
Chapter 7
Exponential Family Models
for Continuous Responses

Norman D. Verhelst

In memory of Arie Dirkzwager

Abstract Twomodels for continuous responses that allow for separation of item and
person parameters are explored. One is a newly developed model which can be seen
as a Rasch model for continuous responses, the other is a slight generalization of a
model proposed byMüller (1987). For both models it is shown that CML-estimation
is possible in principle, but practically unfeasible. Estimation of the parameters using
only item pairs, a form of pseudo-likelihood estimation, is proposed and detailed
expressions for first and second order partial derivatives are given. A comparison of
the information function betweenmodels for continuous and for discrete observations
is discussed. The relation between these models and the probability measurement
developed in the 1960s is addressed as well.

7.1 Introduction

In cognitive tests (achievement tests, placement tests) or aptitude tests, as well as in
personality tests and attitude tests, the response variables for the items are discrete,
having a very limited number of values: often only two in cognitive tests (representing
incorrect/correct) or a few as with the use of Likert scales in attitude or personal-
ity tests, and described by expressions as ‘strongly disagree’, ‘disagree’, ‘neutral’,
‘agree’, ‘strongly agree’. Note that in the latter case, the categories are considered
as ordered, meaning that, e.g., the choice of the category ‘strongly agree’ is a sign
of a more positive attitude (motivation, etc.) than the answer ‘agree’, and ‘agree’ is
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more positive than ‘neutral’, etc., or the reverse, depending of the wording of the
item stem. It is usually assumed that the direction of the order can be derived from a
semantic analysis of the item stem, i.e., it is not an outcome of a statistical analysis
of the response data.

Measurementmodels to analyze these highly discrete data arewidespread andwell
known among psychometricians. Models from the logistic family, such as the one-
two- or three-parameter logistic models for binary responses (Rasch 1960; Lord and
Novick 1968), the (generalized) partial credit model (Masters 1982; Muraki 1997)
and the graded response model (Samejima 1974, 1997) and models, known as ‘nor-
mal ogive’, originating in biological assay (Finney 1978), but becoming popular in
psychometric circles with the seminal paper by Albert (1992) on the use of sampling
methods to estimate parameters.

Although certainly less popular than models for discrete data, several interesting
models have been proposed and studied for continuous data, almost all in the realm of
attitude scaling and personality assessment. Also, different item formats are possible
to record continuous responses. One could for example present a piece of line where
the endpoints are labeled (e.g., as ‘strongly disagree’ and ‘strongly agree’) and ask
the respondent to put a cross at a position that best represents his or her attitude.
But there are others as well. The common feature is that all answers are bounded
from below and from above and that the possible answers can be regarded as a
(close approximation to a) continuous response. The precise item format, although
important by itself, is not considered any further in this chapter.

Samejima (1973, 1974) proposed a (family) of continuous IRTmodels, all derived
from the graded response model (Samejima 1969, 1997) as a limiting case when the
number of category responses goes to infinity. The model is complex as it assumes
a latent response on the interval (−∞, +∞) and a transformation to an interval
bounded from both sides, see Bejar (1977) for an application. One of the complicat-
ing factors in Samejima’s approach is that there are two layers of latent variables:
one is the construct (attitude, self-concept) to be measured and the other is a latent
response which is an unbounded continuous variable, while the observable response
is continuous but bounded from below and from above. To reconcile these incom-
patible restrictions, a transformation from an unbounded variable to a bounded one
is proposed, e.g., the logit transformation. In the model developed by Mellenbergh
(1994) such a transformation is not used: the continuous response variable ismodeled
with a one-factor model:

Xi j = μ j + λ jθi + εi j ,

where Xij is the continuous observed response of respondent i to item j, μj is the
easiness parameter of the item, λj the discrimination parameter, θ i the value of the
latent variable for respondent i, and εij the continuous residual, which is usually but
not necessarily normally distributed with mean zero and variance σ 2. A comparison
between themodels, of Samejima andMellenbergh, can be found in Ferrando (2002).
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More recently, an interesting family of models has been proposed where the
observed response variable, rescaled to the unit interval, follows a beta distribution,
and can therefore be used tomodelmonotone as well as single peaked densities (Noel
and Dauvier 2007; Noel 2014). The work of Noel (2017) concentrated on unfolding
models for personality traits, emotions and behavioral change.

Neither of the above models, however, are exponential family models, or do
allow for separation of person and item parameters. The only published model for
continuous responses which is an exponential family model and allows for parameter
separation is published by Müller (1987). This model and a newly proposed one are
the main topics of this chapter.

Although all the models discussed so far consider the use of continuous response
variables, none of them is used for cognitive tests, like achievement tests or placement
tests. For these tests considerable attention has been paid to continuous responses,
especially for multiple choice tests, not in an IRT framework, but in what was called
probability measurement. In this approach, the respondent does not have to pick a
single alternative, but has to express his or her degree of belief or subjective prob-
ability that each of the response alternatives is the right answer (De Finetti 1965,
1970; Van Naerssen 1961; Toda 1963; Roby 1965). The attention in the sixties was
directed to the problem of a good or ‘admissible’ scoring function, i.e., a scoring rule
such that the continuous responses will reflect the true subjective probabilities. See
Rippey (1970) for a comparative study of different scoring rules.

An important contribution in this area was made by Shuford et al. (1966) who
showed that there was only one scoring rule (i) which maximized the expected score
if and only if the continuous answers were equal to the subjective probabilities and
(ii) where the score only depends on the response for the correct alternative and not
on the distribution across the incorrect ones. This scoring rule is the logarithmic
one, and of course has an evident disadvantage: if the continuous response to the
correct alternative is zero, the score is minus infinity and can never be repaired by
any finite number of (partially) correct responses. Shuford et al. were aware of this
anomaly and proposed a slight modification of the logarithmic rule by a truncation
on the observable variable: responses at or below 0.01 got a fixed penalty of −2.
Dirkzwager (1997, 2001)1 provided an elegant way to avoid very large penalties and
at the same time to have a good approximation to the original logarithmic scoring
rule. The approximation is dependent on a tuning parameter. Details on the scoring
function and a quite extensive application of the system developed by Dirkzwager
can be found in Holmes (2002).

