
CrowDIY: How to Design and Adapt
Collaborative Crowdsourcing Workflows

Under Budget Constraints

Rong Chen(&), Bo Li, Hu Xing, and Yijing Wang

Dalian Maritime University, Dalian 116026, China
rchen@dlmu.edu.cn

Abstract. Workflow quality is a key determinant of crowdsourcing complex
work, but finding ways to task design and plan has proved illusive. Instead, we
formulate it as an optimization problem with budget constraints and fewer
decision variables to set. We propose a two-staged approach CrowDIY that can
not only estimate task attributes based on previous tasks but also optimize them
with budget constraints in order to publish tasks more wisely in a timely manner.
Several experimental studies have been conducted, and the results show com-
pelling evidence that, under different conditions, the proposed approach can
effectively reduce the workload of workflow design and plan, while avoiding
commonly encountered trial-and-error in crowdsourcing workflows and leading
up to successful complex outcomes.

Keywords: Crowdsourcing workflow � Workflow design and plan �
Task publishing � Optimization

1 Motivation and Background

The dominant infrastructure in human computation systems today is workflow, which
typically splits a business process into multiple microtasks and asks distinct workers to
carry them out in pre-specified steps on services like Amazon’s Mechanical Turk
(MTurk), CrowdFlower and CrowdSPRING [4]. There is little doubt that crowd-
sourcing workflows (CWs) are powerful because they build operational knowledge into
software [2], allowing people around the world to work collaboratively and contribute
meaningfully.

Though CW techniques pushed the boundary of crowsourcing [8], task requesters
still need to program their own workflow or intervene continuously on the execution of
their manmade workflow [9]. Task requesters need to make a variety of decisions
regarding the task they want to submit [12]. To understand the complexity behind
practical usage, we use the example of writing short essay about Dalian – a tourist city
in China. Figure 1 shows the screenshot of a crowdsourcing workflow G1 composed of
eleven tasks with indexed numbers inside circles (denoted as T1, T2, …, T11). Tasks are
of specified types: question and answer (QA), choice, merge, notification, AND- and
OR-node. To design G1 with a graphical web UI on CrowDIY (Crowdsourcing - Do It
Yourselves), the requester decomposes essay writing into several steps: (1) Puts a

© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 203–210, 2019.
https://doi.org/10.1007/978-3-030-19274-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-19274-7_15

question to crowd for suggesting aspects to describe Dalian via QA node T1,
(2) Chooses three hot aspects via majority voting (T2), (3) Asks crowd to write about
the selected aspects (later bound to culture (T3) and architecture (T4) and transportation
(T5) at runtime), and then asks others to read and give their rates (T6, T7, and T8
respectively), (4) Combine the content via a merge node T9, (5) Makes his own
decision via choice node T10, and (6) T11 to notify the completion. Figure 1 also shows
the execution status of G1 that started from T1, ran through task nodes (denoted in
green), steps into T9 for merging, and will end in T11 for notification.

Provided with task decompositions (e.g. via a map-reduce paradigm [7], a divide-
and-conquer strategy [6], and a customized policy [1]), the design and plan of work-
flows like G1 are still not easy because at least information such as the task type and
description, time effort, time allotted, the reward for which the worker actually booked
the task, and the time it took from publishing to booking should be defined for each
task at the design time. We address the problem of crowdsourcing workflow opti-
mization (CWO), and propose a two-staged approach that can not only estimate
attributes and parameters but also optimize them with budget constraints, and then
publish tasks more wisely in a timely manner.

2 Proposed Approach

2.1 Problem Statement

A workflow can be characterized by a directed acyclic graph (DAG) G = (T, E) where
the nodes T = {T1, T2,…, Tn} correspond to the tasks and the edges E indicate the data
dependencies between tasks.

Fig. 1. The motivational example workflow G1.

204 R. Chen et al.

Definition 1 (Total Cost). The total cost of a workflow G = (T, E) is the sum of all
task rewards, defined as:

Cost Gð Þ ¼
X

8Ti2T ri ð1Þ

Besides rewards, more attributes are associated with a task in a real crowdsourcing
workflow; they are type, level of difficulty, effort to complete in terms of the number of
time points, time allotted, reward, latest booking time for booking, earliest publishing
time and buffer time. Concisely, each task Ti is characterized by Ti = (typei, lodi, etci,
tai, ri, lbti, epti, bti).

