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Abstract. Programs with randomization constructs is an active
research topic, especially after the recent introduction of martingale-
based analysis methods for their termination and runtimes. Unlike most
of the existing works that focus on proving almost-sure termination or
estimating the expected runtime, in this work we study the tail proba-
bilities of runtimes—such as “the execution takes more than 100 steps
with probability at most 1%.” To this goal, we devise a theory of super-
martingales that overapproximate higher moments of runtime. These
higher moments, combined with a suitable concentration inequality, yield
useful upper bounds of tail probabilities. Moreover, our vector-valued
formulation enables automated template-based synthesis of those super-
martingales. Our experiments suggest the method’s practical use.

1 Introduction

The important roles of randomization in algorithms and software systems are
nowadays well-recognized. In algorithms, randomization can bring remarkable
speed gain at the expense of small probabilities of imprecision. In cryptography,
many encryption algorithms are randomized in order to conceal the identity of
plaintexts. In software systems, randomization is widely utilized for the purpose
of fairness, security and privacy.

Embracing randomization in programming languages has therefore been an
active research topic for a long time. Doing so does not only offer a solid infras-
tructure that programmers and system designers can rely on, but also opens
up the possibility of language-based, static analysis of properties of randomized
algorithms and systems.

The current paper’s goal is to analyze imperative programs with randomiza-
tion constructs—the latter come in two forms, namely probabilistic branching
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and assignment from a designated, possibly continuous, distribution. We shall
refer to such programs as randomized programs.!

Runtime and Termination Analysis of Randomized Programs. The run-
time of a randomized program is often a problem of our interest; so is almost-sure
termination, that is, whether the program terminates with probability 1. In the
programming language community, these problems have been taken up by many
researchers as a challenge of both practical importance and theoretical interest.

Most of the existing works on runtime and termination analysis follow either
of the following two approaches.

— Martingale-based methods, initiated with a notion of ranking supermartingale
in [4] and extended [1,6,7,11,13], have their origin in the theory of stochas-
tic processes. They can also be seen as a probabilistic extension of ranking
functions, a standard proof method for termination of (non-randomized) pro-
grams. Martingale-based methods have seen remarkable success in automated
synthesis using templates and constraint solving (like LP or SDP).

— The predicate-transformer approach,pursued in [2,17,19],uses a more syntax-
guided formalism of program logic and emphasizes reasoning by invariants.

The essential difference between the two approaches is not big: an invariant
notion in the latter is easily seen to be an adaptation of a suitable notion of
supermartingale. The work [33] presents a comprehensive account on the order-
theoretic foundation behind these techniques.

These existing works are mostly focused on the following problems: decid-
ing almost-sure termination, computing termination probabilities, and comput-
ing expected runtime. (Here “computing” includes giving upper/lower bounds.)
See [33] for a comparison of some of the existing martingale-based methods.

Our Problem: Tail Probabilities for Runtimes. In this paper we focus on
the problem of tail probabilities that is not studied much so far.? We present a
method for overapproximating tail probabilities; here is the problem we solve.

Input: a randomized program I', and a deadline d € N
Output: an upper bound of the tail probability Pr(Tu, > d), where Ty, is the
runtime of I’

Our target language is a imperative language that features randomization
(probabilistic branching and random assignment). We also allow nondetermin-
ism; this makes the program’s runtime depend on the choice of a scheduler (i.e.
how nondeterminism is resolved). In this paper we study the longest, worst-case
runtime (therefore our scheduler is demonic). In the technical sections, we use
the presentation of these programs as probabilistic control graphs (p CFGs)—this
is as usual in the literature. See e.g. [1,33].

1 'With the rise of statistical machine learning, probabilistic programs attract a lot
of attention. Randomized programs can be thought of as a fragment of probabilis-
tic programs without conditioning (or observation) constructs. In other words, the
Bayesian aspect of probabilistic programs is absent in randomized programs.

2 An exception is [5]; see Sect. 7 for comparison with the current work.
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An example of our target programisin Fig. 1. 1 x := 2; y := 2;
It is an imperative program with randomization: 2 While::(fjnzfo (x_‘;‘ ¥)> 0) do
in Line 3, the value of z is sampled from the uni- 4 if * then
form distribution over the interval [—2,1]. The Z T
symbol * in the line 4 stands for a nondetermin- 7 y iy +z
istic Boolean value; in our analysis, it is resolved S odfi

so that the runtime becomes the longest.

Given the program in Fig. 1 and a choice of a  Fig. 1. An example program
deadline (say d = 400), we can ask the question
“what is the probability Pr(T}u,, > d) for the runtime T,,, of the program to
exceed d = 400 steps?” As we show in Sect. 6, our method gives a guaranteed
upper bound 0.0684. This means that, if we allow the time budget of d = 400
steps, the program terminates with the probability at least 93%.

a randomized program [’

lstep 1: template-based synthesis of vector-valued supermartingales (§3, §5)|
v
upper bounds of higher moments E[Trun], .. ., E[(Trun)™]
v
a deadline d—){step 2: calculation via a concentration inequality (§4)‘

¥
an upper bound of the tail probability Pr(Tun > d)

Fig. 2. Our workflow

Our Method: Concentration Inequalities, Higher Moments, and
Vector-Valued Supermartingales. Towards the goal of computing tail prob-
abilities, our approach is to use concentration inequalities, a technique from
probability theory that is commonly used for overapproximating various tail
probabilities. There are various concentration inequalities in the literature, and
each of them is applicable in a different setting, such as a nonnegative ran-
dom variable (Markov’s inequality), known mean and variance (Chebyshev’s
inequality), a difference-bounded martingale (Azuma’s inequality), and so on.
Some of them were used for analyzing randomized programs [5] (see Sect.7 for
comparison).

