
On Twitter Bots Behaving Badly:
Empirical Study of Code

Patterns on GitHub

Andrea Millimaggi and Florian Daniel(B)

Politecnico di Milano, Via Ponzio 34/5, 20133 Milan, Italy
andrea.millimaggi@mail.polimi.it, florian.daniel@polimi.it

Abstract. Bots, i.e., algorithmically driven entities that behave like
humans in online communications, are increasingly infiltrating social con-
versations on the Web. If not properly prevented, this presence of bots
may cause harm to the humans they interact with. This paper aims to
understand which types of abuse may lead to harm and whether these
can be considered intentional or not. We manually review a dataset of
60 Twitter bot code repositories on GitHub, derive a set of potentially
abusive actions, characterize them using a taxonomy of abstract code
patterns, and assess the potential abusiveness of the patterns. The study
does not only reveal the existence of 31 communication-specific code pat-
terns – which could be used to assess the harmfulness of bot code – but
also their presence throughout all studied repositories.

Keywords: Bots · Harm · Abuse · Code patterns · GitHub · Twitter

1 Introduction

Social networks, microblogging or instant messaging services like Facebook,
Twitter, Instagram, LinkedIn, WhatsApp, Telegram, and similar are the foun-
dation of the Web 2.0, that is, the Web made of content and services provided
by the users themselves. Over the last 15 years, these applications have enabled
users all around the world to stay informed, share ideas and discuss opinions. In
short, they revolutionized online communication to billions of humans.

In the recent years, a new phenomenon has arisen: bots, i.e., algorithmically
driven entities that behave like humans in online communications and increas-
ingly participate in conversations without the human participants necessarily
being aware of communicating with a machine [8]. State-of-the-art artificial intel-
ligence, speech technology and conversational technology enable the implemen-
tation of software agents whose communications are only hardly distinguishable
from those by human agents. Combined with generally low transparency about
the true nature of bot accounts, humans are easily fooled.

In [6], we have started asking ourselves whether the increasing presence of
bots may lead to harmful human-bot interactions that may hurt the human par-
ticipant in the conversation, and by searching for papers, news, blog posts, and
c© Springer Nature Switzerland AG 2019
M. Bakaev et al. (Eds.): ICWE 2019, LNCS 11496, pp. 187–202, 2019.
https://doi.org/10.1007/978-3-030-19274-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19274-7_14&domain=pdf
http://orcid.org/0000-0003-3004-8702
https://doi.org/10.1007/978-3-030-19274-7_14


188 A. Millimaggi and F. Daniel

similar we found a variety of anecdotal evidence that this may indeed happen.
Of course, bots are not harmful in general. But sometimes, intentionally or unin-
tentionally, software-driven conversations may just break common conversational
rules, etiquette, or even the law. It is important to acknowledge the problem, to
be able to provide countermeasures and to prevent people from getting hurt.

As we show in our discussion of related works, most of the literature today
focuses on the detection of bots and on telling bots and humans apart starting
from the evidence (e.g., posts, comments, likes) that is observable and accessible
online. There is very little information on assessing the harms caused by this
presence of bots, even less so on the reasons that lead to harm. This paper studies
this latter aspect and aims to identify how harm is caused by bots to understand
the likely, underlying intentions. Doing so requires looking behind the curtain,
away from the content shared online and into the actual code implementing the
bots’ communication logic. The contributions of this paper are:

– The construction of a dataset of social bot GitHub code repositories for Twit-
ter; the analysis focuses on code written in Python and on project metadata.

– An abuse-oriented classification of bot code repositories according to how the
developers themselves advertise their projects.

– A qualitative, systematic code review that identifies 31 potentially abusive
code patterns that may lead to harmful interactions with human users and a
discussion of the possible intentions underlying these patterns.

– A qualitative analysis of the potential harmfulness of each identified pattern.

Next, we elaborate on the background of the work, then in Sect. 3 we describe
the dataset we use for our study and report on a preliminary analysis of the
data. In Sect. 4, we detail the method underlying the analysis and describe the
respective results: actions, patterns and possible consequences. After overviewing
related works, we conclude the paper and outline future works.

2 Background

2.1 Harm and Abuse in Human-Bot Interactions

Harm occurs when someone suffers an injury or damage, but also when some-
one gets exposed to a potential adverse effect or danger. In prior work [6], we
identified the following types of harm caused by bots:

– Psychological harm: it occurs when someone’s psychological health or well-
being gets endangered or injured. An example of a bot causing psychological
harm is Boost Juice’s Messenger bot that was meant as a funny channel to
obtain discounts by mimicking a dating game with fruits but used language
that was not appropriate for children (http://bit.ly/2zvNt0E).