Probably themain factor that hampered the application of these ideas was the poor
development of suitable computer systems. Contrary to the situation with scales for
personality traits, emotions and attitudes, where a continuous answer can be elicited,
for example, by asking to put a mark on a line where the two end points are indi-
cated by labels such as ‘strongly disagree’ and ‘strongly agree’ and where the mark
expresses best the respondents position, the continuous answers for multiple choice

1Many of the writings of the late Arie Dirkzwager are not easy to find. Holmes (2002) gives quite
detailed reports of his writings.
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questions are multivariate. Nowadays modern computers are widespread and con-
structing interfaces for administering multiple choice tests with continuous answers
is hardly a serious challenge.

In Sect. 7.2 a new model, a simple continuous Rasch model is introduced and
parameter estimation is discussed. Section 7.3 treats a slight generalization of
Müller’smodel and gives the details of parameter estimation along the lines sketched,
but not elaborated in his 1987 article. Section 7.4 handles the problem of compar-
isons of information functions for different models and in Sect. 7.5 a discussion is
started about the relation between IRT models for continuous responses in multiple
choice tests and the scoring functions which were studied in the sixties.

7.2 A Rasch Model for Continuous Responses

7.2.1 The Model

Much in the spirit of the probability measurement approaches, let us imagine that a
test consisting of k multiple choice items has been answered in a continuous way by
assigning a non-zero number to each alternative under the restriction that the sum of
these numbers across alternatives equals one. At this moment we leave the precise
instructions to the respondents a bit vague, except for the fact that they know that the
higher the number assigned to the right answer, the higher their score will be, i.e.,
there is a monotone increasing relationship between answer and the score. More on
this will be said in the discussion section.

In the item response function of the Rasch model for binary data, the denominator
1 + exp(θ − β i) has the role of a normalizing constant, i.e., the sum of all possible
numerators, and guarantees that the sum of the probabilities of all possible answers
equals one. If one considers a similar model for continuous responses in the (closed)
unit interval, one arrives readily at the conditional probability density function

fi (ri |θ) = exp[ri (θ − ηi )]
∫ 1
0 exp[t (θ − ηi )]dt

, (ri ∈ [0, 1]), (7.1)

where ri is a realization of the random variable Ri, the answer given to the correct
alternative of item i, θ is the underlying ability, continuous and unbounded and ηi is
an item parameter, representing the difficulty as in the Rasch model for binary data2.

The denominator of (7.1) has a closed form solution. If θ = ηi, the integral clearly
equals one, as well as the numerator of (7.1). Using αi as a shorthand for θ − ηi, and
the result from calculus that

2Another symbol for the difficulty parameter is used to avoid the suggestion that the difficulty
parameters in the binary and continuous mode should be equal.
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Fig. 7.1 Expected value (left) and variance (right) of Ri as a function of αi = θ − ηi in the Rasch
model for continuous responses

∫
exp(tα)dt = 1

α
exp(tα),

(7.1) can also be written as

fi (ri |θ) =
{

(θ−ηi ) exp[ri (θ−ηi )]
exp[(θ−ηi )]−1 if θ �= ηi orαi �= 0,

1 if θ = ηi orαi = 0.
(7.2)

The regression of the response variable Ri on θ is given by

E(Ri |θ) =
∫ 1
0 t exp(tαi ) dt
∫ 1
0 exp(tαi ) dt

=
{

eαi (αi−1)+1
αi (eαi −1) ifαi �= 0,

0.5 ifαi = 0,
(7.3)

where αi is used as a shorthand for θ − ηi. (Note that for the case αi = 0, the
two integrals in (7.3) have a trivial solution.) In Fig. 7.1 (left panel) a graphical
representation of the regression function is given. Notice that the horizontal axis is
the difference between θ and the item parameter, and therefore the regression graph
itself (with θ on the horizontal axis) will have the same form as the curve in Fig. 7.1,
and for different items the curves will be shifted horizontally with respect to each
other, just as the trace lines in the Rasch model for binary items. Without giving
formal proofs we state some characteristics of the regression function:

1. lim
θ→−∞ E(Ri |θ) = 0,

2. lim
θ→+∞ E(Ri |θ) = 1,

3. E(Ri | θ ) is monotonically increasing in θ .

One might be wondering about the numbers along the horizontal axis. In the
model for binary data the graph of the item response function (which is a regression
function) is usually very close to zero or to one if | θ − β i | > 3, while we see here
a substantial difference between the expected value of the response and its lower or
higher asymptote for |α| as large as 15. In the section about the information function
we will come back to this phenomenon and give a detailed account of it.
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It is easy to see from (7.1) or (7.2) that it is an exponential family density with
ri as sufficient statistic for θ . In exponential families the (Fisher) information is the
variance of the sufficient statistic, and the expression for this variance is

Var(Ri |θ) =
{

1
α2
i

− eαi

(eαi −1)2 if αi �= 0,
1
12 if αi = 0,

(7.4)

where the value 1/12 is the limit of the expression above it in (7.4), or the variance of
a uniformly distributed variable in the unit interval. In Fig. 7.1 (right panel) a graph
of the variance function is displayed.

7.2.2 Parameter Estimation

To make the model complete, we have to add an assumption about the dependence
structure between item responses. As is common inmost IRTmodels, wewill assume
that the responses to the items are conditionally (or locally) independent. With this
assumption the model is still an exponential family and the sufficient statistic for the
latent variable θ is R = Σ iRi. Therefore conditional maximum likelihood (CML)
estimation is in principle possible and in this section the practical feasibility of CML
is explored.

The conditional likelihood3 of the data, as a function of the parameter vector η =
(η1,…,ηk) given the value of the sufficient statistic for θ is given by

L(η|R = r) = exp
[− ∑

riηi
]

∫
A

∏
i exp(−tiηi )dti

(7.5)

where
∫
A denotes the multiple integral over all score vectors (t1,…,tk) such that

Σ iti= r. As a general symbol for this multiple integral, we will use γ(r,k), where the
first argument refers to the score r and the second argument denotes the number of
items in the test.