In this paper, we use a specific concentration inequality that uses higher
moments E[Trun), - - ., E[(Trun) ] of runtimes Tpyy, up to a choice of the maximum
degree K. The concentration inequality is taken from [3]; it generalizes Markov’s
and Chebyshev’s. We observe that a higher moment yields a tighter bound of
the tail probability, as the deadline d grows bigger. Therefore it makes sense to
strive for computing higher moments.

For computing higher moments of runtimes, we systematically extend the
existing theory of ranking supermartingales, from the expected runtime (i.e. the
first moment) to higher moments. The theory features a wvector-valued super-
martingale, which not only generalizes easily to degrees up to arbitrary K € N,
but also allows automated synthesis much like usual supermartingales.
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We also claim that the soundness of these vector-valued supermartingales is
proved in a mathematically clean manner. Following our previous work [33], our
arguments are based on the order-theoretic foundation of fixed points (namely
the Knaster-Tarski, Cousot—Cousot and Kleene theorems), and we give upper
bounds of higher moments by suitable least fixed points.

Overall, our workflow is as shown in Fig. 2. We note that the step 2 in Fig. 2
is computationally much cheaper than the step 1: in fact, the step 2 yields a
symbolic expression for an upper bound in which d is a free variable. This makes
it possible to draw graphs like the ones in Fig. 3. It is also easy to find a deadline
d for which Pr(T,,, > d) is below a given threshold p € [0, 1].

We implemented a prototype that synthesizes vector-valued supermartingales
using linear and polynomial templates. The resulting constraints are solved by
LP and SDP solvers, respectively. Experiments show that our method can pro-
duce nontrivial upper bounds in reasonable computation time. We also experi-
mentally confirm that higher moments are useful in producing tighter bounds.

Our Contributions. Summarizing, the contribution of this paper is as follows.

— We extend the existing theory of ranking supermartingales from expected
runtimes (i.e. the first moment) to higher moments. The extension has a solid
foundation of order-theoretic fixed points. Moreover, its clean presentation by
vector-valued supermartingales makes automated synthesis as easy as before.
Our target randomized programs are rich, embracing nondeterminism and
continuous distributions.

— We study how these vector-valued supermartingales (and the resulting upper
bounds of higher moments) can be used to yield upper bounds of tail probabil-
ities of runtimes. We identify a concentration lemma that suits this purpose.
We show that higher moments indeed yield tighter bounds.

— Overall, we present a comprehensive language-based framework for overap-
proximating tail probabilities of runtimes of randomized programs (Fig. 2). It
has been implemented, and our experiments suggest its practical use.

Organization. We give preliminaries in Sect. 2. In Sect. 3, we review the order-
theoretic characterization of ordinary ranking supermartingales and present an
extension to higher moments of runtimes. In Sect. 4, we discuss how to obtain
an upper bound of the tail probability of runtimes. In Sect.5, we explain an
automated synthesis algorithm for our ranking supermartingales. In Sect. 6, we
give experimental results. In Sect. 7, we discuss related work. We conclude and
give future work in Sect. 8. Some proofs and details are deferred to the appendices
available in the extended version [22].

2 Preliminaries

We present some preliminary materials, including the definition of pCFGs (we
use them as a model of randomized programs) and the definition of runtime.
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Given topological spaces X and Y, let B(X) be the set of Borel sets on X
and B(X,Y) be the set of Borel measurable functions X — Y. We assume that
the set R of reals, a finite set L and the set [0, 00] are equipped with the usual
topology, the discrete topology, and the order topology, respectively. We use the
induced Borel structures for these spaces. Given a measurable space X, let D(X)
be the set of probability measures on X. For any p € D(X), let supp(p) be the
support of u. We write E[X] for the expectation of a random variable X.

Our use of pCFGs follows recent works including [1].

Definition 2.1 (pCFG). A probabilistic control flow graph (pCFG) is a tuple
I' = (L, V, linit, @init, —, Up, Pr, G) that consists of the following.

— A finite set L of locations. It is a disjoint union of sets Lp, Lp, L, and L4

of deterministic, probabilistic, nondeterministic and assignment locations.

A finite set V' of program variables.

— An initial location iy, € L. — An initial valuation T € RY

— A transition relation — C L x L which is total (i.e. VI.3U'.1— ).

An update function Up : Ly — V x ( B(RY,R)UD(R)UB(R) ) for assignment.

