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Abstract Technical advances provide the possibility of capturing timing and
process data as test takers solve digital problems in computer-based assessments. The
data collected in log files, which represent information beyond response data (i.e.,
correct/incorrect), are particularly valuable when examining interactive problem-
solving tasks to identify the step-by-step problem-solving processes used by indi-
vidual respondents. In this chapter, we present an exploratory study that used cluster
analysis to investigate the relationship between behavioral patterns and proficiency
estimates as well as employment-based background variables. Specifically, with a
focus on the sample from the United States, we drew on a set of background variables
related to employment status and process data collected from one problem-solving
item in the Programme for the International Assessment of Adult Competencies
(PIAAC) to address two research questions: (1) What do respondents in each clus-
ter have in common regarding their behavioral patterns and backgrounds? (2) Is
problem-solving proficiency related with respondents’ behavioral patterns? Signif-
icant differences in problem-solving proficiency were found among clusters based
on process data, especially when focusing on the group not solving the problem
correctly. The results implied that different problem-solving strategies and behav-
ioral patterns were related to proficiency estimates. What respondents did when not
solving digital tasks correct was more influential to their problem-solving proficiency
than what they did when getting them correct. These results helped us understand the
relationship between sequences of actions and proficiency estimates in large-scale
assessments and held the promise of further improving the accuracy of problem-
solving proficiency estimates.
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10.1 Introduction

The use of computers as an assessment delivery platform enables the development
of new and innovative item types, such as interactive scenario-based items, and the
collection of a broader range of information, including timing data and information
about the processes that test takers engage in when completing assessment tasks (He
and von Davier 2016). The data collected in log files, which are unique to computer-
based assessments, provide information beyond response data (i.e., correct/incorrect)
that is usually referred to as process data. Such information is particularly valu-
able when examining interactive problem-solving tasks to identify the step-by-step
problem-solving processes used by individual respondents.

10.1.1 Problem-Solving Items in PIAAC

As the largest and most innovative international assessment of adults, the Programme
for the International Assessment of Adult Competencies (PIAAC), starting from the
first cycle in 2012, has sought to assess computer, digital-learning, and problem-
solving skills, which are essential in the 21st century (Organisation for Economic
Co-operation and Development [OECD] 2009, 2011, 2012; Schleicher 2008). Of
significance here, PIAAC is the first international household survey of skills predom-
inantly collected using information and communication technologies (ICT) in a core
assessment domain: Problem Solving in Technology-Rich Environments (PSTRE).
This international survey has been conducted in over 40 countries and measures the
key cognitive and workplace skills needed for individuals to participate in society
and for economies to prosper (OECD 2016). Evidence has shown that process data
captured in PSTRE items provide a deeper insight into the cognitive processes used
by respondents when they are solving digital tasks (e.g., Goldhammer et al. 2014;
Liao et al. 2019; Chen et al. 2019). This additional information helps us understand
the strategies that underlie proficient performance and holds the promise of bet-
ter identifying behavioral patterns by subgroups, thus helping us seek solutions for
teaching essential problem-solving skills to adults with particular needs (He and von
Davier 2015, 2016).

The PSTRE items that we focused on in this study were used to assess the skills
required to solve problems for personal, work, and civic purposes by setting up
appropriate goals and plans, as well as how individuals access and make use of infor-
mation through computers and networks (OECD 2009). This new domain involved
more interactive item types and was available only on computers. The construct
underlying the PSTRE items describes skillful use of ICT as collecting and evalu-
ating information for communicating and performing practical tasks such as orga-
nizing a social activity, deciding between alternative offers, or judging the risks of
medical treatments (OECD 2009). To give a response in the simulated computer
environments that form the PSTRE tasks, participants were required to click buttons
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or links, select from dropdown menus, drag and drop, copy and paste, and so on (He
and von Davier 2016).

10.1.2 Employability and PSTRE Skills

Employability and the completion of computer-based testing have been shown to be
positively correlated in recent research (e.g., OECD 2013b; Vanek 2017; Liao et al.
2019). Although the United States was one of the PIAAC countries with the highest
accessibility to computers, internet, and advanced electronic equipment, its perfor-
mance, especially in the PSTRE domain that focuses on assessing ICT skills, was
far lower than expectations. According to a recent report published by the National
Center for Education Statistics (Rampey et al. 2016), U.S. test takers scored lower on
average than their international peers, ranking in the lowest tier in the PSTRE domain
as a country, and having the largest proportion of respondents below Level 1, which
is the minimum proficiency level required to complete simple problem-solving tasks
in daily life (OECD 2013a). These results raise attention to adults’ current PSTRE
skills in the U.S. population and their employability, which is highly associated with
PSTRE skills.

This chapter presents an exploratory study that used cluster analysis to investi-
gate the relationship between behavioral patterns and proficiency estimates as well
as employment-based background variables. Specifically, with a focus on the sample
from the United States, we drew on a set of background variables related to employ-
ment status and process data collected from one PSTRE item in PIAAC to address
two research questions: (1) What do respondents in each cluster have in common
regarding their behavioral patterns and backgrounds? (2) Is problem-solving profi-
ciency consistent across clusters, or in other words, is problem-solving proficiency
related to respondents’ behavioral patterns?

