
Dragon: Decision Tree Learning
for Link Discovery

Daniel Obraczka1(B) and Axel-Cyrille Ngonga Ngomo2(B)

1 University of Leipzig, 04109 Leipzig, Germany
obraczka@informatik.uni-leipzig.de

2 University of Paderborn, 33098 Paderborn, Germany
axel.ngonga@upb.de

Abstract. The provision of links across RDF knowledge bases is regarded
as fundamental to ensure that knowledge bases can be used joined to
address real-world needs of applications. The growth of knowledge bases
both with respect to their number and size demands the development of
time-efficient and accurate approaches for the computation of such links.
This is generally done with the aid of machine learning approaches, such
as e.g. Decision Trees. While Decision Trees are known to be fast, they are
generally outperformed in the link discovery task by the state-of-the-art
in terms of quality, i.e. F-measure. In this work, we present Dragon, a
fast decision-tree-based approach that is both efficient and accurate. Our
approach was evaluated by comparing it with state-of-the-art link dis-
covery approaches as well as the common decision-tree-learning approach
J48. Our results suggest that our approach achieves state-of-the-art perfor-
mance with respect to its F-measure while being 18 times faster on aver-
age than existing algorithms for link discovery on RDF knowledge bases.
Furthermore, we investigate why Dragon significantly outperforms J48
in terms of link accuracy. We provide an open-source implementation of
our algorithm in the LIMES framework.

Keywords: Link discovery · Decision trees · Machine learning ·
Entity resolution · Semantic web

1 Introduction

RDF is now ubiquitous on the Web. For example, more than 1 billion URLs
embed RDF data in different serialization formats. A representative fragment of
the RDF data available on the planet, the Linked Open Data Cloud, has grown
from merely 12 to almost 10,000 knowledge bases [9] over the last decade. The
growth in the number of knowledge bases is accompanied by a growth in size.
For example, DBpedia–one of the most popular bases–has grown from ≈ 108

triples (DBpedia 2.0) in 2007 to ≈ 1010 triples in 2016 (DBpedia 2016-04). This
growth in the number and size of knowledge bases has led to an increase of the
necessity for efficient and accurate link discovery (i.e., the computation of links
between knowledge bases) approaches.

The original version of this chapter was revised: The project number of OPAL in the
acknowlegdements section was corrected. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-19274-7_51
c© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 441–456, 2019.
https://doi.org/10.1007/978-3-030-19274-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_31&domain=pdf
http://orcid.org/0000-0002-0366-9872
https://doi.org/10.1007/978-3-030-19274-7_51
https://doi.org/10.1007/978-3-030-19274-7_31

442 D. Obraczka and A.-C. N. Ngomo

In this paper, we consider the declarative link discovery setting [15], in which
the set of conditions under which two resources are to be linked is to be devised
explicitly and subsequently executed to compute links across two (not necessarily
distinct) sets of RDF resources S and T . The declarative link discovery problem
has been shown to be challenging even for domain experts, since this set of
conditions, which we call a link specification, can be very complex [11]. This
complexity is due to

1. the plethora of similarity measures (e.g., edit distance, cosine similarity, Jac-
card similarity) that are used to compare the property values of entities to
find links and

2. the manifold means through which these similarities can be combined (e.g.,
min, max, linear combinations).

A large number of dedicated machine learning algorithms ranging from genetic
programming [11] to refinement operators [25] has hence been devised to simplify
the declarative link discovery process (see [15] for a survey). While the F-measure
of these machine learning approaches has increased steadily, little attention has
been paid to their time efficiency. Most commonly, the approaches are declared
scalable by virtue of the bound similarity computation algorithms they rely
upon, e.g., AllPairs [1], PPJoin+ [30], EdJoin [29]. First pruning approaches
are developed in works such as [25] but solely for particularly slow versions of
the algorithm. Given that the time efficiency of learning approaches for link
discovery is critical for their usefulness in practical applications (e.g., in learning
scenarios with humans in the loop), the primary aim of this work is hence to
improve the time efficiency of link discovery algorithms, while maintaining their
classification performance (i.e. maintaining the same F-measure). We achieve
this goal with our novel approach Dragon, a decision-tree-based approach for
link discovery. The contributions of this work are as follows:

1. We devise an efficient and effective algorithm for learning link specifications
within the decision tree paradigm.

2. We evaluate our algorithm on nine benchmark data sets against state-of-the-
art link discovery and decision-tree-learning approaches. Our results show
that Dragon outperforms existing link discovery solutions significantly w.r.t.
runtime, while achieving equally good performance w.r.t. the F-measure.
Moreover, our approach outperforms generic solutions to learning decision
trees significantly.

3. We investigate why our approach produces better link specifications than
common decision-tree algorithms.

An open-source implementation of Dragon is provided in the LIMES [18]
framework1.

This paper is structured as follows: We start by giving a formal definition
of the key concepts underlying this work. Thereafter, we give a brief overview
of the state of the art. We subsequently present our approach to link discovery,
which we finally evaluate on synthetic and real-world datasets.
1 https://github.com/dice-group/LIMES/.

https://github.com/dice-group/LIMES/

Dragon: Decision Tree Learning for Link Discovery 443

2 Preliminaries

Definition 1 (Link Discovery). Given two sets S (source) and T (target)
of RDF resources and a relation R, compute the set M of pairs of instances
(s, t) ∈ S × T such that R(s, t).