— A family Pr = (Pr;);er, of probability distributions, where Pr; € D(L), for
probabilistic locations. We require that I’ € supp(Pr;) implies [ — .

— A guard function G : Lp x L — B(RY) such that for each [ € Lp and x € RV,
there exists a unique location I’ € L satisfying [ — I’ and & € G(I,').

The update function can be decomposed into three functions Upp : Lap —
V x B(RV,R), Upp : Lap — V x D(R) and Upy : Lay — V x B(R), under
a suitable decomposition Ly = Lap U Lap U Lan of assignment locations.
The elements of Lap, Lap and Lan represent deterministic, probabilistic and
nondeterministic assignments, respectively. See e.g. [33].

An example of a pCFG is shown on zi=x+fz
the right. It models the program in Fig. 1. A2=2Y=2 /fa50 Unif(=2, 1)
The node I is a nondeterministic loca- Ifr” and C
tion. Unif(—2,1) is the uniform distribu- y <0 vyt 2
tion on the interval [—2,1].

A configuration of a pCFG I is a pair (I,z) € L x RV of a location and
a valuation. We regard the set S = L x RY of configurations is equipped with
the product topology where L is equipped with the discrete topology. We say a
configuration (I’ &’) is a successor of (I,x), if I — I’ and the following hold.

zZ =

—~ Ifl € Lp, then 2’ =z and = € G(,1). ~Ifle Ly ULp, then ' = x.

— Ifl € Ly, then ' = x(z; « a), where x(z; < a) denotes the vector obtained
by replacing the x;-component of @ by a. Here z; is such that Up(l) = (z;, u),
and a is chosen as follows: (1) a = u(z) if u € B(RV,R); (2) a € supp(u) if
u € D(R); and (3) a € u if u € B(R).

An invariant of a pCFG I is a measurable set I € B(.S) such that (linit, Tinit) € 1
and I is closed under taking successors (i.e. if ¢ € I and ¢’ is a successor of ¢
then ¢’ € I). Use of invariants is a common technique in automated synthesis
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of supermartingales [1]: it restricts configuration spaces and thus makes the
constraints on supermartingales weaker. It is also common to take an invariant as
a measurable set [1]. A run of I' is an infinite sequence of configurations cocg . . .
such that ¢ is the initial configuration (linit, @init) and ¢;+1 is a successor of ¢;
for each 4. Let Run(I") be the set of runs of I'.

A scheduler resolves nondeterminism: at a location in Ly U L 4, it chooses
a distribution of next configurations depending on the history of configurations
visited so far. Given a pCFG I' and a scheduler o of I', a probability measure
vl on Run(I") is defined in the usual manner. See [22, Appendix B] for details.

Definition 2.2 (reaching time Tg,Tga). Let I" be a pCFG and C' C S be a
set of configurations called a destination. The reaching time to C' is a function
TL : Run(I') — [0, 00] defined by (T )(cocy ...) = argmin;cy(c; € C). Fixing
a scheduler o makes TCI; a random variable, since o determines a probability
measure v% on Run(I'). It is denoted by T ,.

Runtimes of pCFGs are a special case of reaching times, namely to the set
of terminating configurations.

The following higher moments are central to our framework. Recall that we
are interested in demonic schedulers, i.e. those which make runtimes longer.

Definition 2.3 (Mgl; and Mgk) Assume the setting of Definition 2.2, and let
k € Nand c € S. We write Mg];(c) for the k-th moment of the reaching time
of I' from ¢ to C under the scheduler o, i.e. that is, Mg’;(c) = E[(Tgfa)k] =
f(Tgc)k dvle where I', is a pCFG obtained from I" by changing the initial config-

. . . . Lok
uration to c. Their supremum under varying o is denoted by M := sup, Mg’;

3 Ranking Supermartingale for Higher Moments

We introduce one of the main contributions in the paper, a notion of rank-
ing supermartingale that overapproximates higher moments. It is motivated by
the following observation: martingale-based reasoning about the second moment
must concur with one about the first moment. We conduct a systematic theo-
retical extension that features an order-theoretic foundation and vector-valued
supermartingales. The theory accommodates nondeterminism and continuous
distributions, too. We omit some details and proofs; they are in [22, Appendix C].
The fully general theory for higher moments will be presented in Sect.3.2;
we present its restriction to the second moments in Sect. 3.1 for readability.
Prior to these, we review the existing theory of ranking supermartingales,
through the lens of order-theoretic fixed points. In doing so we follow [33].

Definition 3.1 (“nexttime” operation X (pre-expectation)). Given 7 :
S — [0,00], let Xn : S — [0, 00] be the function defined as follows.
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Ifl € Lp and = F G(I,I'), then (Xn)(l,z) = n(I', z).

If I € Lp, then (Xn)(l,z) =Y, ., Pr;(I")n(l', x).
— If I € Ly, then (Xn)(l,z) = sup;_; n(l', x).
- Ifl € La, Up(l) = (:CJ, uw) and [ — I' if u € B(RV R), then (Xn)(l,z) =
n(l',x(z; — u(x))); if u € D(R), then (Xn) (L) = [pnl',x(x; — y))du(y);
and if u € B(R), then (Xn)(l,z) = sup, e, (U, x(z; < y)).