To see the complexity of these γ-functions, consider first the case where k = 2. If
r ≤ 1, the score on any of the two items cannot be larger than r, but each score can
be zero. So, let t1 be the score on the first item; then t1 can run from 0 to r, and of
course t2 = r − t1 is linearly dependent on t1. If r > 1, each score is bounded not to
be smaller than r − 1, and of course each score cannot be larger than 1. Taking these
considerations into account it is easily verified that

γ (r, 2) =
min(r,1)∫

max(r−1,0)

exp[−(r − t1)η2] exp(−t1η1) dt1 (7.6)

3For continuous data, the likelihood is proportional to the density of the observed data.
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Using similar considerations as in the case with k = 2, one can verify that

γ (r, 3) =
min(r,1)∫

max(r−2,0)

exp(−t2η2)

min(r−t2,1)∫

max(r−t2−1,0)

exp [(r − t2 − t1)η3] exp(−t1η1)dt1dt2,

and in general we can write

γ (r, k) =
Bk−1∫

Ak−1

fk−1(tk−1) . . .

Bi∫

Ai

f1(t1) . . . g(t1, . . . , tk−1)dt1 . . . dtk−1, (7.7)

where

Ai = max

⎛

⎝0, r − (k − i) −
i−1∑

j=1

tk− j

⎞

⎠,

Bi = min

⎛

⎝1, r −
i−1∑

j=1

tk− j

⎞

⎠,

fi (ti ) = exp(−tiηi ),

g(t1, . . . , tk−1) = exp

⎡

⎣−ηk

⎛

⎝r −
k−1∑

j=1

t j

⎞

⎠

⎤

⎦.

It will be clear that evaluation of (7.7), although an explicit solution exists, is very
unpractical, since in all integrals a distinction is to be made between two possible
minima and two possible maxima in every integration. To illustrate this, consider the
solution of (7.6), assuming that η1 �= η2:

γ (r, 2) =
{

1
η2−η1

[
exp(−rη1) − exp(−rη2)

]
, (0 < r < 1),

1
η2−η1

[
exp(−η1 − (r − 1)η2) − exp(−η2 − (r − 1)η1)

]
, (1 ≤ r < 2).

(7.8)

If γ (r, k) is evaluated, k different expressionswill result, which are too complicated
to work with. Therefore, the maximization of the conditional likelihood function
is abandoned; instead recourse is taken to a pseudo-likelihood method, where the
product of the conditional likelihood of all pairs of variables is maximized (Arnold
and Strauss 1988, 1991; Cox and Reid 2004). This means that the function

PL(η) =
∏

i< j

exp(−riηi − r jη j )

γri j (ηi , η j )
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will be maximized. The variable rij is defined by

ri j = ri + r j , (i �= j) (7.9)

and γ rij(ηi,ηj) is the explicit notation of γ(rij,2) with ηi and ηj as arguments.
At this point, it proves useful to reparametrize the model. Define

ηi j = ηi + η j

2
(7.10)

and

εi j = ηi j − ηi = η j − ηi

2
. (7.11)

It follows immediately that εij = −εji. Using definitions (7.10) and (7.11) and
Eq. (7.8), the factor of the PL-function referring to the item pair (i,j) can be written
as

PL(εi j ) =
{

εi j exp[(ri−r j )εi j ]
sinh(ri j εi j )

, (0 < ri j < 1),
εi j exp[(ri−r j )εi j ]
sinh[(2−ri j )εi j ] , (1 ≤ ri j < 2),

(7.12)

if εij �= 0, this is, if ηi �= ηj. If j and i are interchanged (7.12) does not change because
εij = −εji and sinh(−x) = −sinh(x). If ηi = ηj, the solution can be found directly
from (7.5). It is given by

PL(0) = lim
εi j→0

PL(εi j ) =
{

1
ri j

, (0 < ri j < 1),
1

2−ri j
, (1 ≤ ri j < 2).

(7.13)

In the sequel, only reference will be made to (7.12), but (7.13) has to be used if
appropriate.

Although the events (rij = 0) and (rij = 2) both have probability zero, they can
occur in a data set. The joint conditional density of (ri, rj) given (rij = 0) or (rij =
2), however, is independent of the item parameters, and can therefore be eliminated
from the data set; only values in the open interval (0,2) are to be considered. This is
similar to the fact that in the Rasch model for binary data response patterns with all
zeros or all ones can be removed from the data without affecting the CML-estimates
of the item parameters.

To get rid of the double expression in the right-hand side of (7.12) define the
indicator variable Aij, with realizations aij, as

Ai j =
{
0 if 0 ≤ ri j < 1,
1 if 1 ≤ ri j ≤ 2,

and define the random variable Bij, with realizations bij, as
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Bi j = Ri j + 2Ai j (1 − Ri j ) (7.14)

Using (7.14), (7.12) can be rewritten as

PL(εi j ) = εi j exp
[
(ri − r j )εi j

]

sinh(bi jεi j )
(7.15)

and (7.13) can be rewritten as

PL(0) = lim
εi j→0

PL(εi j ) = 1

bi j

Taking the logarithm of (7.15) and differentiating with respect to εij yields

d ln[PL(εi j )]
dεi j

= (ri − r j ) + 1

εi j
− bi j

tanh(bi jεi j )
, (7.16)

and differentiating a second time gives

d2 ln[PL(εi j )]
dε2i j

= − 1

ε2i j
+ b2i j

sinh2(bi jεi j )
. (7.17)

If εij = 0, (7.16) and (7.17) are undefined, but can be replaced by their limits:

lim
εi j→0

d ln
[
PL(εi j )

]

dεi j
= ri − r j

and

lim
εi j→0

d2 ln[PL(εi j )]
dε2i j

= −b2i j
3

.

