
An Automatic Data Service Generation
Approach for Cross-origin Datasets

Yuanming Zhang(&), Langyou Huang, Jiawei Lu, and Gang Xiao

Zhejiang University of Technology, Hangzhou, China
{zym,2111612010,viivan,xg}@zjut.edu.cn

Abstract. As a unified data access model, data service has become a promising
technique to integrate and share heterogeneous datasets. In order to publish
overwhelming data on the web, it is a key to automatically extract and encap-
sulate data services from various datasets in cloud environment. In this paper, a
novel data service generation approach for cross-origin datasets is proposed. An
attribute dependency graph (ADG) is constructed by using inherent data
dependency. Based on the ADG, an automatic data service extraction algorithm
is implemented. The extracted atomic data services are further organized into
another representation named data service dependency graph (DSDG). Then, a
data service encapsulation framework, which includes an entity layer, a data
access object layer and a service layer, is designed. Via a flexible RESTful
service template, this framework can automatically encapsulate the extracted
data services into the RESTful services which can be accessed by the exposed
interfaces. In addition, a data service generation system has been developed.
Experimental results show that the system has high efficiency and good quality
for data service generation.

Keywords: Data service � Service extraction � Service encapsulation �
Service dependency graph � Cross-origin datasets

1 Introduction

Large numbers of datasets are increasingly being published by organizations, such as
national data1, which allow the public to access on the web. Generally, data from
different organizations tends to be in different formats and organized differently. To
enable better utilization of existing data resources and to reduce duplication of data
collection, it is necessary to integrate data from distributed and autonomous datasets
while maintaining data integrity and consistency. Then, a unified data access interface
for upper-layer applications is required.

The data integration methods based on database federation have good scalability
but low query efficiency. Data reproduction methods have a short processing time when
the datasets are widely distributed and the network delay is large, but at a high cost,

1 http://data.stats.gov.cn.

© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 374–390, 2019.
https://doi.org/10.1007/978-3-030-19274-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_27&domain=pdf
http://data.stats.gov.cn
https://doi.org/10.1007/978-3-030-19274-7_27

such as data warehouse [8]. Furthermore, the overwhelming data in big data era [6]
become too large and complex to be effectively processed by these traditional
approaches.

With the rapid development of service computing, the content and scope of services
are expanded dramatically. Not only are various functions of software encapsulated
into the services, named web service (WS) [1], but diverse data produced from software
are also encapsulated into services, called data service (DS) [5]. Data service, deployed
on the web, shields heterogeneous datasets through a set of access interfaces and
provides a unified model for cross-origin data access, data sharing and data analysis.
The service-based integration approach is based on XML and HTTP, which is widely
adopted by the industry as standard protocols, and can overcome the defects of
traditional data integration. Many companies offer the data service interfaces that are
exposed to get easier data access, such as the Google, Twitter and Facebook APIs.
However, these conventional data service interfaces fail to support responsive and
comprehensive data retrieval [18].

It would be beneficial for the service-based integration to automatically generate the
data services and satisfy complex data requirements. Several key issues should be
handled. First, automatic data service extraction is the initial step. The current existing
data services are designed to answer the specific data requirements, which is grounded
on the underlying database schema and pre-assembled index [7]. The service granu-
larity should also be considered to improve the reusability and flexibility for decoupling
the data services from the clients, and data services can be further composed. Second,
automatic data service encapsulation is necessary. There is no standard mechanism to
achieve implementation details of data services. The existing approach [17] requires
developers to manually implement data services, which is labor-intensive and repetitive
and may results in inconsistent style and non-standard service internal implementation.
Furthermore, with the enormous explosion of datasets, it is practically impossible to
manually encapsulate a large number of data services. Third, an appropriate data
service modeling technique is required. Some work [10] has been done to integrate
multiple datasets by using data formal semantics and ontology-based concepts based on
data service. The inherent data dependencies can be mapped onto the dependencies
among services, and the data services are further organized into a service dependency
graph for automatic service composition.

In this paper, we present an automatic data service generation approach. Our main
contributions include:

1. We propose an automatic data service extraction approach and organize the data
services into a dependency graph according to their inherent dependencies.

2. We design a data service encapsulation framework that can automatically generate
RESTful services with a flexible template.

3. We develop a system which has functions of data service extraction, encapsulation
and management. This system has high efficiency and good quality with the actual
datasets.

