®

Check for
updates

Agile Methods Knowledge Representation
for Systematic Practices Adoption

Soreangsey Kiv!®™) Samedi Heng?, Manuel Kolp', and Yves Wautelet?

! LouRIM-CEMIS, UCLouvain, Louvain-La-Neuve, Belgium
{soreangsey.kiv,manuel.kolp}@uclouvain.be
2 HEC Liege, Université de Litge, Lidge, Belgium
samedi.heng@uliege.be
3 KU Leuven, Leuven, Belgium
yves.wautelet@kuleuven.be

Abstract. The popularity of agile methods is constantly increasing.
Information and feedback on how these frameworks were adopted can
easily be found in academia and industrial knowledge bases. Such a col-
lective experience allowed the development of many approaches in the
aim of simplifying the adoption process and maximizing the chances of
success. These approaches provide practitioners with guidelines to help
them find the practice that suits their team best. Nonetheless, these
approaches are not systematic and practitioners need to go through a
long process. For instance, they need to identify the important situa-
tional factors that can have a positive/negative effect on the agile practice
adoption. Available experiences thus require lots of effort to be discov-
ered. This research proposes an agile methods knowledge representation
using an ontology so that the knowledge and experience on agile adop-
tion reported in literature may be reusable and systematic. Based on this
model, added knowledge and inference rules, practitioners will system-
atically be able to decide which practice to select and adopt, i.e, for a
given goal, practitioners can retrieve which practices to achieve; from a
situation, teams can tell what can be harmful and what can be useful
for adopting a practice or what problems they may encounter; etc.

Keywords: Agile methods - Agile practices - Ontology -
Knowledge representation + Real case study

1 Introduction

Agile methods have been increasingly adopted by the software development
industry (and others) due to their flexible features that allow to better han-
dle the changes in requirements, to improve team’s productivity and align to the
business needs. As no method can be a one-size-fits-all, software development
teams adopt agile methods differently, i.e., depending on their specific problems,
resources, goals or expectations [4]. Many empirical studies of agile methods
© The Author(s) 2019

P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 19-34, 2019.
https://doi.org/10.1007/978-3-030-19034-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-19034-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-19034-7_2

20 S. Kiv et al.

adoption have been published every year. The result from the Systematic Liter-
ature Review (SLR) in [5] points out that, in the methodological aspects used
on agile methods tailoring research, 66.1% of their selected papers were empiri-
cal research. A simple search, also, in SpringerLink for “Daily Meeting” to this
day, allows finding 1186 articles with 173 in the software engineering sub disci-
pline. Some research papers describe their proper experience in deploying agile
in their own organization, while some others discuss it based on empirical evi-
dences collected from multiple cases. Those papers aim to share knowledge such
as problems encountered, lessons learned, solutions found, etc., so that others
can learn how to choose the right practices and avoid failures.

These experiences are extremely important and useful, yet time-consuming
to collect and classify. Let us imagine that a development team aims to achieve
a particular goal. How would they know which practices would help them to?
In addition to “goal” to achieve, several variables have to be considered such as
situation, project, budget, etc. which can also constrain the selection of a prac-
tice. Since the development process is complex and requires lots of effort, many
teams decide recklessly to adopt specific agile methods or practices which are
popular without considering any context-specific factors resulting in numerous
agile adoption failures in the end [10].

To make the knowledge and experiences of the previous empirical studies
easily accessible, [8] introduces a structured repository of Agile Method Frag-
ments (AMF). This knowledge repository has been gathered through a system-
atic review of empirical studies on agile methods. For each AMF, the repository
entry states the objectives the AMF aims to contribute to, and a set of requisites
needed for its success. On top of that repository, the same authors also proposed
a framework for evaluating the suitability of candidate method fragments prior
to their adoption in software projects [9]. By linking (with contribution links such
as help/harm) the situational factors to the requisite, practitioners can find out
whether or not they have the chance to succeed with that practice adoption.
Even though the repository and the framework can help practitioners to save
much effort in understanding agile practices and their suitability, it is yet inef-
ficient and not systematic enough. In order to use this framework, practitioners
are expected to know what the situational factors affect the adoption. In addi-
tion, they have to figure out by themselves what parts are considered as helpful
or harmful to the requisites and practices.

We argue that a better and efficient solution would be a system which can
list out goals achieved by a practice, problems that may be encountered from
a given situation and what the team needs to do to solve/avoid problems etc.
The answers given by the system to these questions must be generated from
the previous experiences of agile practitioners. This paper proposes using an
“Ontology” to represent and store all these knowledge items of agile methods
or practices adoption, reported in literature. Our goal is to make the existing
experience reusable in a systematic manner.

