of our approach by applying our bug-fixing patches to the faulty versions
of these applications and then confirming that the patched versions pass the
provided test suites. We argue that CandoR reduces the complexity of the
debugging process required to fix these bugs by reporting on our experiences.

This paper makes the following contributions:

1. We present a novel debugging approach for distributed applications that uses
automated refactoring to produce a semantically equivalent, centralized ver-
sions of the debugged subjects. Any of the existing state-of-the-art debugging
techniques become applicable to track and localize bugs in such centralized
versions. (catch)

2. We develop automated bug patching, which given the bug-fixing changes of
the debugged application’s centralized version, replays these changes on the
application’s client or server parts. (release)

3. We empirically evaluate the correctness and value of our approach by apply-
ing it to track and localize known bugs in real-world third-party full-stack
JavaScript applications.

The rest of this paper is structured as follows. Section 2 discusses the state of
the art in software debugging. Section 3 introduces our approach for debugging
full-stack JavaScript applications. Section 4 presents the design and implemen-
tation details of CandoR. Section 5 reports on the evaluation results of apply-
ing CandoR to debug real-world subject applications. Section 6 presents future
work directions and concluding remarks.

2 Background and Related Work

Numerous prior approaches have pursued the goal of improving the effectiveness
and lowering the cognitive burden of software debugging. It would be unrealistic

Catch & Release: Debugging Distributed Full-Stack Apps 461

to discuss all of them here. Hence, we outline only some major prior efforts,
particularly those that had introduced some of the techniques we used to imple-
ment our approach. An important part of the debugging process is exercising the
runtime behaviour of the debugged subject. When it comes to testing web appli-
cations, client-side scripting and UI interfacing have been introduced to auto-
matically exercise UI elements and to conduct state-based testing [8,10,12,13].
These approaches approximate server-side application logic as simple states. In
contrast, CandoR first transforms a distributed application into its equivalent
centralized version, in which the original server-side logic is encapsulated in reg-
ular functions that can be debugged by applying any of these prior approaches.

To debug distributed applications that execute over middleware, Record and
Replay (R&R) is an execution framework that efficiently captures distributed
execution traces [1,14]. One of the weaknesses of R&R is its heavy performance
overhead due to the need to execute instrumented code over middleware. To
reduce this overhead, Parikshan [2] replicates network inputs to remove the need
for heavyweight instrumentation by using lightweight containers, thus triggering
buggy executions in production with low overhead. By eliminating distribution
altogether, CandoR enables localizing bugs in the centralized equivalent of the
debugging subjects, thereby providing a low-overhead debugging approach.

Since JavaScript defeats static analysis approaches, dynamic analyses have
been applied to help understand various properties of JavaScript programs,
including performance and memory consumption. MemInsight [7], a profiling
framework, can analyze complex JavaScript programming constructs, the mem-
ory behavior of DOM objects, and the exact object lifetimes. Dynamic analysis
has also been used to identify promising refactoring opportunities in JavaScript
code, such as detecting Just-In-Time (JIT)-unfriendly code sections that can
be restructured to improve performance. To understand how prevalent JIT-
unfriendly code is, JITProf [5] applies dynamic analysis to help developers detect
such code regions. To help identify harmful JavaScript coding practices, DLint
[6] features a dynamic checker based on formal descriptions. To detect perfor-
mance bottlenecks, JSweeter [21] analyzes the code patterns related to the type
mutation of the V8 engine.

To detect memory leaks in web applications, BLeak [20], an automated
debugging system, identifies memory leaks by checking for a sustained memory
growth between consecutive executions. Currently, all these approaches need to
be applied separately to the server or client parts of full-stack JavaScript appli-
cations. With CandoR, these approaches becomes immediately applicable for
debugging these applications in their insourced versions that execute within a
single JavaScript engine.

3 Debugging Full-Stack JavaScript Applications with
CandoR

In this section, we explain our approach to debugging distributed full-stack
JavaScript applications by discussing how it facilitates the process of locating
bugs in two real-world examples.