The remainder of this paper is structured as follows. Section 2 reviews the related
work on data services. Section 3 introduces an atomic data service extraction approach.

An Automatic Data Service Generation Approach for Cross-origin Datasets 375

Section 4 presents the data service encapsulation framework. Section 5 describes the
data service generation system, then evaluates key algorithms and generated data
services in detail. Finally, Sect. 6 concludes the paper.

2 Related Work

In 2008, the BEA proposed encapsulating the data into the data service [4], which is
similar to the general web service. The data service can be accessed by the interface and
output a desired dataset, is one of the hot spots in the current service computing field.

The data service can not only directly access the data source but can also integrate
into the SOA through a standard interface [3], which makes up shortcomings of tra-
ditional SOA in the data access and provides a new effective approach to integrate
multiple datasets on the web [12]. Data services can be extracted from heterogeneous
data for easy data management and rapid data manage and sharing in the enterprise
systems [17]. The data service also offers an important way to implement the delivery
and usage model for various Cloud-based resources and abilities. Wang [16] discusses
the issue of streaming data integration and services based on Cloud computing, then
summarizes the challenges and future trends. Zhang [19] proposes a method for
encapsulating stream sensor data which processes sensor stream data with service
modeling operations and distributes data on-demand based on Pub/Sub mechanism.

Besides limitation for the data sharing, traditional approaches in data technologies
do not achieve to fully separate software services from data and thus impose limitations
in inter-operability. Terzo [14] takes advantage of data service to proposes an approach
for sharing and processing of large data collections which abstracts the data location to
fully decouple the data and its processing. Liu [10] provides uniform semantic for
heterogeneous datasets that different data source database schema mapping a unified
global ontology, and then composites data services through the model mapping for
solving the interoperability of heterogeneous data. Hong [9] shows a cloud data service
architecture for sharing and exchanging multiple data between the server and client in a
distributed system which adopts three levels of data security to protect sensitive data.
Existing data service platforms, like AquaLogic [2], support data service modeling and
help developers to do data queries, which require the users to have certain expertise and
relevant rules before they can operate the data services. To make better use of the data
service, Vu [15] proposes a description model for data service (DEMODS) which covers
all the basic service information for automatic service lookup. Zorrilla [21] describes a
data mining service addressed to non-expert data miners which can be delivered as SaaS.
Zhang [18] designs a data service API for data analysts to retrieve data that the REST
properties and its related hypermedia-driven features are used to generate resource APIs
and navigate each other automatically based on analytical needs.

The general trend has been toward low-code and no-code tools that do not require
specialized knowledge for data service generation. However, some approaches fall
short of the automaticity and increase the learning cost for those who lack of devel-
opment experience [17]. Moreover, the data service APIs generation driven by user’s
specific requirements tends to produce tight coupling, which will impact the reusability
and scalability of data service [18]. In order to automatically obtain data service from

376 Y. Zhang et al.

cross-origin datasets, we present a feasible data service generation approach with the
aim of supporting multiple application systems for data sharing. Our approach does not
require data providers to do additional programming work, and allow data end-users to
directly access the data services without any additional constraints.

3 Atomic Data Service Extraction

3.1 Attribute Dependency Graph

Most datasets include a small section known as metadata that contains the contents for
understanding the data and its profiling information. The data owner, who wants to
publish data services, needs to provide the necessary data connection information. With
existing data connectivity APIs, we can obtain the tables, attributes and dependencies
from the metadata, which are the basis for data service extraction. For example, Java
DatabaseMetaData interfaces2 provide methods to get metadata of the databases.

Table 1 gives the metadata of two actual datasets which are extracted from an
elevator design dataset and an elevator maintenance dataset, and shows their tables and
corresponding attributes. Generally, an attribute is the abstract characteristic description
of an object, and data are the specific values of an attribute. The data dependencies are
the inherent constraint among the attributes.

Definition 1 (Functional dependency). Given a relation R, there exists a functional
dependency between two set of attributes X and Y, if, and only if, the X value precisely
determines the Y value. It is represented as X ! Y.

Table 1. Datasets extracted from two elevator enterprises

Dataset Table name Attributes

Design dataset elevator_info a; b; c; d;
client_info e; f; g; h;
order_info i; aʹ; eʹ; j;

Maintenance dataset elevator_info k; l; m; n;
record_info o; p; q; r;
component_info kʹ; oʹ; s; t.