This paper is organized as follows. Section 2 presents the research protocol
we applied to achieve our research objective. Section 3 provides the detail of

Agile Methods Knowledge Representations 21

our ontology creation as well as the final ontology model in the form of a UML
class diagram. Next, Sect. 4 provides the inference rules we have created for our
ontology. The procedure of collecting case studies is described in Sect. 5. Section 6
provides an illustrative example of how to use our ontology when adopting an
agile practice in a systematic manner. Finally, we conclude, discuss the limita-
tions of and elaborate on future research directions of the paper in Sect. 7.

2 Research Methodology

Figure 1 depicts the research protocol we applied. We started by building the
ontology which basically follows the methodology proposed in [17]. It consists of
seven steps: (1) Determining the domain and scope of the ontology, (2) Consider-
ing reusing existing ontologies, (3) Enumerating important terms in the ontology,
(4) Defining the classes and the class hierarchy, (5) Defining the properties of
classes slots, (6) Defining the facets of the slots, and (7) Creating instances.
The description of each step can be found in [17]. Due to limited space here,
we merged step 4, 5 and 6 in Fig. 1. We, however, followed those three steps to
create our ontology.

Since we need data from real case studies to build an evidence-based ontology
for agile methods adoption, the process for collecting real case studies is also
included into our research protocol. These case studies allow us to enumerate
extra concepts and relationships and it also serves as data input for knowledge
creation. The process of building our ontology is iterative and incremental [17].
It means that each case study from data collection was fed into the model for
revising and refining the model. We repeated steps 3 to 7 until obtaining a
consistent model which fits well with a representative amount of selected case
studies (see Sect. 3). Two additional steps follow: Building Inference Rules (see
Sect. 4) and Validation Scenario (see Sect.6). The former aims at systematically
discovering more relationships and the latter aims at providing a feasibility study,
as a validation case of our approach.

3 Building the Agile Methods Ontology Model

This section describes how our ontology was built. As mentioned earlier, we
started with determining the domain and scope of our ontology. We then discuss
about existing ontologies, followed by how we enumerated terms to build our
model. Next, we present our ontology model in the form of a UML class diagram.
Finally, we describe how to insert the knowledge into the model.

3.1 Determining the Domain and Scope of the Ontology

The scope of the ontology presented here is limited to concepts, relationships and
knowledge extracted from experience reported in research papers about adopting
agile methods or practice for software development project. We aim at demon-
strating the advantages of using the ontology for helping agile practitioners in

22

selecting and adopting agile practices in a systematic manner. Our preliminary
study focuses on using the ontology to represent the knowledge and answer the

S. Kiv et al.

Consider reusing
existing ontologies

Determine the domain and
scope of the ontology

Case studies
search

Kiv et at. (2018)
Esfahan et al. (2010)

Case studies
selection

Data extraction [--1---

(2)Real Case Studies Collection

following questions:

Ontology with
Inference Rules

Fig. 1. Research protocol.

terms from case
studies

Enumerate important

(1) Building Ontology

Define the classes,
properties and facets
of the slots

A A
: No

yes

is consistent?

Create instances

A 4

...] Build inference
rules

(3) Building Inference
Rules

Feasibility study

(4) Validation

— Q1: What objectives/qgoals can be achieved by an agile practice?

— Q2: What agile values and principles can be achieved by adopting a practice?
— Q3: What activities are part of a practice and need to be performed by the

team?
What are the requisites to successfully adopt a practice?

— Q4:
~ Q5:
— Q6:
~- Q7
~- Q8:
- Q9:

Before building the ontology, we also considered reusing existing ones which
can be found in specific libraries such as COLORE [6], DAML [2] and Protégé
[3]. However, as mentioned, none of them is related to agile practices selection

What can be harmful when adopting a practice?
What can be useful when adopting a practice?
What kind of problems may a team encounter?

What can be the solutions to a problem?

What roles or responsibility distribution are needed for each practice?
— Q10: What are the artifacts required for a practice?

or adoption. We thus needed to build the model from scratch.

Agile Methods Knowledge Representations 23

3.2 Enumeration of Important Terms

Three main resources help us to enumerate important terms in the ontology:
(1) the repository proposed in [8], (2) the influence of the agile manifesto over
agile practice selection studied in [13], and (3) the real case studies collected in
research community (see Sect. 5).