– Legal harm: it occurs when someone becomes subject to law enforcement or
prosecution. A good example is the case of Jeffry van der Goot, a Dutch
developer who had to shut down his Twitter bot generating random posts,
after it sent out death threats to other users (http://bit.ly/2Dfm71P).

http://bit.ly/2zvNt0E
http://bit.ly/2Dfm71P


On Twitter Bots Behaving Badly 189

– Economic harm: it occurs when someone incurs in monetary cost or loses
time that could have been spent differently. For example, in 2014 the bot
wise shibe provided automated answers on Reddit and users rewarded the
bot with tips in the digital currency Dogecoin, convinced they were tipping
a real user (http://bit.ly/2zu2b6r).

– Social harm occurs when someone’s image or standing in a community gets
affected negatively. An example of a bot causing social harm was documented
by Jason Slotkin whose Twitter identity was cloned by a bot, confusing friends
and followers (http://bit.ly/2Dfq4DH).

– Democratic harm occurs when democratic rules and principles are under-
mined and society as a whole suffers negative consequences. Bessi and Fer-
rara [2], for instance, showed that bots were pervasively active in the on-line
political discussion of the 2016 U.S. Presidential election.

These types of harm may happen while bots perform regular actions, such
as posting a message or commenting a message by someone else, that are not
harmful per se and that also human users would perform. What needs to happen
in order to cause harm is the abusive implementation of these actions. Abuses
we found are: disclosing sensitive facts, denigrating, being grossly offensive, being
indecent or obscene, being threatening, making false allegations, deceiving users,
spamming, spreading misinformation, mimicking interest, cloning profiles, and
invading spaces that are not meant for bots. Some of these may be subject to
legal prosecution (e.g., threatening people), others only breach moral, ethical or
social norms, yet they still may be harmful to unprepared human users.

2.2 Platform Policies and Permissions

In order to properly assess the behavior of a bot, it is important to understand
the position of the platforms targeted by bots in relation to automation through
bots. For this purpose, we manually surveyed the usage policies of a selection
of social networks (Facebook, Twitter, Thumblr), instant messaging platforms
(Telegram, Whatsapp, Facebook Messenger), platforms for media sharing (Insta-
gram, Pinterest), a professional network (LinkedIn) and Reddit.

All platforms provide developers with programmable interfaces (APIs) that
can be used for the development of bots; Messenger and Telegram even come
with APIs specifically tailored to bots, more specifically, chatbots. Whatsapp is
the platform that is most restricted: its Business API allows the implementation
of bots, but it seems limited to company use only; however, Android intents
(https://bit.ly/2RwjScE) can be used locally on the mobile phone to interact
with Whatsapp programmatically. Where an API is provided, it typically allows
programmatic access to essentially all functionalities that would also be available
to users via the platforms’ user interfaces. Users of the APIs must authenticate
with the platforms (the preferred protocol is OAuth) and obtain a token enabling
programmatic access; only Telegram gives tokens without authentication. All of
the studied APIs are REST APIs; Facebook and Twitter also provide access to
streaming, live data. To ease development, some platforms (Facebook, Twitter,

http://bit.ly/2zu2b6r
http://bit.ly/2Dfq4DH
https://bit.ly/2RwjScE


190 A. Millimaggi and F. Daniel

Messenger, LinkedIn) are equipped with developer-oriented software develop-
ment kits (SDKs), even in multiple programming languages. Others (Twitter,
Instagram) provide more basic programming libraries.

As for the usage policies, almost all platforms impose some kind of limitation.
For instance, “200 calls per hour per user” per app on Facebook. Twitter uses
message-level limits, e.g., to prevent aggressive following practices. Only Messen-
ger does not explicitly limit usage and instead even states “you can safely send
250 requests per second.” Some platforms impose specific requirements, such as
“keep your app’s negative feedback below our threshold” (Facebook) or “auto-
mated bots must respond to any and all input from the user” (Messenger). An
explicit code review is needed for Facebook, Instagram and Messenger. Automa-
tion is generally allowed, although commonly limited to actions the target users
have explicitly granted permission to; Twitter, for instance, disallows “sending
messages in an aggressive or discriminate manner.” Most policies even include
content restrictions like “don’t create fake accounts” (Facebook) or “don’t send
tweets containing links that are misleading.” All surveyed platforms explicitly
state that they may suspend accounts or apps if they violate their policies.

3 Dataset: Twitter Bot Code Repositories

This paper follows a Data Science methodology [9] to extract new knowledge
from data. We thus describe here the dataset underlying our study and provide
a first analysis of how developers themselves describe their own bot projects.

3.1 Data Sources and Retrieval

Fig. 1. Distribution of GitHub search results
by searched keywords (includes all program-
ming languages).