(1) a: Elevator no b: Elevator model c: Elevator specifications d: Elevator interior
(2) e: Client no f: Client name g: Client address h: Client contact
(3) i: Registration no aʹ: Elevator no eʹ: Client no j: Elevator price
(4) k: Registration no l: Floor number m: Building name n: Elevator address
(5) o: Maintenance id p: Elevator fault q: Repair time r: Maintenance time
(6) kʹ: Registration no oʹ: Maintenance id s: Maintenance parts t: Maintenance price

2 docs.oracle.com/javase/9/docs/api/java/sql/DatabaseMetaData.html.

An Automatic Data Service Generation Approach for Cross-origin Datasets 377

http://docs.oracle.com/javase/9/docs/api/java/sql/DatabaseMetaData.html

According to the definition of functional dependency, we can derive the full
dependency, partial dependency and inter dependency.

Inference 1: In a relation, there exists a Full Dependency between two set of attri-
butes X and Y, when Y is dependent on X and is not dependent on any proper subset of

X. It is represented as X !f Y. Otherwise, it is a Partial Dependency between X and Y,

represented as X !p Y.

Inference 2: In a relation, there exists an Inter Dependency between two set of attri-
butes X and Y, when X and Y are dependent one another. It is represented as X $ Y.

Definition 2 (Join dependency). A set of attributes X is the common attributes of
relation R1(U1) and relation R2(U2). If X ! U2, then U2 is join dependent on X.

We consider the join dependency as a special functional dependency. Then, the
functional dependency defines all the inner and outer data dependencies between
relations. A dependency graph can be established through functional dependency
among attributes, called attribute dependency graph.

Definition 3 (Attribute dependency graph, ADG). The attribute dependency graph
is an extended directed graph that describes the dependencies among attributes. It can
be defined as a tuple.

ADG = (U, E), where U = {a1, a2, …, an}, in which ai is an attribute; E = {e1,
e2, …, em}, in which ei = X ! aj represents the aj is dependent on the X (X � U).

Figure 1 shows the ADG constructed according to the functional dependency of
attributes in Table 1. Each node of the graph represents an attribute, and each arrow of
the graph represents a dependency between two nodes. For example, the attributes b, c,
and d are dependent on the attribute a. The attribute a is inter-dependent on the attribute
a′ and the attributes o′ and k′ are partial dependent on the attribute t. The attributes
i and k represent the elevator registration number. The semantic equivalence of the two
attributes i and k provide a bridge for data integration and data sharing.

e'

f

g

b

c

d

j

ih

p

q

r

o' k'

s

t

l

m

n

a'

o

e a

k

full dependency

inter dependency

partial dependency

Fig. 1. Attribute dependency graph.

378 Y. Zhang et al.

3.2 Atomic Data Service Extraction Algorithm

The data services are extracted from the ADG by encapsulating a set of attributes. The
service granularity directly affects the reusability, flexibility and efficiency. If the
encapsulated attributes cannot be further subdivided, the corresponding data service is
an atomic data service (ADS). We give the formal definition as follows.

Definition 4 (Atomic data service, ADS). A semantically non-dividable data service
is called an atomic data service. Formally, it is a tuple.

ADS = (ID, Name, Fields, Description, Inputs, Outputs, Operations, Publisher),
where ID represents the identification of the ADS; Name represents the name of the
ADS; Fields represent the encapsulated attributes of the ADS; Description represents
the semantic information of the ADS; Inputs show the multiple input parameters of the
ADS; Outputs show the execution result of the ADS; Operations give the possible
operations to the ADS; Publisher shows the source of the ADS.

The atomic data service extraction algorithm is shown in Algorithm 1. The input is
the metadata of dataset, and the output is the set of ADSs. The attribute set (U = {a1,
a2, …, an}) and dependency set (E = {e1, e2, …, em}) are obtained from the metadata.
Based on the ADG, the algorithm selects each dependency (ei = X ! aj, X � U) in
turn and extracts the ADSs with the following rules: (1) Each attribute in X will be
extracted as an ADS, whose input and output are the specified attribute; (2) All the
attributes in X and the attribute aj will be extracted as an ADS, whose input is one
attribute of X or the attribute aj, and outputs are all the attributes in X and aj.