Definition 2 (Sequential and Parallel Execution). A sequential execution of a work-
flow G = (T, E) is a sequence of tasks sp = [T1, T2, …, Tn], such that T1 is the initial
task, Tn is the final task, and for every task Ti (1 � i � n):

• Ti is a direct successor of one of the tasks in sp.
• Ti is not a direct successor of any of the tasks in sp.
• There is no state Tj in sp such that Tj and Ti belong to two alternative branches of the

workflow.
A parallel execution of a workflow G is a set pp(G) = {sp1, sp2, …, spm} of
sequential executions of G such that all the parallel branches of every AND-node in
spj = [T1, T2, …, Tn] (1 � j � m) are executed when that AND-node is entered.
Formally,

• If Ti is the initial task of one of the parallel regions of an AND-node, then, for every
other parallel region C, one of the initial tasks of C belongs to the set {T1, …, Ti-1,
Ti+1, …, Tn].

The second goal of the CW research is to manage business processes in terms of
time, e.g. by controlling the estimated total execution time, which means the longest
sequential execution path that covers all parallel regions.

Definition 3 (Estimated Total Execution Time) Let sp = [T1, T2, …, Tn] 2 pp(G) be
any sequential execution of a workflow G. The estimated total execution time of G,
denoted by ETime(G), is the maximum of ETime(sp):

ETimeðspÞ ¼ lbt1 þ
Xn

i¼1
tai ð2Þ

ETimeðGÞ ¼ max
8sp2ppðGÞ

ETimeðspÞ ð3Þ

The present research makes two extensions to the available CW studies: (1) A fewer
task attributes (e.g. typei and lodi) are mandatory while others are optional. The
mandatory part are set manually while the optional part can be defined by functions that
take mandatory lodi and historical task data as arguments. (2) We control the execution
time by minimizing the overdue risk while ensuring the deadline and the cost budget.
Next we offer an overview of our approach CrowDIY before formalizing them as the
CWO problem.

CrowDIY: How to Design and Adapt Collaborative Crowdsourcing Workflows 205

2.2 CWO Formulation

Throughout this paper, time-related parameters and task attributes are supposed to be
characterized in terms of time points t0 (start time), t1, t2, …, tD (deadline time) such
that each ti defines a point in time that i time slices have elapsed.

Definition 4 (Overdue Risk). The overdue risk of any task Ti with respect to start time
t and buffer time bt is defined as:

f ðlodi; t; btÞ ¼ lodi � ½a2ðtþ btÞ2 þ a1ðtþ btÞþ a0� ð4Þ

with weights a0, a1 and a2 2 [0..1].
A CWO problem is to find a solution of task attributes with minimized overdue risk

while not exceeding the deadline and the cost budget. There exist two solution sce-
narios: static assignment, in which lbts and tas of all tasks are set while aggregating
estimated execution time in design phase, and dynamic assignment, in which epts and
bts are set for initial tasks to be published while aggregating the estimated execution
time of tasks not yet run.

Definition 5 (Static CWO Assignment). Let G = (T, E) be a workflow under design,
Rmax be the budget in score points, and Dmax be the deadline in time points. A static
CWO assignment is to find: for each task Ti in sp = [T1, T2, …, Tn] 2 pp(G) (1 �
i � n), the lbti and the tai that, minimize

X
8Ti2sp f ðlodi; lbti; taiÞ

subject to

tai \ lbti � lbti�1ði� 2Þ ð5Þ

CostðGÞ�Rmax ð6Þ

ETimeðGÞ� tDmax ð7Þ

Note that the real execution time of tasks may be different from what was estimated.
Let TC � T be tasks that have already completed so far, and EC = {<T1, T2> | 8 T1, T2
2 TC, <T1, T2> 2 E} be edges that have already been covered. We separate G into two
subgraphs: the completed part GC = (TC, EC), and the part not completed GC = (T−TC,
E−EC).

Definition 6 (Dynamic CWO Assignment). Let TC = {T1, T2, …, TC} be tasks
G = (T, E) of that have already completed at time point tC, and G = GC [GC, and In
(GC) = {Ti | Ti is the initial task of any sequential execution sp 2 pp(GC)}. Let Rmax be
the budget in terms of score points, and Dmax be the deadline in terms of the number of

206 R. Chen et al.

time points. A dynamic CWO problem is to find: for each task Ts 2 In(GC), and for
each task Ti 2 sp 2 pp(GC) (i 6¼ s), the epts, the bts, the lbti, and the tai that, minimize

X
8Ti2sp f ðlodi; lbti; taiÞþ

X
8Ts f ðlods; epts; btsÞ

subject to

tC � epts \ lbtsð8Ts 2 InðGCÞÞ ð8Þ

tas � btsð8Ts 2 InðGCÞÞ ð9Þ

tai \ lbti � lbti�1ði� 2Þ ð10Þ

CostðGÞþCostðGCÞ � Rmax ð11Þ

ETimeðGCÞ � tDmax ð12Þ

2.3 Solution Algorithms

Algorithm 1 depicts the overall procedure of CrowDIY, which starts from Task, max
reward Rmax, max deadline Dmax to perform workflow design and revise (Step 1),
planning (Steps 2–4) and publishing (Steps 7–10) remained tasks to crowd workers
until all tasks are finished or the Dynamic CWO has no solution.