In this paper, we specifically focus on
Twitter (https://twitter.com) and
bots written in Python. The former
is an opportunistic choice, shared
by most literature on the topic (see
Sect. 5 for related works) and is
motivated by the openness of Twit-
ter compared to other platforms.
The latter stems from the observa-
tion that Python is the most used
language for Twitter bot implemen-
tations in GitHub (35.4% of the
repositories we analyzed for Twit-
ter use it). GitHub (https://github.
com) is the code hosting service we use for data collection; the choice is again
driven by adoption: with about 31M users and 100M projects (or “reposito-
ries”), GitHub is today’s most used code hosting service (https://www.alexa.
com/topsites/category/Computers/Open Source/Project Hosting).

https://twitter.com
https://github.com
https://github.com
https://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting
https://www.alexa.com/topsites/category/Computers/Open_Source/Project_Hosting


On Twitter Bots Behaving Badly 191

In order to identify candidate repositories for our analysis, we used GitHub’s
search API with a combination of two terms, “Twitter” and any among “bot,”
“automation,” “auto” and “automated.” Fig. 1 shows the distribution of results
obtained by the search considering still all programming languages. As the result
of the query “Twitter bot” shows, the term “bot” is highly used for Twitter
(we performed similar searches for all platforms mentioned in Sect. 2.2, and the
results distributions do vary from platform to platform). The search represents
the state of GitHub as of October 29, 2018, the date the search was performed.
For each identified repository, we collected all code files included in the reposi-
tory as well as a subset of the respective project metadata: URL, programming
language, description (a short line of text), and fork/subscriber/watcher counts.

3.2 Preliminary Analysis

As the purpose of this paper is to understand how bots implement their interac-
tions with humans, the analysis necessarily requires a manual inspection. This,
in turn, requires a careful selection of repositories, in order to keep the size of
the dataset manageable and the selected repositories meaningful. Before choos-
ing which repositories to keep and which not, we thus run a simple analysis
based on the textual descriptions of the projects in order to obtain a prelimi-
nary understanding of which actions the repositories implement.

The analysis followed a top-down approach: We took as starting point the
actions identified in our previous work [6], i.e., talk with user, redirect user, write
post, comment post, forward post, like message, follow user, and create user, and
matched the retrieved repositories with these action labels. In order to match
repositories with action labels, we manually inspected the descriptions of the
first 100 items as returned in order of relevance by the GitHub search API and
extracted textual keywords from the descriptions. Examples of keywords are:
send messages, reply to messages, chat, post, tweet, tag, poke, and similar. Then
we mapped all keywords to respective action labels, such as {send messages,
reply to messages, read messages, direct message, chat} → talk.

The mapping exercise produced evidence for the existence in the dataset
of all the actions above, plus the addition of 3 new action labels: some projects
explicitly claimed to implement a spam functionality; others implemented a poke
user and a recommend user functionality.

According to [6], spamming is actually an abuse of the actions write post
or forward post, but we kept it as the descriptions explicitly use the keyword.
Poking and recommending users are not functionalities of Twitter: the former
is a specific action of Facebook and the latter of LinkedIn, but they appeared
anyway in the classification. Very likely the two actions refer to bots that provide
cross-platform functionalities, starting from Twitter, which are however out of
the scope of this paper.



192 A. Millimaggi and F. Daniel

Fig. 2. Labels of repositories.

The goal of this inspection was to enable
the automatic labeling of the repositories
with action labels by analyzing the key-
words found in their descriptions and the
informed selection of repositories for man-
ual inspection. The automation was achieved
by transforming all keywords (and their vari-
ants) into regular expressions that could eas-
ily be searched for in the repository descrip-
tions. The results of the classification of all
retrieved Twitter repositories is shown in
Fig. 2. It is evident that the most popular
action labels are: follow user, forward post,
write post, and talk with user. Interestingly,
the label like post is not as important, while
all other actions have very little support in the dataset.

3.3 Final Dataset

With the goal of maximizing the likelihood of being able to identify recurrent
patterns in the code while guaranteeing diversity in the dataset, we applied the
following criteria for the selection of the code repositories to be included in the
study:

– Selection of repositories that use as main programming language Python.
– Exclusion of all those repositories that, after manual inspection, were consid-

ered out of scope, e.g., because not implementing bots at all or because not
implementing any direct communication with other platform users.

– For each of the four most used actions (according to the preliminary analysis),
selection of 5 repositories randomly chosen from the respective best reposi-
tories, according to the ranking provided by GitHub. The respective scores
account for the number of forks, clones, likes, and similar. This choice assures
that there is a minimum number of popular projects in the dataset for which
we can assume to find code patterns with reasonable support.

– For each of the four most used actions, random selection of 5 repositories from
the rest of the respective retrieved repositories. This choice aims to include
also examples that are less popular, while still useful for our analysis.

– Selection of 10 repositories randomly chosen from the best repositories we
could not classify automatically in the preliminary analysis. This assures the
presence of a-priori unknown but popular repositories.

