
Decentralized Service Registry
and Discovery in P2P Networks
Using Blockchain Technology

Peter de Lange(B) , Tom Janson , and Ralf Klamma

RWTH Aachen University, Lehrstuhl Informatik 5, Ahornstr. 55,
52074 Aachen, Germany

{lange,janson,klamma}@dbis.rwth-aachen.de

Abstract. Decentralized information systems radically change the
power dynamics of the Web by establishing participants as equal peers,
which form a self-governing community. However, decentralized infras-
tructures currently do not offer a way for users to easily explore available
services in the network, nor the ability to securely verify their origin and
history. In this contribution, we approach these challenges by exploit-
ing the tamper-proofness of blockchain technology to build a decentral-
ized service registry and discovery system for an existing decentralized
microservice infrastructure. With this, users are able to find services in
a network and are also able to verify their integrity and origin. Our
first evaluations show promising results with this kind of system in the
domain of decentralized service provisioning, while also raising research
questions for future research in this field.

Keywords: Service discovery · Decentralization · Microservices ·
Blockchain

1 Introduction

When Tim Berners-Lee proposed the Web in 1989, he envisioned a decentral-
ized system of information repositories that facilitate organizational knowledge
transfer by allowing anyone to create, reference, and access content [2]. However,
Web authoring and publication required both technical expertise and hardware
infrastructure. With the rise of the Web 2.0 in the early 2000s, Social Network-
ing Sites (SNS) and Content Management Systems (CMS) enabled all users to
create Web content [12]. But it simultaneously put the users at the mercy of the
platform operators. Services may suddenly be shut down, erasing content and
disrupting communities. As well, private data is often stored insecurely, used for
commercial purposes, or even revealed in data breaches. The proprietary nature
of the vast majority of these platforms leaves users little bargaining power to
change those terms.

Decentralized information systems radically change this dynamic by estab-
lishing participants as equal peers, which form a self-governing community.
c© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 296–311, 2019.
https://doi.org/10.1007/978-3-030-19274-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_22&domain=pdf
http://orcid.org/0000-0002-3494-7513
http://orcid.org/0000-0002-1188-197X
http://orcid.org/0000-0002-2296-3401
https://doi.org/10.1007/978-3-030-19274-7_22


Decentralized Service Registry 297

A peer-to-peer (P2P) structure can provide scalability and distribute the uti-
lization of computing resources. In combination with public key cryptography, it
allows users to sign messages and store private data securely, providing privacy
without relying on trusted infrastructure. It is clear that these properties are espe-
cially appealing to online Communities of Practice (CoPs) [22]. These groups of
people with a shared craft or profession, but not bound by a formal context, collab-
orate informally via the Web. In previous work [9] we presented a P2P microservice
infrastructure for CoPs. This network of nodes can be hosted by the CoP itself.
Microservices [11], once uploaded into the network, can be replicated through the
community members’ nodes according to the current need.

However, decentralized infrastructures currently don’t offer a way for users to
easily explore available services in the network, nor the ability to securely verify
their origin and history. In distributed systems, this task is commonly solved
by using service registries, providing a publish-lookup API facilitating service
discovery and interoperation. Transferring this concept into the setting of open,
decentralized systems is a technical challenge, since the architecture of tradi-
tional service registries relies on trusted servers, while existing P2P approaches
compromise queriability and security. Beyond this technical challenge, it also
raises research questions regarding end-user service discovery in the context of
online communities.