10.2 Method

10.2.1 Sample

The PIAAC sample was representative of the population of adults with an age range of
16-65 years old who had prior experience with computers. Those who had never used
computers were excluded from the problem-solving section; the task for this scale
was by default (and by definition of the construct) assessed only on a computer-based
testing platform (OECD 2010). A total of 1,340 test takers in the U.S. sample who
completed the PSTRE items in the second module (PS2)" in PIAAC were included in

IThe PIAAC was designed in a structure of multistage adaptive testing, by routing respondents
to different modules in two stages. The PSTRE domain consists of two modules (PS1 and PS2),
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the present study. Of them, there were 629 female test takers (46.9%) and 711 male
test takers (53.1%). The mean age was 39.2 years (SD = 14.0). A majority (680) of
members of this sample had an educational level above high school (50.7%), whereas
534 reported completing high school (39.9%), 124 reported less than high school
(9.3%), and two cases were recorded as missing (0.1%). Please note that there were
14 cases that could not be matched between the process data and the background
variables® and thus had to be removed in further data analysis, which resulted in
1,326 test takers in the final sample.

10.2.2 Instrumentation

A total of 14 PSTRE items were administered in the PIAAC main study. We focused
on the process data resulting from the task requirements of one item. The “Meeting
Room Assignment” item (U02) consisted of three environments: email, web, and
word processor. The task required respondents to view a number of emails, identify
relevant requests, and submit three meeting room requests using a simulated online
reservation site. Meanwhile, a conflict between one request and existing schedule
presented an impasse that respondents had to resolve. In the interactive environment,
test takers could switch among the three environments, go back and forth to under-
stand the meeting room requests, make reservations or changes, and copy and paste
the key information in the word processor environment.® An interim score was eval-
uated based only on the meeting reservation webpage. According to the scoring rule,
full credit (3 points) was granted when the respondents correctly submitted all three
meeting room requests, and partial credit (1 or 2 points) was given when only one or
two requests were submitted successfully. No credit (0 points) was given when none
of the requests was correctly fulfilled.

According to the PIAAC technical report (OECD 2016), item U02 was one of the
most difficult in the PSTRE domain, with difficulty and discrimination parameter
estimates* of 0.78 and 1.18, respectively, ranking at difficulty level 3. In the U.S.
sample, 932 (70%) test takers received no credit, 294 (22%) received partial credit,

positioned in stage 1 and stage 2, respectively. Each of the modules contains seven items without
overlap to each other. The seven items within one module has a fixed position. More details about
PIAAC test design refer to PIAAC technical report (OECD 2016).

2Process data extracted from the log file and response data from the background questionnaire
could be linked with the unique respondent IDs. However, given possible technical issues in data
collection, there might exist cases with only process data or only background variables. These cases
had to be discarded during analysis as data could not be matched.

3Word processor was an optional environment instead of a compulsory one, designed to help the
respondents summarize information extracted from the email requests.

4Two-parameter-logistic item response modeling was applied in the PIAAC data analysis to estimate
the latent trait of test takers’ problem-solving skills. The parameter estimates presented here are
the common international parameters generally used across countries. For details on data analysis
modeling in PIAAC, refer to the PIAAC technical report (OECD 2016).
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Tab.le.10.1 Descriptive . Features Mean |SD Min Max
statistics of number of actions

and response time (in Number of actions on U02 | 34.06 |33.89 |0.00 194.00
minutes) in U02 Response time on U02 3.60 | 3.47 [0.09 45.07

and only 114 (9%) received full credit. To explore the difference between test takers
who got at least part of the item correct and those who received no credit, the poly-
tomous scores were dichotomized by collapsing partial and full credit in the present
study.

Further, the item U02 required a relatively long sequence to solve the task. On
average, respondents took 34 actions over 3.6 minutes to complete the task.> It is also
noted that the distributions of the number of actions and response time were widely
spread out. As presented in Table 10.1, the longest sequence in this item used 194
actions over 45 minutes, while the shortest sequence was zero actions and 0.09 min-
utes: obviously a quick skipping behavior resulting in a missing response. These
statistics implied that the behavioral patterns and strategies differed considerably by
test takers. This sparse distribution would also impact the feature extraction, which
is discussed in detail in the next section.

There are four reasons we selected item U0O2 as an example. First, as mentioned
above, this rather difficult item could potentially provide more information to identify
reasons for failure when tracking respondents’ process data. Researchers have found
that for an item that is difficult but not extremely so, test takers tend to demonstrate
more heterogeneous use of strategies, aberrant response behavior, and variant use
of response time (e.g., de Klerk et al. 2015; Goldhammer et al. 2014; Vendlinski
and Stevens 2002). Second, this item consisted of multiple environments (email,
web, and word processor). The action sequences are expected to be more diverse
in a problem-solving item with multiple environments than an item with a single
environment. Hence, it is possible to extract more information from this item. Third,
item UO2 had a fixed position in the middle of the PS2. Compared to items at the
beginning or the end, items in the middle of a booklet are less likely to demonstrate
position effect (e.g., Wollack et al. 2003). Lastly, item U02 shared environments with
most items in PS2. This provided the possibility to further investigate the consistency
of problem-solving strategies across items for each individual.