Algorithm 1. Data service extraction algorithm
Input: Metadata of dataset
Output: ADSs

1: U: The attribute set {a1, a2, …, an}, ai is an attribute
2: E: The dependency set {e1, e2, …, em}, ei = X → aj (X ⊆ U)
3: for Each table in Metadata do
4: Add the attributes of table into U
5: Add the dependencies into E
6: X← the primary key of table
7: for Each attribute in X do
8: ADS1 ← attribute
9: Add ADS1 into ADSs

10: end for
11: end for
12: for Each e in E do
13: ADS2 ← e.X + e.a
14: Add ADS2 into ADSs
15: end for
16: return ADSs

An Automatic Data Service Generation Approach for Cross-origin Datasets 379

Table 2 lists the ADSs extracted from the ADG of Fig. 1. For example, given the
dependency {k′, o′} ! s, the attribute k′ and o′ are extracted as two ADSs individ-
ually, i.e. the ADS21 and ADS22. In addition, the attributes {k′, o′, s} are extracted as
one ADS, whose input can be any attribute of {k′, o′, s} and outputs are the attributes
of {k′, o′, s}, i.e. the ADS23. According to the above extraction rules, the total extracted
ADS number is equal to the total attribute number. The ADS9 and ADS13 encapsulate
the attribute i and k respectively which express the same semantics and mainly used for
connection. The ADS2 encapsulates the attributes a and b, and used to query the
elevator number or the elevator model.

Table 2. Atomic data services extracted from the attribute dependency graph.

ID Name Fields Description Input Output Operation Publisher

01 ADS1 {a} Query elevator
no

Elevator no Elevator no Get Design
Depart.

02 ADS2 {a, b} Query elevator
no, elevator
model

Elevator no
or elevator
model

Elevator no
and elevator
model

Get Design
Depart.

03 ADS3 {a, c} Query elevator
no, elevator
specifications

Elevator no
or elevator
specifications

Elevator no
and elevator
specifications

Get Design
Depart.

… … … … … … … …

09 ADS9 {i} Query
registration no

Registration
no

Registration
no

Get Design
Depart.

… … … … … … … …

13 ADS13 {k} Query
registration no

Registration
no

Registration
no

Get Maintenance
Depart.

… … … … … … … …

21 ADS21 {kʹ} Query
registration no

Registration
no

Registration
no

Get Maintenance
Depart.

22 ADS22 {oʹ} Query
maintenance
id

Maintenance
id

Maintenance
id

Get Maintenance
Depart.

23 ADS23 {kʹ,
oʹ, s}

Query
registration
no,
maintenance
id,
maintenance
parts

Registration
no,
maintenance
id or
maintenance
parts

Registration
no,
maintenance
id and
maintenance
parts

Get Maintenance
Depart.

24 ADS24 {kʹ,
oʹ, t}

Query
registration
no,
maintenance
id,
maintenance
price

Registration
no,
maintenance
id or
maintenance
price

Registration
no,
maintenance
id and
maintenance
price

Get Maintenance
Depart.

380 Y. Zhang et al.

Since the ADSs are obtained by encapsulating attributes, the inherent data
dependencies among attributes can be directly mapped onto the dependencies among
data services. We define the data service dependency graph as follows.

Definition 5 (Data service dependency graph, DSDG). The data service dependency
graph is an extended directed graph that describes the dependencies between atomic
data services. It can be defined as a tuple.

DSDG = (DS, E), where DS = {ADS1, ADS2,…, ADSn}, in which ADSi is an atomic
data service; E = {e1, e2, …, em}, in which ei = A ! ADSj represents that ADSj is
dependent on the A (A � DS).

The DSDG of the data services in Table 2 is given in Fig. 2. In essence, the DSDG
shows the logical structure of the ADSs and provides a foundation for further data
service composition. Based on the service dependency graph, data services can be
composed into composite data services to satisfy users’ complex data requirements in
the future.

4 Data Service Encapsulation

4.1 Data Service Encapsulation Framework

We encapsulate the extracted ADSs into RESTful services, which is based on the
representational state transfer (REST) technology. This kind of service defines a set of
constraints and properties, and uses HTTP requests to GET, PUT, POST and DELETE
resources [13].

We take advantage of the Spring Boot3 framework to build the RESTful services.
Figure 3 shows the data service encapsulation framework. It includes three layers. The
entity layer is a mapping of the dataset. An entity object provides a representation of
data from a table or other types of data sources. The data access object (DAO) layer
provides specific data access operations to the dataset or other persistence mechanism.