In this contribution, we approach these challenges by exploiting the tamper-
proofness of blockchain technology to build a decentralized service registry and
discovery system for a decentralized P2P microservice infrastructure. We first
briefly recap the real-world use case from previous work to then point out the
challenges and potential threats this community infrastructure faces (Sect. 2).
We then introduce the background and related work done in the domain of both
“traditional” service discovery and blockchain technology (Sect. 3), before we
present our decentralized, blockchain-based service registry as an approach to
tackle the previously mentioned challenges (Sect. 4). By securely recording the
release history of services, this approach provides service authors control over
their services’ update process and the ability to establish a reputation for qual-
ity contributions within the community. Service users, on the other hand, are
able to verify the integrity, origin, and history of service releases. On this basis,
the service discovery system enables searching for services both programmati-
cally and via a user-friendly, browser-based interface, taking into account the
different requirements of developers and end-users. In Sect. 4.2, we describe the
technical integration of this approach into a purely P2P based architecture. Our
contribution ends with a report on our evaluation of the system as well as its
implications for future research (Sect. 5), before we conclude our paper (Sect. 6).

2 Use Case

In our initial use case that lead to the development of the decentralized microser-
vice infrastructure, we supported a CoP preparing for a training course of the
European Voluntary Service (EVS) program. To cope with the diverse back-
ground of the participants, the trainers used a form of question-based dialog



298 P. de Lange et al.

some days before the actual (on-premise) training course started. This applica-
tion, consisting of a set of microservices and a Web frontend, enables users to
participate in a sort of mind-mapping process. Our infrastructure allows mem-
bers of the community to start a node and all services needed to locally run the
application, or only start the node and access services of other members via the
network. Another possibility is to just access the Web frontend of a community
member to participate. This scenario fulfilled the need for the whole infrastruc-
ture being distributed only among the community itself without the need for
any central authority. To our knowledge, this type of fully community-owned
decentralized microservice infrastructure is unique. However, there are several
shortcomings to it, which come to light once one takes a look at the “bigger
picture”. In Fig. 1 we depict this scenario. In this example, Community A stands
for the above mentioned CoP, whilst a second Community B also participates in
the network. Additionally, we consider a malicious actor Eve. This raises several
problems, which we point out next.

Distributed

Storage

Bob’s
Service

Eve’s
Service

Community A

Alice

Bob

Carol

Bob’s
Service

Eve’s
Service

Malicious Actor

Eve’s
Service

Eve

Community B

Faye Gene

?

service
release

service
instance

service
usage

service
discovery

Fig. 1. Usage scenario with multiple communities

How to Explore Services Available in the Network? When Community
B joins the network, there neither exists an overview of available service releases
nor information on currently deployed service instances in the network. To new
communities and community members, the network appears “empty”, and infor-
mation about services of interest has to come from external sources, like overview
websites. Previously, our infrastructure used a “Catalog Service” for this task, that
held information added by community members and displayed them on a public
frontend. Since users could add any unverified service information, this approach
was fundamentally insecure and also required continuous manual curation.

Where Can I Find More Information About that Service? The knowl-
edge of services existing in the network might not always be enough to get an



Decentralized Service Registry 299

impression of what usage possibilities exist. Additional information, like service
descriptions, source code location, available frontends, or even usage patterns
by other communities may be of relevance to new members or new communities
entering the network. Also, the identity of the service developer is of relevance,
since trust in a service is highly dependent on its author. In the above exam-
ple, members of Community B might for example be interested in seeing service
releases by a particular developer of Community A, e.g., because she is a member
of both communities and forms a binding link between them.

How to Verify the Integrity and Origin of a Service? Once a community
has established both the knowledge of which service might be worth exploring
and where a running instance can be found, P2P networks offer no way of ver-
ifying the integrity and origin of services. Specifically, that a remotely running
service instance is in fact an unmodified instance of the service release it claims
to be. Even when replicating a service locally and checking its integrity via its
cryptographic signature, in the absence of a registration authority, the signing
key cannot be linked to the (real-life or pseudonymous) identity of the service
release’s author. This could result in a malicious service instance being executed
on the community member’s node. In the above example Bob has published
the initial “correct” service release, the actor Eve publishes a malicious service
release that imitates this one. Since there is no way of tracing the origin of a
service instance or its release in the network, both communities could acciden-
tally call a malicious service instance. This is depicted by Alice and Carol calling
Eve’s Service Instance, instead of the “correct” one published by Bob.