We call M a mapping. Commonly, the set S is a subset of the instances contained
in the knowledge base KS . The same applies to the set T and a knowledge base
KT . Note that neither S and T nor KS and KT are necessarily disjoint. Since
computing M is a non-trivial task, most frameworks compute an approximation
M ′ = {(s, t) ∈ S × T : σ(s, t) ≥ θ}, where σ is a similarity function and θ is a
similarity threshold. The relation R(s, t) is then considered to hold if σ(s, t) ≥ θ.
The similarity function σ and the threshold θ are expressed in a link specification
(LS). Different grammars have been proposed to describe LSs [12,14,19]. We
adopt the following formal setting, which is akin to that of [25]. This grammar
is equivalent to that used in a large body of work [15].

We begin by defining the syntax of link specifications. To this end, we define
a similarity measure m to be a function m : S × T → [0, 1]. These functions
commonly compare attributes (or sets of attributes) of pairs of resources to
compute a similarity value. Mappings M ⊆ S × T are used to store the results
of the application of a similarity function to S × T . We define a filter as a
function f(m, θ) over the set of all mappings (i.e., the powerset of S ×T). A link
specification is called atomic iff it comprises exactly a single filtering function.
A complex specification L can be obtained by combining two link specifications
L1 and L2 with the operators �,� and \.

We define the semantics [[L]]M of a LS L w.r.t a mapping M as follows:
– [[f(m, θ)]]M = {(s, t)|(s, t) ∈ M ∧ m(s, t) ≥ θ}
– [[L1 � L2]]M = {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) ∈ [[L2]]M}
– [[L1 � L2]]M = {(s, t)|(s, t) ∈ [[L1]]M ∨ (s, t) ∈ [[L2]]M}
– [[L1\L2]]M = {(s, t)|(s, t) ∈ [[L1]]M ∧ (s, t) /∈ [[L2]]M}
Moreover, we write [[L]] as a shorthand for [[L]]S×T .

Definition 2 (Link Discovery as Classification). The goal of link discovery
can be translated to finding a classifier C : S × T → {−1,+1} which maps non-
matches (i.e. (s, t) ∈ S × T : ¬R(s, t)) to the class −1 and matches to +1.

The classifier returns +1 for a pair (s, t) iff σ(s, t) ≥ θ for the corresponding
link specification. In all other cases, the classifier returns −1. In this work, we use
decision trees for link discovery. The attributes we use are similarity measures.
Because these measures have numeric values, we compute decision trees with
binary splits. An example tree is shown in Fig. 1.

3 The Dragon Algorithm

In the following, we present how we use decision trees to learn accurate LSs
efficiently. We begin by giving a brief overview of our approach. Thereafter, we
show how we tailor the construction of decision trees to the LS learning problem.
Finally, we show how to prune trees to avoid overfitting.

444 D. Obraczka and A.-C. N. Ngomo

trigrams(name,name) ≥ 0.5

jaccard(age,age) ≥ 0.8

no

+1

yes

-1

no

+1

yes

Fig. 1. A decision tree learned by Dragon for the dataset of which a part is shown in
Table 1. The classification decisions are shown in the gray nodes.

Table 1. Example datasets containing persons and link candidates with appropriate
labeling showing corresponding similarity values using cosine similarity on name
attributes. We represent the data as tables and omit namespaces for the sake of
legibility.

URI name age
:S1 “Hans-Peter” 26
:S2 “Heiko Kurt” 13
:S3 “Amata” 52
:S4 “Ariane” 25
:S5 “Sib” 56

(a) Source Dataset

URI name age
:T1 “Hans Peter” 26
:T2 “Heiko” 13
:T3 “Amata K.” 52
:T4 “Ariane” 25
:T5 “Ffion” 12

(b) Target Dataset

Pair Label sim
(S2, T2) +1 0.707
(S2, T3) -1 0.0
(S3, T3) +1 0.816
(S4, T4) +1 1.0
(S5, T5) -1 0.0

(c) Link candidates

3.1 Overview

Algorithms 1 and 2 give an overview of our approach depending on the mea-
sure we use. We assume that we are given a maximum height for the tree. To
determine the root of the tree we detect the best split attribute. We consid-
ered two measures for this purpose: the global F-measure aims to maximize
the total F-measure achieved by the decision tree while the Gini measure acts
locally and aims to ensure that the split attribute is optimal. We elaborate on
how we use these fitness functions to find good split attributes in the section
“Determining Split Attributes”. Dragon continues recursively by constructing
the left and right child of the tree if it found a split attribute and has not yet
reached the maximum height. For Gini, it updates the training data depend-
ing on the split attribute by removing any link pairs that are not accepted by
the split attribute. For example, for the decision tree shown in Fig. 1, the train-
ing data for the right child of the root node would not include the pair (S5,
T5) from Table 1(c), because the similarity value of the qgrams measure on the
name attribute is lower than 0.4. The training data for the left child (ergo, the
“no” child, see Fig. 1) is the global training data used to initialize our approach
minus the training data for the right child of the root node. For example, the
pair (S4, T4) would not be contained in the training data for the left child, since
the similarity value of the qgrams measure on the name attribute is 1.0, and it

Dragon: Decision Tree Learning for Link Discovery 445

therefore belongs to the training data of the right child. For global F-measure,
the training data does not need to be changed, since we try to optimize globally.