In order to obtain estimates of the original η-parameters, the restrictions, defined
by (7.11) have to be taken in account. Define the k(k − 1)/2 × k matrix K by

K (i j, 
) =
⎧
⎨

⎩

−1/2 if 
 = i,
1/2 if 
 = j,
0 Otherwise

(7.18)

where the subscript ij of the rows refers to the item pair (i,j). Define ε = (ε12, ε13,…,
εij,…, εk−1,k) and η = (η1,…, ηk), then it follows immediately from (7.11) to (7.18)
that

ε = Kη. (7.19)
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It is immediately clear that

∂ ln PL(η)

∂η
= K ′ ∂ ln PL(ε)

∂ε
, (7.20)

and

∂2 ln PL(η)

∂η∂η′ = K ′ ∂
2 ln PL(ε)

∂ε∂ε′ K , (7.21)

where the elements of the partial derivatives with respect to ε are given by (7.16).
The matrix of second partial derivatives in the right-hand side of (7.21) is a diagonal
matrix, whose diagonal elements are defined by (7.17). For a sample of n response
patterns, the gradient and the matrix of second order partial derivatives of the PL-
function is simply the sum over response patterns of expressions given by the right-
hand members of Eqs. (7.20) and (7.21), respectively. The model, however, is not
identified unless a normalization restriction is imposed on the η-parameters, e.g., ηk

= 0. This amounts to dropping the last element of the gradient vector and the last
rows and columns from the matrix of second order partial derivatives.

Initial estimates can be found by equating the right-handmember of (7.16) to zero,
and solving as a univariate problem, i.e., ignoring the restrictions (7.19). Applying
(7.19) then yields least squares estimates of η, which can be used as initial estimates
of the item parameters.

Standard errors can be found by the so-called sandwich method. Define gv as the
vector of first partial derivatives of the pseudo-likelihood function for respondent
v and H as the matrix of second partial derivatives (for all respondents jointly).
All vectors gv and the matrix H are evaluated at the value of the pseudo-likelihood
estimates of the parameters. Then, the asymptotic variance-covariance matrix can be
estimated by (Cox and Read 2004, p. 733)

H−1

[
∑

v

gvg′
v

]

H−1.

7.3 An Extension of the Müller Model

7.3.1 The Model

As Samejima derived her family of continuous models as limiting cases of the graded
responsemodelwhen the number of possible graded responses goes to infinity,Müller
considers a limiting case of Andrich’s (1982) rating scale model when the number of
thresholds tends to infinity. The category response function of the rating scale model
(with possible answers 0, 1,…, m) is given by
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P(Xi = j |θ∗) = exp[ jα∗
i + j (m − j)δ∗]

∑m
h=0 exp[hα∗

i + h(m − h)δ∗] (7.22)

where α∗
i = θ∗ − η∗

i , the difference between the latent value and an item specific
location parameter, while δ* is half the (constant) difference between any two con-
secutive thresholds4,5 If the answer Ri (with realizations ri) is elicited by asking the
respondent to put a mark on a piece of line with length d(>0) and midpoint c and
where the two endpoints are labeled, then the response can bemodeled by the density

f ∗
i
(ri |θ) = exp[riαi + ri (2c − ri )δ]

∫ c+d/2
c−d/2 exp[tαi + t (2c − t)δ]d t

,

(

ri ∈
[

c − d

2
, c + d

2

])

, (7.23)

with αi = θ − ηi . Moreover, Müller shows that the thresholds are uniformly dis-
tributed in the interval [ηi − δd, ηi + δd].

Of course, the length of the line in the response format can be expressed in arbitrary
units and with an arbitrary reference point, so that we can assume without loss of
generality that c = 0.5 and d = 1. And as a slight extension of Müller’s model, it
will be assumed that the δ-parameter can vary across items. This gives the density
equation we will be using in the present section:

fi (ri |θ) = exp[riαi + ri (1 − ri )δi ]
∫ 1
0 exp[tαi + t (1 − t)δi ]dt

, (7.24)

and by completing the square, the numerator of (7.24) can be written as

exp[riαi + ri (1 − ri )δi ] = exp

[

−δi

(

ri − αi + δi

2δi

)2
]

× exp

[
(αi + δi )

2

4δi

]

.

(7.25)

The second factor in the right-hand side of (7.25) is independent of ri and will
cancel when we substitute the right-hand side of (7.25) in (7.24). Defining

μi (θ) = αi + δi

2δi
and σ 2

i = 1

2δi
,

(7.24) can be written as

4The ‘*’ in Eq. (7.22) is introduced to avoid the suggestion that parameters and variables in the
discrete and the continuous model are identical.
5In the derivation of the rating scale model, Andrich assumes that a response in category j means
that the j most left positioned thresholds out of m have been passed and the (m − j) rightmost ones
not. The location parameter ηi is the midpoint of the m thresholds.
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fi (ri |θ) =
σ−1
i ϕ

[
r−μi (θ)

σi

]

�
[
1−μi (θ)

σi

]
− �

[
−μi (θ)

σi

] (7.26)

with ϕ(.) and �(.) denoting the standard normal density and probability functions,
respectively. One easily recognizes (7.26) as the probability density function of
the truncated normal distribution (Johnson and Kotz 1970). The regression of the
response on the latent variable and the variance of the response are given next. Using
Di as shorthand for the denominator of (7.26), i.e.,

Di = �

[
1 − μi (θ)

σi

]

− �

[−μi (θ)

σi

]

,

and

z0i = −μi (θ)

σi
and z1i = 1 − μi (θ)

σi
,

the regression function is given by

E(Ri |θ) = μi (θ) + ϕ(z0i ) − ϕ(z1i )

Di
σi ,

and the variance by

Var(Ri |θ) = σ 2
i

[

1 + z0iϕ(z0i ) − z1iϕ(z1i )

Di
−

(
ϕ(z0i ) − ϕ(z1i )

Di

)2
]

.

The regression function is displayed in the left panel of Fig. 7.2 for three different
values of the δ-parameter. Some comments are in order here:

1. The computation of the regression and variance is tricky for extreme values of
z0i and z1i. Using the standard implementation of the normal probability function
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Fig. 7.2 Expected value (left) and variance (right) of Ri as a function of αi= θ − ηi in Müller’s
model
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in EXCEL or R generates gross errors. Excellent approximations are given in
Feller (1957, p. 193).