Intuitively, Xn is the expectation of 7 after one transition. Nondeterminism is
resolved by the maximal choice.
We define F : (S — [0,00]) — (S — [0, 00]) as follows.

(Fi(n)(c) = {1 +Xn)(e) celI\C

0 otherwise
The function F} is an adaptation of the Bellman operator, a classic notion in the
theory of Markov processes. A similar notion is used e.g. in [19]. The function
space (S — [0,00]) is a complete lattice structure, because [0, cc] is; moreover
F} is easily seen to be monotone. It is not hard to see either that the expected

(Here “14” accounts for time elapse)

— 1 o . .
reaching time M~ to C coincides with the least fixed point pF3.
The following theorem is fundamental in theoretical computer science.

Theorem 3.2 (Knaster—Tarski, [34]). Let (L,<) be a complete lattice and
f: L — L be a monotone function. The least fixed point pf is the least prefized
point, i.e. pf =min{l € L | f(I) <}. O

The significance of the Knaster-Tarski theorem in verification lies in the induced
proof rule: f(I) <1 = pf <. Instantiating to the expected reaching time MQI =
wFy, it means Fy(n)<n = Mg’l <, i.e. an arbitrary prefixed point of F;—which
coincides with the notion of ranking supermartingale [4]—overapproximates the
expected reaching time. This proves soundness of ranking supermartingales.

3.1 Ranking Supermartingales for the Second Moments

We extend ranking supermartingales to the second moments. It paves the way
to a fully general theory (up to the K-th moments) in Sect. 3.2.

The key in the martingale-based reasoning of expected reaching times (i.e.
first moments) was that they are characterized as the least fixed point of a
function Fj. Here it is crucial that for an arbitrary random variable T', we have
E[T + 1] = E[T]+1 and therefore we can calculate E[T" + 1] from E[T]. However,
this is not the case for second moments. As E[(T + 1)?] = E[T?] + 2E[T] +
1, calculating the second moment requires not only E[T?] but also E[T]. This
encourages us to define a vector-valued supermartingale.

Definition 3.3 (time-elapse function El;). A function El; : [0, c0]? — [0, 00]?
is defined by El; (21, z2) = (21 + 1,22 + 221 + 1).

Then, an extension of F for second moments can be defined as a combination
of the time-elapse function El; and the pre-expectation X.
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Definition 3.4 (F3). Let I be an invariant and C' C I be a Borel set. We define
F2 : (S - [03 00}2) - (S - [0700]2) by
(Fa(n))(e) = {

(X(EL on))(c) cel\C
(0,0) otherwise.

Here X is applied componentwise: (X(n1,72))(c) = ((Xn1)(c), (Xn2)(c)).

We can extend the complete lattice structure of [0, co] to the function space
S — [0,00]? in a pointwise manner. It is a routine to prove that F, is monotone
with respect to this complete lattice structure. Hence F5 has the least fixed

—I1
point. In fact, while M/~ was characterized as the least fixed point of F7, a tuple

(Mg’l,Mgz) is not the least fixed point of F; (cf. Example 3.8 and Theorem 3.9).
However, the least fixed point of F5 overapprozimates the tuple of moments.

Theorem 3.5. For any configuration ¢ € I, (uF»)(c) > (Mg’l(c),mg’z(c)). O

Let T¢, . ,, = min{n, T, }. To prove the above theorem, we inductively prove

(B (L)(e) = ([ T, vk, [(TE,,)? i)
for each o and n, and take the supremum. See [22, Appendix C] for more details.
Like ranking supermartingale for first moments, ranking supermartingale for
second moments is defined as a prefixed point of Fb, i.e. a function n such that
n > F»(n). However, we modify the definition for the sake of implementation.

Definition 3.6 (ranking supermartingale for second moments). A rank-
ing supermartingale for second moments is a function 7 : S — R? such that: (i)

n(c) > (X(Ely o n))(c) for each ¢ € I'\ C; and (ii) n(c) > 0 for each ¢ € I.

Here, the time-elapse function El; captures a positive decrease of the ranking
supermartingale. Even though we only have inequality in Theorem 3.5, we can
prove the following desired property of our supermartingale notion.

Theorem 3.7. If n : S — R? is a supermartingale for second moments, then
(Mg’l(c),mgz(c)) < n(c) for each c € I. O

The following example and theorem show that we cannot replace > with =
in Theorem 3.5 in general, but it is possible in the absence of nondeterminism.

Example 3.8. The figure on the right
shows a pCFG such that I € Lp and all the
other locations are in Ly, the initial location
is lp and l17 is a terminating location. For the
pCFG, the left-hand side of the inequality in
Theorem 3.5 is uFs(lg) = (6,37.5). In contrast, if a scheduler o takes a transition
from Iy to I with probability p, (Mg, (lo), M¢2 (l)) = (6 — 3p, 36 — 3p). Hence

the right-hand side is (M (lo), M (lo)) = (6, 36).
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Theorem 3.9. If Ly = Lay =0, Ve € I. (uFs)(c) = (Mg (¢), M (c)). O

3.2 Ranking Supermartingales for the Higher Moments

We extend the result in Sect. 3.1 to moments higher than second.
Firstly, the time-elapse function El; is generalized as follows.