10.2.3 Features Extracted from Process Data

10.2.3.1 N-Gram Representation of Sequence Data

The strategy for analyzing item U02 was motivated by the methodologies and appli-
cations in natural language processing (NLP) and text mining (e.g., He et al. 2012;

SThere is no time limitation in the PIAAC cognitive test.
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Sukkarieh et al. 2012; He et al. 2017). We chose the n-grams model to disas-
semble the sequence of data while retaining the sequential order. As He and von
Davier (2015, 2016) introduced, unigrams—analogous to the language sequences in
NLP—are defined as “bags of actions,” where each single action in a sequence
collection represents a distinct feature. An n-gram is defined as a contiguous
sequence of n words in text mining; similarly, when analyzing action sequences
from process data, an n-gram can be defined as a sequence of n adjacent actions
(Manning and Schiitze 1999). Bigrams and trigrams are defined as action vec-
tors that contain either two or three ordered adjacent actions, respectively. For
instance, here is a typical sequence for email review actions: “MAIL_VIEWED_4,
MAIL_VIEWED_2, MAIL_VIEWED_1". The unigram is each of the three sep-
arate actions (e.g., “MAIL_VIEWED_4"), a bigram is two adjacent actions as
one unit, (e.g., “MAIL_VIEWED_2, MAIL_VIEWED_1”), and the trigram is
three adjacent actions as one unit (e.g., “MAIL_VIEWED_4, MAIL_VIEWED_2,
MAIL_VIEWED_1”). Of note is that the n-gram method was productive in creating
features from sequence data without losing too much information in terms of the
order in the sequence (He et al. 2018). This approach is a widely accepted tool for
feature engineering in fields such as NLP and genomic sequence analysis.

A total of 34 actions (i.e., unigrams) were defined for this item and are listed
in Table 10.2. The interpretation describing each action is presented as well. The
frequency of sequences that contain the action by each row is shown in the right-
hand column.

Besides the unigram features, we also included the total response time and the
number of actions as features in the cluster analysis. These two features also showed
up in a preliminary principal component analysis as the most influential features with
the highest loadings. This resulted in 36 features altogether. Given concerns about
the low frequency of bigrams and trigrams, the features from mini sequences were
not used in the cluster analysis in this study.

10.2.3.2 Term Weights

Three types of term weights were used in the current study: sampling weights as well
as between- and within-individual weights. Between-individual weights highlight
how different the frequency of a certain action is among individuals, whereas within-
individual weights capture how some actions are used more often than others by an
individual. Regarding between-individual differences, a popular weighting method
in text mining, inverse document frequency (IDF; Sparck Jones 1972), was renamed
as inverse sequence frequency (ISF) and adapted for estimating the weight of each
n-gram.ISFis defined as I SF; = log(N/sf;) > 0, where N denotes the total number
of sequences in the sample, which is the same as the total number of test takers, and
sf; represents the number of sequences containing action i. A large ISF reflects a
rare action in the sample, whereas a small ISF represents a frequent one.
Within-individual differences had to be considered when an individual took some
actions more often than others. Although more frequent sequences are more impor-
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Table 10.2 Description and frequency of unigrams

No. | Features Description Frequency

1 FOLDER_VIEWED View a folder 5,762

2 ENVIRONMENT_WB Go to web environment 4,715

3 ENVIRONMENT_MC Go to email environment 4,317

4 MAIL_VIEWED_1 View 1st email 2,725

5 HISTORY_VIEWCALENDAR Go to calendar tab in web 2,190
environment

6 MAIL_VIEWED_3 View 3rd email 1,968

HISTORY_RESERVATION Go to reservation tab in web 1,935

environment

8 COMBOBOX_ROOM Choose a room when filling 1,891
out a room request

9 MAIL_VIEWED_4 View 4th email 1,698

10 MAIL_VIEWED_2 View 2nd email 1,544

11 MAIL_MOVE Move an email 1,499

12 NEXT_INQUIRY Go to next item 1,371

13 START Start item U02 1,326

14 COMBOBOX_START_TIME Choose start time when filling | 1,312
out a room request

15 COMBOBOX_END_TIME Choose end time when filling 1,304
out a room request

16 COMBOBOX_DEPT Choose department when 1,296
filling out a room request

17 HISTORY_MEETINGROOMS Go to meeting room details 1,058
tab in web environment

18 ENVIRONMENT_WP Go to word processor 987
environment

19 SUBMIT_RESERVATION_FAILURE Submit a reservation request 987
unsuccessfully

20 SUBMIT_RESERVATION_SUCCESS Submit a reservation request 971
successfully

21 HISTORY_UNFILLED Go to unfilled tab in the web 551
environment

22 SUBMIT_UNFILLED Submit an unfilled request 414

23 FOLDER Do folder-related actions (i.e., 332
create/delete a folder)

24 HISTORY_HOME Click on the home button in 244
the web environment

25 CHANGE_RESERVATION Change an existing reservation 227

26 KEYPRESS Type in word processor 152

environment

(continued)
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Table 10.2 (continued)

No. |Features Description Frequency
27 REPLY Reply an email 118
28 CANCEL Click on cancel button 111
29 HELP Use help function 87
30 COPY Use copy function 42
31 SEARCH Use search function 38
32 SORT Use sort function 21
33 PASTE Use paste function 15
34 BOOKMARK Do bookmark-related actions 13
(i.e., add/delete a bookmark)

tant than less frequent ones for each individual, the raw frequencies of these action
sequences often overestimate their importance (He and von Davier 2015). To account
for within-individual differences in the importance of action sequences, a weight-
ing function was employed f (t fi j) =1+ log(t fi j), where f;; > 0 represents the
frequency of action i in each individual sequence j (Manning and Schiitze 1999).
Combining the between- and within-individual weights, the final action weight can
be defined as weight(i, j) = [1 + log(tf,-j)] log(N/sf;) for tf;; > 1 (He and von
Davier 2015, 2016). Compared to raw frequency, this weighting mechanism was
applied for attenuating the effect of actions or action vectors that occurred too often
to be meaningful.