462 K. An and E. Tilevich

Fig. 1. Distributed App theBrownNode (left:server part, upper right:client part) and
patch for inefficient iteration. (shaded)

3.1 Motivating Example I: Removing Performance Bottlenecks

Consider the code snippet in Fig. 1, in which the remote service /users/search

of the distributed app theBrownNode calls function getUsers, which contains
nested for loops. The client portion invokes the server-side script /users/search,
passing various query parameter data to obtain the search query results. The
code of the inner loop is quite inefficient, as it performs two conditional checks.
Being on a hot execution path, this inefficiency causes a noticeable performance
degradation. One can remove this bottleneck by eliminating the need to check
whether the property prop is indeed defined in the object searchUser and not
inherited from searchUser prototype: to exclude the inherited properties, the code
can be optimized to use Object.keys() [17].

Notice that in the original distributed version of this application, it would be
non-trivial to locate the actual source of this performance bottleneck. The per-
formance of a distributed application can be affected by myriad factors, many
of which have nothing to do with the application’s implementation. To meet
the expected performance requirements, servers must be properly configured for
the actual usage scenarios, and so is the middleware infrastructure that encapsu-
lates the communication functionality between the client and server components.
In addition, network connectivity and utilization can affect the overall perfor-
mance. Intermittent network connectivity and bandwidth saturation can lead to
uncertain periods of poor network performance.

Catch & Release: Debugging Distributed Full-Stack Apps 463

Even if the programmer were to become certain that the cause of the observed
performance bottleneck lies in the implementation, localizing the source loca-
tion of the bug in a distributed application can be a complex undertaking that
requires generating a large volume of synthetic HTTP traffic against a specially
instrumented version of the server. Then the client parameters would have to
be matched against the resulting server execution profiles. This debugging pro-
cedure is complicated, as it requires a customized server deployment and the
examining of the remotely generated performance profiles.

With CandoR, the programmer first replaces the remote invocation of /users

/search with an equivalent local function call, thus eliminating all middleware
functionality and server-side execution. Once the remote code is insourced, the
resulting centralized program can be easily debugged by using any existing tools
for JavaScript programs. Rather than transferring log files from the server to the
client and trying to correlate different remote executions with their parameters,
the programmer can debug the execution of local function users_search. Once the
programmer changes the insourced version to fix the bug, CandoR automati-
cally generates a fix patch (the shaded code snippet in Fig. 1) to be executed
against the original server or client part of the distributed application (i.e., the
“release” phase).

3.2 Motivating Example II: Detecting Memory Leak

Some of the most common bugs afflicting remote services are memory leaks.
Consider function leakingService in Fig. 2 that represents a simplified server-
side service invoked by various remote clients. These clients invoke the service
by means of distribution middleware that hides all the low-level details on the
client-server communication. Notice that every time this function completes its
execution, it leaks some memory, as random String is appended to the globally
declared Array leak, which is never garbage-collected. Although this example is
simplified for ease of exposition, it is representative of numerous anti-patterns
that can quickly exhaust the server’s memory upon heavy utilization.

This bug is also quite challenging to detect and fix. One first has to be
certain that the memory leak in question is not due to server/middleware con-
figuration problems. In addition, the very presence of middleware functionality
makes it hard to locate memory bugs in the programmer-written code. Much
of the client/server distributed execution flows through middleware libraries,
whose memory consumption and footprint can conceal the actual locations in
the programmer-written code that contain memory-related bugs.

To help developers test the remote functionality, the Node.js framework pro-
vides testing libraries, using which one can script HTTP requests against a given
server. These libraries help verify whether the input and output values of a ser-
vice being tested are as expected. These functional testing utilities cannot help
identify whether the server code is leaky, however.

In the absence of fully automated techniques for debugging Full-Stack
JavaScript Applications, developers have no choice but to manually instrument

464 K. An and E. Tilevich

Fig. 2. Memory leak examples for server and client parts

both the client and the server parts of the debugged applications. More specifi-
cally, the current state of the art in detecting memory leaks in JavaScript pro-
grams involves taking and comparing with each other multiple heap snapshots
in the suspect regions of the server-side functionality. A commonly used tech-
nique for finding memory leaks in web applications is three snapshots [20]. Even
detecting a sufficient degradation in performance of the server-side functionality
requires some client to execute multiple consecutive HTTP requests. As a result,
to reproduce a memory leak bug, programmers are expected to follow a complex
and tedious debugging process.