Definition 3.10 (time-elapse function EI'**). For K eNand ke{1,..., K},

a function EIX* : [0,00]K — [0,00] is defined by EIX*(zy,...,2x) = 1+
25:1 (];)xj Here (lj) is the binomial coefficient.

Again, a monotone function F is defined as a combination of the time-elapse
function Elf’]C and the pre-expectation X.

Definition 3.11 (Fg). Let I be an invariant and C' C I be a Borel set. We
define F : (S — [0,00]%) — (S — [0,00]%) by Fr(n)(c) = (Fx1(n)(c),...,
Fr (n)(c)), where Fr . : (S — [0,00]%) — (S — [0, c]) is given by

(Frx(n))(c) = {(X(Elfk on))(c) ceI\C

0 otherwise.
As in Definition 3.6, we define a supermartingale as a prefixed point of Fik.

Definition 3.12 (ranking supermartingale for K-th moments). We
define 91, ...,nx : S = R by (m1(c),...,nx(c)) = n(c). A ranking supermartin-
gale for K-th moments is a function  : S — RX such that for each k, (i)
ne(c) > (X(ELF o n;))(c) for each ¢ € I'\ C; and (i) mx(c) > 0 for each ¢ € 1.

For higher moments, we can prove an analogous result to Theorem 3.7.

Theorem 3.13. If n is a supermartingale for K-th moments, then for each
—T,1 — K
cel, (Mg (¢),...,M¢g" () <nlc). O

4 From Moments to Tail Probabilities

We discuss how to obtain upper bounds of tail probabilities of runtimes
from upper bounds of higher moments of runtimes. Combined with the result
in Sect. 3, it induces a martingale-based method for overapproximating tail prob-
abilities.

We use a concentration inequality. There are many choices of concentration
inequalities (see e.g. [3]), and we use a variant of Markov’s inequality. We prove
that the concentration inequality is not only sound but also complete in a sense.

Formally, our goal is to calculate is an upper bound of Pr(Té; , > d) for
a given deadline d > 0, under the assumption that we know upper bounds
uy, ..., ug of moments E[TZ ],...,E[(T,)%]. In other words, we want to over-
approximate sup,, p([d, 0o]) where 1 ranges over the set of probability measures
on [0, 00] satisfying ([ zdu(z),..., [«¥ du(z)) < (u1, ..., uk).

To answer this problem, we use a generalized form of Markov’s inequality.
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Proposition 4.1 (see e.g. [3, §2.1]). Let X be a real-valued random variable
and ¢ be a nondecreasing and nonnegative function. For any d € R with ¢(d) > 0,

E[p(X)]

Pr(X >d) < o)

O

By letting ¢(x) = x* in Proposition 4.1, we obtain the following inequality.
It gives an upper bound of the tail probability that is “tight.”

Proposition 4.2. Let X be a nonnegative random variable. Assume E[X*] <
ug for each k € {0,...,K}. Then, for any d > 0,

Pr(X >d) < min &, (1)

Moreover, this upper bound is tight: for any d > 0, there exists a probability
measure such that the above equation holds.

Proof. The former part is immediate from Proposition 4.1. For the latter part,
consider 1 = pdg + (1 — p)dp where §, is the Dirac measure at = and p is the
value of the right-hand side of (1). O

By combining Theorem 3.13 with Proposition 4.2, we obtain the following
corollary. We can use it for overapproximating tail probabilities.

Corollary 4.3. Let n : S — RE be a ranking supermartingale for K-th
moments. For each scheduler o and a deadline d > 0,

Linits Tinit)
I' S < . nk( init, ®init .

Pr(To,, 2 d) < min —— 75— (2)
Here ng, ...,nk are defined by no(c) =1 and n(c) = (m(c),...,nk(c)). O

Note that if K = 1, Corollary 4.3 is essentially the same as [5, Thm 4].
Note also that for each K there exists d > 0 such that % =

minp<p<x 2 inie @init) - Hence higher moments become useful in overapproxi-
mating tail probabilities as d gets large. Later in Sect.6, we demonstrate this

fact experimentally.

5 Template-Based Synthesis Algorithm

We discuss an automated synthesis algorithm that calculates an upper bound
for the k-th moment of the runtime of a pCFG using a supermartingale in
Definitions 3.6 or 3.12. It takes a pCFG I, an invariant I, a set C' C I of
configurations, and a natural number K as input and outputs an upper bound
of K-th moment.

Our algorithm is adapted from existing template-based algorithms for synthe-
sizing a ranking supermartingale (for first moments) [4,6,7]. It fixes a linear or
polynomial template with unknown coefficients for a supermartingale and using
numerical methods like linear programming (LP) or semidefinite programming
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(SDP), calculate a valuation of the unknown coefficients so that the axioms of
ranking supermartingale for K-th moments are satisfied.
We hereby briefly explain the algorithms. See [22, Appendix D] for details.