We must admit that the repository proposed by [8] has inspired us in creating
this ontology model. In their repository, each agile method fragment is linked to
the objectives/goals it aims to contribute to and a set of requisites needed for
its success. Then, the suitability of each fragment is linked to the situation of
the team. For example, based on their repository, the goal of conducting “Daily
Meeting” is to improve “Quality of Communication” and to conduct “Daily
Meeting” successfully, it requires an “effective meeting”. An “effective meeting”
is suitable for the team that has a “highly available Scrum Master”. Even though
[8] does not give any clear definition of the concept “agile method fragment”,
based on our understanding from data in their repository, the authors refer this
concept to “agile practice”. Therefore, we use the term “practice” in our research.
From these, we gathered some terms, which will then become classes, including;:
practice, goal, requisite and situation.

In [13] shows the importance of agile manifesto, i.e., agile values and princi-
ples, in adopting agile methods, and in [12] explains its relationship with prac-
tices. Understanding the agile manifesto allows us to know why we want to adopt
an agile practice. In other words, adopting a practice can achieve the goals of
adopting agile methods defined in the agile manifesto. For instance, to achieve
the principle “The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation”, “Daily Meeting”
is a suitable practice. In addition, by knowing what agile value and principle a
team can achieve, they can measure their level of agility. Thus, we added value,
and principle to the model.

Practice, goal, requisite, situation, value, and principle are the starting
terms of our ontology creation. Then, to be able to answer to the questions
in Sect.3.1, we refined our model based on the result from the case studies.
Activity, problem, solution, role and artifact are thus the extra classes we
added to store the extracted information. To differentiate each case study, we
added another class Team and linked to goal, practice, situation, problem,
activity and solution.

3.3 Class and Relationship

After enumerating all the terms and incremental refinement, we built the ontol-
ogy model with Protégé!. The final model is illustrated as a UML class diagram
in Fig. 2. We describe the main concepts and relationships as follows:

— Value: refers to the agile values as defined in the agile manifesto. Based on
[12], agile value is contributed by the principle;

! https://protege.stanford.edu/.

https://protege.stanford.edu/

24

S. Kiv et al.

Principle: refers to the agile principle as defined in the agile manifesto and
it contributes to agile value;

Goal: is the objective that belongs to a team in adopting agile methods. A
goal can be achieved by conducting agile practices and achieving this goal can
contribute to the agile principle or another goal;

Practice: refers to an agile practice. It is adopted by the team, is composed
of activities and allows the team to achieve the goal. Conducting a practice
may require a requisite and it can also encounter a problem;

Team: refers to a software project team that has a specific situation and
goal. They adopt agile practice and perform activities as part of a practice.
While conducting an agile practice, a team may encounter a problem and, as
a result, may propose a solution;

Situation: is the state that belongs to a team which can affect practice adop-
tion as it can help or harm the requisite of a practice. In our case, only
the situations listed in [5] are taken into account. They are Project type,
business goals, complexity, team size, technology knowledge, user availability,
requirements stability, organization size, culture, team distribution, manage-
ment support, degree of innovation, previous projects, maturity level, domain
knowledge, project budget, communication and type of contract;

Activity: is performed by a team as part of the practice. For instance,
“15 min meeting every morning” is a part of the “Daily Meeting”. Performing
an activity can cause a problem, help or harm a requisite and it may also
require a role or artifact;

Requisite: is the condition which is particularly required by a practice in
order to successfully adopt it. For instance, conducting a “Daily Meeting”
requires “ease of communication” and “everyone’s participation”. The requi-
site can be helped or harmed by team situation or activity. It can also require
a role, artifact or other requisites;

Problem: is the problem faced by team and practice while adopting a prac-
tice. For instance, one of the problems faced by a team described in [20]
when adopting “Daily Meeting” was “starting promptness as the meetings
did not start on time”. Problem can be caused by a situation, activity or
other problem. Some problems can be solved by the solution;

Solution: is the solution proposed by team in order to solve the problem. It
may require a role or artifact;

Role: is the role required by or responsible for an activity, solution or requi-
site;

Artifact: it is the artifact required by an activity, solution or requisite.

The relationships described above are only those made between classes which

were manually built. In the ontology, we can discover more of them from rea-
soning using inference rules. They are listed in Table2 (Sect.4).