The sampling weights were also taken into consideration in this study. In fact,
we conducted the cluster analyses both with and without sampling weights, and the
differences were marginal. Therefore, we report results only with sampling weights
in the next section.

10.2.4 Clustering Sequence Data

Clustering has been widely recognized as a powerful unsupervised data mining
approach for grouping similar data points. Unlike supervised learning approaches
that typically train a model on known input (data and labels) to predict future out-
puts, unsupervised learning approaches focus on finding hidden patterns or intrinsic
structures in input data (Manning and Schiitze 1999). Sequence clustering aims at par-
titioning sequences into meaningful clusters consisting of similar sequences (Ferreira
et al. 2007). It has been applied in various fields, such as gene structure exploration
in biology, students’ learning progression in education, and pattern recognition in
industrial engineering.

To cluster sequence data, it is important to choose a clustering algorithm that is
appropriate for the characteristics of the data and sequence features (Dong and Pei
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2007). Some popular clustering methods include hierarchical clustering (e.g., Huang
et al. 2010; Johnson 1967; Navarro et al. 1997), graph-based clustering (e.g., Kawaji
et al. 2001; Felzenszwalb and Huttenlocher 2004), K-means (e.g., Bustamam et al.
2017; Gasch and Eisen 2002; Park et al. 2008), and others. Hierarchical clustering
is a method of cluster analysis that, as the name indicates, seeks to build a hierar-
chy of clusters. Strategies for hierarchical clustering generally fall into two types.
They are: (1) agglomerative (Johnson 1967)—a “bottom up” approach in which each
observation starts in its own cluster and pairs of clusters are merged as one moves
up the hierarchy, and (2) divisive (MacNaughton-Smith et al. 1964)—a “top down”
approach in which all observations start in one cluster and splits are performed recur-
sively as one moves down the hierarchy. Graph-based clustering algorithms generally
involve two major steps. In the first step, a weighted graph is constructed from the
sequences. In the second, the graph is segmented into subgraphs that correspond to
the clusters (Dong and Pei 2007). K-means is one of the simplest learning algorithms
to solve clustering problems. The procedure follows a straightforward way to clas-
sify a given data set through a certain number of clusters (assume k clusters) fixed
a priori. The main idea of the K-means algorithm is to discover K (nonoverlapping)
clusters by finding K centroids (“central” points) and then assigning each point to
the cluster associated with its nearest centroid (Jyoti and Singh 2011).

Our current study adopted the K-means algorithm to cluster the behavioral patterns
from one PSTRE item UO2 based on features extracted from process data. The reasons
for choosing this algorithm can be explained from three aspects: First, K-means
is efficient in terms of computational cost even with a large number of variables,
which renders wider applications possible in large-scale assessments, especially for
complex multidimensional data structures in process data. Second, observations can
switch from one cluster to another when the centroids of the clusters are recomputed.
This shows that K-means is able to recover from potential mistakes in clustering.
However, it also indicates that results from K-means could be strongly influenced
by the selection of initial seeds (e.g., Arthur and Vassilvitskii 2007). Therefore, the
impact of selecting initial seeds should be carefully examined before interpreting the
results, as we did in this study. Third, results of K-means are easily interpretable.
Each observation belongs to only one cluster, and the centroids of the clusters are
expressed on the scales of the variables. More details about the analytic strategy and
algorithms are introduced in the next section.

10.2.5 K-Means Clustering

The K-means algorithm (Lloyd 1982) was adopted for the cluster analysis in the
current study. This method starts with k arbitrary centroids and seeks to minimize
the squared difference between observations in the same cluster. A cluster centroid
is typically the mean or median of the points in its cluster and “nearness” is defined
by a distance or similarity function. Ideally the centroids are chosen to minimize
the total “error,” where the error for each point is given by a function that measures
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the discrepancy between a point and its cluster centroid, for example, the squared
distance. Note that a measure of cluster “goodness” is the error contributed by that
cluster (Alphaydin 2009).

The basic K-means algorithm for finding K clusters is as follows:

Select K points as the initial centroids.

Assign all points to the closest centroid.

Recompute the centroid of each cluster.

Repeat steps 2 and 3 until the centroids do not change (or change minimally).

bl

The first step is to define k centroids, one for each cluster. These centroids should be
placed with careful consideration because different locations cause different results.
The best choice is to place them as far away from each other as possible. The next
step is to take each point belonging to a given data set and assign it to the nearest
centroid. When no point is pending, the first step is completed and an early group
membership is done. At this point we need to recalculate k new centroids. After we
have these k new centroids, a new binding has to be done between the same data set
points and the nearest new centroid. This generates a loop. As a result of this loop,
we could notice that the k centroids may change their location step by step until no
more changes occur. In other words, the centroids do not move anymore. Finally, this
algorithm aims at minimizing a function of a matrix, for instance, a squared error
function (Steinbach et al. 2004).

Unlike the hierarchical algorithms that produce a nested sequence of partitions,
K-means is one of the nonhierarchical algorithms that often start out with a partition
based on randomly selected seeds, and then refine this initial partition (Manning and
Schiitze 1999). The initial cluster centers for K-means are usually picked at random.
Whether the choice of initial centers is important or not depends on the structure of
the set of objects to be clustered (Jyoti and Singh 2011).