In contrast, CandoR takes a drastically different approach to debugging
full-stack JavaScript applications. It performs all bug localization tasks on the
distributed application’s centralized version, in which both the client and server
parts execute within the same JavaScript interpreter. This centralized version
is generated automatically via a new refactoring that we call Client Insourcing.
This refactoring moves the server-side functionality to the client, so it can be
invoked by calling local functions rather than through the layers of distribution
middleware such as HTTP Client1. In essence, Client Insourcing integrates the
remote, potentially buggy functionalities with the client code, so all the debug-
ging techniques for centralized JavaScript applications can be applied to the
insourced application. For example, state-of-the-art modern JavaScript execution
environments provide built-in profiling infrastructures that can be applied to any
running application. A centralized application can be re-executed at will without
having to coordinate the execution of multiple remote execution nodes. Because
Client Insourcing replaces all distributed functionality with direct local function
calls, the identified memory leaks would indeed stem from the programmer-
written code rather than any server/middleware misconfiguration.

1 Angular HTTPClient (https://angular.io/guide/http),
JQuery AJAX (http://api.jquery.com/jquery.ajax/),
Node.js HTTP module (https://nodejs.org/api/http.html).

https://angular.io/guide/http
http://api.jquery.com/jquery.ajax/
https://nodejs.org/api/http.html

Catch & Release: Debugging Distributed Full-Stack Apps 465

4 CandoR: Design and Reference Implementation

CandoR works in three phases. First, the server part is automatically insourced,
producing a centralized application whose semantics is equivalent to the original
distributed full-stack JavaScript application. The resulting centralized applica-
tion is then debugged by means of any of the existing techniques for locating
and fixing bugs in JavaScript programs. Finally, based on the before (i.e., buggy)
and after (i.e., fixed) versions of the centralized application, CandoR generates
a patch to be executed against the application’s original client or server parts,
thereby applying the fix to the correct portion of the distributed application.

4.1 The Client Insourcing Automated Refactoring

Full-stack JavaScript applications comprise client-side and server-side JavaScript
code. The Client Insourcing automated refactoring first identifies the remotely
invoked functionalities of the server code by statically analyzing the correspond-
ing marshaling points of the parameters passed by the client to the server and
the server’s output to the client (i.e., marked as //client-input and //serv-output

parts respectively in Fig. 1). The process requires no manual steering from the
programmer, whose role is limited to running the application’s test suites under
standard input and transferring the generated log file of the marshaling points to
the server. Parameterized with this file, dynamic symbolic execution then com-
putes a transitive closure of the server-side statements executed by the remote
invocations. Client Insourcing analyzes JavaScript programs by using the z3 SMT
solver [4], similarly to other declarative program analysis frameworks [9,18].

Fig. 3. Continuous control flow of distributed codes (theBrownNode in Fig. 1) con-
structed by Client Insourcing (left: generated code for centralized applications)

The computed relevant server statements are then insourced into the appli-
cation’s client part. The insourced statements are placed in automatically gener-

466 K. An and E. Tilevich

ated client-side functions. These functions are invoked directly without any mid-
dleware. So the refactoring process completes by replacing all middleware-based
invocations with direct calls to these functions (see the equivalent centralized
version of theBrownNode in Fig. 3). This refactoring preserves the application’s
business logic, while significantly simplifying its control flow. Rather than span-
ning across two JavaScript engines (client and server), the resulting centralized
applications require only one engine. Since JavaScript engines often differ in
terms of their debugging facilities (e.g., logging support, information messages,
etc.), interacting with only one engine reduces the cognitive load of debugging
tasks. In addition, one of the key hindrances that stand on the way of debug-
ging distributed applications is the necessity to keep track when the control flow
changes execution sites. The control flow of a full-stack JavaScript application
can go through any of the constituent application parts: client, server, and mid-
dleware. Ascertaining when the flow crosses the boundaries between these parts
can be challenging, particularly if the maintenance programmer, in charge of a
debugging task, is not the same programmer who wrote the original buggy code.
By transforming the original application into its centralized counterpart, Client
Insourcing creates a debugging subject with a regular local control flow that is
easy to follow with standard debugging tools (Fig. 3).

4.2 Catching and Fixing Bugs in Insourced Apps

Insourcing produces centralized applications that can be debugged by means of
any of the existing or future JavaScript debugging techniques. CandoR makes
all these state-of-the-art debugging techniques immediately applicable to full-
stack JavaScript applications. Automatically produced equivalent centralized
versions are easier to execute, trace, and debug, due to their execution within
a single JavaScript engine. Next, we explain how CandoR can help remove
performance bottlenecks and memory leaks.