CrowDIY: How to Design and Adapt Collaborative Crowdsourcing Workflows 207

Design(Task, Rmax, Dmax) means that the requester can design a CW via the Web UI
in several steps: decompose complex tasks into small ones by calling divide(Task),
place a choice node for selecting answers, manage task dependencies and structure
(AND-node or OR-node), later combine the results into a coherent solution via merge
node, and finalize with a notification node. Design can be extended recursively or
revised repeatedly by Algorithm 1 (from step 1 to 6). As described by Algorithm 2,
Transform(tC, GC, Rmax, Dmax) instantiates constraints Eqs. (8)–(12) and the overdue
risk function Eq. (4) for GC at current time tC.

3 Evaluation and Results

We implemented the solution method in a crowdsourcing workflow system CrowDIY
in Python [5], running on the Django Web Framework with SQlite and other tools for
solving the CWO problem and generating workflow. To solve the CWO problem,
CrowDIY integrates Gurobi, Cplex and Choco through constraint programing in Java
in order to find static and dynamic CWO assignments. We set weights of Eq. (4) with
a0 = 0.25, a1 = 0.4, and a2 = 0.5.

Workflows were generated with JGraphT–a Java library of graph theory data
structures and algorithms [10], and mandatory attributes such as node type and level of
difficulty are generated uniformly in random. We vary the number of workflows from 1
to 500 while the number of tasks in every workflow is in [6..20]. We assumed that there
were 3000 workers and task attributes were generated. For every task type, we gen-
erated other task attributes that are linearly dependent on task difficulty as we did in
case studies. Also 300 workers were assigned the least time allotted to finish a task and
the minimum acceptable reward, which were generated using the normal distribution
based on the average reward, average allotted time and their allowable deviation
parameters. So we prepared a large number of different workflows with randomizing
workflow structures and diverse deadlines, and tasks in them have various allotted
times and booking times.

The number (#W) of workflows ranges from 1 to 500, and each is compared with
the reference case #W = 1. First, we guess the max deadline Dmax for every workflow
in every case. If the manmade Dmax does not make sense, there is no solution to the
CWO formulation of the workflow under consideration. So we can count the number of
trial-and-error (#E) of CWO solving. If Dmax makes sense, then we guess the max
reward Rmax. If the manmade Rmax works, constraint solvers return the overdue risk and
their execution time (#T) in seconds. In particular, #OR indicates the multiple of 329.7
or 722.1, namely the overdue risk of the reference case #W = 1. If Rmax is implausible,
“no solution” means that, at design time the workflow is found more likely to “fail”
because it requires the deadline extension. So we compare the time extension (#X) in
time points raised by failed workflows. The more time extension failed workflows
require, the better solution the constraint solver can ensure. All metrics we used are
reported on average for all the workflows we prepared.

208 R. Chen et al.

The first experiment is to find the best solver for workflow plan (i.e. static CWO
assignment). The comparison results were summarized in Table 1. It can be seen that as
#W grows, their performance present the trend of linear growth under four metrics.
Also we can see that the performance of Gurobi and Cplex are similar in #E, #OR, and
#X. But Gurobi is much better than Cplex in terms of #T. So we choose Gurobi to
conduct the rest experiments.

The second experiment is to verify whether buffer time influences the final outcome
of all workflows in the task publishing algorithm with a linear dependence
bts ¼ x � tas x 2 0:2; 0:5; 1; 2; 3; 4; 5; 6f gð Þ. It can be seen from Fig. 4 that the
optimal results have achieved the minimum value when buffer time is almost equal to
its allotted time. In case of smaller buffer time, for example x = 0.2 and x = 0.5 (x-
axis), more tasks were not booked on time, so the reward to workers should be raised.
At the same time, lack of time also increase the possibility of missing deadlines. That is
why three metrics (#OR, #X and #E) have higher values. If the buffer time is larger, for
instance coefficient x 2 [2..6], the values of three metrics are higher than the optimal
results, but still much lower than the buffer time. This is because tasks can be booked
earlier by workers.

Table 1. Results from comparative constraint solvers.