Derived Requirements for Decentralized Service Discovery: From the
above use case, a number of requirements arise regarding service discovery in
decentralized systems. It should enable both end-users and developers to easily
find service releases, verify their origin and either use remote instances or repli-
cate the release to their own node. Although most of these requirements can
be solved by using some kind of central service registry (see also Sect. 3), this
approach has one major drawback: It redirects the power over the infrastructure
from the community to the maintainer of this centralized component and thus
contradicts the whole idea of decentralization. Without the knowledge of avail-
able services and also the ability to authorize service releases, the community
relies on the service registry to forward their discovery requests, which raises the
same issues a decentralized infrastructure tries to tackle. To be in line with the
concept and preserve its advantages, a decentralized service registry has to be
governed by the whole community in terms of authorizing service releases and
validating service instances. The Blockchain approach fits this idea perfectly.

3 Related Work

Service Discovery and Registration Architectures. The term service dis-
covery encompasses varying degrees of functionality, depending on the context:
In its most basic form, it refers to the publication and lookup of the network



300 P. de Lange et al.

location of a service which is already known by name in a registry (service
location discovery). This registry may also allow the retrieval of services match-
ing a formal description (semantic service discovery or matchmaking), and thus
requires that services publish a machine-interpretable description of their capa-
bilities. This meaning is central to the vision of the Semantic Web [3], in which
data stored in potentially disparate sources (e.g., published in different formats,
by different communities) can be automatically discovered, processed, and to
some degree understood by machines [21]. Finally, end-user service discovery
goes beyond programmatic discovery and aims to help users find Web services
relevant to their interests, e.g., by employing recommender systems or the user’s
physical and logical context [8]. A great variety of architectures for service dis-
covery has been proposed. They are often classified according to the degree
of centralization of the registry [7,15]. However, the most simple scheme is to
not use a registry at all, but to propagate service queries or advertisements via
flooding. It is clear that the communication overhead of this approach prevents
it from scaling to large networks, instead it was suggested for home networks
or even in cars, where the number of participating devices was presumed to be
very small [4,6]. For medium-sized networks, a single central registration server
may be used. The API of such a registry consists of service publication and ser-
vice lookup. The registry simply caches the service description published by the
service provider until some time-out is met and answers the service requesters’
queries accordingly. While this approach can work well in controlled environ-
ments, several issues arise when attempting to serve large, geographically dis-
tributed, or heterogeneous networks: First, having a single registry server is
neither fault-tolerant nor scalable. Further, if services should be accessible from
across the globe, latency may be an issue. Finally, the registry is under the con-
trol of and must be maintained by a single entity. Out of these considerations
emerged distributed service registry architectures, which can be classified into
three domains according to the way they store service descriptions and state
information:

1. Replicating, where registries attempt to have the same, complete state [19]
2. Distributed or federated, where registries only store information about local

services, but forward queries about other services to a cooperating registry
3. Peer-to-peer, where information is also stored decentrally, but all participat-

ing registries use a common P2P protocol, negating the need for manually
configuring and setting up sharing agreements between them [7,20]

Each of these is appropriate for certain use cases. Current commercial systems
such as Netflix’s Eureka1 and HashiCorp’s Consul2 fall into the first two cate-
gories (or some hybrid combining both), with local registries assigned to each
data center or region. P2P service registries have to our knowledge been pri-
marily the subject of academic inquiry rather than deployed in practice. Most
of them utilize a distributed hash table (DHT), where service descriptions are

1 https://github.com/Netflix/eureka.
2 https://www.consul.io/intro/.

https://github.com/Netflix/eureka
https://www.consul.io/intro/


Decentralized Service Registry 301

addressed by the hash of their contents. However, unstructured P2P registries
have also been proposed [7]. In both cases queriability is a crucial issue, specifi-
cally the search capabilities of the P2P storage beyond exact match lookup and
even completeness, i.e., the guarantee that an existing entry can be located. Much
effort has been put into extending structured P2P overlays to allow attribute,
wildcard-based and other advanced queries (e.g., [13,16–18,24]), but these limi-
tations remain a major obstacle.