In this study, we used 36 features—34 unigrams plus response time and total
number of action sequences—extracted from the process data of item U02 to parti-
tion test takers into clusters using the K-means clustering method. An appropriate
number of clusters, k, was selected based on the change in the total within-cluster
sum of squares. As noted previously, one potential uncertainty of K-means is that the
clustering results could be strongly influenced by the selection of initial seeds (e.g.,
Arthur and Vassilvitskii 2007). Therefore, the stability of the cluster membership
was examined to maximize the generalizability of the results. Further, clusters were
interpreted based on the centroids of the 36 features. We explored the homogeneous
characteristics of the clusters, as well as the relationship between cluster membership
and proficiency level and/or correctness of U02.
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10.3 Results

10.3.1 Cluster Determination

The basic idea behind cluster partitioning methods, such as K-means clustering, is to
define clusters such that the total intra-cluster variation (known as total within-cluster
variation or total within-cluster sum of squares) is minimized. We used three methods
to determine the optimal number of clusters for the data set, the elbow method (e.g.,
Ketchen and Shook 1996; Thorndike 1953), the average silhouette method (e.g.,
Kaufman and Rousseeuw 1990), and the hierarchical clustering method (e.g., Ward
1963). These three methods were chosen to provide insights about the structure of
the data through visualization and statistical measures and to mutually validate the
results from each.

For the elbow method, substantial drops in total within-cluster sum of squares
were present when the number of clusters was set from one to three. After the
“elbow point” of three, the changes became marginal despite an increasing number
of clusters (see Fig. 10.1).

The average silhouette approach measures the quality of a clustering. That is,
it determines how well each object lies within its cluster. A high average silhou-
ette width indicates a good clustering. The average silhouette method computes the
average silhouette of observations for different values of k. The optimal number of
clusters k is the one that maximizes the average silhouette over a range of possible
values for k. Given the sample in hand, the highest average silhouette width was
shown when two clusters were chosen.

The hierarchical clustering method seeks to form a hierarchy of clusters either
through bottom-up or top-down approach. Such an algorithm either starts with all
observations in different clusters and merges them into clusters, or starts with all
observations in one cluster and gradually partitions into clusters. In the current study,
a bottom-up hierarchical clustering method was employed. Given the sample in
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hand, the results from this method were that the optimal cluster number could be
between two and four. Based on mutual validation by these three methods as well
as considerations on cluster sample size and interpretability of the results, we chose
the three-cluster solution for further investigations. After determining the number of
clusters, the clustering analysis was rerun and results were reported based on this.

As mentioned previously, K-means clustering usually starts from a random selec-
tion of initial seeds even though using more discriminative seeds that are able to
separate the clusters is highly recommended as the initial partition (Arthur and Vas-
silvitskii 2007). Although many sets are well behaved and most initializations will
resultin clustering of about the same quality (Manning and Schiitze 1999), it would be
wise to examine the stability of cluster membership to maximize the generalizability
before interpreting the clustering results.

We checked the stability of cluster membership with 100 different initial seeds in
the item UO2. Among the 1,326 test takers, 1,262 (95%) had no changes in cluster
membership in the 100 replications. Only 64 (5%) were assigned to a different cluster
in at most 10% of the replications. Overall, only 0.3% of the test-taker-replication
combinations demonstrated uncertainty in the cluster membership. This suggested
that the clustering results had very little dependence on initial seeds and thus the
seeds could be ignored in this study.

We list the centroids of the three-cluster solution in Table 10.3. Note that the
term weights and sampling weights were taken into account when the values of
centroids were computed. For the 34 unigrams, values presented in Table 10.3 were
based on action frequencies weighted by term weights and sampling weights; for
the number of actions and response time on U02, the two features were weighted
by sampling weights before computing the centroids. In general, Cluster 1 had the
lowest weighted frequencies and means in almost all features and Cluster 3 had the
highest ones, while Cluster 2 placed between Cluster 1 and Cluster 3. The action
unigrams “NEXT_INQUIRY” and “START” had centroids at zero across all three
clusters, suggesting that all test takers had taken these two actions, which led to them
providing little information in the analysis. When all test takers perform the same
action, the ISF of an action would be zero by definition. Thus, these two unigram
features did not actually contribute in the clustering because of the zero information.
As expected, the number of actions and response time appeared to be the most
dominant features in clustering. The reason is probably that these two variables are
of a different granularity than the others, as they summarize information for the
entire sequence, rather than a partial contribution made by a single action. These two
features also showed up in a preliminary principal component analysis as the most
influential features with the highest loadings.