Identifying and Removing Performance Bottlenecks. The interpreted,
scripting features of JavaScript make the language a great fit for rapid prototyp-
ing tasks. Unfortunately, deadline pressures often leads to programmers having
to move such prototyped code into production. Once deployed in actual execution
environments, this code frequently suffers from performance problems. Several
previous works address the challenges of uncovering non-trivial recurring cases
of performance degradation in JavaScript applications [5,7,17]. For example,
reference [17] identifies 10 common recurring optimization patterns: 2 inefficient
iterations, 6 misused JavaScript APIs, and 2 inefficient type checks. One can find
these patterns statically by analyzing a JavaScript codebase. Notice that static
analysis can be applied separately to the client and server parts of a full-stack
JavaScript application. However, applying the Pareto Principle [22] to program
optimization, one can expect a typical program to spend 90% of its execution
time in only 10% of its code. Hence, to verify whether the found inefficiencies are
indeed the sources of performance bottlenecks requires dynamic analysis, which
is much easier to perform on the centralized version of a debugged distributed

Catch & Release: Debugging Distributed Full-Stack Apps 467

application. Specifically, the centralized version is instrumented and its runtime
performance profile is generated. Then each candidate inefficiency is removed
in turn and another profile is generated. By comparing the original profile and
that of a modified version, one can verify whether the latest fix was indeed for a
performance bottleneck-causing bug. Without a centralized version, the number
of performance profiles would need to at least double, and the server part would
require a separate execution driver to generate its profiles.

Fixing Memory Leaks. When fixing memory leaks, programmers typically
store the execution traces of leaky code persistently for a subsequent exami-
nation. When debugging real-world web applications, programmers often can
delegate the logging task to a third-party service. However, to fix a memory leak
in a distributed version, both the client and server parts need to be logged. In
contrast, with CandoR, programmers can localize memory leaks by applying a
memory profiler such as memwatch [11] to the debugged application’s central-
ized version. As shown in the Fig. 2, memwatch detects the leaking global array
leak in the centralized version, with the fix replacing leak.push with writeToFile2.
CandoR then generates a patch to be applied to the application’s server part.

4.3 Releasing the Bug Fixes

Once the programmer fixes the bug in the application’s centralized version, the
resulting fixes have to be applied to the actual client and server parts of the
original application, thus completing the final release phase of the CandoR
debugging process. To that end, CandoR automatically generates input scripts
for GNU Diffutils3, which executes these scripts against the source files of the
original full-stack JavaScript application by using GNU patch4.

To correctly generate a diff script that modifies the affected lines of the
original applications, CandoR keeps track of the correspondences between the
application’s original and insourced versions. This process is complicated by
the multi-step nature of Client Insourcing transformations. Because the basic
insourcing unit is a function, all free-standing server statements are first placed
into individual functions, through a process that synthesizes new function names
and applies the extract function refactoring on the free-standing statements. We
call this process normalization. The actual insourcing transformation is applied
at the function level of granularity.

CandoR keeps track of how the lines map between the original client and
server source files and their centralized version. This mapping is used to auto-
matically generate a patch that replays the bug fixing changes of the centralized
version on the original source code’s client or server portions (Fig. 4).

2 For additional implementation details, see https://bit.ly/2B9a3wf.
3 https://www.gnu.org/software/diffutils.
4 http://savannah.gnu.org/projects/patch.

https://bit.ly/2B9a3wf
https://www.gnu.org/software/diffutils
http://savannah.gnu.org/projects/patch

468 K. An and E. Tilevich

Fig. 4. Debugging full-stack JavaScipt applications with CandoR

5 Evaluation

– RQ1—Correctness: Does Client Insourcing preserve the execution seman-
tics of full-stack JavaScript applications? Are existing test-suits still applica-
ble to the centralized variants of the debugged applications? (Sect. 5.1)

– RQ2—Value: By how much does CandoR reduce the debugging complexity
in terms of the number of steps and tools required to localize and fix bugs?
(Sect. 5.2) How much programmer effort can CandoR save? (Sect. 5.3)

5.1 Evaluating the Correctness of Client Insourcing

Table 1 shows subject full-stack applications and their remote services. The size
of each subject application is shown in terms of the number of uncommented
lines of JavaScript code (ULOC) for the server (SULOC) and the client (CULOC)
parts. Client Insourcing changes the architecture of full-stack JavaScript applica-
tions from distributed to centralized by combining their server and client parts.
CIULOC indicates ULOC for the centralized version of each subject.