Class Hierarchy: One of the decisions to make during modeling is when to
introduce a new class or when to represent the distinction through different
property values [17]. For instance, there are seventeen different types of Situa-
tion; in line with [17], since each type has a different effect to the Requisite,

25

Agile Methods Knowledge Representations

‘uorjdope spoyjeu 98k 10] ASO[0JUO PISR(-90ULPIAS UY °g "SI

uonduosaqg-|
auweN-
annbay ey mm_:vwm
ainbay
Jo 9|qisuodsal ujannbay uonduosag-
aweN-
a0y
. Aq painbay Jo g|qisuodsal ujjannbay o) a|qisuodsay /Aq palinbay Aq pannbay ,
Aq pasinbay| " ‘ b
M g4 a|qisuodsayy/Aq palinbay
uonduosag-| oy sjqisuodsay/Aq paunbay uonduosaq-|
uonduosa@-| wueH/diaH Aq pauweH/padiaH " SUIEN| . 10 a|qisuodsal ujainbay SUIEN|
* aweN- uopnjog
asne:
eysinbay | x ° x » Aqpanjog
3sodoid
wieH/digH uuopad
alnbay
.71 Jo pasodwo)
lBJinbay A Aq pawopag .
Aq pauueH/padjaH . Aq pasodoig asne) |, aA0S
uonduosaqg-| uonduosag- uonduosaqg-|
SWEN| ' aney o) Buoeg SWEN- . KAqpeoey Jejunoouy SWEN
uonenyis weaj wa|qoid
e 00
(Aq pasnen Aq paydopy o1 Buopg asne)y L, Jayunoougy
. _idopy
10 HEd
uonduosaq- . Aq paoey
sweN-
Aq pannbay N
EEREIE
« Aq panaiyoy
|NdIydY .
« 9neH
uonduosad-| * o) snquiuon uonduose@-| | o} snquiuon uonduosaq-|
- - auweN-
SuEN Aq painguiuo) SUEN Aq paingquisuo) N
anjep [C5)

0} 9)NqUIU0Y

26 S. Kiv et al.

we thus create a subclass for each of them in our ontology model. To simplify
the representation, we excluded these 17 sub-classes from Fig. 2.

Property: There are two types of property: data property and object property.
Data property links individuals—i.e., instances and data values. Object property
links individuals and individuals. Both links are built in the form of “Domain -
data/object property - Range”. For instance, the link “Practice - Name - String”
means that, data property Name has Practice as domain and String as range.
Another example, “Practice - Achieve - Goal” has Practice as the domain and
Goal as the range of object property Achieve.

Every class in our model has only two data properties—i.e., Name and Descrip-
tion. They are the only common things to describe each class by agile practition-
ers. Their type is String. The domain and range of each object Property were
built based on their relationships as in Fig. 2.

3.4 Instances Creation

In this section, we explain how data extracted from real case studies were inserted
into our ontology. For illustration, we take a partial data extracted from a
selected paper ([20] in the references at the end of the paper). The paper is
about a case study of a software development project having three distributed
teams — two are located in Norway and the other one is located in Asia. All
teams have used Scrum with all the recommended practices for more than two
years. Based on their experience, having distributed team causes some problems
while conducting “Daily Meeting”, such as starting promptness and information
distribution.

To insert knowledge into the ontology we need to (1) analyze the description
to know what should be created as individuals and in which class, (2) create
individuals, and after that (3) connect the individuals by adding the data and
object property to each individual. Table 1 shows the individuals and links we
created for this case.

Table 1. An instance creation based on a case study.

Class name: individual Object property | Class name: individual
Team:team1 Have Situation:Distributed_team
Team:team1 Have Situation:2_years_agile_experience
Team:team1 Adopt Practice:Daily _meeting
Team:team1 Encounter Problem:Starting_promptness
Team:team1 Encounter Problem:Information_distribution
Practice:Daily_meeting Encounter Problem:Starting_promptness
Practice:Daily_meeting Encounter Problem:Information_distribution
Situation:Distributed_team | Cause Problem:Starting_promptness
Situation:Distributed_team | Cause Problem:Information_distribution

Agile Methods Knowledge Representations 27

4 Building Inference Rules

Inference is one of the techniques to improve the quality of data integration by
discovering new relationships, automatically analyzing the content of the data,
or managing knowledge [1]. A simple example of the inference can be: If a taxi
driver must be an adult; so if someone is a taxi driver then she/he must be an
adult. Another simple example related to agile practice can be: if a team adopts
a practice and that practice achieves a goal, we can infer that the team achieves
that goal.