– Selection of 10 repositories randomly chosen from the rest of the not classi-
fied repositories, again to assure a representative selection of generic, a-priori
unknown repositories.



On Twitter Bots Behaving Badly 193

The final dataset selected for analysis in this paper is thus composed of 60
GitHub Twitter bot repositories whose main programming language is Python.
In average, each repository comes with 3 files (standard deviation of 2.02) with
an average number of lines of code of 192, an average size of 21.39 KBytes, an
average number of subscribers of 3, and an average number of watchers of 13.
The most popular repository (twitter-contest-bot, https://github.com/kurozael/
twitter-contest-bot) has been forked 99 times, the least popular one (tweet-
pix, https://github.com/mseri/tweetpix) 0 times, with an average of 5 forks per
project across all projects included.

4 Identification and Analysis of Abusive Code Patterns

4.1 Method

To the best of our knowledge, this is the first study that aims to understand
and categorize how state-of-the-art social bots implement their interactions with
human actors and whether it is possible to identify explicit intentions for the
behaviors the bots exhibit in their social communications; no results exist yet.
Starting from the dataset described above, we thus perform a manual, system-
atic review [10] of the code retrieved from GitHub, in order to (i) identify which
code passages implement interactions with humans, (ii) categorize the concrete
actions the bots use in their interactions (similar to [6]), and (iii) identify differ-
ent implementation patterns for each categorized action, along with respective
examples (green field analysis). Actions and patterns were first categorized by
one of the authors and then agreed on and integrated by both authors. The result
is a conceptual framework composed of actions, patterns and code examples that
may allow us to infer the intention behind possible abuses.

4.2 Actions: How Bots Participate in Communications

The preliminary analysis of our dataset in Sect. 3.2 has shown that Twitter
bot developers promise almost all of the typical actions also human users can
perform when using social networks. In order to understand which actions are
really implemented in the repositories forming our dataset, and how, we reviewed
all code files of the dataset manually looking for relevant code fragments. For a
code fragment to qualify as action it either has to (i) implement some form of
interaction by the bot with other users or (ii) implement application logic that
manages content or user data fetched from the social network. An action thus
represents a self-contained interaction of the bot with content and/or users.

The result of this iteration is summarized in Table 1, which describes the 9
actions that represent a consistent synthesis of all examples identified by this
exercise. As expected, the bottom-up analysis brought up a set of typical social
network actions, declined in Twitter terminology. Bots follow other users, like
their tweets, tweet own content, mention other users in their tweets, or retweet
tweets by others. Inside private chat rooms, they also talk to other users using
instant messages. This result is in line with the actions identified in [6].

https://github.com/kurozael/twitter-contest-bot
https://github.com/kurozael/twitter-contest-bot
https://github.com/mseri/tweetpix


194 A. Millimaggi and F. Daniel

But there is more. Looking at the code of the bots further produced three
internal actions that support their social network actions: bots heavily search
Twitter for users or tweets, in order to harness accounts and content to work
with; they intentionally pause or delay their interactions, in order to impersonate
users; and they may store content they retrieve from the network for later use.
These internal actions are observed only in the code of the bots and would not
be identifiable by looking at the externally visible communications of the bots
only, as done by most literature on the topic. Later in this paper, we will see
that also internal actions that are not immediately visible to users may lead to
abuses and harm.

Table 1. Synthesis of online communication actions implemented by Twitter bots

Action Description

Search Search users or tweets using names, keywords, hashtags, ids or similar
or by navigating social network relationships (e.g., friends of friends,
followers of friends, friends of followers, followers of followers)

Follow Follow users to establish social relationships

Like Like tweets by other users to endorse them

Tweet Post a new tweet to communicate content

Mention Mention other users in tweets using @ to attract attention

Retweet Re-post tweets by other users to endorse them

Talk to Send direct messages to users to converse with them

Pause Pause the conversation flow of the bot

Store Store content retrieved from the social network for later use

4.3 Code Patterns: How Bots Implement Their Actions

Focusing on the code fragments considered relevant as communication actions, a
second iteration of the code review aimed at synthesizing all examples of action
implementations into a taxonomy of recurrent code patterns that explains how
actions are implemented in practice. For a code fragment to qualify as a pattern,
two requirements must be met: (i) it must be possible to abstract the fragment
and to associate it to at least one action, and (ii) it must recur at least two
times in the dataset. A pattern thus represents the intended function of a set of
instructions, not their syntactic manifestation in the code.

Even accounting for different names of identifiers in the code, without this
type of semantic abstraction it would be necessary to perform a purely syntactic
similarity search. However, given the diversity of the repositories and developers
that characterize our dataset, only unlikely it would have been possible to spot
two fragments that are syntactically equivalent.