Trust and Consensus in Decentralized Systems. When we discussed dis-
tributed service registries in the previous section, we implicitly assumed that all
nodes comprising the system are trustworthy, i.e., operating correctly without
either accidental or malicious misbehavior. For corporate networks and many
other use cases this is a reasonable assumption. But for a decentralized system
that is open for anyone to participate in, as a peer among equal peers, a differ-
ent approach is required. We use the term open decentralized system to denote
exactly that: A system of autonomous peers, who may join or leave at any time,
and whose goals may not align with one another. Further, there is no single
centralized authority, which could coordinate or serve as a universally trusted
entity in the system. A fundamental problem of such decentralized systems is
how to ensure that received information is up-to-date and authentic, despite
being unable to trust any particular node [10]. This is an instance of a consen-
sus problem, which has been in the focus of distributed systems research since
the early 1980s [14]. More recently the topic has come into the spotlight due
to the apparent success of cryptocurrencies, first and foremost Bitcoin, which
purport to solve the problem on a global scale. In essence, a functioning decen-
tralized system needs to agree on a common state. The nodes of a distributed
database need to agree on the contents and order of the applied operations,
while cryptocurrencies deal with the specific case of tracking the participants’
account balances. Thus a secure, scalable consensus algorithm lies at the heart
of decentralized systems. We argue that consensus algorithms, with their ability
to keep a shared state across network nodes, are promising candidates for the
storage backend of a decentralized service registry.

Smart Contracts. Ethereum [23], as a so-called second generation cryptocur-
rency, utilizes a proof-of-work and blockchain based consensus scheme. But
instead of being only used as a cryptocurrency (like for example Bitcoin),
Ethereum sees itself as a general purpose platform for decentralized applications.
This is reflected technically in the syntax of its transactions. These can include
code in a Turing-complete, stack-based bytecode language, whereas the transac-
tions in Bitcoin’s blocks are deliberately less expressive. This allows Ethereum
users to write and upload scripts to the network, whose functions can be invoked
by sending special transactions. Such scripts are called Smart Contracts. Each
deployed smart contract consists of its program code, a data store, as well as
an account containing Ether, Ethereum’s currency. When a transaction triggers
a smart contract function, the miner that includes the transaction executes the
code and includes the updated state in the new block. All other nodes must also
execute the code in order to determine whether the new block is valid (includes



302 P. de Lange et al.

the correct result of the computation). Given certain restrictions on the com-
puting power of an attacker in comparison to the nodes behaving correctly, this
approach provides an immutable history of transactions.

It is clear that this massively redundant code execution is expensive in terms
of resources. Ethereum charges a dynamic fee based on the number of executed
instructions, which must be paid for by the transaction’s sender. If its funds
are insufficient, the execution is stopped. It is thus not economically feasible
to deploy computationally expensive code or to directly store large amounts
of data. It should be noted that the cost of executing smart contracts limits
Ethereum’s scalability (in terms of throughput), and there are numerous pro-
posals to alter the Ethereum protocol in order to improve performance, including
radical changes to the consensus system [5]. Examples of smart contract appli-
cations currently in use include financial contracts, games of chance, and notary
applications [1], which can largely be implemented with very simple program
logic, while documents can sometimes be stored elsewhere (e.g., via IPFS3, a
peer-to-peer storage system) and securely referenced.

4 A Decentralized Service Registry

4.1 Conceptual Overview

We propose a decentralized service registry based on a private blockchain that
enables the discovery of services and the secure verification of their release meta-
data. Combining the completeness and time-preserving properties of a blockchain
with space-efficient distributed storage allows us to utilize the strengths of each
technology and compensate their respective weaknesses. Specifically, the registry
consists of two smart contracts for both services and users. The data written to
the blockchain belongs to four types, which are shown along with their respective
fields in Fig. 2. Because storing data “on-chain” is inefficient and expensive, only
essential fields are stored directly on the blockchain, while supplemental fields
(marked in italics) are stored “off-chain” in the distributed storage and securely
referenced by their hash.