It is possible to build any relationship directly in the ontology but this will
only weight down and complicate the model. Also, without the inference rule, we
cannot discover any relationship between instances more than what we manually
insert. That is not the efficient way of using knowledge. Therefore, if a relation-
ship can be discovered by reasoning, we use the inference rule. Table 2 lists all
the inference rules we have built in our ontology to discover more relationships
in order to answer the questions in Sect. 3.1.

Similarly to ontology creation, there are different ways in writing inference
rule. For instance, “If a problem is caused by an activity and that activity is part
of a practice — that practice encounters that problem” can be written as “If a
practice is composed of an activity and that activity causes a problem — that
practice encounters that problem”. However no repetitive inference rule should
allow answering the same question.

5 Case Studies Data Collection

Following the procedure of ontology creation, we need to repetitively create the
model and feed the data to see whether or not it can represent the knowledge
we want to use in the future. Actually, there is no way to validate the model
because new case studies keep coming in and the model can always be improved
over time. The best we can do in this paper is to feed a good amount of case
studies and try to answer our predefined questions.

We decided to take ten different case studies. For diversity, we took two
cases for each of the five most commonly used agile practices based on the 12"
VersionOne agile survey. They are Daily stand-up, Sprint/iteration planning,
Retrospectives, Sprint /iteration review, and Short iterations and release planning.

To collect the documents that report about applying a specific agile practice
in real projects, we basically followed the steps for conducting SLR described in
[13]. We briefly describe those steps hereafter:

— Keyword: Even though we only took two cases for each practice, we tried to
retrieve all the papers related to each practice adoption to check and select
the best two. Keywords are thus the name of each practice, which are “daily
standup”, “sprint planning OR iteration planning”, “retrospectives”, “sprint
review OR iteration review”, “short iterations” and “release planning”.

28 S. Kiv et al.

Table 2. Inference rules for answering questions in Sect. 3.1.

Question | Inference rules

Q1 R1: If a practice is composed of an activity and that activity achieves
a goal — that practice achieves that goal.

Q2 R2: If a practice achieves a goal and that goal contributes to a
principle — that practice achieves that principle.

R3: If a practice achieves a principle and that principle contributes to
a value — that practice achieves that value.

Q2 Can be discovered with direct relationship.

Q4 R/ : If a practice requires a requisite and that requisite is helped by
another requisite/situation/activity — that practice requires all of
that requisite/situation/activity.

Q5 R5: If a situation/activity harms a requisite and that requisite is
required by a practice — that situation/activity harms that practice.
R6: If a team has a situation and that situation harms the requisite
— that team harms that requisite.

R7: If a team performs an activity and that activity harms the
requisite — that team harms that requisite.

Q6 R8: If a situation/activity helps a requisite and that requisite is
required by a practice — that situation/activity helps that practice.
RY: If a team has a situation and that situation helps the requisite
— that team helps that requisite.

R10: If a team performs an activity and that activity helps a requisite
— that team helps that requisite.

Q7 R11: If a practice is composed of an activity and that activity causes
a problem — that practice encounters that problem.

R12: If a team performs an activity and that activity causes a
problem — that team encounters that problem.

R13: If a team has a situation and that situation causes a problem
— that team encounters that problem.

R1/: If a team encounters a problem_1 that causes another problem_2
— that team encounters the problem_2.

Q8 Can be discovered with direct relationship.

Q9 R15: If a person is responsible for an activity — that person is
required for that activity.

Q96 Q10 | R16: If a practice is composed of an activity and that activity requires
a role — that practice requires that role.

R17: If a team performs an activity and that activity requires a
role/artifact — that team requires that role/artifact.

— Search Engines: We took the formal data from well-known digital libraries
in the field of software engineering: IEEEXplore, ScienceDirect, ACM Digital
library and SpringerLink. We set the publication years to between 2000 and

Agile Methods Knowledge Representations 29

2018, the field to Software Engineering, and the search terms matching title
of the paper, keywords or abstract.

— Selection Criteria: With a big list of papers related to each practice, we did
an abstract screening then a full-text screening with the following criteria:

e Empirical study or research study with case study validation related to
agile methods or agile practices usage or adoption;

e Paper that has a significant discussion related to the keyword practice.
As the result, it must describe the usage experience and/or the lesson
learned and/or the problem and/or the challenge and/or the solution to
the problem;

e Paper with a good description of team situations and goal.

— Data Extraction: We extracted data based on the questions defined in
Sect. 3.1. Basically, we tried as much as we could to extract the following
information from each paper: goal, activity, requisite, situation, prob-
lem, solution, role and artifact.