On Twitter Bots Behaving Badly 195

Table 2. Taxonomy of code patterns used for the implementation of actions.

Action Pattern Description

Search User search Search user account by name, keyword, id or similar

Tweet search Search tweets by keyword or hashtag

Trend search Search trending topics or hashtags by location

Follow Indiscriminate

follow

Follow users without checking suitability of users, usernames or content

shared

Whitelist-based

follow

Follow only users whose attributes or tweets match some element of a

given whitelist

Blacklist-based

follow

Don’t follow users whose attributes or tweets satisfy one or more criteria

specified in a blacklist

Phantom follow Follow users and unfollow them as soon as a given condition is satisfied,

e.g., a limit of friends reached or being followed back

Like Indiscriminate

like

Like tweets without checking suitability of content, user or username

Whitelist-based

like

Like only tweets by users whose attributes or content match some element

of a whitelist

Blacklist-based

like

Don’t like tweets whose attributes or users match an element of a blacklist

Mass like Aggressively like tweets of given users

Tweet Fixed-content

tweet

The content of the tweet is taken from a fixed, static collection of

predefined messages

AI-generated

tweet

The text of the tweet is automatically generated using AI/NLP tools

Trusted source

tweet

The content of the tweet is taken from a source that can be considered

trusted

Tweet with

opt-in

Tweets are sent only to people who ask to interact with the bot, sending

it a message or mentioning it in a tweet

Mention Indiscriminate

mention

Mention other users without checking suitability of username or content

shared

Targeted

mention

Classify users on the basis of their tweets and mention them in targeted

messages

Whitelist-based

mention

Mention only users whose attributes match some element of a whitelist

Blacklist-based

mention

Don’t mention users whose attributes match elements of a blacklist

Retweet Indiscriminate

retweet

Retweet tweets without checking content or username for suitability

Whitelist-based

retweet

Retweet content only from users whose attributes match some element of

a whitelist

Blacklist-based

retweet

Don’t retweet tweets whose attributes or users satisfy some condition

expressed in a blacklist

Mass retweet Aggressively retweet multiple tweets by selected users

Talk to Indiscriminate

talk

Send direct, instant messages to users without checking their suitability

Talk with opt-in Reply only to messages sent to the bot (passive behavior)

AI-generated talk Generate messages using AI/NLP tools

Fixed-content

talk

Take message from a fixed list of predefined phrases

Targeted talk Classify users based on their tweets or attributes and target message

accordingly

Pause Mimic human Use pauses in instant messages to deliver human-like conversation

experience to other humans

Satisfy API

constraints

Use as short as possible pauses just to avoid being blocked by API usage

limitations

Store Store persistently Store retrieved content or user information for later use



196 A. Millimaggi and F. Daniel

For instance, it is possible to interact with the Twitter API using direct,
low-level HTTP requests, or one can use a dedicated API wrapper library,
such as (in order of use in our dataset): tweepy (http://www.tweepy.org), Twit-
ter libraries (https://bit.ly/2Gg3WJC), TwitterAPI (https://bit.ly/2UwSZri),
Twython (https://bit.ly/2aOjCnT), or own, proprietary libraries. Similarly,
there are different options for the automatic generation of text for tweets or
instant messages, such as nltk (https://www.nltk.org/) or seq2seq (https://bit.
ly/2Ry2FQt). Patterns abstract away from these implementation choices and
aim to capture the essence of what the developer wanted to implement.

The result of this analysis is reported in Table 2, which names and summa-
rizes the identified patterns. These 31 patterns concisely represent the different
interpretations of the 9 actions as implemented in the approximately 140 code
examples collected and analyzed.

Example 1. Let us inspect the following two lines of code to understand the logic
of the proposed patterns:

for tweet in tweepy.Cursor(api.search, q=QUERY).items():

tweet.user.follow()

The code uses the tweepy library to interact with Twitter and implements
two actions: search and follow. The search action is reified by the search user
pattern (which exact feature is used for the search is unknown as the content
of QUERY is not visible). The follow action is reified by the indiscriminate follow
pattern, as line 2 follows all users without applying any filter on the users. �

Example 2. The following three lines of code show a concrete implementation of
the blacklist-based mention pattern:

def mentions(count, max_seconds_ago, id_blacklist) :

return [mention for mention in api.mentions_timeline(count=count)

if not mention.id in id_blacklist ]

The code defines a function that returns all the ids of the users that have
mentioned the bot in prior tweets (expressing some form of interest in the bot)
and whose ids are not contained in the list of banned ids id blacklist. �

Incidentally, these examples are also representative of two recurrent types of
patterns across multiple actions: for all those actions that somehow endorse a
user or a tweet (follow, like, mention, retweet), the analysis identified patterns
that do so indiscriminately or that do so by first checking if the involved user is
blacklisted or not. Independently of these examples, the analysis also identified
other recurrent types of patterns for these actions that endorse users only if they
are whitelisted. Other notable patterns implement massively repeated actions like
mass like and mass retweet, which aggressively endorse content by given users, or
specially targeted actions like targeted mention and targeted talk, which instead
carefully select the users to interact with (e.g., suicide candidates) and send
them particularly tailored messages (e.g., to point to help and prevent suicide).

http://www.tweepy.org
https://bit.ly/2Gg3WJC
https://bit.ly/2UwSZri
https://bit.ly/2aOjCnT
https://www.nltk.org/
https://bit.ly/2Ry2FQt
https://bit.ly/2Ry2FQt


On Twitter Bots Behaving Badly 197

4.4 Effects of Actions: Assessing Potential Harmfulness

Considering again the indiscriminate, blacklist and whitelist patterns, it is impor-
tant to acknowledge that they implement different levels of sensibility of risk
as perceived by the developer. Indiscriminately retweeting content expresses
either a high level of trust in the users who produce the retweeted content, or it
expresses a lack of awareness of the risks that retweeting for example offensive,
denigrating or obscene content may have on the reputation of the bot owner.
Either way, it becomes evident that each pattern may have a different effect or
impact on the users a bot interacts with.

In our prior work [6], we identified 12 major types of abuses bots have com-
mitted in the past (see the top-right list in Fig. 3) and that have produced harm
(remember Sect. 2.1). The first half of these abuses are legally prosecutable in
most democratic countries (see, for example, New Zealand’s Harmful Digital
Communications Act of 2015 [14]). The typical question that remains unan-
swered when harm occurs is why the respective abuse was committed.

Some bots intentionally create spam messages, e.g., to influence political
elections [2], but then there are bots like Microsoft’s AI-based chatbot Tay
that got trained by multiple colluding users, e.g., to offend Jews (http://bit.
ly/2DCdqM4). Evidently, the bot was not ready for orchestrated attacks. From
the outside, it is generally not possible to tell why abuse happens. This paper
provides a look inside the logic that drives bots, and attempts a technical expla-
nation for some of the abuses. In fact, patterns may have the following effects:

– Enable an abuse, if they implement logic that by design performs an abuse. For
example, the phantom follow pattern enables mimicking interest for oppor-
tunistic reasons, e.g., to be followed back by users, or the mass retweet pattern
enables artificially boosting the visibility of a user.

– Prevent an abuse, if they implement logic that aims to prevent the bot from
performing an abuse. The blacklist-based follow pattern, for instance, prevents
interactions with unwanted users, while the tweet with opt-in pattern prevents
spamming users not interested in the bot.

– Be vulnerable to content abuse, if they implement interactions with users
and/or content that may be inappropriate. The indiscriminate follow pat-
tern, for instance, causes the bot to follow users that may have inappropriate
usernames or spread inappropriate content. The vulnerability may arise when
endorsing content or users or when feeding user-provided content to AI algo-
rithms without proper prior checks (see the example of Tay).

– Be vulnerable to trust abuse, if they forward, store or analyze content retrieved
from users. The store persistently pattern is an example of this threat. A user
sharing, for instance, sensitive information via personal messages is vulnerable
if stored data are leaked to unintended audiences.

These four effects may translate into human users of the social network get-
ting harmed or not. But harm in this context has two sides: if a user gets harmed
through interaction with a bot, this may also affect and possibly harm the owner

http://bit.ly/2DCdqM4
http://bit.ly/2DCdqM4


198 A. Millimaggi and F. Daniel

Fig. 3. Potential effects of actions and patterns on the users in online communications:
patterns either enable, prevent or are vulnerable to abuses. For example, following an
account with a denigrating or offending username may perpetuate and endorse the
denigration or offense.



On Twitter Bots Behaving Badly 199

of the bot himself. If a bot threatens someone or discriminates people, the owner
may become subject to legal prosecution. If it leaks private data, it may be
suspended by the social network, as this violates the usage policies.

Figure 3 graphically summarizes for the patterns in Table 2 (except the search
patterns without side-effects) which abuses they may enable, prevent or risk to
commit. It is meant to create awareness in bot developers of the effects the code
they write may have once their bot is deployed and interacting with people.

Coming back to the why question and the technical considerations on the
possible abuses, it seems reasonable to conclude: (i) that bots that explicitly
enable abuses intentionally try to do harm or at least accept the possibility
to do so; (ii) bots that are vulnerable to content abuse by other users may
unintentionally cause harm, while still being responsible for the content they
endorse or spread; and (iii) bots that are vulnerable to trust abuse, if they leak
data, may do so intentionally (e.g., it they sell data) or unintentionally (e.g.,
if intruders steel data). Regarding this last case, we did not find any hint for
intentional leaks in our dataset.