Linear Template. Our linear template-based algorithm is adapted from [4,7].
We should assume that I', I and C are all “linear” in the sense that expressions
appearing in I are all linear and I and C' are represented by linear inequalities.
To deal with assignments from a distribution like # := Norm(0,1), we also
assume that expected values of distributions appearing in I" are known.

The algorithm first fixes a template for a supermartingale: for each location

I, it fixes a K-tuple (le‘gl abjz+ 0, levl aé-’Kxj +b%) of linear formulas.

Here each aé-’i and bl are unknown variables called parameters. The algorithm
next collects conditions on the parameters so that the tuples constitute a rank-
ing supermartingale for K-th moments. It results in a conjunction of formulas
of a form ¢1 >0A---Ap, >0 = ¢ >0. Here ¢1, ..., ¢, are linear formulas
without parameters and 1 is a linear formula where parameters linearly appear
in the coefficients. By Farkas’ lemma (see e.g. [29, Cor 7.1h]) we can turn such
formulas into linear inequalities over parameters by adding new variables. Its fea-
sibility is efficiently solvable with an LP solver. We naturally wish to minimize
an upper bound of the K-th moment, i.e. the last component of 7(linit, Tinit)-

We can minimize it by setting it to the objective function of the LP problem.

Polynomial Template. The polynomial template-based algorithm is based
on [6]. This time, I', I and C can be “polynomial.” To deal with assignments of
distributions, we assume that the n-th moments of distributions in I" are easily
calculated for each n € N. It is similar to the linear template-based one.

It first fixes a polynomial template for a supermartingale, i.e. it assigns each
location [ a K-tuple of polynomial expressions with unknown coefficients. Like-
wise the linear template-based algorithm, the algorithm reduces the axioms of
supermartingale for higher moments to a conjunction of formulas of a form
w1 > 0A - ANy >0 = ¢ > 0. This time, each ; is a polynomial formula
without parameters and v is a polynomial formula whose coefficients are linear
formula over the parameters. In the polynomial case, a conjunction of such for-
mula is reduced to an SDP problem using a theorem called Positivstellensatz (we
used a variant called Schmiidgen’s Positivstellensatz [28]). We solve the resulting
problem using an SDP solver setting n(linit, Tinit) as the objective function.

6 Experiments

We implemented two programs in OCaml to synthesize a supermartingale based
on (a) a linear template and (b) a polynomial template. The programs translate
a given randomized program to a pCFG and output an LP or SDP problem as
described in Sect. 5. An invariant I and a terminal configuration C' for the input
program are specified manually. See e.g. [20] for automatic synthesis of an invari-
ant. For linear templates, we have used GLPK (v4.65) [12] as an LP solver. For
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polynomial templates, we have used SOSTOOLS (v3.03) [31] (a sums of squares
optimization tool that internally uses an SDP solver) on Matlab (R2018b). We
used SDPT3 (v4.0) [30] as an SDP solver. The experiments were carried out on
a Surface Pro 4 with an Intel Core i5-6300U (2.40 GHz) and 8 GB RAM. We
tested our implementation for the following two programs and their variants,
which were also used in the literature [7,19]. Their code is in [22, Appendix EJ.

Coupon collector’s problem. A probabilistic model of collecting coupons enclosed
in cereal boxes. There exist n types of coupons, and one repeatedly buy cereal
boxes until all the types of coupons are collected. We consider two cases: (1-1)
n =2 and (1-2) n = 4. We tested the linear template program for them.

Random walk. We used three variants of 1-dimensional random walks: (2-1)
integer-valued one, (2-2) real-valued one with assignments from continuous
distributions, (2-3) with adversarial nondeterminism; and two variants of 2-
dimensional random walks (2-4) and (2-5) with assignments from continuous
distributions and adversarial nondeterminism. We tested both the linear and
the polynomial template programs for these examples.

Experimental results. We measured execution times needed for Step 1 in
Fig.2. The results are in Table1. Execution times are less than 0.2s for lin-
ear template programs and several minutes for polynomial template programs.
Upper bounds of tail probabilities obtained from Proposition 4.2 are in Fig. 3.

We can see that our method is applicable even with nondeterministic branch-
ing ((2-3), (2-4) and (2-5)) or assignments from continuous distributions ((2-2),
(2-4) and (2-5)). We can use a linear template for bounding higher moments as
long as there exists a supermartingale for higher moments representable by linear
expressions ((1-1), (1-2) and (2-3)). In contrast, for (2-1), (2-2) and (2-4), only
a polynomial template program found a supermartingale for second moments.

It is expectable that the polynomial template program gives a better bound
than the linear one because a polynomial template is more expressive than a
linear one. However, it did not hold for some test cases, probably because of
numerical errors of the SDP solver. For example, (2-1) has a supermartingale
for third moments that can be checked by a hand calculation, but the SDP
solver returned “infeasible” in the polynomial template program. It appears that
our program fails when large numbers are involved (e.g. the third moments of
(2-1), (2-2) and (2-3)). We have also tested a variant of (2-1) where the initial
position is multiplied by 10000. Then the SDP solver returned “infeasible” in
the polynomial template program while the linear template program returns a
nontrivial bound. Hence it seems that numerical errors are likely to occur to the
polynomial template program when large numbers are involved.