While many of them meet the criteria, we decided to choose the two most
descriptive cases, the ones which can answer best the questions in Sect. 3.1. They
are Stray, et al. [20] and Moe and Aurum [15] for Daily meeting, Berteig, M.
(2008) and Ochodek, M. & Kopczyriska (2018) for Short iteration, Gregorio
[11] and Moe, et al. [16] for Sprint planning, Maham [14] and Paasivaara and
Lassenius [18] for Sprint retrospective, and Santos [19] and Eloranta [7] for
Sprint review.

6 Feasibility Study

Once the ontology model was built, and knowledge and inference rules added,
the model is ready to be used. In this section, we provide an illustrative example
of how to use our ontology when adopting an agile practice in a systematic
manner.

As an illustrative scenario, consider an agile software development team
which is assigned to develop a mobile application. The team has the follow-
ing situation: (1) Some of team members are new and others have an extensive
experience with mobile application development. (2) The team is working in two
locations and only one team has direct access to their clients. (3) All of them
are neophytes to distributed development. (4) Some of them are new to agile
methods and others have been developing some projects with Scrum for a few
years. The team decides to use Scrum. The Scrum Master understands that bad
communication can cause some problems in adopting “Daily Meeting”. There-
fore, his goal is to make communication effective. He is wondering if there are
reports or documents discussing about the problems related to communication
encountered by a distributed team when adopting “Daily Meeting”. What are
their solutions for addressing these problems? Such information is very useful for
the Scrum Master and may inspire him to adopt “Daily Meeting” successfully.

With the same Protégé Tool only requires four simple steps in order to get
the answers. (1) Creating a new individual to represent development team, (2)

30 S. Kiv et al.

Table 3. Relationship in ontology format for feasibility scenario.

Class name: individual | Object property | Class name: individual

Team:Test Team Have Situation:Distributed _team

Team:TestTeam Have Situation:2_years_agile_experience

Team:Test Team Have Situation:No_agile_experience
Team:TestTeam Have Situation:User_hardly_available

Team:Test Team Have Situation:No_domain_knowledge

Team:Test Team Have Situation:Experience_in_technology_knowledge
Team:Test Team Have Situation: Virtual_communication

Team:Test Team Have Goal:Quality of_Communication
Team:TestTeam Adopt Practice:Daily_meeting

connecting their team individual with the existing individuals which match the
team’s situation and goal, (3) executing the reasoning to get all the individuals
linked to the team, (4) using query to get more answers to the question described
in Sect. 3.1.

With the above scenario, we created individual “Team:TestTeam” to repre-
sent the development team. Then, we linked TestTeam to different individuals
based on the team’s situation and goal as in Table 3.

Next, we started the reasoner to discover more individuals linked to the
TestTeam. At once, all the inference rules in Table2 were executed. Among

< X

Property assertions: TestTeam DEmE

= Have Si d i _in_1)

== Adopt Practice:Daily_meeting

mmHave Situation:no_agile_experience

= Have Situation:2_years_agile_experience

mmHave Situation:Distributed_Team

= Have Goal:Quality_of_Communication

= Have Situation:User_hardly_available

®=Have Situation:No_domain_knowledge

®mHave Situation:Virtual_communication

= Encounter Problem:The_dedsion_then_excused_the_team_due_to_communication_difficulty

Case creation
information
|

== Encounter Problem:Information_distribution

1g_p

Lack_of_ icati Problems may encounter
= Encounter Problem:Language for TestTeam

Pr ting

= Encounter Problem:Information_flow

|

mmEncounter Problem:Missing_the_total_picture_of_the_project

== Encounter Problem:Perceived_their_own_plan_as_more_important_than_the_total_plan
== Encounter Problem:Lack_of_understanding_on_how_the_system_was_going_to_be_used
=mEncounter Problem:Lost_trust_between_team

== Harm -ace-to-face_C 1

Result after the
reasoning Process

mmHarm Requisite:Ease_of_Communication
®mHarm Practice:Daily_meeting

®mHarm Requisite:Effective_Meeting

Synchronising

Tave

Fig. 3. Case result: problems encountered by team.

Agile Methods Knowledge Representations 31

these 17 rules, R6, R7, R9, R10, R12, R13, R17 are related to the Team. That
is why, from the individual TestTeam, the Scrum Master can have the answers
related to problems that his team may encounter and to the situation of the team
that helps and harms the requisite of the “Daily Meeting”. Figure 3 exposes the
result from the reasoning. As expected, the TestTeam may encounter multiple
problems since its situations are harmful for the requisite as well as the “Daily
Meeting”.