It is important to note that the analyzed dataset features only a few bots
that implement patterns that aim to prevent abuses, which testifies a generally
low awareness of the problem and commitment to mitigate risk by developers.
Specifically, only 5 repositories implement blacklist-based patterns, 2 control if
the user is verified by a whitelist (implementing multiple patterns), 6 use opt-in
verification, 4 use a trusted source for tweets, and 8 use fixed content instead.
Finally, we did not find any indication of effects of the identified patterns on
the abuse invade space (it refers to bots invading spaces, e.g., online discussion
groups or social networks, that are not meant for bot participation), as Twitter
is generally open to bots.

5 Related Works

As already hinted at in the introduction, the topic of social bots has so far been
approached mostly from the perspective of telling humans and bots apart, that
is, with the intention of detecting bots. The work that is most closely related
to this aspect is Botometer, formerly known as BotOrNot [7,8], an online tool
that computes a bot-likelihood score for Twitter accounts and allows one to
tell bots and genuine user accounts apart. The tool builds on more than 1000
features among network, user, friends, temporal, content and sentiment features,
and uses a random forest classifier for each subset of features. The training data
used is based on bot accounts collected in prior work by Lee et al. [11], who
used Twitter honeypots to lure bots and collected about 36000 candidate bot
accounts following or messaging their honeypot accounts.

Some works go further and turn their focus to specific types of social bots
and, thereby, harms. For instance, Ratkiewicz et al. [13] studied the phenomenon
of astroturfing, i.e., political campaigns that aim to fake social support from peo-
ple for a cause, and showed that bots play a major role in astroturfing activities
in Twitter. Cresci et al. [5] specifically focused on the problem of fake followers.



200 A. Millimaggi and F. Daniel

They constructed a dataset of human accounts (manually and by invitation of
friends) and bought fake followers from online services like http://fastfollowerz.
com. The work compares two types of automatic classifiers, classifiers based on
expert-defined rules and feature-based classifiers (machine learning), and shows
(i) that fake followers can indeed be spotted and (ii) that black-box, feature-
based classifiers perform better than white-box, rule-based classifiers. In addi-
tion, the work also produced a publicly available, labeled dataset that can be
used for research purposes. Varol et al. [15] propose a bottom-up approach to the
identification of bots with similar online behavior. The classifier used is the one
adopted by Botometer, while the dataset used also included a manually anno-
tated collection of Twitter accounts. After classifying accounts into bot or not,
the authors further clustered the bot accounts into three types of bots: spam-
mers, self promoters, and accounts that post content from applications. Chu et al.
[4] coined the term cyborg to refer to bot-assisted humans in social networks and
used a manually labeled dataset of 6000 randomly sampled Twitter accounts
and a random forest classifier plus entropy measures to classify accounts into
bots, cyborgs and humans.

In terms of datasets analyzed for bot detection, Beskow and Carley [1] pro-
pose four tiers of data for the classification of Twitter accounts: single tweet
text (tier 0), account + one tweet (1), account + full timeline (2), and account
+ timeline + friends timelines (3). The assumption is that bot detection is
achieved using feature-based classification or AI algorithms. In fact, with their
tool bot-hunter, the authors study different machine learning techniques for tier-
1 datasets. Differently from these classification-based approaches, Cao et al. [3]
describe SybilRank, a tool for the detection of sybil accounts (bots) in social
networks by analyzing the social graph (of Facebook, in the specific study). The
study in this paper focuses on a different type of dataset, i.e., code, to understand
the internals of bots, not their externally visible behavior or traces.

Little or no work has been done so far on the analysis of harms and abuses,
as proposed in this paper. Perhaps the work by Varol et al. [15] can be seen
as an ethical alarm: it estimates that between 9% and 15% of all accounts in
Twitter are likely automated accounts and shows that bots are able to apply
sophisticated communication tactics, distinguishing between humans and bots.

6 Conclusion

This paper proposes an original perspective on bots for online communication:
instead of looking at messages or network activity, which is the typical practice
in literature, it analyzes the code that produces them. To the best of our knowl-
edge, this is the first study of its kind in this area. The study contributes to the
state of the art in a threefold fashion: It extracts 31 patterns that implement
different variants of 9 communication actions from a dataset of 60 GitHub Twit-
ter bot repositories (approximately 75–80 h of manual code inspection). Then,
it discusses the effects the patterns may have at runtime and provides a sys-
tematic mapping of patterns to potential abuses as a reference for developers.

http://fastfollowerz.com
http://fastfollowerz.com


On Twitter Bots Behaving Badly 201

Finally, it proposes a technical interpretation of why abuses may happen by
linking the intentionality of abuses to the nature of the patterns, distinguishing
between intentional and unintentional patterns. These ethical aspects are partic-
ularly relevant to web engineering if we consider that many understand bots as
the apps of tomorrow. As a possible usage scenario, social network providers that
host third-party bot code (e.g., Facebook) could use these patterns to implement
early warning systems to prevent harm.

