
Extending DIVINE with Symbolic
Verification Using SMT
(Competition Contribution)

Henrich Lauko(B), Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
xlauko@mail.muni.cz, divine@fi.muni.cz

Abstract. DIVINE is an LLVM-based verification tool focusing on anal-
ysis of real-world C and C++ programs. Such programs often interact
with their environment, for example via inputs from users or network.
When these programs are analyzed, it is desirable that the verification
tool can deal with inputs symbolically and analyze runs for all inputs. In
DIVINE, it is now possible to deal with input data via symbolic computa-
tion instrumented into the original program at the level of LLVM bitcode.
Such an instrumented program maintains symbolic values internally and
operates directly on them. Instrumentation allows us to enhance the tool
with support for symbolic data without substantial modifications of the
tool itself. Namely, this competition contribution uses SMT formulae for
representation of input data.

1 Verification Approach and Software Architecture

DIVINE is an explicit-state model checker primarily designed to detect bugs in
multithreaded programs [6]. Testing of multithreaded programs is a known hard
problem because of nondeterminism in the execution caused by thread interleav-
ings. To deal with control flow nondeterminism, DIVINE exhaustively explores all
relevant executions of the multithreaded program. Unfortunately, this explicit
approach fails to deal with data nondeterminism caused by communication with
the environment. In order to verify a program with inputs, DIVINE would need
to examine all the possible inputs of the program. This would cause enormous
state-space explosion and would be unmanageable in reasonable time and space.

The traditional way to cope with input values during verification is to rep-
resent them symbolically – i.e., to perform symbolic execution on the program.
In DIVINE it would be sufficient to extend the LLVM interpreter to work with
input values symbolically and adapt the exploration algorithm to work with
symbolic states, similarly as other tools do [2,3,5]. However, this would make
the core of the verification procedure more complicated and possibly slow it

This work has been partially supported by the Czech Science Foundation grant No. 18-
02177S and by Red Hat, Inc.
H. Lauko—SV-COMP jury member.

c© The Author(s) 2019
D. Beyer et al. (Eds.): TACAS 2019, Part III, LNCS 11429, pp. 204–208, 2019.
https://doi.org/10.1007/978-3-030-17502-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17502-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-17502-3_14


Extending DIVINE with Symbolic Verification Using SMT 205

down, introduce bugs and/or reduce maintainability and extensibility. Hence,
we have decided to shift the responsibility for symbolic values from the verifier
to the verified program [4]. Instead of (re-)interpreting instructions symbolically,
we translate symbolic instructions into equivalent explicit code which performs
the computation symbolically. The transformation performs a dependency anal-
ysis on symbolic values of the program and translates symbolic instructions. By
providing a set of symbolic operations as a library, we obtain a program that
manipulates symbolic values. The method is further described in Fig. 1.

Interpretation-based Compilation-based

bitcode

linked bc.

C program

libs

libs

programllvm

static dynamic

VMVM

symsym MC

smt solver

ex
tr
ac
t

transitions

ye
s/
no

sat?
bitcode

instrumentedinstrumented
bitcodebitcode

linked bc.

C program

libssymsym

symsym libs

programllvm

VM

symsym MC

smt solver

static dynamic

instrum.

ex
tr
ac
t

ye
s/
no

sat?

transitions

Fig. 1. Comparison of interpretation-based approach and compilation-based
approaches. All manipulations of symbolic values are denoted by red color. In both
cases, the virtual machine generates transitions in the state space and passes them
to the model checker (MC), which performs safety analysis. In the compilation-
based approach, symbolic operations are instrumented into the program, while in the
interpretation-based one, they are the responsibility of the VM. (Color figure online)

In order to maintain efficiency we do not transform the entire program, but
only the parts that might come into contact with symbolic values. As shown in
Fig. 2, the program is analyzed starting from input points, and all downstream
operations are augmented (s add, s eq), but concrete computation remains
unchanged (fun). The transformed program uses a special operation called lift,
which takes a concrete value and returns a symbolic one. The result of lifting *
represents an arbitrary input value.

In comparison to standard programs, a program with symbolic values might
not have deterministic control flow. When a program contains a branch which
depends on a symbolic value, both outcomes might be possible.1 To capture such
behavior in the transformed program, we introduce a nondeterministic choice and
execute both branches. We take advantage of the fact that DIVINE is already
capable of handling nondeterminism. Further, in the taken path we constrain
values by extending a path condition (see Fig. 3).
1 Given a symbolic value x and a branch with condition x < 5, the condition can be
both true and false. The program makes a nondeterministic choice and extends the
path condition with x < 5 or x ≥ 5 respectively.