Since Solution is not linked to the Team, in order to get answers, it requires
to run a query. In our case, we used SPARSQL. The query and result shown in
Fig.4 are the solutions to the problem that the TestTeam may encounter. As
an example, two solutions may address the problem “Information distribution”.
They are “Rotate scrum master role among the team members” and “Pass a
token”. More answers for the ten predefined questions in Sect. 3.1 can be found
at https://goo.gl/sSBAZo.

Snap SPARQL Query: L=]fes)

[»

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema# >

PREFIX agile: <http://www.semanticweb.org/skiv/ontologies/2016/9/untitled-ontology-6# >

SELECT ?problem ?solution

WHERE {

?problem rdf:type agile:Problem .
?solution rdf:type agile:Solution.
?problem agile:Faced_by ?team.
?problemagile:Solved_by ?solution
filter(rege x(str(?team), "TestTeam")) =

Execute
?problem ?solution

agile:Problem:Information_distribution agile:Solution:Rotate_scrum_master_role_among_the_team_members =
agile:Problem:Information_distribution agile:Solution:Pass_a_token
agile:Problem:Ending_promptness agile:Solution:Set_a_longer_time-slot_for_the_meeting
agile:Problem:Ending_promptness agile:Solution:Schedule_the_meeting_at_an_odd_time
agile:Problem:Ending_promptness agile:Solution:Use_a_timer
agile:Problem:Starting_promptness agile:Solution:Do_not_late_commer_join
agile:Problem:Starting_promptness agile:Solution:Conduce_the_meeting_in_the_room_or_part_of_the_room_without_chair
agile:Problem:Starting_promptness agile:Solution:Use_an_alarm_to_signal_the_meeting_start_time
agile:Problem:Starting_promptness agile:Solution:Set_a_consequence_for_the_last_to_arrive
agile:Problem:Starting_promptness agile:Solution:Connect_with_disctributed_people_in_advance
agile:Problem:Starting_promptness agile:Solution:Schedule_the_meeting_at_an_odd_time -
28 results

Fig. 4. Case result: proposed solution.

7 Conclusion and Future Work

In this paper, we presented the creation and uses of an ontology to support
knowledge representation aiming at recycling agile adoption experience. It has
been built on the basis of knowledge extracted from empirical evidence reported

https://goo.gl/sSBAZo

32 S. Kiv et al.

in existing literature. Seventeen inference rules have been added to systematically
discover more relationships among concepts in our ontology.

Through knowledge representation, practitioners using it dispose of a tool
to systematically and effectively support their own agile adoption. By using
Protégé, in just four simple steps, they can systematically answer common ques-
tions related to the selection and adoption of a particular agile practice. Exam-
ples include determining what goal can be achieved by adopting a practice; what
can be harmful and what can be useful for adopting a practice into a particular
situation; what problem may be encountered and what does the team need to
do to solve/avoid that problem, etc. To get answers, agile practitioners simply
need to select the existing situations in the model that match their own. In
addition, as the answers are generated from previous experiences, they would be
very helpful and pragmatic.

The main limitation at this stage of this research concerns the handling of
conflict situations. For instance, the feasibility scenario allows team members to
be neophyte or expert in agile methods. In this case, our model cannot make a
conclusion for such a mixed situation. It can only tell what is helpful and what is
harmful about each situation independently. Another limitation concerns the fact
that some of the answers cannot be generated by the reasoning — i.e, the model
cannot provide what situations are considered as harmful if agile practitioners
choose to adopt a specific practice. It will list all the problems caused by the
situation regardless of the practice adopted by the agile practitioners. Getting
such answer requires using a query too complex for agile practitioners in learning.
Finally, the included knowledge is still limited; with only ten case studies, there
are situations which the model cannot answer.

For addressing the limitation, we plan to add more knowledge into our ontol-
ogy in the near future. Within the SLR process, we selected in total more than
100 case studies for the five most commonly used practices. We hope to improve
our model by adding not only these knowledge but also additional inference
rules. Moreover, we also plan to build a user friendly Computer-Aided Software
Engineering (CASE) Tool available for agile practitioners for using and encoding
knowledge themselves so that the knowledge base would be increased. Finally, a
real experimentation with agile software development teams will be conducted
to get their feedback on the usefulness of our approach.