The three clusters could be interpreted as test takers with the least, medium, and
most effort. The least-action cluster had the largest cluster size with 853 (64%) of
the test takers in the analytical sample, the median action cluster had 398 (30%)
test takers, and only 75 (6%) were in the most-action cluster (see Table 10.4). This
indicated that only a small group of test takers had a great number of actions and
spent a long time exploring U02, whereas the majority clustered around fewer actions
and a much shorter time.
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Table 10.3 Cluster centroids for a three-cluster solution
No. Features Clusters
1 3
1 FOLDER_VIEWED 20,365.6 40,224.5 73,644.8
2 ENVIRONMENT_WB 11,062.0 65,848.4 134,117.1
3 ENVIRONMENT_MC 11,375.0 59,7443 124,133.6
4 MAIL_VIEWED_1 8,0625.7 23,554.9 42,659.6
5 HISTORY_VIEWCALENDAR 8,296.1 61,208.4 130,657.0
6 MAIL_VIEWED_3 7,983.3 41,671.1 84,185.9
7 HISTORY_RESERVATION 6,972.4 53,034.1 117,019.4
8 COMBOBOX_ROOM 6,020.8 54,476.1 110,608.7
9 MAIL_VIEWED_4 8,606.6 35,180.8 67,087.3
10 MAIL_VIEWED_2 7,891.8 33,636.2 65,864.9
11 MAIL_MOVE 18,947.5 42,469.4 87,984.2
12 NEXT_INQUIRY 0.0 0.0 0.0
13 START 0.0 0.0 0.0
14 COMBOBOX_START_TIME 5,498.0 47,928.2 101,684.2
15 COMBOBOX_END_TIME 5,581.8 47,942.1 103,098.3
16 COMBOBOX_DEPT 5,556.0 48,052.1 101,711.1
17 HISTORY_MEETINGROOMS 5,848.3 43,725.6 108,077.0
18 ENVIRONMENT_WP 7,738.8 33,937.1 79,654.0
19 SUBMIT_RESERVATION_FAILURE 4,048.2 46,768.2 109,482.7
20 SUBMIT_RESERVATION_SUCCESS 4,797.0 42,081.0 85,547.9
21 HISTORY_UNFILLED 4,213.2 36,222.2 91,450.9
22 SUBMIT_UNFILLED 3,589.7 34,291.9 69,265.5
23 FOLDER 6,750.6 25,942.1 62,512.5
24 HISTORY_HOME 3,808.0 18,614.7 50,805.3
25 CHANGE_RESERVATION 1,522.0 23,168.2 73,968.0
26 KEYPRESS 2,880.5 12,713.7 65,743.1
27 REPLY 2,936.5 12,319.8 30,153.8
28 CANCEL 3,250.7 13,530.1 37,320.8
29 HELP 3,471.5 10,343.4 17,039.6
30 COPY 897.1 7,628.4 38,5174
31 SEARCH 2,278.3 3,529.5 18,895.4

(continued)
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Table 10.3 (continued)
No. Features Clusters
1 2 3
32 SORT 949.7 4,759.2 5,540.5
33 PASTE 780.4 1,494.6 33,561.6
34 BOOKMARK 550.6 2,875.4 9,264.9
35 Number of actions on U02 453,665.4 2,241,595.2 |5,225,357.2
36 Response time on U02 58,391.4 244,418.8 475,306.6
Frequency 853 398 75

Note “NEXT_INQUIRY” and “START” show O cluster centroids across all three clusters. As all
participants used them, they had zero term weights and did not contribute in the clustering analysis

Table 10.4 Cluster size of a three-cluster solution

U02score Clusters

1 2 3
0 760 139 23
1 93 259 52
Total 853 398 75

Note The U02score has combined the partial and full credit into “1”

10.3.2 Cluster Membership and Proficiency Level

Based on the clusters derived from process data as described above, we investigated
the relationships between cluster membership and PSTRE proficiency level as well
as employment-related variables. To increase the accuracy of the cognitive measure-
ment for various subpopulations and the population as a whole, PIAAC uses plausible
values—which are multiple imputations—drawn from a posteriori distribution by
combining the item response scaling of the cognitive items with a latent regression
model using information from the background questionnaire. The “plausible value”
methodology correctly accounts for error (or uncertainty) at the individual level by
using multiple imputed proficiency values (plausible values) rather than assuming
that this type of uncertainty is zero (for details about how the set of plausible values
is generated and interpreted, refer to OECD 2016). In PIAAC, 10 plausible values
(PV) are generated for each domain as the estimates of scale scores. As all 10 PVs
showed similar patterns, we used only the first PV (PV1) as an example for illus-
tration purposes. Figure 10.2 depicted the association between clusters and PSTRE
proficiency level (PV1). To explore whether significant differences existed among
the clusters regarding PV1, we conducted one-way analysis of variance (ANOVA).
Results showed that the three clusters had significantly different proficiency levels
as measured by PV1, F(2,1323) = 254.6, p < 0.001.
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Fig. 10.2 A boxplot of PV1
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Given the results from ANOVA, we further conducted a post hoc pairwise compar-
ison for the three clusters. Given concerns on the unequal sample size by clusters, the
pairwise comparison #-test method introduced by Benjamini and Hochberg (1995)
was employed. This method controls the false discovery rate (the expected proportion
of false discoveries) among rejected hypotheses. The false discovery rate is a less
stringent condition than the family-wise error-rate-based methods, so this method is
more powerful than the others. Notably, a remarkable increase was observed in PV1
from Cluster 1 to Cluster 2, for which the first quartile of Cluster 1 was approximately
at the same level as the third quartile of Cluster 2. However, the increase from Cluster
2 to Cluster 3 was marginal. Results showed no significant differences between these
two groups. Given the similar proficiency level between clusters 2 and 3, but shorter
action sequences and response time in Cluster 2, this might be interpreted as a higher
efficiency in Cluster 2 to solve the item U02. That is, both clusters 2 and 3 were more
likely to be able to solve the item, but with different strategies and paces.