The user contract serves as a decentralized identity management system that
ties usernames to their (online) identities via public key cryptography. In contrast
to a centralized public key infrastructure, the user has direct control (i.e., own-
ership) of their entry, including the decision to reveal personal data. Thus some
users may reveal their real life identities in order to facilitate trust, while others
may choose to remain pseudonymous. Registered users can then use the service
contract to publish service releases. This encompasses reserving a service name
and linking specific releases to additional metadata. Just like the usernames,
these entries are owned by their author by linking them to the author’s public
key. Finally, we allow the announcement of service instances, indicating that a
user is running a publicly usable instance of the service on their node. Storing
this data in a blockchain provides an immutable, auditable historic record of

3 InterPlanetary File System, https://ipfs.io/.

https://ipfs.io/


Decentralized Service Registry 303

User Contract

User Registration
username
agent ID
public key

Ethereum address
timestamp

email address

Service Contract

Service
Registration
package name

author
timestamp

Service Release
package name

version
timestamp

title
description
default class

source code repository
frontend entrypoint

Service
Announcement

class name
package name

version
node ID

timestamp

Fig. 2. The registry smart contracts’ data

the registry entries and ensures that they can only be updated by their owners,
while also making the data readily available and queriable to all peers.

Fig. 3. Usage scenario with decentralized service registry

Returning to our example (Fig. 3), Bob registered both a username and the
name of his service in the network’s decentralized registry. The registry entry for
Bob’s Service is linked to his username and key pair, which Bob uses to sign his
service releases. Eve can still store her malicious, modified release of Bob’s Service
in the distributed storage. However, she is unable to register it under the same
name, nor can she attach Bob’s name to it. All network participants can access
the blockchain to see published services and their running instances, and can per-
form arbitrary queries (e.g., a keyword search over the service metadata). Thus
Faye can easily discover Bob’s Service even if they are part of disjoint communi-
ties. Just like Alice and the other members of Community A, Faye also sees the
running instance of Bob’s Service. If she feels she can trust the user who sent the



304 P. de Lange et al.

service announcement and operates the instance, she can access it directly. Other-
wise, she can replicate the service locally. By fetching the service release from the
distributed storage and comparing its signature against the registry entry, she can
verify that the service she starts was in fact authored by Bob.

4.2 Architecture

We implemented our approach on top of the decentralized microservice infras-
tructure introduced in Sect. 2, called las2peer4. Figure 4 provides an overview of
its extended architecture and information flow.

las2peer Node

Registry
Gateway

Blockchain

Smart
Contracts

Distributed
Storage

DHT

Service
Instances

Web Frontend

Service
Browser

announce

deployments
view / publish services

Fig. 4. Architecture and information flow during common operations

There are three main components realizing the decentralized service registry:

1. Smart Contracts: The foundation of the registry is implemented as
Ethereum smart contracts that store and retrieve data from the blockchain. The
contracts are written in Ethereum’s high-level scripting language Solidity5. In
addition to the user and service smart contracts described above, a small library
contract is employed to handle the verification of signatures for delegated func-
tion calls.

2. Registry Gateway: Every node contains a registry gateway for accessing the
Ethereum blockchain. It transparently stores and fetches the supplemental data
fields in the distributed storage, realized as a DHT, and combines them with the

4 https://las2peer.org/.
5 https://solidity.readthedocs.io/.

https://las2peer.org/
https://solidity.readthedocs.io/


Decentralized Service Registry 305

data retrieved from the blockchain to utilize the benefits of both storage types.
The registry gateway also caches service information to provide efficient lookup.

3. Service Browser: The node’s Web frontend contains a service browser that
allows viewing and uploading service releases, as well as managing local service
instances and accessing their frontends. Figure 5 gives an impression of it.