Gurobi Cplex Choco
#W #E #OR 329.7 #T #X #E #OR 329.7 #T #X #E #OR 722.1 #T #X

1 0 1 2.3 0 0 1 2.9 0 0 1 4.1 0
10 0 5.5 2.9 0 0 5.5 4.8 0 0 5.5 6.0 0
50 0 13.6 3.5 0 0 13.6 18.1 0 0 13.7 26.4 0
100 1 23.7 7.5 1 1 23.7 23.5 1 1 23.4 65.6 1
200 3 27.8 11.0 7 4 27.9 59.0 7 1 28.0 130.0 3
300 5 31.0 10.2 10 5 31.1 91.5 11 1 31.3 146.6 3
400 6 34.1 15.0 12 7 34.1 116.3 13 1 34.2 272.8 4
500 9 38.0 17.1 17 10 38.1 165.0 18 2 38.1 299.8 4

Fig. 4. Finding the most appropriate buffer time.

CrowDIY: How to Design and Adapt Collaborative Crowdsourcing Workflows 209

4 Conclusion and Future Work

The present approach eases the complexity behind collaborative crowdsourcing process,
but dynamic approach to publishing cannot guarantee the time constraints because there
is a lot of uncertainty in crowdsourcing, especially the anonymous people with uncertain
skills and commitments. What merits future investigation includes advancing the
training of Estimator and the control of workflow, and exploiting statistical sampling of
people from the crowd after they contributed meaningfully in previous tasks [3, 11].

Acknowledgments. This work is supported by the National Natural Science Foundation of China
(No. 61672122, No. 61602077), the Natural Science Foundation of Liaoning Province of China
(No. 2015020023), the Educational Commission of Liaoning Province of China (No. L2015060)
and the Fundamental Research Funds for the Central Universities (NO. 3132016348).

References

1. Bernaschina, C., Catallo I., Fraternali P., Martinenghi, D., Tagliasacchi, M.: Champagne: a
web tool for the execution of crowdsourcing campaigns. In: International Conference on
World Wide Web (Companion), pp. 171–174. ACM, New York (2015)

2. Bigham, J.P., Bernstein, M.S., Adar, E.: Human-computer interaction and collective
intelligence. In: Handbook of Collective Intelligence, pp. 57–84. MIT Press (2015)

3. Chen, R., Chen, S.-F., Zhang, X.-Y.: A two-staged task assignment algorithm for worker
recommendation in a crowdsourcing environment. In: International Conference on Industrial
Engineering and Engineering Management, Singapore, pp. 2034–2038 (2017)

4. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-wide web.
Commun. ACM 54, 86–96 (2011)

5. Huang, Y.-T.: Design and implementation of a workflow system for crowdsourcing. Master
thesis, Dalian Maritime University (2017). (in Chinese)

6. Kittur, A., Smus, B., Khamkar, S., Kraut, R.E.: CrowdForge: crowdsourcing complex work.
In: Annual ACM Symposium on User Interface Software and Technology, pp. 43–52. ACM,
New York (2011)

7. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows with
turkomatic. In: ACM Conference on Computer Supported Cooperative Work, pp. 1003–
1012. ACM, New York (2012)

8. Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: TurKit: human computation algorithms
on mechanical turk. In: Annual ACM Symposium on User Interface Software and
Technology, pp. 57–66. ACM, New York (2010)

9. Retelny, D., Bernstein, M.S., Valentine, M.A.: No workflow can ever be enough: how
crowdsourcing workflows constrain complex work. In: ACM Human-Computer Interaction,
CSCW, vol. 1, Article 89, 23 p. ACM (2017)

10. JGraphT. https://jgrapht.org. Accessed 10 Jan 2019
11. Gadiraju, U., Kawase, R.: Improving reliability of crowdsourced results by detecting crowd

workers with multiple identities. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE
2017. LNCS, vol. 10360, pp. 190–205. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-60131-1_11

12. Catallo, I., Martinenghi, D.: The dimensions of crowdsourcing task design. In: Cabot, J., De
Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 394–402. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-60131-1_25

210 R. Chen et al.

https://jgrapht.org
http://dx.doi.org/10.1007/978-3-319-60131-1_11
http://dx.doi.org/10.1007/978-3-319-60131-1_11
http://dx.doi.org/10.1007/978-3-319-60131-1_25

	CrowDIY: How to Design and Adapt Collaborative Crowdsourcing Workflows Under Budget Constraints
	Abstract
	1 Motivation and Background
	2 Proposed Approach
	2.1 Problem Statement
	2.2 CWO Formulation
	2.3 Solution Algorithms

	3 Evaluation and Results
	4 Conclusion and Future Work
	Acknowledgments
	References