Figure3 shows that the bigger the deadline d is, the more useful higher
moments become (cf. a remark just after Corollary4.3). For example, in
(1-2), an upper bound of Pr(T{ , > 100) calculated from the upper bound of
the first moment is 0.680 while that of the fifth moment is 0.105.

To show the merit of our method compared with sampling-based methods,
we calculated a tail probability bound for a variant of (2-2) (shown in Fig.4 on
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Fig. 3. Upper bounds of the tail probabilities (except (2-5)). Each gray line is the
value of Z—’,j where uy is the best upper bound in Table1 of k-th moments and d is
a deadline. Each black line is the minimum of gray lines, i.e. the upper bound by
Proposition 4.2. The red lines in (1-1), (1-2) and (2-1) show the true tail probabilities
calculated analytically. The red points in (2-2) show tail probabilities calculated by
Monte Carlo sampling where the number of trials is 100000000. We did not calculate
the true tail probabilities nor approximate them for (2-4) and (2-5) because these

examples seem difficult to do so due to nondeterminism. (Color figure online)

Table 1. Upper bounds of the moments of runtimes.
“” indicates that the LP or SDP solver returned
“infeasible”. The “degree” column shows the degree
of the polynomial template used in the experiments.

(a) linear template (b) polynominal template
moment [upper bound[time (s)|[upper bound[time (s)[degree 1 x := 200000000;
(1-1) 1st 13 0.012 2 while true do
2nd 201 0.019 3 if prob(0.7) then
3rd 3829 0.023 4 z := Unif (0,1);
(1-2) 1st 68 0.024 5 X 1= X - z
2nd 3124 0.054 6 else
3rd 171932 0.089 7 z := Unif (0,1);
Ith | 12049876 | 0.126 ] % i x 4 2
5th 1048131068 | 0.191 9 £i;
(2-1) 1st 20 0.024 20.0 24.980 2 10 refute (x < 0)
2nd - 0.013 2320.0 37.609 2 11 od
3rd - 0.017 - 30.932 3
(2-2) 1st 75 0.009 75.0 33.372 2
2nd B 0.014 8375.0 | 73.514 | 2 Fig. 4. A variant of (2-2).
3rd - 0.021 - 170.416 3
(2-3) 1st 62 0.020 62.0 40.746 2
2nd 28605.4 0.038 6710.0 97.156 2
3rd 19567043.36 | 0.057 - 35.427 3
(2-4) 1st 96 0.020 95.95 157.748 2
2nd - 0.029 10944.0 361.957 2
(2-5) 1st 90 0.022 - 143.055 2
2nd - 0.042 - 327.202 2




148 S. Kura et al.

p. 12) with a deadline d = 10'!. Because of its very long expected runtime, a
sampling-based method would not work for it. In contrast, the linear template-
based program gave an upper bound Pr(TgJ > 10*1) < 5000000025/10* ~ 0.05
in almost the same execution time as (2-2) (< 0.025s).

7 Related Work

Martingale-Based Analysis of Randomized Programs. Martingale-based
methods are widely studied for the termination analysis of randomized pro-
grams. One of the first is ranking supermartingales, introduced in [4] for prov-
ing almost sure termination. The theory of ranking supermartingales has since
been extended actively: accommodating nondeterminism [1,6,7,11], syntax-
oriented composition of supermartingales [11], proving properties beyond ter-
mination/reachability [13], and so on. Automated template-based synthesis of
supermartingales by constraint solving has been pursued, too [1,4,6,7].

Other martingale-based methods that are fundamentally different from rank-
ing supermartingales have been devised, too. They include: different notions of
repulsing supermartingales for refuting termination (in [8,33]; also studied in
control theory [32]); and multiply-scaled submartingales for underapproximating
reachability probabilities [33,36]. See [33] for an overview.

In the literature on martingale-based methods, the one closest to this work
is [b]. Among its contribution is the analysis of tail probabilities. It is done by
either of the following combinations: (1) difference-bounded ranking supermartin-
gales and the corresponding Azuma’s concentration inequality; and (2) (not nec-
essarily difference-bounded) ranking supermartingales and Markov’s concentra-
tion inequality. When we compare these two methods with ours, the first method
requires repeated martingale synthesis for different parameter values, which can
pose a performance challenge. The second method corresponds to the restriction
of our method to the first moment; recall that we showed the advantage of using
higher moments, theoretically (Sect.4) and experimentally (Sect.6). See [22,
Appendix F.1] for detailed discussions. Implementation is lacking in [5], too.

We use Markov’s inequality to calculate an upper bound of Pr(Tyu, > d) from
a ranking supermartingale. In [7], Hoeffding’s and Bernstein’s inequalities are
used for the same purpose. As the upper bounds obtained by these inequalities
are exponentially decreasing with respect to d, they are asymptotically tighter
than our bound obtained by Markov’s inequality, assuming that we use the same
ranking supermartingale. However, Hoeffding’s and Bernstein’s inequalities are
applicable to limited classes of ranking supermartingales (so-called difference-
bounded and incremental ones, respectively). There exists a randomized pro-
gram whose tail probability for runtimes is decreasing only polynomially (not
exponentially, see [22, Appendix G]); this witnesses that there are cases where
the methods in [7] do not apply but ours can.