In the following, we take a closer look at how the split attributes are computed.

Algorithm 1. Overview of Dragon using Gini Index
1 constructTree(int maxHeight, int currentHeight, boolean rightNode, data

trainingData)
2 splitAttribute = getBestSplitAttribute(trainingData)
3 if splitAttribute �= null AND currentHeight < maxHeight then
4 currentHeight++
5 rightData = updateTrainingData(splitAttribute,trainingData)
6 leftData = trainingData \ rightData
7 rightChild = constructTree(maxHeight, currentHeight,
8 TRUE, rightData)
9 leftChild = constructTree(maxHeight, currentHeight,

10 FALSE, leftData)

11 return this;

Algorithm 2. Overview using global F-measure
1 constructTree(int maxHeight, int currentHeight, data trainingData)
2 splitAttribute = getBestSplitAttribute(trainingData)
3 if splitAttribute �= null AND currentHeight < maxHeight then
4 currentHeight++
5 rightChild = constructTree(maxHeight, currentHeight,
6 trainingData)
7 leftChild = constructTree(maxHeight, currentHeight,
8 trainingData)

9 return this;

3.2 Initialization

The goal of the initialization is to determine the set of mappings that will be
used during the construction of the decision tree. We assume that we are given a
training data set TS with TS ⊆ S × T × {+1,−1} (see Table 1 for an example).
Every triple (s, t,+1) ∈ TS is a positive example, while every triple (s, t,−1) ∈
TS is a negative example. We begin by calculating the subsets S′ ⊆ S and
T ′ ⊆ T that can be found in our training dataset as follows:

S′ = {s ∈ S : ∃t ∈ T with (s, t,+1) ∈ TS ∨ (s, t,−1) ∈ TS},

T ′ = {t ∈ T : ∃s ∈ S with (s, t,+1) ∈ TS ∨ (s, t,−1) ∈ TS}.

We use the sets S′ and T ′ as test sets for our algorithm.
If we use the global F-measure as fitness function, we adopt the approach

used by [25] by computing the mapping Mi = {(s, t) ∈ S′ × T ′ : mi(s, t) ≥ θi}

446 D. Obraczka and A.-C. N. Ngomo

which achieves the highest F-measure on the training dataset TS for each of the
similarity measures mi available to our approach. We determine the threshold
θi by lowering the value of the said threshold from 1 to a lower bound λ by a
given rate τ ∈ [0, 1).

For the Gini Index, we begin by calculating the similarity of each entity
pair (s, t) ∈ S′ × T ′ using all the measures mi available to our learner. Any
similarity values below the lower bound λ are disregarded i.e., set to 0. For each
measure m ∈ mi we now have a list of similarity values [simi1, ..., simin] ordered
from lowest to highest, with the corresponding entity pair (s, t) ∈ S′ × T ′.

3.3 Determining Split Attributes

We build our decision tree using top-down induction [24]. We implement two
measures to decide on the attribute to use for the splits: Global F-measure and
Gini Index. With the global F-measure, we target the improvement of the overall
performance of the decision tree we learn. In contrast, the Gini Index aims
to improve the local performance of a given leaf. The performance of the two
strategies is compared in the evaluation section.

Learning with the Global F-Measure. The trees we learn with the global F-
measure are a combination of the atomic LS computed during the initialization
step. Let k be the number of these atomic LSs. We set the atomic link specifica-
tion which leads to the mapping with the highest F-measure over all measures mi

as our first split attribute. After this initialization of the tree, our tree consists of
a root and 2 leaves. In the example shown in Fig. 1, the root would be the node
jaccard(name, name) ≥ 0.4. We first remove the root from the set of LSs that
can be added to the tree, leading to k − 1 LSs still being contained in the set
of candidate LSs. We sequentially position every of the remaining k − 1 LSs at
every of the 2 leaf nodes, hence generating 2(k − 1) trees. We then compute the
resulting mapping and select the tree with the best F-measure. After removing
the LS used from the set of candidate LSs, we iterate the addition approach until
we cannot improve the F-measure achieved by the tree or until we have used all
atomic LS we computed during the initialization step.

Formally, at iteration i ∈ {1, . . . , k}, we have (k − i + 1) trees to try out
and i nodes in the decision tree where an atomic LS can be added. Hence, the
maximal number of trees we need to generate is given by the following:

k∑

i=1

i(k − i + 1) =
k(k + 1)(k − 2)

6
∈ O(k3). (1)

Our algorithm is hence clearly polynomial in the number of trees computed.
In contrast, generating all possible decision trees which can be created using k
atomic link specifications is exponential in complexity.

Dragon: Decision Tree Learning for Link Discovery 447

Learning with the Gini Index. We use the similarity values we determined in
the initialization in combination with the Gini Index as follows: We determine
which measure will be our splitting attribute by calculating the average Gini
Index of all measures still available as follows:

G(N , simij) =
|Nl|
|N | × G(Nl) +

|Nr|
|N | × G(Nr), (2)

where |N | is the number of pairs accepted by the node N of the decision tree.
In the first iteration, N contains the training data. Nl accepts the pairs with
similarity values below simij , Nr permits the pairs with values above or equal
to simij . For each mi we calculate the average Gini Index for all simij , with
j ∈ {1, · · · , n}, to determine the best split point for each measure.