2. Three values of the δ-parameter have been used, resulting in flatter curves for
the higher values. Therefore, the parameter δ can be interpreted as a discrimina-
tion parameter, lower values yielding higher discrimination. A discussion on the
model properties when δ → 0 can be found in Müller (1987).

3. Just as in the Rasch model for continuous responses, the numbers along the
horizontal axis are quite different from the ones usually displayed for the item
response functions of the common Raschmodel. Further comments will be given
in Sect. 7.4.

The right-hand panel of Fig. 7.2 displays the variance of the response function for
the same three values of δ and for the same values of α. The figures are symmetric
around the vertical axis at α = 0. As this model is an exponential family, the variance
of the response is also the Fisher information.

To gainmore insight in the information function, one can use a reparameterization
of the rating scale model, where the scores are brought back to the unit interval, i.e.,
by dividing the original integer valued scores by mi, the original maximum score.
Müller shows that this results in the discrete model with category response function6

f ∗
i (ri |θ) = exp[riαi + ri (1 − ri )δi ]

m∑

j=0
exp

[
r jαi + r j (1 − r j )

] ,

(

ri = 0,
1

m
,
2

m
, . . . , 1

)

. (7.27)

It is easy to see that (7.24) is the limiting case of (7.27) asm → ∞. In Fig. 7.3 the
information functions are plotted for some finite values ofm and for the limiting case,
labeled as ‘continuous’. In the left-hand panel, the discrimination parameter δi equals
2 (high discrimination), in the right-hand panel it equals 10 (low discrimination); the
value of ηi is zero in both cases such that αi = θ .

The collection of curves can be described briefly as follows:

1. the maxima of the curves are lower with increasing values of m;
2. the tails are thicker with increasing values of m;
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Fig. 7.3 Information functions for different values of m (left: δi = 2; right: δi = 10)

6InMüller’s article the admitted values for ri are slightly different, but the difference is not important.
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3. for low values of m the curves are not necessarily unimodal: see the case for m
= 2 en δi = 10;

4. for m = 64 and m → ∞, the curves are barely distinguishable.

One should be careful with conclusions drawn from the graphs in Fig. 7.3: it does
not follow, for example, from this figure that, if one switches from a discrete format
of an item to a continuous one, that the discrimination or the location parameter will
remain invariant. An example will be given in Sect. 7.4.

7.3.2 Parameter Estimation

Müller (1987) proposes the parameter estimation using only pairs of items, but does
not give details. In the present section the method is explained; the technical expres-
sions to compute the gradient and the matrix of second partial derivatives are given
in the Appendix to this chapter.

As with the continuous Rasch model, definition (7.9), rij= ri+ rj is used and the
reparameterization

εi = δi − ηi .

is used. The problems with obtaining CML estimates of the parameters are the same
as with the Rasch model for continuous responses (and augmented with numerical
problems in evaluating the probability function of the truncated normal distribu-
tion for extreme values of the argument). Therefore the pseudo-likelihood function,
considering all pairs of items, is studied here.

The conditional likelihood function for one pair of items is given by

fi j (ri , r j |ri j ) = exp(riεi + r jε j − r2i δi − r2j δ j )
∫ Mi j

mi j
exp

[
tεi + (ri j − t)ε j − t2δi − (ri j − t)2δ j )

]
d t

(7.28)

where the bounds of the integral in the denominator depend on the value of rij:

mi j = max(ri j − 1, 0),

Mi j = min(ri j , 1).

Along the same lines of reasoning as followed in Sect. 3.1, (7.28) can also be
shown to be a density of the truncated normal distribution, i.e.,

fi j (ri , r j |ri j ) =
exp

[
− (ri−μi j )

2

2σ 2
i j

]

∫ Mi j

mi j
exp

[
− (t−μi j )2

2σ 2
i j

]
d t

= σ−1
i j ϕ(xi j )

�(Zi j ) − �(zi j )
, (7.29)

where
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σ 2
i j = 1

2(δi + δ j )
,

μi j = σ 2
i j (εi − ε j + 2ri jδ j ),

xi j = (ri − μi j )/σi j ,

Zi j = (Mi j − μi j )/σi j ,

zi j = (mi j − μi j )/σi j .

Although the function μij is not symmetric in i and j, it follows readily that μij+
μji = rij= rji. Using this, it is not hard to show that the conditional response density
(7.29) does not change if i and j are interchanged.

The function to be maximized is the logarithm of the pseudo-likelihood function:

∑

v

ln PLv[ε, δ; (rv1, . . . , rvk)] =
∑

v

∑

i< j

ln fi j
(
rvi , rv j

∣
∣rvi j

)
, (7.30)

where ε and δ denote the vectors of ε- and δ-parameters, rvi is the response of
respondent v to item i and k is the total number of items. Deriving the expressions
for the first and second partial derivatives of (7.30) is not difficult, but rather tedious,
the expressions are given in the Appendix to this chapter.

7.4 Comparison of Information Functions Across Models

7.4.1 The Unit of the Latent Variable

Müller (1987, p. 173) compares the information functions for the rating scale model
and his own model for continuous data, assuming that the latent variable underlying
the two models is the same, but this assumption needs not to be correct for two quite
different reasons.

1. The first and most important threat to a meaningful comparison is the silent
assumption that the same trait is measured because the items are the same; only
the item format is different. For example, in a personality inventory, in the discrete
case the respondent may be asked to express the applicability of a statement to
him/herself on a discrete 5-point scale where each possible answer is labeled by
descriptions as ‘certainly not applicable’, ‘not applicable’, ‘neutral’ (whatever
this may mean), ‘applicable’ and ‘certainly applicable’, while in the continuous
case the respondent is asked to express the applicability of the statement by
putting a mark on a piece of line where only the two end points are labeled,
as (e.g.,) ‘not applicable at all’ and ‘strongly applicable’. In the discrete case
tendencies to the middle may strongly influence to prefer the middle category,
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while this tendency may be a less important determinant in the continuous case.
In principle there is only oneway to have good answers on this important question
of construct validity: one has to collect data under both item formats, and estimate
the correlation (disattenuated for unreliability) between the traits measured using
either of the two formats.