We further plotted the PV 1 distributions by correct and incorrect groups for item
U02 for each cluster (see Fig. 10.3). The sample size by each group nested in clusters
was reported in Table 10.4. As expected, the majority of those in Cluster 1 did not
answer correctly, since only a few actions and a short time were taken. Clusters 2 and
3 tended to have more test takers who were successful in solving UO2. In general,
across the three clusters, the PV1 of test takers who responded correctly to item U02
was consistently higher than those who responded incorrectly, although the mean
difference among the correct groups in pairwise comparisons was not statistically
significant. This suggested that the actions or response time did not make a significant
impact on how respondents correctly solved the item. Besides, the correct group in
Cluster 1 actually could be interpreted as the most efficient group in finding the
correct answer since they used the shortest action sequences and response times
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Fig. 10.3 A boxplot of PV1
by U02score nested in
clusters
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across all correct groups by clusters.® Comparatively, a significant difference was
found among the incorrect groups in the one-way ANOVA, resulting in F (2, 919)
= 55.2, p < 0.001. Similar to the general pattern found in Fig. 10.3, substantial
differences were found between Cluster 1 and the other two clusters, whereas little
difference was found between Cluster 2 and Cluster 3.

These findings suggested that the correct group applied various problem-solving
strategies to obtain a correct answer, and the choice of strategy was not necessarily
associated with PSTRE skills in the correct group. As noted above, a small group
of test takers in Cluster 1 was able to use only a few actions to solve UO2 in a short
time, and that group’s PSTRE scores were similar to those who applied many more
actions. While adopting more actions might be an indication of high motivation to
extensively explore the item, it could also signify that the test taker used less efficient
strategies when those actions became excessive. For the incorrect group, however,
the number of actions and time spent on the item could be informative regarding a
test taker’s PSTRE skills. A test taker who put more effort into solving U02, even
though he or she failed, was more likely to have higher PSTRE skills.

10.3.3 Cluster Membership and Employment-Based
Background Variables

To understand the profiles for each cluster and the common characteristics that
might be shared within the cluster, we further explored the relationship between
problem-solving strategies and background variables. In particular, we focused

%In the PIAAC complex problem-solving items, multiple choice items were seldom employed. Item
types such as short responses, drag-and-place, and web navigations were used to keep the guessing
effect as low as possible.
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on employment-related characteristics: variables related to occupational category,
monthly income, work-related skills, age, and education.

Figure 10.4 shows the distribution of the degree of skills (ISCOSKIL4) in all
three clusters, which indicates the occupational classification of the test taker’s last
or current job. Cluster 2 appeared to have the largest proportion of those in skilled and
semi-skilled white-collar occupations, while Cluster 1 had the smallest proportion.
In contrast, clusters 1 and 3 both had the largest proportion in semi-skilled blue-
collar occupations, while Cluster 2 had the smallest. As expected, Cluster 1 had
the largest proportion in elementary-level occupations, while the other two clusters
shared equally low proportions.

As for the monthly earnings variable (EARNMTHALLDCL) in Fig. 10.5, Cluster
2 and Cluster 3 showed a substantial proportion in the highest earning deciles, from
7th to 10th, whereas Cluster 1 tended to have higher percentages in the lower earning
deciles. Two exceptions were found in the first and fourth deciles, in which most test
takers were grouped in Cluster 2 and Cluster 3. Despite the general pattern that
earnings were mainly positively related to the number of actions and response time
spent on the item, some test takers who were younger or at the early stage of their
careers may have had lower salaries but higher problem-solving capacity.

Variables regarding work-related skill use also demonstrated similar patterns.
Figure 10.6 depicts the distribution of variables for skills related to work: ICT (ICT-
WORK), numeracy (NUMWORK), reading (READWORK), and writing (WRIT-
WORK). These skills were each divided into five levels in intervals of 20 percentage
points, plus a separate category for nonresponses. Cluster 1 was more likely to include
test takers in the lower skill-use levels (<40%), while more test takers with high skill
use levels (>40%) were in Cluster 2 and Cluster 3. Notably, even though those in



206 Q. Heetal.

12% -

10% -

8%- Cluster
g

6% - . 5

4%- . E

2% -

0% -

% .@ R R % .&
b@
R X
& A & & 3

EARNMTHALLDCL

Percentage

Fig. 10.5 Distribution of EARNMTHALLDCL in the three clusters

Cluster 3 had the largest number of actions and spent the longest time on the item,
this group consisted of more test takers in the lower skill levels than Cluster 2. This
is also consistent with the finding in the occupational classification that Cluster 3
included a large proportion of test takers in semi-skilled blue-collar occupations,
which did not necessarily require higher levels of ICT, numeric, reading, or writing
skill use. In addition, considering the item context related to a practical working
environment—a meeting room reservation, which is more or less an assistant-style
task—this item might not have required as high a level of skills as did other more
complex items.

Figure 10.7 exhibits the distribution of the three clusters by five age groups: 24
or less, 25-34, 3544, 45-54, and 55 plus. Over 30% of test takers in Cluster 3 were
younger than 24 years old, representing the highest proportion for this age group.
Cluster 2 had the highest proportion in the 25-34 age group, while Cluster 1 had
the largest proportion in the oldest group (over 55). This finding provided another
perspective for interpreting the pattern observed from process data. Since a large
proportion of test takers in Cluster 3 were younger than test takers in the other two
clusters, different behaviors could be expected. Compared to the older test takers,
younger test takers tended to be more active in human-computer interactions, more
familiar with manipulating computer systems, and learned faster when encountering
new interfaces. Furthermore, they were expected to exhibit more curiosity about
exploring the item, which could increase the number of actions and response time.