Fig. 5. The service browser

4.3 Interacting with the Registry

User Registration. The user and service smart contracts are essentially name
registries that assign human-friendly names on a first come, first served basis. As
such, the user contract provides functions to check the availability, register, and
look up the data associated with a username. An important concept of smart
contracts is the distinction between state-changing functions and those that
are “read-only”. The former are processed as transactions appended in a new
block (and thus transmitted to and executed by all nodes), while the latter are



306 P. de Lange et al.

executed locally and immediately return a value. When a user wishes to register
a username, a read-only function is used to check whether the desired name is
still available. If so, we call the registration function, which is state-changing:
The call data, consisting of the function name and the arguments, is encoded
and broadcast in the form of a transaction signed by the user. When a miner
processes the transaction to include it in a block, the arguments are extracted
and the call is executed. The smart contract code again checks whether the name
is already assigned to someone (e.g., in the case that someone else attempted to
register the name at nearly the same time). If not, the user entry is created.

We also allow a pattern called delegated function call, in which the user
does not sign the transaction herself, but rather prepares a signed certificate of
authority (Fig. 6). This also contains the call data and is signed by the user. Now
any user can prepare a transaction that passes this certificate to a special func-
tion of the user contract, which unpacks the arguments, verifies the signature,

User
Registry
Gateway

Blockchain
Smart Contracts

Distributed
Storage

request username

check availability

sign registration certificate

present certificate

verify signature

register name

User ContractUser Contract

store supplemental user data

Fig. 6. Delegated username registration with signed smart contract call



Decentralized Service Registry 307

and registers the username on behalf of the original user. The advantage of this
pattern is that it transfers the burden of paying any transaction fees from the
user wishing to register to the user who actually sends the transaction. In our
use case, we expect that established community members who operate a node
may offer to cover the registration fees for users who are unable to run their own
node. If the registration was successful, a file containing the supplemental data
fields is uploaded to the distributed storage.

Service Registration, Discovery, and Replication. The service contract
operates using the same principles as the user contract. Once again we employ
the delegated function call pattern to allow users to cover the transaction fees for
a service author. The registration of a service name and publication of a service
release is analogous to the user registration procedure. When the deployment
of a service instance is requested (e.g., through a node’s Web frontend), the
service release is fetched from the distributed storage. Through two subsequent
smart contract calls, first the username of the author of the service release is
looked up in the service contract, then her public key is looked up in the user
contract, enabling the system to verify the signature of the service release. Once
its authenticity is established, the service is started. If the instance is intended
for public use, its deployment is announced to the registry.

5 Preliminary Evaluation

Setup. In order to gather feedback from users, we carried out five evaluation
sessions with two to three participants each. The network setup consisted of five
permanent nodes and up to three additional nodes started during the session by
the participants. Technically, the nodes were started as Docker containers on a
single server in order to simulate ideal network conditions. Further, we used a
modified version of the Go Ethereum client, geth. Since we did not focus on the
technical parameters of the blockchain network in this evaluation, we started the
client with a very low mining difficulty, leading to short block creation intervals
(the “block time”). While many of the participants had experience with soft-
ware development, the majority was unfamiliar with las2peer, our decentralized
community service infrastructure. After a brief introduction to las2peer and its
service registry, the participants were given written tasks that included finding
existing services as well as registering a user and publishing their own service.
During these tasks, the users first accessed the Web frontend of one of the per-
manent nodes. Later they accessed a newly started node, that joined the existing
network. This hands-on experience lasted about 30 min. Afterwards, participants
filled out a questionnaire.