The Gini Index is

G(N) = 1 −
((|N+|

|N |
)2

+
(|N −|

|N |
)2

)
, (3)

where |N+| is the number of positive examples and |N −| the number of negative
examples accepted by N . The splitting attribute will be the measure m with the
corresponding threshold θ = simij . Common decision tree algorithms will set
the threshold in the splitting attribute to be θ = (simij + simi(j−1))/2, whereas
we set it to the higher value (i.e. simij). In the evaluation section we will see
that this choice improves the quality of our decision tree considerably.

After finding the root node the training data is provided as seen in Algo-
rithm1, we stop when we either have reached the maximum tree height or mea-
sure with an average Gini Index below 1 can be found.

For example, imagine we were to use the example in Table 1 to learn a tree
using Gini Index. S′ × T ′ are the link pairs from the training data, therefore
the first step will be to determine the similarity value for these pairs using all
available measures on all attributes. We provided the cosine similarity on the
name attributes in Table 1(c). To test how well the cosine similarity performs
we have to find the ideal split point. We start with the lowest similarity value,
that is bigger than 0, which in our case is 0.707. |Nl| = 2, since only two links
have a similarity value below 0.707. |Nr| = 3 containing the remaining links.
To calculate the average Gini Index we need to determine the Gini Indices for
the left and right node. Both are 0 since the left node only contains negative
and the right only positive examples. Since our split attribute perfectly divides
the examples to the appropriate classes we have a pure leaf with the average
Gini Index of 0 and our tree induction is finished. Bear in mind that we choose
θ = 0.707 in our link specification in contrast to common decision tree algorithms
that would take θ = (0.707 + 0.0)/2 = 0.3535.

3.4 Pruning

Previous works (e.g., [24]) have shown that pruning decision trees can improve
their performance significantly. Given our approach to decision tree generation,

448 D. Obraczka and A.-C. N. Ngomo

Table 2. Characteristics of the used datasets.

Label #Attributes |S| × |T | |reference dataset|
Person1 11 250,000 500
Person2 11 240,000 400
Restaurants 5 72,433 112
DBLP-ACM 4 6,000,000 2,224
DBLP-Scholar 4 168,100,000 5,347
Amazon-GP 4 4,400,000 1,300
Abt-Buy 4 1,200,000 1,097
Drugs 1 1,090,000 1,047
Movies 2 1,090,000 1,047

we devised a Global F-measure pruning and implemented the error estimate
pruning used by [24] for the sake of comparison. Given a tree N with height h,
we start our pruning process by iterating over the nodes Ni at height h−2, with
i ∈ {1, . . . , n}, where n is the number of nodes at height h−2. We compute the F-
measure of N , after we pruned the left, right and both leaves of Ni respectively.
The tree with the best F-measure is kept, i.e. N will be overwritten by it. After
repeating this process for all nodes at height h − 2, we continue at height h − 3
and so on until we reach the root node and terminate.

If we were to prune the tree from Fig. 1, we would subsequently compute the F-
measure of the whole tree and after we removed the node jaccard(age, age) ≥ 0.8.

4 Evaluation

The aim of our evaluation was to evaluate the effectiveness (i.e., the F-measure)
and the efficiency (i.e., the runtime) achieved by Dragon. We were especially
interested in the performance of Dragon on real datasets. Hence, we evalu-
ated Dragonon the four real-world datasets from [14]. These datasets were
obtained by manually curating data harvested from the Web and determining
links between these datasets manually. In addition, we aimed to compute the
performance of Dragon on synthetic datasets. We selected three datasets from
OAEI 2010 benchmark2 and the two datasets Drugs and Movies, used in [19].
Table 2 presents some details pertaining to these datasets. We ran two series
of experiments. In the first series on experiments, we tested whether our app-
roach to setting thresholds in decision trees is superior to that followed by other
decision-tree learning approaches. To this end, we compared different ways of
setting thresholds in our algorithm. We also used this experiment to determine
the default settings for subsequent experiments. In our second series of exper-
iments, we compared Dragon with state-of-the-art link discovery algorithms.

2 http://oaei.ontologymatching.org/2010/im/.

http://oaei.ontologymatching.org/2010/im/

Dragon: Decision Tree Learning for Link Discovery 449

In all experiments we used a ten-fold cross validation setting were the training
folds consist of 50% positive and 50% negative examples. We present the average
results achieved by all algorithms over the ten runs of the crossvalidation set-
ting. To make a comparison between algorithms over all datasets easier we also
calculated the average rank of the approaches given the performance measure
(time or f-measure). To achieve this the approaches are ranked by their perfor-
mance per dataset, for ties the mean of the ranks are assigned, and the ranks
are averaged columnwise to get the final value. This average rank is added as
last row in the tables we present. All experiments were carried out on a 64-core
2.3GHz Server running Oracle Java 1.8.0_77 on Ubuntu 14.04.4 LTS, with each
experiment assigned 20 GB of RAM.