ADS7

ADS8

ADS5 ADS1 ADS3

ADS12ADS6

ADS9

ADS2

ADS4

ADS19

ADS20

ADS17 ADS13 ADS15

ADS23ADS18

ADS24

ADS14

ADS16

ADS11

ADS21

ADS10

ADS22

Fig. 2. Data service dependency graph.

3 http://spring.io/projects/spring-boot/.

An Automatic Data Service Generation Approach for Cross-origin Datasets 381

http://spring.io/projects/spring-boot/

The service layer defines the RESTful services that uses the GET operation to retrieve
the resource, PUT operation to change or update the resource, the POST operation to
create the resource, and the DELETE operation to remove the resource.

Based on this framework, we design a reusable template that contains the desired
code, placeholders like ${variableName}, and logics like conditionals, loops, etc.
Table 3 shows the necessary template files for data service encapsulation.

The entity template contains the entity object template file. Its fields are all attributes
of tables or other data sources, and its methods are the field access methods, such as GET
and SET methods. The data type of attributes is unified into String.

The DAO template contains data access interface and implementation details. This
template provides abstract interfaces of data operations and the implementation of the
interfaces.

The service template contains data service interface and implementation details.
The data service interface defines the name, inputs, outputs, operations and URI of the
RESTful services. We create RESTful services with CXF4 that implements the
JAX-RS specification and can be easily integrated with the Spring framework.

Figure 4 shows the data service encapsulation procedure. We first extract the meta-
data according to the requirements of data service template and generate the data-model

Entity

DAO Spring

Service

MySql Oracle Other

RESTful Services

Fig. 3. Data service encapsulation framework.

Table 3. Template files for data service encapsulation.

ID Template name Function

1 Entity template Entity object
2 DAO template Data access interface and implementation
3 Service template Data service interface and implementation

4 http://cxf.apache.org/.

382 Y. Zhang et al.

http://cxf.apache.org/

that represents the totality of data for template. Then, we utilize a mature template engine,
named FreeMarker5, to parse the data service template files. The engine takes the data-
model and data service template files as inputs, then generates the source code of RESTful
services by inserting desired code in the template files according to the data-model.

4.2 Data Service Encapsulation Algorithm

The data service encapsulation algorithm is given in Algorithm 2. The input is the
metadata of dataset and data service template files, and the output is the source code of
RESTful services. The metadata contains all the profiling information of the dataset,
such as the tables and the attributes. The table is packed into the data-model of entity
template. Combined with the dependencies among attributes, the data-model of DAO
template is obtained. According the extracted ADSs, the data-model of service template
is organized. Then FreeMarker supplies the data-model for template files in turn and
generates the source code of RESTful services. Finally, the source code is compiled to
complete the encapsulation.

Taking ADS2 as an example. This data service has twomethods of the GET operation.
One is the getElevatorInfoElevatorModel. Its input is the elevator no, and its outputs are
the list of elevator no and elevator model. The other is the getElevatorInfoByEleva-
torModel. Its input is the elevator model, and its outputs are the list of elevator no and
elevator model. The interface source code of the ADS2 is shown as follow.

Metadata Template files
Entity template
DAO template

Service templateDataset

Data Service
Encapsulation

Engine
public class ${table.name}table.name="Elevator_info"

public class Elevator_infoSource Code of
RESTful Services

Fig. 4. Data service encapsulation procedure.

5 https://freemarker.apache.org/.

An Automatic Data Service Generation Approach for Cross-origin Datasets 383

https://freemarker.apache.org/

Algorithm 2. Data service encapsulation algorithm
Input: Metadata of dataset, data service template files
Output: Source code of the RESTful services

1: Objects: Entity objects from Metadata
2: Entity template: entity object template file
3: DAO template: data access interface and implementation template files
4: Service template: data service interface and implementation template files
5: for Each object in Objects do
6: Get all attributes and the dependencies among attributes of object
7: entity_data ← get the data-model of Entity template
8: Source code ← Entity template + entity_data
9: dao_data ← get the data-model of DAO template

10: Source code ← DAO template + dao_data
11: service_data ← get the data-model of Service template
12: Source code ← Service template + service_data
13: end for
14: return Source code

@Path("/ElevatorInfo") @Produces({MediaType.APPLICATION_JSON+"; charset=UTF-8"})
public interface ElevatorInfoService {

@GET @Path("/ElevatorModel/{elevatorNo}")
List<ElevatorInfo> getElevatorInfoElevatorModel (@PathParam(value="elevatorNo") String ele-

vatorNo);
@GET @Path("/ElevatorNo/ElevatorModel/{elevatorModel}")
List<ElevatorInfo> getElevatorInfoByElevatorModel (@PathParam(value="elevatorModel")

String elevatorModel);
…}

Corresponding to the interface of the ADS2, the implementation source code of the
ADS2 is shown as follow.