2. But even if one can show that the traits measured using different item formats
are the same (i.e., their latent correlation equals one), there is still the problem of
the origin and the unit of the scale. It is easily understood that the origin of the
scale is arbitrary, as most of the IRT models define their item response functions
using a difference between the trait value and a location parameter, such that
adding an arbitrary constant to both does not change response probabilities (or
densities as is easily seen from (7.1)). But understanding that the unit of the
scale is arbitrary as well is not so easy. A historic example of this is the claim
in Fischer (1974) that the scale identified by the Rasch model is a ‘difference
scale’, a scale where the origin is arbitrary but the unit fixed, while the same
author (Fischer 1995) came, in a complicated chapter, to the conclusion that the
scale measured by the Rasch model is an interval scale, with arbitrary origin and
unit. In the common Rasch model the unit is chosen by fixing the discrimination
parameter (common to all items) at the value of 1, but any other positive value
may be chosen. Suppose that in the discrete model, one chooses c �= 1, then one
can replace θ − βi with c(θ∗ − β∗

i ) where θ∗ = θ/c and β∗
i = βi/c and c the

common (arbitrarily chosen) discrimination value.

With the continuous models, however, the choice of the unit of measurement (of
the latent variable) is also influenced by the bounds of the integral. We illustrate
this with the Rasch model for continuous responses. Suppose data are collected by
instructing the respondents to distributeM tokens (withM large enough such that the
answer can safely be considered as continuous) among the alternatives of a multiple
choice question and let Ui (with realizations ui) be the number of tokens assigned to
the correct alternative of item i. Then, the model that is equivalent to (7.1) is given
by

fi (u|θ∗) = exp
[
u(θ∗ − η∗

i )
]

∫ M
0 exp

[
y(θ∗ − η∗

i )
]
dy

, (u ∈ [0, M]).

If we want to rescale the response variable by changing it to a relative value, i.e.,
Ri= Ui/M, then we find

fi (ri |θ∗) = exp
[
ri M(θ∗ − η∗

i )
]

M
∫ 1
0 exp

[
tM(θ∗ − η∗

i )
]
d t

= exp[ri (θ − ηi )]

M
∫ 1
0 exp[t (θ − ηi )]d t

= 1

M
fi (yi |θ), (yi = ri/M ∈ [0, 1])
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with θ = Mθ∗ and ηi = Mη∗
i . So we see that changing the bounds of the integration

in (7.1) changes the density by a constant and at the same time the unit of the
underlying scale. Changing the density is not important as it will only affect the
likelihood by a constant, but at the same time the unit of the underlying scale is
changed. Choosing zero and one as the integration bounds in (7.1) is an arbitrary
choice, and therefore the unit of measurement is arbitrary as well.

Exactly the same reasoning holds for Müller’s model where in Eq. (7.23) the
constants c and d (>0) are arbitrary, but will influence the unit of measurement of
the latent variable.

7.4.2 An Example

A simple example to see how the information function depends on the unit of mea-
surement is provided by theRaschmodel for binary data.Assuming, as in the previous
section, that the common discrimination parameter is indicated by c, the information
function for a single item is given by

Ii (θ) = c2 fi (θ)[1 − fi (θ)],

meaning that doubling cwill quadruple the information, so that this gives the impres-
sion that the information measure is arbitrary. But one should keep in mind that
doubling the value of c will at the same time halve the standard deviation (SD)
of the distribution of θ or divide its variance by a factor four. This means that the
information measure can only have meaning when compared to the variance of the
θ -distribution. So, if we want to compare information functions across models, we
must make sure that the latent variables measured by the models are congeneric, i.e.,
their correlation must be one, but at the same time they must be identical, i.e., having
the same mean and variance. This is not easy to show empirically, but we can have
an acceptable approximation as will be explained by the following example.

At the department of Psychology of the University of Amsterdam, all freshmen
participate (compulsorily) in the so-called test week7: during one week they fill in a
number of tests and questionnaires and take part as subjects in experiments run at the
department. One of the questionnaires presented is the Adjective Check List (ACL,
Gough & Heilbrunn, 1983; translated into Dutch by Hendriks et al. 1985), where a
number of adjectives (363) is presented to the test takers. The task for the student is
to indicate the degree to which each adjective applies to him/herself. The standard
administration of the test asks the students to indicate the degree of applicability on a
five point scale. In 1990, however, two different test forms were administered, each
to about half of the students. In the first format, only a binary response was asked for
(not applicable/applicable); in the second format, the student was asked to mark the
degree of applicability on a line of 5.7 cm, with the left end corresponding to ‘not

7At least, this was the case until 1990, the year where the continuous data were collected.
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applicable at all’ and the right end to ‘completely applicable’. The score obtained by
a student is the number of millimeters (m) of the mark from the left end of the line
segment. This number m was transformed into a response (in model terms) by the
transformation

r = m + 0.5

58
.

Seven of these adjectives, fitting in the framework of the Big Five, were taken as
relevant for the trait ‘Extraversion’ and these seven are used in the present example.
For the polytomous data, the responses collected in the years 1991 through 1993were
pooled, yielding 1064 records. For the continuous data 237 records were available.
Dichotomous data are not used here. All these records are completely filled in; some
2% of the original records with one or more omissions have been removed. The
polytomous data have been analyzedwith thePartial CreditModel (PCM)usingCML
estimation for the category parameters for ordered categories running from 0 to 4;
the continuous data were analyzed with the extension ofMüller’s model as discussed
in Sect. 7.3, using the maximum pseudo-likelihood method. After the estimation of
the item parameters, the mean and SD of the θ -distribution were estimated, while
keeping the item parameters constant at their previous estimates. For both models a
normal distribution of the latent variable was assumed.

Parameter estimates are displayed in Table 7.1. The adjectives were presented to
the students in Dutch; the English translation is only put there as information and
did not have any influence at all on the actual answers. As there are four parameters
per item in the polytomous model, and their estimates are of not much use in judging
the item locations, they are not reported in Table 7.1. Instead, the value of the latent
variable yielding two (half of the maximum) as expected value is reported, under the
symbol β*.