206 H. Lauko et al.

a:int ← input()

b:int ← fun(7)

c:int ← add(a, b)

d:bool ← eq(a, b)

a:s_int ← lift (*)

b:int ← fun (7)

c:s_int ← s_add(a, lift(b))

d:s_bool ← s_eq(a, lift(b))

Fig. 2. Transformation to the program working with symbolic values (right).

a:s_int ← lift (*)

b:s_int ← lift (*)

c:s_int ← s_add(a, b)

if nondet ()

assume(c < 5)

d:s_int ← s_mul(c, 3)

+

?2?1true

true

a

b

c

true

c < 5

×

3

d

Fig. 3. The transformed program builds term trees that represent symbolic values. The
boxes correspond to symbolic variables while the circles are the concrete representation
of terms. Question marks denote unconstrained nullary symbols. Gray boxes represent
path condition constraints.

In the program, symbolic data are represented as term trees – see Fig. 3.
Exploring the state space, DIVINE extracts term trees from program states in
the model checking algorithm, and checks for the feasibility by querying SMT
solver (Z3) for satisfiability of extracted path condition. Moreover, DIVINE needs
to recognize when it has reached a repeated state. This can not be done by a
simple comparison of states, because different symbolic states may represent the
same set of concrete states. Hence, to check equality of states, we also utilize the
SMT solver. To precisely model program arithmetic, we use the bitvector theory.

2 Strengths and Weaknesses

In comparison to bounded model checkers, DIVINE’s strength is sound verifi-
cation – it explores a whole state-space and uses formulae in bitvector theory
to precisely represent symbolic values. However DIVINE produced a few wrong
results in the competition, these should not be possible in theory and likely stem
from implementation errors in the verification tool.

Our compilation-based approach has allowed us to increase modularity of
the tool. It is easy to change the representation of symbolic values, the verifica-
tion algorithm and even the entire verifier while preserving the transformation.
Another upside is that the implementation of symbolic operations is subject to
checks performed by the verifier.



Extending DIVINE with Symbolic Verification Using SMT 207

On the other hand, the current implementation is only a proof of concept.
Our primary goal was to show that a compilation-based approach may compete
with interpretation-based approaches even though it increases the size of the
verified program and therefore possibly also verification complexity. Currently,
the transformation can only handle scalar values, hence verification of programs
with symbolic memory is not yet possible.

3 Tool Setup and Configuration

The verifier archive can be found on the SV-COMP 2019 page2 under the name
DIVINE-SMT. In case the binary distribution does not work on your system,
we also provide a source distribution and build instructions at https://divine.fi.
muni.cz/2019/sv-comp-smt.

It is usually sufficient to run divine as follows: divine check --symbolic
--svcomp TESTCASE.c. This command runs DIVINE with the SMT-based repre-
sentation of symbolic data described in this paper and with SV-COMP-specific
instrumentation.

For SV-COMP benchmarks, additional settings are handled by the
divine-svc wrapper.3 The only option used for DIVINE-SMT is --32 for 32
bit categories. The wrapper sets DIVINE options based on the property file and
the benchmark. In particular, it enables symbolic mode if any nondetermism is
found, sequential mode if no threads are found, and it sets which errors should be
reported based on the property file. It also generates witness files. More details
can be found on the aforementioned distribution page.

DIVINE participates in all categories, but it can only produce non-unknown
results for the error reachability and memory safety categories.

4 Software Project and Contributors

The project home page is https://divine.fi.muni.cz. Many people have con-
tributed to DIVINE, including Petr Ročkai, Henrich Lauko and Vladimı́r Štill.
DIVINE is open source software distributed under the ISC license.

References

1. Beyer, D.: Automatic verification of c and java programs: Sv-comp 2019. In: Beyer,
D., Huisman, M., Kordon, F., Steen, B. (eds.) TACAS 2019, Part III. LNCS, vol.
11429, pp. 133–155. Springer, Cham (2019)

2. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: Operating Systems Design
and Implementation, pp. 209–224. USENIX Association (2008)

2 https://sv-comp.sosy-lab.org/2019/systems.php.
3 To be found in the main directory of the binary archive, or in the tools directory of
the source distribution. Usage: divine-svc DIVINE BINARY PROP FILE [OPTIONS]

TESTCASE.c.

https://divine.fi.muni.cz/2019/sv-comp-smt
https://divine.fi.muni.cz/2019/sv-comp-smt
https://divine.fi.muni.cz
https://sv-comp.sosy-lab.org/2019/systems.php


208 H. Lauko et al.

3. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 17–34.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9 2

4. Lauko, H., Ročkai, P., Barnat, J.: Symbolic computation via program transforma-
tion. In: Fischer, B., Uustalu, T. (eds.) ICTAC 2018. LNCS, vol. 11187, pp. 313–332.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02508-3 17

5. Phan, Q.-S., Malacaria, P., Pǎsǎreanu, C.S.: Concurrent bounded model checking.
SIGSOFT Softw. Eng. Notes 40(1), 1–5 (2015)

6. Ročkai, P., Štill, V., Černá, I., Barnat, J.: DiVM: model checking with LLVM and
graph memory. J. Syst. Softw. 143, 1–13 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-08867-9_2
https://doi.org/10.1007/978-3-030-02508-3_17
http://creativecommons.org/licenses/by/4.0/

	Extending DIVINE with Symbolic Verification Using SMT
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References