@Component ("elevatorInfoService")
public class ElevatorInfoServiceImpl implements ElevatorInfoService {

@Resource
private ElevatorInfoDao elevatorInfoDao;
public List<ElevatorInfo> getElevatorInfoElevatorModel (String elevatorNo) {

return elevatorInfoDao.getElevatorInfoElevatorModel (elevatorNo);}
public List<ElevatorInfo> getElevatorInfoByElevatorModel (String elevatorModel) {

return elevatorInfoDao.getElevatorInfoByElevatorModel (elevatorModel);}
…}

384 Y. Zhang et al.

5 Experimental Results

5.1 Prototype System Development

We have developed a data service generation system. Currently, the main functions of
the system include dataset management, data service extraction, data service encap-
sulation, and data service management. Cross-origin datasets from the elevator enter-
prises which are medium-sized and poor sharing ability of data resources, have been
utilized as test data in current system. The datasets include a design dataset, a sales
dataset, a customer dataset, a manufacturing dataset, and a maintenance dataset.

Take the elevator design dataset stored in MySQL as an example, Fig. 5 shows the
main interfaces of data service extraction. Figure 5(a) shows the interface of obtaining
the necessary data connection information provided by the data owner, such as the
URL (jdbc:mysql://<host>:<port>/<database_name>), the data driver (com.mysql.jdbc.
Driver), username and password, to access a specific dataset. With the methods in Java
DatabaseMetaData interfaces, like getTables(), getColumns() and getPrimaryKeys(),
the system can obtain all tables, attributes and dependencies among attributes. The
description of attributes can be further added to make end-user better understand in
Fig. 5(b). Then, the attribute dependency graph (ADG) shown in Fig. 5(c) is built.
According to the Algorithm 1, the system will extract the atomic data services (ADSs)
based on the ADG. The extracted ADSs are listed in Fig. 5(d). The default description
of ADSs is encapsulated attributes and can be edited by end-user. Figure 5(e) shows
the relationships among ADSs, where a data service dependency graph (DSDG) is
built. After that, the data service extraction is completed. The extracted datasets are
shown in the Fig. 5(f).

Figure 6 shows the main interfaces of data service encapsulation. According to
Algorithm 2, the system will encapsulate the extracted ADSs into RESTful services
using the encapsulation framework. Then, the data services can be deployed on any
server node specified by the data owner to ensure service availability, as shown in
Fig. 6(a). The data owner can temporarily shutdown or permanently remove the ADSs
which involve sensitive date for data security. End-user can access the data services
with the provided URL, and get the desired dataset, as shown in Fig. 6(b). These
encapsulated ADSs can be directly accessed, and can also be further composed into
composite data services to acquire more complex data.

5.2 System Evaluation

In this subsection, we evaluate the two key algorithms adopted in the system: the data
service extraction algorithm, and the data service encapsulation algorithm. The
experimental hardware is a 2.50 GHz 8-core CPU, 16 G RAM, and 290 GB disk
storage. The operation system is a 64-bit Ubuntu 16.04. All algorithms are imple-
mented with the Java programming language.

We select five different experimental datasets [20] for the evaluation. Table 4
shows the information of the datasets including the total number of tables and attri-
butes, the total number of ADSs extracted by Algorithm 1 and total number of source
files generated by Algorithm 2.

An Automatic Data Service Generation Approach for Cross-origin Datasets 385

We first evaluate the system performance of the metadata extraction. Figure 7
shows the overall time consumed to complete the extraction by varying the number of
tables and attributes, where the X axis represents the total number of tables, Y axis
represents the total number of attributes and the Z axis represents the execution time.

(a) Dataset connection (b) Metadata of dataset

(d) Extracted atomic data services

(e) Data service dependence graph (f) Dataset management

(c) Attribute dependence graph

Necessary data
connection information

All tables

All attributes in one table

Add description
of attributes

Attribute

Dependence

ADS

Relationship

Edit description
of ADS

Fig. 5. Main interfaces of data service extraction.

(a) Encapsulated atomic data services (b) Atomic data service access

Fig. 6. Main interfaces of data service encapsulation.