4.1 Parameter Discovery

To check whether our approach to discovering settings is better than that fol-
lowed by other decision-tree-based approaches, we ran our Gini approach com-
bined with the Global F-measure pruning (G) and the error estimate pruning
(E). We set λ between 0.05 and 0.8. Our results are displayed in Table 3. In
our experiments, λ = 0.4 achieves the best rank and is therefore an appropriate
setting for our algorithm. We hence selected this value as default.

Table 3. F-measure for 10-fold cross validation averaged over 10 results. UP indicates
choosing the upper value as split point while MP uses the middle between two similarity
values as split point in the node. The best, second- and third-best value in a row are
highlighted using colored cells of decreasing strength.

We then compared our approach to setting thresholds in split points with
that implemented by classical decision-tree-learning approaches such as J48 (see
two right-most columns of Table 3). Note that we used λ = 0.05 to test if a
higher threshold to calculate the initial similarity values improves the quality
of the constructed decision tree. While choosing the middle between similarity
values as split point seems to be beneficial on some datasets (e.g., Abtbuy), it
is clear that choosing the upper value bears better results overall. A comparison
of the difference in F-measure achieved by the settings λ = 0.05 (first column in

450 D. Obraczka and A.-C. N. Ngomo

Table 3) and λ = 0.4 (third column in Table 3) further reveals that preventing
a decision tree from learning measures with a low threshold value can improve
the quality up to 43% (Amazon-GP).

4.2 Comparison with Other Approaches

Our choice of state-of-the-art link discovery algorithm to compare with
Dragon was governed by the need to provide a fair evaluation. Firstly, the
algorithms we were to test against needed to learn link specifications explicitly,
since our approach tackles the task of declarative link discovery. Secondly, we
needed approaches able to perform supervised learning, since our approach would
have an unfair advantage over unsupervised classifiers. We hence chose Wombat
since it fits these requirements and to perform as well as [13] w.r.t. the F-measure
it achieves. In addition, Wombat was shown to be robust w.r.t. the number
of examples used for learning. We also ran our experiments with Eagle [19]
and Euclid [20]. We selected Eagle [19] because it was shown to outperform
MARLIN [2] and FEBRL [4] significantly in terms of runtime, while achieving
comparable F-measure [19]. Euclid’s major advantage over Eagle is the fact
that it is deterministic and reaches similar F-measure to Eagle. In our evalua-
tion we use the supervised linear version of Euclid. All the chosen approaches
and especially Dragon are contained in the open-source LIMES link discovery
framework and are free to use. We decided not to compare Dragon with clas-
sifiers from e.g. SILK [28], since LIMES has been shown [18] to be significantly
faster than SILK and therefore runtime comparisons would not be fair. We also
compare our approaches with J48, an often used implementation of the C4.5
algorithm [10].

To test our hypothesis that common decision tree approaches choose thresh-
old values that are too low, we also implemented J48opt. In this approach, we
took the decision tree we get from J48, parsed it into a LS, raised all its thresholds
by δ and calculated the F-measure it achieved. We repeated this process until
all thresholds equal 1. We took the LS with the threshold setting that resulted
in the highest F-measure. In our experiments, we set δ to 0.05. For Dragon, we
tested Global F-measure (in the following referred to as DragonGL) and Gini
Index (DragonGI), as well as the two pruning algorithms Global F-measure
pruning and error estimate pruning. We will also indicate the pruning method
in subscript as well. Hence, DragonGL·E is a configuration of Dragon which
was achieved by the use of Global F-measure for finding split attributes and error
estimate pruning. In contrast, DragonGL·G is Dragon with global F-measure
and global F-measure pruning. We set the maximum tree height to 3. For the
Gini configurations, we set λ to 0.4. For the global F-measure configurations, we
set λ to 0.6. We discovered that each approach performs best with these param-
eters through empirical tests. The termination criteria for Wombat was either
finding a link specification with F-measure of 1 or a refinement depth of 10.
The coverage threshold was set to 0.6 and the similarity measures used were

Dragon: Decision Tree Learning for Link Discovery 451

Table 4. Averaged results for 10-fold cross validation. We highlight the best, second-
and third-best value in a row using colored cells of decreasing strength.

the same as in Dragon: jaccard, trigrams, cosine and qgrams. Eagle was con-
figured to run 100 generations. The mutation and crossover rates were set to 0.6
as in [19]. Euclid was set to the default parameters. For J48, we discovered,
that using reduced error pruning with 5 folds delivered the best results overall.
Otherwise we used the default parameters found in the Weka framework [10].

To determine the significant differences between classifier performances usu-
ally a pair-wise Wilcoxon signed-ranks test is performed. However, this would
lead to a multiple testing problem in our case, since we compare more than
two classifiers. We therefore follow the recommendations given in [7] to use
a Friedman test to determine if the average ranks of the algorithms are sig-
nificantly different and, if this is true, perform a Nemenyi test to compare
all classifiers. In Table 4 the results are presented. Concerning F-measure we
have significant differences between the algorithms (Friedman p-value = 0.009).