The applicability of CandoR hinges on whether Client Insourcing preserves
the execution semantics (i.e., business logic) of the refactored applications, a
property we refer to as correctness. In modern software development practices,
applications are maintained alongside their test suites, a collection of test cases
that verify each important unit of application functionality. In our correctness
evaluation, we leverage the ready availability of such test suites for our subject
applications. In other words, the original and refactored versions of a subject
application is expected to successfully pass the same set of test cases.

Catch & Release: Debugging Distributed Full-Stack Apps 469

Some tests in the available test suits are also distributed, in that they invoke
remote services by means of HTTP client middleware, which marshals input
parameters and unmarshals returned values. It is the returned values that are
used as test invariants. We had to manually transform such distribution-specific
tests to work against the centralized (insourced) versions of their test subjects.

Table 1. Subject distributed apps and Client Insourcing results

Subject Apps SULOC CULOC Remote services CIULOC

theBrownNode [19] 147 43 /users/search 37
/users/search/id 36

Bookworm [3] 371 1814 /api/ladywithpet 394
/api/thedea 394
/api/theredroom 394
/api/thegift 394

search_leak [16] 34 13 /search_leak 17
ionic2_realty_rest [15] 453 387 /properties/favorites 24

Table 1 shows the total number of tests in each evaluated test suite, including
the number of tests manually transformed to work against the centralized ver-
sions of subject applications; the table shows whether tests successfully passed
in the original and refactored version of each subject. Based on these results,
we can conclude that Client Insourcing shows a high degree of correctness
(88 · 100 = 100(%)), as the same of number of successful tests is passed by
the refactored applications, making them suitable for debugging.

5.2 Case Study: Traditional vs. CandoR-Enabled Debugging

In this case study, we compare and contrast a traditional approach to local-
izing a bug in a full-stack JavaScript application and the CandoR debugging
approach. In this case study, we assume that a programmer needs to debug a
distributed application with n remote functionalities5 ftn1...n

remote to produce i
corrective patches P 1...i; applying the patches fixes the found bugs. We assume
that standard profiling is used to stamp the start and the end of executing each
remote service, so as to obtain the total execution time and memory footprint. To
the best of our knowledge, no automated tools can identify the entry/exit points
of a server-side remote functionality invoked by clients. Hence, the programmer
is expected to manually examine the server-side code to locate and instrument
these entry and exit points for every remote functionality in question. In some
cases, in order to instrument some business logic functionality, it must first be

5 Each remote functionality is exposed as a remote service invoked via some middle-
ware API.

470 K. An and E. Tilevich

disentangled from any middleware-specific functionality. However, for ease of
exposition, we disregard this additional required debugging-related task. Once
the instrumentation is in place, a typical debugging procedure involves con-
tinuously invoking client-side HTTP requests against the instrumented remote
functionalities. After a certain number of requests, the server-side logs then can
be collected, transferred to the client, and examined for the obtained execution
time and memory footprint numbers profiles (Fig. 5a).

Fig. 5. Comparing the debugging processes

In essence, our approach reduces the accidental complexity of debugging;
the essential complexity cannot be reduced, so localizing and fixing bugs will
always remain a delicate and complex task. Nevertheless, our approach allows
programmers to focus on the actual debugging activities, unencumbered by the
complexity of having to trace the execution of a buggy application across dis-
tributed sites. CandoR simplifies the process by automatically identifying n
remote functionalities and transforming them into equivalent n centralized local
functions ftn1...n

centralized, integrated with the client code. Afterwards, all the rel-
evant debugging procedures can be applied to the resulting centralized applica-
tion. Since these procedures are strictly local, they can be repeated at will, with
their output examined in place. As a result, the number of debugging procedures
decreases as compared to the traditional process, as shown in Fig. 5b.

5.3 Quantifying the Debugging Effort Saved by CandoR

We see the main draw of CandoR in that it reduces the amount of effort
required to debug distributed applications to approximately that required to
debug centralized ones. Although any debugging task can be cognitively taxing,

Catch & Release: Debugging Distributed Full-Stack Apps 471

tedious, and laborious, removing the complexity of distributed communication is
expected to reduce these burdens. However, to be able to perform all debugging-
related changes on the centralized version of a distributed application, these
changes must affect the performance and memory consumption of both the dis-
tributed and centralized versions in comparable ways. In other words, if a change
to the centralized version improves its performance or memory consumption, a
similar improvement should be expected in the distributed version.