The work [1] is also close to ours in that their supermartingales are vector-
valued. The difference is in the orders: in [1] they use the lexicographic order
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between vectors, and they aim to prove almost sure termination. In contrast, we
use the pointwise order between vectors, for overapproximating higher moments.

The Predicate-Transformer Approach to Runtime Analysis. In the run-
time/termination analysis of randomized programs, another principal line of
work uses predicate transformers [2,17,19], following the precedent works on
probabilistic predicate transformers such as [21,25]. In fact, from the mathemati-
cal point of view, the main construct for witnessing runtime/termination in those
predicate transformer calculi (called invariants, see e.g. in [19]) is essentially the
same thing as ranking supermartingales. Therefore the difference between the
martingale-based and predicate-transformer approaches is mostly the matter of
presentation—the predicate-transformer approach is more closely tied to pro-
gram syntax and has a stronger deductive flavor. It also seems that there is less
work on automated synthesis in the predicate-transformer approach.

In the predicate-transformer approach, the work [17] is the closest to ours,
in that it studies variance of runtimes of randomized programs. The main dif-
ferences are as follows: (1) computing tail probabilities is not pursued [17]; (2)
their extension from expected runtimes to variance involves an additional vari-
able 7, which poses a challenge in automated synthesis as well as in generalization
to even higher moments; and (3) they do not pursue automated analysis. See
Appendix F.2 of the extended version [22] for further details.

Higher Moments of Runtimes. Computing and using higher moments of
runtimes of probabilistic systems—generalizing randomized programs—has been
pursued before. In [9], computing moments of runtimes of finite-state Markov
chains is reduced to a certain linear equation. In the study of randomized algo-
rithms, the survey [10] collects a number of methods, among which are some tail
probability bounds using higher moments. Unlike ours, none of these methods
are language-based static ones. They do not allow automated analysis.

Other Potential Approaches to Tail Probabilities. We discuss potential
approaches to estimating tail probabilities, other than the martingale-based one.

Sampling is widely employed for approximating behaviors of probabilistic
systems; especially so in the field of probabilistic programming languages, since
exact symbolic reasoning is hard in presence of conditioning. See e.g. [35]. We
also used sampling to estimate tail probabilities in (2-2), Fig. 3. The main advan-
tages of our current approach over sampling are threefold: (1) our upper bounds
come with a mathematical guarantee, while the sampling bounds can always be
erroneous; (2) it requires ingenuity to sample programs with nondeterminism;
and (3) programs whose execution can take millions of years can still be ana-
lyzed by our method in a reasonable time, without executing them. The latter
advantage is shared by static, language-based analysis methods in general; see
e.g. [2].

Another potential method is probabilistic model checkers such as PRISM [23].
Their algorithms are usually only applicable to finite-state models, and thus not
to randomized programs in general. Nevertheless, fixing a deadline d can make
the reachable part S<4 of the configuration space S finite, opening up the pos-
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sibility of use of model checkers. It is an open question how to do so precisely,
and the following challenges are foreseen: (1) if the program contains contin-
uous distributions, the reachable part S<q becomes infinite; (2) even if S<4 is
finite, one has to repeat (supposedly expensive) runs of a model checker for each
choice of d. In contrast, in our method, an upper bound for the tail probabil-
ity Pr(Tiun > d) is symbolically expressed as a function of d (Proposition 4.2).
Therefore, estimating tail probabilities for varying d is computationally cheap.

8 Conclusions and Future Work

We provided a technique to obtain an upper bound of the tail probability of
runtimes given a randomized algorithm and a deadline. We first extended the
ordinary ranking supermartingale notion using the order-theoretic characteri-
zation so that it can calculate upper bounds of higher moments of runtimes
for randomized programs. Then by using a suitable concentration inequality,
we introduced a method to calculate an upper bound of tail probabilities from
upper bounds of higher moments. Our method is not only sound but also com-
plete in a sense. Our method was obtained by combining our supermartingale
and the concentration inequality. We also implemented an automated synthesis
algorithm and demonstrated the applicability of our framework.

Future Work. Example 3.8 shows that our supermartingale is not complete: it
sometimes fails to give a tight bound for higher moments. Studying and improv-
ing the incompleteness is one possible direction of future work. For example, the
following questions would be interesting: Can bounds given by our supermartin-
gale be arbitrarily bad? Can we remedy the completeness by restricting the type
of nondeterminism? Can we define a complete supermartingale?

Making our current method compositional is another direction of future
research. Use of continuations, as in [18], can be a technical solution.

We are also interested in improving the implementation. The polynomial
template program failed to give an upper bound for higher moments because
of numerical errors (see Sect.6). We wish to remedy this situation. There exist
several studies for using numerical solvers for verification without affected by
numerical errors [14-16,26,27]. We might make use of these works for improve-
ments.
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