386 Y. Zhang et al.

It shows that metadata can be obtained in a short time and more attributes in the tables
require more time to deal with dependencies among attributes.

Then, we evaluate the system performance that aims to show the overall time
consumed by the ADS extraction and encapsulation algorithm. Figure 8(a) shows the
overall time consumed to complete the extraction by varying the ADS number, where
the X axis represents the total number of ADSs and the Y axis represents the execution
time. It can be seen that the execution time rises slightly with the increasing number of
the ADSs. Figure 8(b) shows the overall time required to complete the service
encapsulation with different number of source files, where the X axis represents the
total number of source files and the Y axis represents the execution time. The
encapsulation algorithm consumes obviously more time than the extraction algorithm.
The reason is that the service encapsulation involves I/O time due to file reading and
writing. Totally, the system has high efficiency for both service extraction and service
encapsulation.

Table 4. Experimental datasets for data service extraction and encapsulation algorithm.

Datasets Total table
number

Total field
number

Total ADS
number

Total source file
number

Customer
dataset

14 120 120 74

Sales dataset 27 231 231 139
Made dataset 37 317 317 189
Maintenance
dataset

47 400 400 239

Design dataset 62 473 473 314

Fig. 7. Performance of the metadata extraction.

An Automatic Data Service Generation Approach for Cross-origin Datasets 387

5.3 Analysis

Maturity. We use a model of restful maturity that was developed by Leonard
Richardson, called Richardson Maturity Model [11], to evaluate the RESTfulness of
our data service APIs. The RESTful services are classified into four levels of maturity
according to the design constraints of the REST architectural style: (1) Level 0:
Tunneling messages through an open HTTP port leads only to the basic ability to
communicate and exchange data. (2) Level 1: Making use of multiple identifiers to
distinguish different resources. (3) Level 2: Making proper use of the REST uniform
interface in general and of the HTTP verbs in particular. (4) Level 3: In addition to
exposing multiple addressable resources which share the same uniform interface also
make use of hypermedia to model relationship between resources. Compared with the
service APIs of Microsoft’s OData (Open Data Protocol)6 which are not up to the
highest level of REST for the reason that there is no navigation for services to include
links or self-documentation in response [18], our approach has the capacity to return a
response body with a set of resources which associated with the user’s request based on
the data service dependency graph model. Therefore, our data services reach the
maturity level 3.

Discoverability. Discoverability means that the desired data services can be accessed
when user requests a resource, which facilitates the composition of data services.
Compared with the conventional service interfaces that the process of service discovery
is fallible and time-consuming, such as Twitter APIs, our approach can automatically
obtain the user-desired data services by searching the data service dependency graph
which enables achieving the discoverability.

Reusability. Reusability means that the data services can be reused multiple times
without configuration or minor changes. Compared with [18] that there is a one-to-one
correspondence between data services and user’s data needs, our approach provides a
finer granularity and a higher degree of flexibility, which can be composed according to

(a) Data service extraction (b) Data service encapsulation

Fig. 8. Performance of the data service extraction and encapsulation algorithm.

6 https://www.odata.org/.

388 Y. Zhang et al.

https://www.odata.org/

various kinds of requirements without replaceability of bindings or binding configu-
ration. The flexible and extensible data services allow users to customize the composite
data services for specific requirements which benefits to improve the reusability.

6 Conclusion

To automatically obtain data services from cross-origin datasets, we presented an
automatic data service generation approach. The attribute dependency graph
(ADG) was built according to inherent data dependencies among dataset. Based on the
ADG, data services could be automatically extracted. Then, we designed a data service
encapsulation framework. It could automatically encapsulate the extracted ADSs into
RESTful services with a specific implementation template. We have developed a data
service generation system, and actual cross-origin datasets have been carried out in the
system to generate data services. We also evaluated the performance of the extraction
and encapsulation algorithms, then demonstrated our data services in maturity,
discoverability and reusability. In the future, we will focus on the research of automatic
data service generation for unstructured data to improve the availability.

Acknowledgments. The authors gratefully acknowledge the support from the Zhejiang Natural
Science Foundation, China (No. LY19F020034).