To check this hypothesis, we fixed different types of bugs in the central-
ized versions of 8 subjects, measuring their before and after execution time
and memory consumption numbers. We then obtained the same measure-
ments for their original and fixed distributed versions. Table 2 presents the
performance and memory consumption improvements for these debugging sub-
jects. To measure performance, we use the V8 profiler. To reduce noise, we
repeated each use case 2000 times and compared the average observed time
elapsed: Pbefore and Pafter, with the performance improvement calculated as
Pimproved = Pbefore−Pafter

Pbefore
· 100(%). For the memory leakage bugs, we compared

how much memory was used before and after the bug fixes by repeatedly execut-
ing the subjects 2000 times. The table’s last column (PD

improved and PCI
improved)

shows the resulting percentage improvements for the distributed and centralized
versions. As one can see, the improvement percentages are very close to each
other, confirming that the centralized version can serve as a viable debugging
proxy for its distributed application.

We also approximate the debugging effort saved by counting the number
of uncommented lines of code (ULOC) that need to be examined by hand to
successfully perform a debugging task. A successfully executed debugging task
involves two phases: (1) localize the source line of the bug, (2) fix the bug by
modifying the source code (i.e., generate a fix patch). In traditional debugging,
phase 1 requires that all the executed client and server statements be examined,
while with CandoR, Client Insourcing puts all the server statements executed
by remote services into regular local functions (CIULOC in Table 1), thus elimi-
nating the need to examine any remotely executed code to localize bugs. In phase
2, the bugs are fixed by applying automatically generated patches (FULOC).

5.4 Threats to Validity

When implementing the patch generation module of CandoR, we made several
design choices that may affect our evaluation results. For example, we mea-
sured the performance improvement of subjects running on a specific V8 Engine
(v 6.11.2) and instrumenting machine (Dell-OptiPlex5050). However, the
actual amount of improvement can change based on the specific choice of run-
ning environments. Also, the ULOC for the patches automatically generated by
CandoR can differ in size from those generated by humans. Because CandoR
generates patches at statement granularity, no additional lines can be added for
readability or commenting. Human programmers are free to format the patches
in an arbitrary fashion, thus affecting the total number of lines taken by their
bug fixing patches.

472 K. An and E. Tilevich

Table 2. Quantifying debugged results by CandoR

Remote services Bug types [17] FULOC PD
before PD

after PD
improved

(PCI
before) (PCI

after) (PCI
improved)

/users/search Inefficient iteration 31 0.36ms
(0.19ms)

0.26ms
(0.13ms)

27.8%
(31.58%)

/users/search/id Inefficient iteration 31 1.7 ns
(2.5 ns)

1.19 ns
(1.63 ns)

29.53%
(34.8%)

/api/ladywithpet Misused APIs 18 5.89ms
(2.74ms)

4.99ms
(2.24ms)

15.28%
(18.13%)

/api/thedea Misused APIs 18 5.63ms
(2.71ms)

4.82ms
(2.25ms)

14.39%
(16.97%)

/api/theredroom Misused APIs 18 0.65ms
(1.87ms)

0.53ms
(1.56ms)

18.06%
(16.58%)

/api/thegift Misused APIs 18 1.17ms
(0.36ms)

1.04ms
(0.31ms)

11.11%
(13.89%)

/search_leak Memory leak 24 619.10 kb
(476.16 kb)

519.13 kb
(409.10 kb)

16.15%
(14.08%)

/properties/favorites Memory leak 42 824.62 kb
(1431.28 kb)

511.37 kb
(922.51 kb)

37.99%
(35.54%)

6 Conclusions and Future Work

We have presented a new debugging approach—CandoR—that facilitates the
debugging of full-stack JavaScript applications. As a future work direction, we
plan to conduct a systematic user study of JavaScript programmers to assess the
effectiveness and usability of the CandoR debugging approach.

Acknowlegements. The authors would like to thank Yin Liu and the anonymous
reviewers, whose insightful comments helped improve the technical content of this
paper. This research is supported by the NSF through the grants # 1650540 and
1717065.