References

1. Inference. https://www.w3.org/standards/semanticweb/inference

DAML ontology library (2004). http://www.daml.org/ontologies

3. Protege ontology library (2018). https://protegewiki.stanford.edu/wiki/Protege_
Ontology _Library

4. Abbas, N., Gravell, A.M., Wills, G.B.: Using factor analysis to generate clusters of
agile practices (a guide for agile process improvement). In: 2010 AGILE Conference,
pp. 11-20. IEEE (2010)

5. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring-a systematic literature
review. J. Syst. Softw. 110, 85-100 (2015)

N

https://www.w3.org/standards/semanticweb/inference
http://www.daml.org/ontologies
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Agile Methods Knowledge Representations 33

COLORE: Semantic technologies library. http://stl.mie.utoronto.ca/colore
Eloranta, V.P., Koskimies, K., Mikkonen, T.: Exploring ScrumBut—an empirical
study of scrum anti-patterns. Inf. Softw. Technol. 74, 194-203 (2016)

Esfahani, H.C., Yu, E.: A repository of agile method fragments. In: Miinch, J.,
Yang, Y., Schifer, W. (eds.) ICSP 2010. LNCS, vol. 6195, pp. 163-174. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14347-2_15

Esfahani, H.C., Yu, E., Cabot, J.: Situational evaluation of method fragments: an
evidence-based goal-oriented approach. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 424-438. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13094-6_33

Fitzgerald, B., Russo, N., O’Kane, T.: An empirical study of system development
method tailoring in practice. In: ECIS 2000 Proceedings, p. 4 (2000)

Gregorio, D.D.: How the business analyst supports and encourages collaboration
on agile projects. In: 2012 IEEE International Systems Conference (SysCon), pp.
1-4. IEEE (2012)

Kiv, S., Heng, S., Kolp, M., Wautelet, Y.: An intentional perspective on partial
agile adoption. In: Proceedings of the 12th International Conference on Software
Technologies - Volume 1, ICSOFT, pp. 116-127. INSTICC, SciTePress (2017)
Kiv, S., Heng, S., Kolp, M., Wautelet, Y.: Agile manifesto and practices selection
for tailoring software development: a systematic literature review. In: Kuhrmann,
M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp. 12-30. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-03673-7_2

Maham, M.: Planning and facilitating release retrospectives. In: Agile 2008 Con-
ference, pp. 176-180. IEEE (2008)

Moe, N.B., Aurum, A.: Understanding decision-making in agile software develop-
ment: a case-study. In: 34th Euromicro Conference on 2008 Software Engineering
and Advanced Applications, SEAA 2008, pp. 216-223. IEEE (2008)

Moe, N.B., Aurum, A., Dyba, T.: Challenges of shared decision-making: a multiple
case study of agile software development. Inf. Softw. Technol. 54(8), 853-865 (2012)
Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to creating your
first ontology (2001)

Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed orga-
nization: a case study. In: 2016 IEEE 11th International Conference on Global
Software Engineering (ICGSE), pp. 74-83. IEEE (2016)

Santos, R., Flentge, F., Begin, M.-E., Navarro, V.: Agile technical management of
industrial contracts: scrum development of ground segment software at the Euro-
pean Space Agency. In: Sillitti, A., Hazzan, O., Bache, E., Albaladejo, X. (eds.)
XP 2011. LNBIP, vol. 77, pp. 290-305. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20677-1_21

Stray, V.G., Lindsjorn, Y., Sjoberg, D.I.: Obstacles to efficient daily meetings in
agile development projects: a case study. In: 2013 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, pp. 95-102. IEEE
(2013)

http://stl.mie.utoronto.ca/colore
https://doi.org/10.1007/978-3-642-14347-2_15
https://doi.org/10.1007/978-3-642-13094-6_33
https://doi.org/10.1007/978-3-642-13094-6_33
https://doi.org/10.1007/978-3-030-03673-7_2
https://doi.org/10.1007/978-3-642-20677-1_21
https://doi.org/10.1007/978-3-642-20677-1_21

34 S. Kiv et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Agile Methods Knowledge Representation for Systematic Practices Adoption
	1 Introduction
	2 Research Methodology
	3 Building the Agile Methods Ontology Model
	3.1 Determining the Domain and Scope of the Ontology
	3.2 Enumeration of Important Terms
	3.3 Class and Relationship
	3.4 Instances Creation

	4 Building Inference Rules
	5 Case Studies Data Collection
	6 Feasibility Study
	7 Conclusion and Future Work
	References