The findings of this paper are empirical and stem from a careful, manual
systematic code review. They are limited by nature. As for the internal validity,
the study suffers of course from the limited size of the dataset; perhaps more
repositories would have allowed us to identify more patterns. Also, the open-
source nature of the projects may provide a limited view on the possible patterns,
as developers of intentionally malicious bots may not share their code. The focus
on Python was needed to keep the dataset manageable. The careful, randomized
selection of repositories aimed to increase internal validity. As for the external
validity, different programming languages and communication platforms may
behave differently. However, the core of the actions and patterns proposed in
this paper are similar in other platforms and programming languages. These
may differ in platform-specific functionalities (e.g., poking a user in Facebook),
but the abstractions of this paper make the actions and patterns portable.

As for the next steps, we are already working on the implementation of a
suitable, formal language for action patterns and a respective pattern search
engine for the automated retrieval of patterns from large numbers of code repos-
itories based on the approach proposed in [12]. Expanding the horizon of the
investigation beyond Twitter and Python is planned next.

References

1. Beskow, D.M., Carley, K.M.: Bot-hunter: a tiered approach to detecting & char-
acterizing automated activity on twitter. In: SBP-BRiMS 2018 (2018)

2. Bessi, A., Ferrara, E.: Social bots distort the 2016 US presidential election online
discussion. First Monday 21(11) (2016)

3. Cao, Q., Sirivianos, M., Yang, X., Pregueiro, T.: Aiding the detection of fake
accounts in large scale social online services. In: Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pp. 15–15 (2012)

4. Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of twit-
ter accounts: are you a human, bot, or cyborg? IEEE Trans. Dependable Secure
Comput. 9(6), 811–824 (2012)

5. Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: Fame for sale:
efficient detection of fake Twitter followers. Decis. Support Syst. 80, 56–71 (2015)

6. Daniel, F., Cappiello, C., Benatallah, B.: Bots acting like humans: understanding
and preventing harm. IEEE Internet Comput. (2019, in print). https://ieeexplore.
ieee.org/document/8611348

7. Davis, C.A., Varol, O., Ferrara, E., Flammini, A., Menczer, F.: BotOrNot: a system
to evaluate social bots. In: WWW 2016, pp. 273–274 (2016)

8. Ferrara, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The rise of social
bots. Commun. ACM 59(7), 96–104 (2016)

https://ieeexplore.ieee.org/document/8611348
https://ieeexplore.ieee.org/document/8611348


202 A. Millimaggi and F. Daniel

9. Hey, T., Tansley, S., Tolle, K.M., et al.: The Fourth Paradigm: Data-intensive
Scientific Discovery, vol. 1. Microsoft Research Redmond, WA (2009)

10. Kitchenham, B.: Procedures for performing systematic reviews. Keele University,
Keele, UK 33(2004), 1–26 (2004)

11. Lee, K., Eoff, B.D., Caverlee, J.: Seven months with the devils: a long-term study
of content polluters on Twitter. In: ICWSM, pp. 185–192 (2011)

12. Paul, S., Prakash, A.: A framework for source code search using program patterns.
IEEE Trans. Soft. Eng. 20(6), 463–475 (1994)

13. Ratkiewicz, J., Conover, M., Meiss, M.R., Gonçalves, B., Flammini, A., Menczer,
F.: Detecting and tracking political abuse in social media. In: ICWSM, pp. 297–304
(2011)

14. The Parliament of New Zealand: Harmful Digital Communications Act 2015. Pub-
lic Act 2015 No 63 (2015). http://www.legislation.govt.nz/act/public/2015/0063/

15. Varol, O., Ferrara, E., Davis, C.A., Menczer, F., Flammini, A.: Online human-
bot interactions: Detection, estimation, and characterization. arXiv preprint
arXiv:1703.03107 (2017)

http://www.legislation.govt.nz/act/public/2015/0063/
http://arxiv.org/abs/1703.03107

	On Twitter Bots Behaving Badly: Empirical Study of Code Patterns on GitHub
	1 Introduction
	2 Background
	2.1 Harm and Abuse in Human-Bot Interactions
	2.2 Platform Policies and Permissions

	3 Dataset: Twitter Bot Code Repositories
	3.1 Data Sources and Retrieval
	3.2 Preliminary Analysis
	3.3 Final Dataset

	4 Identification and Analysis of Abusive Code Patterns
	4.1 Method
	4.2 Actions: How Bots Participate in Communications
	4.3 Code Patterns: How Bots Implement Their Actions
	4.4 Effects of Actions: Assessing Potential Harmfulness

	5 Related Works
	6 Conclusion
	References