References

1. Altekar, G., Stoica, I., Altekar, G., Stoica, I.: Odr: output-deterministic replay for
multicore debugging. In: SOSP (2009)

2. Arora, N., Bell, J., Ivančić, F., Kaiser, G., Ray, B.: Replay without recording
of production bugs for service oriented applications. In: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, pp.
452–463. ACM (2018)

3. Bookworm. https://github.com/davidwoodsandersen/Bookworm
4. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://github.com/davidwoodsandersen/Bookworm
https://doi.org/10.1007/978-3-540-78800-3_24

Catch & Release: Debugging Distributed Full-Stack Apps 473

5. Gong, L., Pradel, M., Sen, K.: JITprof: Pinpointing JIT-unfriendly JavaScript code.
In: Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, pp. 357–368. ESEC/FSE 2015 (2015)

6. Gong, L., Pradel, M., Sridharan, M., Sen, K.: Dlint: dynamically checking bad cod-
ing practices in JavaScript. In: Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pp. 94–105. ISSTA 2015 (2015)

7. Jensen, S.H., Sridharan, M., Sen, K., Chandra, S.: MemInsight: platform-
independent memory debugging for JavaScript. In: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, pp. 345–356. ACM (2015)

8. Kiciman, E., Livshits, B.: AjaxScope: a platform for remotely monitoring the
client-side behavior of web 2.0 applications. In: ACM SIGOPS Operating Systems
Review, pp. 17–30. ACM (2007)

9. Livshits, B., Lam, M.S.: Finding security vulnerabilities in Java applications with
static analysis. In: Proceedings of the 14th Conference on USENIX Security Sym-
posium, vol. 14 (2005)

10. Marchetto, A., Tonella, P., Ricca, F.: State-based testing of AJAX web applica-
tions. In: 2008 1st International Conference on Software Testing, Verification, and
Validation, pp. 121–130, April 2008

11. Memwatch. https://github.com/eduardbcom/node-memwatch
12. Mesbah, A., Bozdag, E., Van Deursen, A.: Crawling AJAX by inferring user inter-

face state changes. In: Eighth International Conference on Web Engineering. ICWE
2008, pp. 122–134. IEEE (2008)

13. Mesbah, A., Van Deursen, A.: A component-and push-based architectural style for
AJAX applications. J. Syst. Softw. 81(12), 2194–2209 (2008)

14. Patil, H., Pereira, C., Stallcup, M., Lueck, G., Cownie, J.: Pinplay: a framework for
deterministic replay and reproducible analysis of parallel programs. In: Proceedings
of the 8th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, pp. 2–11. ACM (2010)

15. Realty_rest. https://github.com/ccoenraets/ionic2-realty-rest
16. Search_leak. https://github.com/newarmy/test
17. Selakovic, M., Pradel, M.: Performance issues and optimizations in JavaScript: an

empirical study. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pp. 61–72 (2016)

18. Sung, C., Kusano, M., Sinha, N., Wang, C.: Static DOM event dependency analysis
for testing web applications. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 447–459.
FSE 2016 (2016)

19. theBrownNode. https://github.com/clintcparker/theBrownNode
20. Vilk, J., Berger, E.D.: Bleak: automatically debugging memory leaks in web appli-

cations. In: Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 15–29. ACM (2018)

21. Xiao, X., Han, S., Zhang, C., Zhang, D.: Uncovering JavaScript performance code
smells relevant to type mutations. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS,
vol. 9458, pp. 335–355. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26529-2_18

22. Zhang, H.: On the distribution of software faults. IEEE Trans. Softw. Eng. 34(2),
301–302 (2008)

https://github.com/eduardbcom/node-memwatch
https://github.com/ccoenraets/ionic2-realty-rest
https://github.com/newarmy/test
https://github.com/clintcparker/theBrownNode
https://doi.org/10.1007/978-3-319-26529-2_18
https://doi.org/10.1007/978-3-319-26529-2_18

	Catch & Release: An Approach to Debugging Distributed Full-Stack JavaScript Applications
	1 Introduction
	2 Background and Related Work
	3 Debugging Full-Stack JavaScript Applications with CandoR
	3.1 Motivating Example I: Removing Performance Bottlenecks
	3.2 Motivating Example II: Detecting Memory Leak

	4 CandoR: Design and Reference Implementation
	4.1 The Client Insourcing Automated Refactoring
	4.2 Catching and Fixing Bugs in Insourced Apps
	4.3 Releasing the Bug Fixes

	5 Evaluation
	5.1 Evaluating the Correctness of Client Insourcing
	5.2 Case Study: Traditional vs. CandoR-Enabled Debugging
	5.3 Quantifying the Debugging Effort Saved by CandoR
	5.4 Threats to Validity

	6 Conclusions and Future Work
	References