Table 7.1 Parameter estimates of the ‘extraversion’ scale

Adjective Continuous Polytomous

Dutch English η δ β*

Extravert (Extravert) 1.932 11.224 0.610

gereserveerda (Reserved) −1.573 12.007 −0.176

praatgraag (Talkative) 0.024 8.584 −0.130

terughoudenda (Aloof) −1.382 12.437 −0.032

verlegena (Shy) 1.601 7.661 0.298

zwijgzaama (Taciturn) −0.734 8.160 −0.298

introverta (Introvert) 0.132 4.943 0.189

Mean 2.5004 1.1416

SD 5.2180 0.7067

*for these adjectives, the complementary scores were used
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As is seen from the table the estimated SD for the continuous model is much
larger than for the PCM model, and this is consistent with the large numbers along
the horizontal axis in Fig. 7.2. The correlation between the η- and β*-parameters is
0.85.

The latent variable estimated by the PCM will be indicated by θp; the one esti-
mated by the continuous model by θ c. Their means and SDs are indicated by the
subscripts ‘p’ and ‘c’ as well. The variable θp will be linearly transformed such that
the transformed variable has the same mean en SD as θ c, i.e.,

T (θp) = Bθp + A.

It is easy to check that

B = σc

σp
and A = μc − Bμp

In Fig. 7.4, the two information functions for the seven item checklist are given,
for values of the latent variable brought to the same scale where the population mean
is 2.5 and the SD about 5.22. The vertical dashed line indicates the average of the
latent value distribution, and the thick black line indicates the range that encompasses
95% of the distribution. So, for the great majority of the population the information
provided by the continuous model is larger than for the discrete PCM.

Of course the procedure we followed can be criticized: no account has been given
to the standard errors of the estimates, and the data do not come from a sample that
has been tested twice. So, silently, we have assumed that the distribution of the latent
trait has not changed (very much) in the period that the data were collected. As in
all these cases the population consists of Psychology freshman at the University of
Amsterdam, it is fairly unlikely that the distribution has changed in any important
way.
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Even with all the criticism that may be put forward, it seems quite convincing
that the continuous model is more informative than the PCM and therefore certainly
deserves more attention than it has received thus far.

7.5 Discussion

Two IRT models for continuous responses that allow for separation between item
and person parameters have been studied. Although CML estimation of the item
parameters is possible, it leads to unwieldy formulae and only the case for two items
has been considered for the two models. This, however, proves to be sufficient to
obtain consistent estimates of the item parameters, using the theoretical contributions
in the area of pseudo-likelihood estimation.

Using the technical details provided in this chapter, developing appropriate soft-
ware for parameter estimation is not hard. For the extension of Müller’s model, the
software developed applies the Newton-Raphson procedure directly on the initial
estimates and works very well, although, admittedly, it was only used on a scale with
no more than 7 items. For the extension of the Rasch model to continuous responses,
software has to be developed yet.

But there are more aspects in the technical realm that have to be given attention
to:

1. The estimation of the individual person parameter, not only as a technical prob-
lem, but also as a real statistical one: is the maximum likelihood estimator of θ ,
used with known values of the item parameters, unbiased, and if it is not, can
one develop an unbiased estimator along the lines of the Weighted Maximum
Likelihood or Warm-estimator?

2. The set-up of goodness-of-fit tests which are informative, e.g., for the contrast
between the two models discussed here, but also techniques to detect non-fitting
items, all based on sound statistical reasoning are areas which deserve attention.

3. The extension of Müller’s model to allow for different discriminations turned
out to be rather simple, and as the example in Table 7.1 shows, worthwhile as
the estimates differ considerably. Therefore, it also seems worthwhile to think
about an extension of the Rasch model for continuous items that allows for
different discriminations. A promising route would be to explore the possibilities
of Haberman’s (2007) interaction model.

There are, however, aspects in testing that cannot be solved by sophisticated
techniques but which are fundamental in the discussion of the validity of the test
and the conclusion its use leads to. Take the small scale on extraversion which was
discussed in Sect. 7.4. If the answers are collected using a Likert scale, there is
ample evidence in the literature for certain tendencies (like the tendency to avoid
extreme answers) which will create irrelevant variance in the test scores. Suppose
we have two respondents who are quite extravert, i.e., who would on average score
at or above the middle of the five categories, but one, A, has a strong tendency to
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avoid extreme answers while the other, B, has a preference for extreme answers,
then on the average B will obtain a higher test score than A, while the difference
cannot be unambiguously be attributed to a difference in extraversion, i.e., some of
the variance of the observed scores is due to a variable which is irrelevant for the trait
to be studied, and therefore forms a threat to the correct interpretation of the results,
i.e., to the validity.

More in general, there are always determinants of behavior which are responsible
for part of the variance in the responses, and which are a kind of a nuisance in the
interpretation of the test scores, but which cannot be easily avoided. If these extra
variables are associated with the format of the items then they are hard to discover if
the use of this format is ubiquitous, like the multiple choice (MC) format. It is highly
probable that ‘blind guessing’ as a much used model for explaining the behavior in
MC test is highly unrealistic; students use all kinds of strategies to improve the result
when they are not sure of the correct response, and some of these strategies will give
better results than others, so that the result on an MC test is a contamination of the
intended construct and the cleverness in using choice strategies.

As long as there is no variation in the format of the items, this contamination will
not do much harm, as the irrelevant construct will be absorbed into the intended con-
struct. But the risk of incorrect interpretations occurs if at some point a drastic change
in the format is introduced, like switching from MC to probability measurement.

When Dirkzwager was developing his system of multiple evaluation—the name
he gave to probability measurement—he was aware of a serious validity threat:
students can show a lack of ‘realism’ when assigning continuous responses to each
of the alternatives of a multiple choice question, either by being overconfident and
giving too high aweight to one of the alternatives, or by being cautious and tending to
a uniform distribution over the alternatives. here is a quotation from Holmes (2002,
p. 48): Considering one item in a test, we can represent the student’s uncertainty as
to the correct answer by a probability distribution p = (p1, p2,…,pk) over the set {1,
2,…,k} where 0 ≤ pj and Σpl= 1. The student’s response can be represented by r =
(r1, r2,…rk). For a perfectly realistic student the response r is equal to p. In effect,
such a student is stating: “Given my knowledge of the subject, this item is one of the
many items for which my personal probability is p = (p1, p2,…,pk). For these items,
answer one is correct in a proportion8 of p1, answer 2 in a proportion of p2 etcetera.