Lastly, we took educational backgrounds into consideration. Figure 10.8 presents
the distribution of six education levels (EDCAT®6) for each cluster. Cluster 1 had the
highest percentage for those with a lower/upper secondary level or less of education,
whereas Cluster 3 had the highest percentages in the postsecondary and tertiary
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professional degree levels. Cluster 2 had the greatest proportions of test takers with a
bachelor’s degree or higher. Thus, test takers in Cluster 1 were the lowest performing
group in PSTRE, with the lowest education level overall. Although Cluster 3 provided
a slightly higher median PV1, the percentages in the bachelor’s degree or higher
categories were the lowest. It turned out that test takers in Cluster 3 might not possess
the highest education level, but the openness to experience enabled them to score
well in PSTRE.

10.4 Discussion

The current study shows an example of clustering students’ action sequences and
response times, which reveals how these data can provide important information
beyond students’ item responses. Such information has the potential to help educators
understand student motivation and the specific struggles that students might have
during a task, and could shed light on the effectiveness of a particular teaching
practice.

To summarize, we grouped test takers into three clusters based on 36 features
extracted from process data. We found that more actions and longer response time
in general were associated with higher PSTRE scores, but such a pattern was more
evident when the test takers did not answer UO2 correctly. In other words, it was
possible to obtain a correct answer with various strategies, but when test takers
answered incorrectly, process data could be informative about the extent to which
interventions would be needed. In fact, this finding was reiterated when we conducted
the same clustering method on other problem-solving items. In the examination of
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process data patterns with background variables, it was found that test takers who did
not put much effort into solving the item tended to work in semi-skilled or elementary
occupations, have lower monthly income and lower work-related skill use, be of a
higher age, and have lower education. This group of test takers might be in need of
further education or intervention.

An interesting finding was that the group with the highest action frequencies,
response time, and PSTRE scores did not necessarily possess the highest income,
work-related skill use, or education level. The youngest group with longer response
time and action sequences was distinct from other test takers in that these individuals
were the most explorative or adventurous test takers and were willing to engage in a
large number of different actions in solving a problem. This characteristic was likely
to relate to higher PSTRE skills.

Besides the merits of this study, some limitations are also worth discussing. First,
the response time and number of actions seemed to play a dominant role in the
clustering in the current study. It would be worthwhile to try the standardized variables
of response time and number of actions in the future study to check whether different
results may occur.

Second, the information contributed from the key actions (unigrams) might be
difficult to distinguish and not show up very clearly in this clustering analysis. Pre-
vious studies have shown that the mini sequences of bigrams and trigrams are more
informative than unigrams and were robust classifiers in distinguishing subgroups
(He and von Davier 2015). We also extracted bigrams and trigrams for item U02 in
this study. However, because of the sparse distribution of action combinations, which
resulted in over 40,000 n-grams altogether, it would be very challenging to use this
large number of features in its entirety in the cluster analysis. Meanwhile, given the
low frequency (lower than five times) of the majority of bigrams and trigrams, we
had to exclude them from further cluster analysis to ensure the reliability of calcula-
tion. A substantial increase in sample size would help enhance the frequency of mini
sequences in future studies in clustering.

Third, we conducted 100 replications with different initial seeds to determine the
cluster membership in this study, but need to make cross-validation to examine the
clustering performance in further studies. As in this study we mainly explored the
relationship between behavioral patterns and proficiency level, a formal classifica-
tion based on clustering results is not that essential. However, clustering is usually
regarded as a “prelude” to classification (Dong and Pei 2007). It would be more
appropriate to include a further classification or other means of validation to better
evaluate the cluster results.

Fourth, the current study focused on only one PSTRE item. It is not clear yet
whether the respondent may choose consistent strategies in solving other items with
similar environments. It would be interesting to further examine the consistency of
eachindividual across different items to better generalize the findings from the current
study. Some explorations that have been done in this direction may benefit the further
analysis in consistency investigation. For instance, He et al. (2019) used the longest
common subsequence (LCS) method, a sequence-mining technique commonly used
in natural language processing and biostatistics to compare the action sequences
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followed by PIAAC respondents to a set of “optimal” predefined sequences identified
by test developers and subject matter experts, which allows studying problem solving
behaviors across multiple assessment items.

Finally, this exploratory study was conducted only based on the U.S. sample in
the PSTRE domain of PIAAC. It would be desirable to include multiple countries
in a future study to examine the cross-country differences in a general way. Further,
it would also be interesting to use process data to explore the relationship between
problem-solving skills and numeracy and literacy to better understand the consistency
of test takers’ behavioral patterns in different domains.

In conclusion, from this study, we have learned that different problem-solving
strategies and behavioral patterns may influence proficiency estimates, and are more
impactful in the groups that fail to give correct responses than the groups that succeed
in answering correctly. Additionally, groups with different backgrounds may show
different problem-solving patterns. This suggested that various solutions would need
to be properly adapted to different groups to improve their problem-solving skills.
In future studies, we recommend researchers further explore the methods to better
model the relationship between behavioral patterns and proficiency estimates in large-
scale assessments, and challenge other researchers to develop models in estimating
problem-solving proficiency more accurately by possibly integrating the new data
source from process data.
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