452 D. Obraczka and A.-C. N. Ngomo

We can see that Wombat and DragonGI·G produce the best results regard-
ing F-measure and there is no significant difference in performance (Nemenyi
p-value = 0.999). Wombat achieves a higher F-measure than DragonGI·G
on four datasets (Movies, Person1, DBLP-ACM, AMAZON-GP) and is tied
with Dragon on the Drugs dataset. Dragon outperforms Wombat on the
remaining four datasets. The only significant difference in F-measure is between
Wombat and j48 (Nemenyi p-value = 0.007) and between Dragon and j48
(Nemenyi p-value = 0.023). We can also see that J48opt performs better than
J48, albeit not significantly better (Nemenyi p-value = 0.326).

In Table 4b, we present the average runtimes of the approaches. We can deter-
mine, that there is a significant difference in runtime-efficiency between the algo-
rithms (Friedman p-value = 1.127×10−8). It is evident, that Dragon(specifically
DragonGI) and J48 are the fastest approaches. We determined no significant
difference between them (Nemenyi p-value = 0.999). The DragonGI configura-
tions of our approach are on average 18 times faster than Wombat3 , while
DragonGL is roughly as efficient as Wombat. The performance advantage of
DragonGI is due to the fact that, after calculating the initial similarity values
of the entity pairs, it does not need the costly calculations of mappings.4 Overall,
our results suggest that Dragon performs as well as the state of the art w.r.t.
the quality of the LSs it generates, but clearly outperforms the state of the art
w.r.t. its runtime5, making it more conducive to practical application.

4.3 Efficiency of Pruning

Since pruning is an important factor in decision tree learning, we recorded the
effect pruning had in the second experiment. The results are displayed in Fig. 2.

First note that the configuration DragonGL·GL was omitted in the fig-
ures since the unpruned and pruned trees were identical. This is not surprising
because the measure for building the tree is the same as for pruning it. There-
fore, any leaves that would be pruned simply do not appear in the tree in the
first place. For the other configurations, we can observe, that pruning has on
average a positive impact on F-measure. The exceptions are datasets for which
LS of the size 1 are learned in the first place (such as Movies and Person2 for
DragonGI) and Amazon-GP, where pruning has a negative effect.

3 This difference is significant with a p-value =0.0297 for the Nemenyi test.
4 Note that in DragonGL these costs are linear for each mapping computation, since

we only need to use set-operations on the mappings from the initial atomic specifi-
cations.

5 DragonGI is also significantly faster than Euclid (Nemenyi p-value = 0.0001) and
Eagle (Nemenyi p-value = 0.0297).

Dragon: Decision Tree Learning for Link Discovery 453

● ● ●
●

●

●

●

●

●

−40

−20

0

20

40

60

M
ov

ie
s

Pe
rs
on

1

Pe
rs
on

2

D
ru
gs

R
es

ta
ur
an

ts

D
BL

P−
AC

M

Ab
tb
uy

D
BL

P−
G
S

Am
az

on
−G

P

● GI ⋅G
GI ⋅E
GL ⋅E

(a) F-measure

● ● ●

●

●

●

●

●

●

0

50

100

M
ov

ie
s

Pe
rs
on

1

Pe
rs
on

2

D
ru
gs

R
es

ta
ur
an

ts

D
BL

P−
AC

M

Ab
tb
uy

D
BL

P−
G
S

Am
az

on
−G

P

● GI ⋅G
GI ⋅E
GL ⋅E

(b) Precision

● ● ● ● ● ● ● ●

●

−40

−20

0

20

M
ov

ie
s

Pe
rs
on

1

Pe
rs
on

2

D
ru
gs

R
es

ta
ur
an

ts

D
BL

P−
AC

M

Ab
tb
uy

D
BL

P−
G
S

Am
az

on
−G

P

● GI ⋅G
GI ⋅E
GL ⋅E

(c) Recall

●

●

●

●

●

●

●

●

●

−100

−80

−60

−40

−20

0

M
ov

ie
s

Pe
rs
on

1

Pe
rs
on

2

D
ru
gs

R
es

ta
ur
an

ts

D
BL

P−
AC

M

Ab
tb
uy

D
BL

P−
G
S

Am
az

on
−G

P

● GI ⋅G
GI ⋅E
GL ⋅E

(d) Size

Fig. 2. Percentage change between unpruned and pruned trees in the averaged results
of the ten-fold crossvalidation

5 Related Work

A plethora of approaches for link discovery has been developed recently. We give
a brief overview of existing approaches and refer the reader to the corresponding
surveys and comparisons [6,15,26] for further details. A popular link discovery
framework is SILK [28], which uses multi-dimensional blocking to achieve lossless
link discovery. Another lossless framework is LIMES [17], which combines simi-
larity measures using a set-theoretical approach. An overview and a comparison
of further link discovery frameworks can be found in [15].

As we have seen in definition 2, link discovery is a binary classification prob-
lem and therefore can be tackled with classical machine learning approaches
such as support vector machines [2], artificial neural networks [16] and genetic
programming [11]. [26] give an overview of these approaches and compare them.
Most dedicated approaches to learning link specifications are supervised tech-

454 D. Obraczka and A.-C. N. Ngomo

niques implemented as batch learning or as active learning. For example, Eagle
[19], COALA [21] and GenLink [11] support both active and batch learning
within the genetic programming paradigm. Other approaches such as Euclid
[20] and KnoFuss [22] support unsupervised learning. Wombat [25] uses an
upward refinement operator to implement positive-only learning.