This means that a student is realistic if his continuous responses match his subjec-
tive probabilities, which is already elicited by the (approximate) logarithmic scoring
function, but for which Holmes developed a measure of realism (see his Chap. 4)
and showed that using this measure as feedback was very effective in changing the
behavior of ‘unrealistic’ students, which makes the multiple evaluation approach as
developed originally by Dirkzwager a good and powerful instrument for formative
assessment. Details of the application can be found in Holmes.

Finally, one might ask then why an IRT model is needed if good use can be made
of probability measurement. There are, however aspects of formative assessment

8The quotation was a bit changed here as Holmes spoke of p1 cases, clearly confusing frequencies
and proportions.
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which are very hard to develop at the school level. Progress assessment, for example,
is an important one, but also the choice of items whose difficulty matches the level
of the students. The construction of an item bank at the national level, for example,
and making it available to the schools together with the necessary software, could be
a task for a testing agency having the necessary psychometric and IT competences.

Appendix

To estimate the parameters in Müller’s model the logarithm of the pseudo-likelihood
function is maximized. The function, given in (7.30) is repeated here:

∑

v

ln PLv[ε, η; (rv1, . . . , rvk)] =
∑

v

∑

i< j

ln fi j (rvi , rv j |rvi j ),

where v indexes the respondent. Concentrating on a single answer pattern, and drop-
ping the index v, we have

fi j (ri , r j |ri j ) = σ−1
i j ϕ(xi j )

�(Zi j ) − �(zi j )
(7.31)

with the auxiliary variables

σ 2
i j = 1

2(δi + δ j )
,

μi j = σ 2
i j (εi − ε j + 2ri jδ j ),

xi j = (ri − μi j )/σi j ,

Zi j = (Mi j − μi j )/σi j ,

zi j = (mi j − μi j )/σi j , (7.32)

and the two bounds, Mij and mij, repeated here:

mi j = max(ri j − 1, 0),

Mi j = min(ri j , 1).

Taking the logarithm of (7.31) gives

ln fi j (ri , r j |ri j ) = −1

2
ln(2π) − 1

2
ln(σ 2

i j ) − 1

2
x2i j − ln

[
�(Zi j ) − �(zi j )

]
. (7.33)

To write down the expressions for the partial derivatives w.r.t. the ε- and δ-
parameters, it proves useful to define a sequence of functions Apij, (p = 0, 1, 2…):
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Api j = Z p
i jϕ(Zi j ) − z pi jϕ(zi j )

�(Zi j ) − �(zi j )
. (7.34)

Using the partial derivatives of the auxiliary variables (7.31) and the functions
defined by (7.33) the first partial derivatives of (7.32) are given by

∂ ln( fi j )

∂εi
= ri − μi j + σi j A0i j ,

∂ ln( fi j )

∂ε j
= r j − ri j + μi j − σi j A0i j ,

∂ ln( fi j )

∂δi
= r2i + μ2

i j + σ 2
i j (1 − A1i j ) − 2μi jσi j A0i j ,

∂ ln( fi j )

∂δ j
= −r2j + (ri j − μi j )

2 + σ 2
i j (1 − A1i j ) + 2(ri j − μi j )σi j A0i j . (7.35)

Notice that ∂ ln( fi j )
∂ ε j

= − ∂ ln( fi j )
∂ εi

and that

∂ ln( fi j )

∂ δ j
= ∂ ln( fi j )

∂ δi
+ 2ri j

∂ ln( fi j )

∂ εi
. (7.36)

For the second derivatives, it turns out that we only need three different expres-
sions; these are given next, but we leave out the double subscript ‘ij’ from the right-
hand sides.

∂2 ln( fi j )

∂ ε2i
= −σ 2[1 − A1 − A2

0

]
, (7.36a)

∂2 ln( fi j )

∂ εi ∂ δi
= 2μσ 2

[
1 − A1 − A2

0

] − σ 3[A0 + A2 + A0A1], (7.36b)

∂2 ln( fi j )

∂δ2i
= −σ 2[(1 − A1)(2 + A1) − A3] + 4μσ 3[A0 + A2 + A0A1]

− 4μ2σ 2
[
1 − A1 − A2

0

]
. (7.36c)

It is easily verified that

∂2 ln( fi j )

∂ ε2i
= ∂2 ln( fi j )

∂ ε2j
= −∂2 ln( fi j )

∂ εi ∂ ε j

and using (7.35), it turns out that we only need the three expressions (7.35a), (7.35b)
and (7.35c) to define in a simple way the matrix of second partial derivatives. Using
the symbols ‘a’, ‘b’ and ‘c’ to denote the value of the right-hand members of (7.35a),
(7.35b) and (7.35c), respectively, one obtains the matrix of second partial derivatives
as displayed in Table 7.2.
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Table 7.2 Symbolic representation of the matrix of second derivatives (r means rij)

εi εj δi δj

εi a −a b b + 2ra

εj −a a −b −b − 2ra

δi b −b c c + 2rb

δj b + 2ra −b − 2ra c + 2rb c + 4rb + 4r2a

In the applications that were run for this chapter (see Sect. 7.4), simple initial
values for the parameterswere computed and immediately used in aNewton-Raphson
procedure. The initial values were

δ
[0]
i = 0.1

Var(Ri )
and ε

[0]
i = 2δ[0]

i Ri

where Ri and Var(Ri ) denote the average and the variance of the observed responses
to item i, respectively. To make the model identified, one of the ε-parameters can
be fixed to an arbitrary value. To avoid negative estimates of the δ-parameters, it is
advisable to reparametrize themodel for estimation purposes and to use ln(δi) instead
of δi itself.
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