Results. Figure 7 shows the results of our questionnaire. As one can see, most
of the participants were able to understand the basic concepts of the approach
and were also able to fulfill the given tasks. We received lowest scores for the
question regarding node ownership. This is due to the fact that the majority



308 P. de Lange et al.

1 1.5 2 2.5 3 3.5 4 4.5 5

Easy to see what services are available in the network

Easy to start services published by someone else

Clear by whom each service was published

Interface helped understand where services are running

Easy to start own services

Easy to publish own service in the network

Understood node ownership

4.64

4.64

4.45

4.27

4.27

3.27

3

A
ve
ra
ge

U
se
r
R
at
in
g
(N

=
11

)

Fig. 7. Evaluation results

of participants were not very familiar with P2P infrastructures and mixed up
concepts like running services and nodes. Another quite low rating was received
for the question about the ease of publishing own services in the network. This
was mostly colored by the fact that it was necessary to post exact class names and
frontend URLs, that were not checked for correctness in our initial prototype.
This will be improved in future versions of the frontend. The remaining questions
received quite high scores, which confirms the usability of our developed service
registry and its user interface in form of the service browser. We also asked
free-text questions about the relevance of (verified) service authorship. Most of
the participants stated that this depended highly on the context, and was only
relevant for sensitive data. This is in line with our expectations that decentralized
infrastructures are valued particularity in the context of sensitive data exchange.
We also received interesting statements regarding the question of contribution to
the infrastructure, e.g., in terms of computing power. The majority of responses
stated that they would support “their” community if resources were sparse and
highly in need. Finally, we asked the participants about the trade-off between
response time and required storage space. On average, participants were willing
to wait up to ten minutes (although a large minority voted for ten seconds or
less) for their actions, e.g., service releases and announcements, to be visible on
the blockchain.

Implications for Future Work. One aspect that received little attention in
this contribution is transaction fees and incentives to participate in the mining
process. Our private blockchain’s currency is specific to its corresponding net-
work and does not have any economic value. In future work we want to explore
whether this currency can represent status in the community. One direction



Decentralized Service Registry 309

worth investigating is allowing users to provide bounties for certain actions in
the network, like the development or deployment of needed services.

Another technical aspect that requires further evaluation is the trade-off
between required storage space and block time, as well as between CPU usage
and security, i.e., the integrity of the blockchain data. The block time used in our
evaluation was set to an extremely short value (1 s with a difficulty of 1) that is
not feasible for real-world settings, since it requires about 500 MB of space per
day per node, regardless of the amount of information stored in the blocks. This
amount scales inversely with the block time. To study this further, we started
modified versions of the Ethereum client with more “realistic” difficulties of
4 × 105 and 128 × 105. These numbers are to be interpreted as the average
number of hashes required before a new, valid block is found. We ran these
clients over a period of a week, letting each mine with a single CPU core of
an Intel� Xeon� Processor E5-4627 v4, resulting in an average block time of
9.3 s (for the lower difficulty) and 271 s (for the higher difficulty), respectively.
Both of these block times are within the acceptable range for the majority of our
evaluation participants. Over six days, the blockchain size on disk was 61 MB
and 2.1 MB, respectively, which certainly a is a more manageable and scalable
requirement.

6 Conclusion

In this paper, we presented a service registry and discovery system for a decen-
tralized community information system. With its foundation in blockchain tech-
nology, it keeps the advantages of decentralization, such as empowering commu-
nities to take control over their infrastructure. Simultaneously, it enables many
properties “traditional”, centralized services registries provide, like searching for
service releases and instances, and verification of these. While in the future fur-
ther evaluations will provide deeper insights into the long-time effects of this
approach, we are confident that blockchain-based decentralized service registries
can provide a valuable addition in the domain of P2P systems.

Acknowledgments. The authors would like to thank the German Federal Ministry
of Education and Research (BMBF) for their kind support within the project “Per-
sonalisierte Kompetenzentwicklung durch skalierbare Mentoringprozesse” (tech4comp)
under the project id 16DHB2110.