Record linkage is a closely related field of link discovery and there are several
approaches which use decision trees. Early works by [5] aimed at matching two
databases containing customer records. They used manually generated train-
ing data to train a CART [3] classifier and pruned it to reduce complexity and
make it more robust. [8] incorporated ID3 [23] into their record linkage tool-
box TAILOR. They implemented two approaches: In the first they manually
labeled record pairs and used the comparison vector to train a decision tree.
The second approach tried to overcome the manual labeling effort by applying a
clustering algorithm on their comparison vectors to get three clusters: matches,
non-matches, potential matches. Another notable approach is Active Atlas [27],
which combines active learning with the C4.5 [24] decision tree learning algo-
rithm.

Our approach extends these approaches in several ways. By learning an oper-
ator tree our approach is able to learn much more expressive models than linear
classifiers (e.g. [2]), since we can express conjunction and disjunction. Further-
more, we are more expressive than boolean classifiers such as [4,16], because
we can model negations. We additionally combine the generation of expressive
link specifications with a deterministic approach, providing more reliability than
comparable non-deterministic approaches [11,19,21,22]. Dragon differs further
by relying on a decision-tree-based learning paradigm, which allows it to not
have to recompute mappings, leading to a more time-efficient approach (see
evaluation section). It shares some similarity with the state of the art by virtue
of its iterative approach to addressing the generation of link specifications (see,
e.g., [25]).

6 Conclusion and Future Work

In this work, we presented Dragon, a decision tree learning approach for link
discovery. We evaluated our approach on nine benchmark datasets against three
state-of-the-art approaches Wombat, Euclid and Eagle. Our approach deliv-
ers state-of-the-art performance w.r.t. the F-measure it achieves while on aver-
age being more than 18 times faster than the state of the art. We investigated
why our approach outperforms other decision tree approaches by optimizing the
choice of thresholds in similarity measures. Interestingly, our Global F-measure
approach is biased towards precision while using Gini leads to a bias towards
recall. In future work, we will investigate how we can use these biases for ensem-
ble learning. We will also look into the possibility to perform active learning
with Dragon, in particular with the use of incremental decision trees.

Acknowledgements. This work has been supported by the BMVI projects LIMBO
(project no. 19F2029C) and OPAL (project no. 19F2028A).

Dragon: Decision Tree Learning for Link Discovery 455

References

1. Bayardo, R.J., Ma, Y., Srikant, R.: Scaling up all pairs similarity search. In: 16th
International Conference on World Wide Web. WWW 2007, pp. 131–140. ACM,
New York (2007). https://doi.org/10.1145/1242572.1242591

2. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string sim-
ilarity measures. In: International Conference on Knowledge Discovery and Data
Mining. KDD 2003, pp. 39–48. ACM, New York (2003). https://doi.org/10.1145/
956750.956759

3. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Chapman & Hall, New York (1984)

4. Christen, P.: Febrl: an open source data cleaning, deduplication and record linkage
system with a graphical user interface. In: International Conference on Knowledge
Discovery and Data Mining. KDD 2008, pp. 1065–1068. ACM, New York (2008).
https://doi.org/10.1145/1401890.1402020

5. Cochinwala, M., Kurien, V., Lalk, G., Shasha, D.E.: Efficient data reconciliation.
Inf. Sci. 137(1–4), 1–15 (2001). https://doi.org/10.1016/S0020-0255(00)00070-0

6. Daskalaki, E., Flouris, G., Fundulaki, I., Saveta, T.: Instance matching benchmarks
in the era of linked data. J. Web Sem. 39, 1–14 (2016). https://doi.org/10.1016/j.
websem.2016.06.002

7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006). http://www.jmlr.org/papers/v7/demsar06a.html

8. Elfeky, M.G., Elmagarmid, A.K., Verykios, V.S.: Tailor: a record linkage tool
box. In: International Conference on Data Engineering, pp. 17–28 (2002). http://
ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=994694

9. Ermilov, I., Lehmann, J., Martin, M., Auer, S.: LODStats: the data web cen-
sus dataset. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 38–46.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_5

10. Holmes, G., Donkin, A., Witten, I.: Weka: a machine learning workbench. In: Pro-
ceedings of the Second Australia and New Zealand Conference on Intelligent Infor-
mation Systems, pp. 357–361. Brisbane, Australia (1994). http://www.cs.waikato.
ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf

11. Isele, R., Bizer, C.: Learning expressive linkage rules using genetic programming.
Proc. VLDB Endow. 5(11), 1638–1649 (2012). https://doi.org/10.14778/2350229.
2350276

12. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link
discovery without losing recall. In: 14th International Workshop on the Web
and Databases (2011). http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/
IseleJentzschBizer-WebDB2011.pdf

13. Kejriwal, M., Miranker, D.P.: Semi-supervised instance matching using boosted
classifiers. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux,
P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 388–402. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-18818-8_24

14. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. Proc. VLDB Endow. 3(1), 484–493 (2010). https://
doi.org/10.14778/1920841.1920904