References

1. Abiteboul, S., Benjelloun, O., Milo, T.: Web services and data integration. In: International
Conference on Web Information Systems Engineering, pp. 3–6 (2002)

2. Borkar, V., et al.: Graphical XQuery in the aqualogic data services platform. In:
ACM SIGMOD International Conference on Management of Data, pp. 1069–1080 (2010)

3. Carey, M.: Declarative data services: this is your data on SOA. In: IEEE International
Conference on Service-Oriented Computing and Applications, p. 4 (2007)

4. Carey, M., Reveliotis, P., Thatte, S., Westmann, T.: Data service modeling in the aqualogic
data services platform. In: Services, pp. 78–80 (2008)

5. Carey, M.J., Onose, N., Petropoulos, M.: Data services. Commun. ACM 55(6), 86–97
(2012)

6. Chen, C.L.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. 275(11), 314–347 (2014)

7. Dillon, S., Stahl, F., Vossen, G.: Towards the web in your pocket: curated data as a service.
In: International Conference on Computational Collective Intelligence Technologies and
Applications, pp. 25–34 (2012)

8. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data integration: the teenage years. In:
International Conference on Very Large Data Bases (2006)

9. Hong, X., Rong, C.M.: Multiple data integration service. In: International Conference on
Advanced Information NETWORKING and Applications Workshops, pp. 860–865 (2014)

10. Liu, X., Hu, C., Li, Y., Jia, L.: The advanced data service architecture for modern enterprise
information system. In: International Conference on Information Science and Applications,
pp. 1–4 (2014)

An Automatic Data Service Generation Approach for Cross-origin Datasets 389

11. Pautasso, C.: RESTful web services: principles, patterns, emerging technologies. In:
Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp. 31–51.
Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7_2

12. Rajesh, S., Swapna, S., Reddy, P.: Data as a service (DaaS) in cloud computing. Glob.
J. Comput. Sci. Technol. 12(11), 25–29 (2012)

13. Richardson, L., Ruby, S.: Restful Web Services, pp. 199–204. O’Reilly Media Inc.,
Sebastopol (2007)

14. Terzo, O., Ruiu, P., Bucci, E., Xhafa, F.: Data as a service (DaaS) for sharing and processing
of large data collections in the cloud. In: Seventh International Conference on Complex,
Intelligent, and Software Intensive Systems, pp. 475–480 (2013)

15. Vu, Q.H., Pham, T.V., Truong, H.L., Dustdar, S., Asal, R.: Demods: a description model for
data-as-a-service. In: IEEE International Conference on Advanced Information Networking
and Applications, pp. 605–612 (2012)

16. Wang, G.L., Han, Y.B., Zhang, Z.M., Zhu, M.L.: Cloud-based integration and service of
streaming data. Chin. J. Comput. 107–125 (2017)

17. Yu, H., Cai, H., Zhou, J., Jiang, L.: Data service generation framework from heterogeneous
printed forms using semantic link discovery. Future Gener. Comput. Syst. 79, 514–527
(2017)

18. Zhang, Y., Zhu, L., Xu, X., Chen, S., Tran, A.B.: Data service API design for data analytics.
In: Ferreira, J.E., Spanoudakis, G., Ma, Y., Zhang, L.-J. (eds.) SCC 2018. LNCS, vol.
10969, pp. 87–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94376-3_6

19. Zhang, Z.M., Liu, C., Su, S., Zhang, S.L., Han, Y.B.: SDaaS: a method for encapsulating
sensor stream data as services. Chin. J. Comput. 40(2), 445–463 (2017)

20. Zhang, Z.J., Zhang, Y.M., Lu, J.W., Xu, X.S., Gao, F., Xiao, G.: CMfgIA: a cloud
manufacturing application mode for industry alliance. Int. J. Adv. Manuf. Technol. 98(9–12),
2967–2985 (2018)

21. Zorrilla, M., Garca-Saiz, D.: A service oriented architecture to provide data mining services
for non-expert data miners. Decis. Support Syst. 55(1), 399–411 (2013)

390 Y. Zhang et al.

http://dx.doi.org/10.1007/978-1-4614-7518-7_2
http://dx.doi.org/10.1007/978-3-319-94376-3_6

	An Automatic Data Service Generation Approach for Cross-origin Datasets
	Abstract
	1 Introduction
	2 Related Work
	3 Atomic Data Service Extraction
	3.1 Attribute Dependency Graph
	3.2 Atomic Data Service Extraction Algorithm

	4 Data Service Encapsulation
	4.1 Data Service Encapsulation Framework
	4.2 Data Service Encapsulation Algorithm

	5 Experimental Results
	5.1 Prototype System Development
	5.2 System Evaluation
	5.3 Analysis

	6 Conclusion
	Acknowledgments
	References