References

1. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: platforms,
applications, and design patterns. In: Brenner, M., Rohloff, K., Bonneau, J., Miller,
A., Ryan, P.Y.A., Teague, V., Bracciali, A., Sala, M., Pintore, F., Jakobsson, M.
(eds.) FC 2017. LNCS, vol. 10323, pp. 494–509. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70278-0 31

2. Berners-Lee, T.: Information management: a proposal (1989)

https://doi.org/10.1007/978-3-319-70278-0_31
https://doi.org/10.1007/978-3-319-70278-0_31


310 P. de Lange et al.

3. Berners-Lee, T., Hendler, J.A., Lassila, O.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

4. Bettstetter, C., Renner, C.: A comparison of service discovery protocols and imple-
mentation of the service location protocol. In: EUNICE 2000, 6th Open European
Summer School (2001)

5. Buterin, V.: A Modest Proposal for Ethereum 2.0 (2017)
6. Guttman, E.: Service location protocol: automatic discovery of IP network services.

IEEE Internet Comput. 3(4), 71–80 (1999)
7. Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service

Coordination in the Semantic Web, pp. 59–104. Birkhäuser Basel (2008)
8. La Torre, G., Monteleone, S., Cavallo, M., D’Amico, V., Catania, V.: A context-

aware solution to improve web service discovery and user-service interaction. In:
2016 International IEEE Conferences on Ubiquitous Intelligence & Computing,
Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress,
pp. 180–187 (2016)

9. de Lange, P., Göschlberger, B., Farrell, T., Klamma, R.: A microservice infrastruc-
ture for distributed communities of practice. In: Lifelong Technology-Enhanced
Learning, pp. 172–186 (2018)

10. Mattila, J.: The Blockchain Phenomenon - The Disruptive Potential of Distributed
Consensus Architectures (2016)

11. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly,
Sebastopol (2015)

12. O’Reilly, T.: What is web 20: design patterns and business models for the next
generation of software. Commun. Strat. 65, 17–37 (2007)

13. Paolucci, M., Sycara, K.P., Nishimura, T., Srinivasan, N.: Using DAML-S for
P2P discovery. In: Proceedings of the International Conference on Web Services,
pp. 203–207 (2003)

14. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
J. ACM 27(2), 228–234 (1980)

15. Rambold, M., Kasinger, H., Lautenbacher, F., Bauer, B.: Towards autonomic ser-
vice discovery a survey and comparison. In: IEEE International Conference on
Services Computing, pp. 192–201 (2009)

16. Sahin, O.D., Gerede, C.E., Agrawal, D., El Abbadi, A., Ibarra, O., Su, J.: SPiDeR:
P2P-based web service discovery. In: Service-Oriented Computing, pp. 157–169
(2005)

17. Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: A scalable and ontology-based P2P
infrastructure for semantic web services. In: Peer-to-Peer Computing, pp. 104–111
(2002)

18. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World
Wide Web 7(2), 211–229 (2004)

19. Sun, C., Lin, Y., Kemme, B.: Comparison of UDDI registry replication strategies.
In: IEEE International Conference on Web Services, pp. 218–225 (2004)

20. Thaden, U., Siberski, W., Nejdl, W.: A Semantic Web based Peer-to-Peer Service
Registry Network (2003)

21. W3C: W3C Data Activity: Building the Web of Data (2013). https://www.w3.
org/2013/data/

https://www.w3.org/2013/data/
https://www.w3.org/2013/data/


Decentralized Service Registry 311

22. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge
University Press, Cambridge (1998)

23. Wood, G.: Ethereum: A Secure Decentralized Transaction Ledger (2014)
24. Yan, F., Zhan, S.: A peer-to-peer approach with semantic locality to service dis-

covery. In: Jin, H., Pan, Y., Xiao, N., Sun, J. (eds.) GCC 2004. LNCS, vol. 3251,
pp. 831–834. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30208-7 116

https://doi.org/10.1007/978-3-540-30208-7_116
https://doi.org/10.1007/978-3-540-30208-7_116

	Decentralized Service Registry and Discovery in P2P Networks Using Blockchain Technology
	1 Introduction
	2 Use Case
	3 Related Work
	4 A Decentralized Service Registry
	4.1 Conceptual Overview
	4.2 Architecture
	4.3 Interacting with the Registry

	5 Preliminary Evaluation
	6 Conclusion
	References