15. Nentwig, M., Hartung, M., Ngomo, A.N., Rahm, E.: A survey of current link dis-
covery frameworks. Semant. Web 8(3), 419–436 (2017). https://doi.org/10.3233/
SW-150210

https://doi.org/10.1145/1242572.1242591
https://doi.org/10.1145/956750.956759
https://doi.org/10.1145/956750.956759
https://doi.org/10.1145/1401890.1402020
https://doi.org/10.1016/S0020-0255(00)00070-0
https://doi.org/10.1016/j.websem.2016.06.002
https://doi.org/10.1016/j.websem.2016.06.002
http://www.jmlr.org/papers/v7/demsar06a.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=994694
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=994694
https://doi.org/10.1007/978-3-319-46547-0_5
http://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf
http://www.cs.waikato.ac.nz/~ml/publications/1994/Holmes-ANZIIS-WEKA.pdf
https://doi.org/10.14778/2350229.2350276
https://doi.org/10.14778/2350229.2350276
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/IseleJentzschBizer-WebDB2011.pdf
http://wifo5-03.informatik.uni-mannheim.de/bizer/pub/IseleJentzschBizer-WebDB2011.pdf
https://doi.org/10.1007/978-3-319-18818-8_24
https://doi.org/10.14778/1920841.1920904
https://doi.org/10.14778/1920841.1920904
https://doi.org/10.3233/SW-150210
https://doi.org/10.3233/SW-150210

456 D. Obraczka and A.-C. N. Ngomo

16. Ngomo, A.N., Lehmann, J., Auer, S., Höffner, K.: RAVEN - active learning of link
specifications. In: Ontology Matching Workshop, pp. 25–36 (2011). http://ceur-
ws.org/Vol-814/om2011_Tpaper3.pdf

17. Ngonga Ngomo, A.C.: On link discovery using a hybrid approach. J. Data Semant.
1, 203–217 (2012). https://doi.org/10.1007/s13740-012-0012-y

18. Ngonga Ngomo, A.C., Auer, S.: Limes: a time-efficient approach for large-scale link
discovery on the web of data. In: ICJAI. IJCAI 2011, pp. 2312–2317. AAAI Press
(2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385

19. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: efficient active learning of link specifica-
tions using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho,
O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-30284-8_17

20. Ngonga Ngomo, A.C., Lyko, K.: Unsupervised learning of link specifications: deter-
ministic vs. non-deterministic. In: Ontology Matching Workshop, pp. 25–36 (2013).
http://ceur-ws.org/Vol-1111/om2013_Tpaper3.pdf

21. Ngomo, A.-C.N., Lyko, K., Christen, V.: COALA – correlation-aware active learn-
ing of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L.,
Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38288-8_30

22. Nikolov, A., d’Aquin, M., Motta, E.: Unsupervised learning of link discovery con-
figuration. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 119–133. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30284-8_15

23. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986).
https://doi.org/10.1023/A:1022643204877

24. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

25. Sherif, M.A., Ngonga Ngomo, A.C., Lehmann, J.: Wombat – a generalization
approach for automatic link discovery. In: Blomqvist, E., Maynard, D., Gangemi,
A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp.
103–119. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_7

26. Soru, T., Ngonga Ngomo, A.C.: A comparison of supervised learning classifiers for
link discovery. In: 10th International Conference on Semantic Systems, pp. 41–44.
ACM (2014). https://doi.org/10.1145/2660517.2660532

27. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules
for information integration. Inf. Syst. 26 (2001). https://doi.org/10.1016/S0306-
4379(01)00042-4

28. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk - A link discovery framework
for the web of data. In: Workshop on Linked Data on the Web, LDOW (2009).
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf

29. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins
with edit distance constraints. Proc. VLDB Endow. 1(1), 933–944 (2008). https://
doi.org/10.14778/1453856.1453957

30. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for
near-duplicate detection. ACM Trans. Database Syst. 36(3), 15 (2011). https://
doi.org/10.1145/2000824.2000825

http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf
http://ceur-ws.org/Vol-814/om2011_Tpaper3.pdf
https://doi.org/10.1007/s13740-012-0012-y
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-385
https://doi.org/10.1007/978-3-642-30284-8_17
http://ceur-ws.org/Vol-1111/om2013_Tpaper3.pdf
https://doi.org/10.1007/978-3-642-38288-8_30
https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1007/978-3-642-30284-8_15
https://doi.org/10.1023/A:1022643204877
https://doi.org/10.1007/978-3-319-58068-5_7
https://doi.org/10.1145/2660517.2660532
https://doi.org/10.1016/S0306-4379(01)00042-4
https://doi.org/10.1016/S0306-4379(01)00042-4
http://ceur-ws.org/Vol-538/ldow2009_paper13.pdf
https://doi.org/10.14778/1453856.1453957
https://doi.org/10.14778/1453856.1453957
https://doi.org/10.1145/2000824.2000825
https://doi.org/10.1145/2000824.2000825

	Dragon: Decision Tree Learning for Link Discovery
	1 Introduction
	2 Preliminaries
	3 The Dragon Algorithm
	3.1 Overview
	3.2 Initialization
	3.3 Determining Split Attributes
	3.4 Pruning

	4 Evaluation
	4.1 Parameter Discovery
	4.2 Comparison with Other Approaches
	4.3 Efficiency of Pruning

	5 Related Work
	6 Conclusion and Future Work
	References

