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Abstract. Runtime Verification (RV) is the process of checking whether
a run of a system holds a given property. In order to perform such a check
online, the algorithm used to monitor the property must induce mini-
mal overhead. This paper focuses on two areas that have received little
attention from the RV community: Python programs and web services.
Our first contribution is the VYPR runtime verification tool for single-
threaded Python programs. The tool handles specifications in our, previ-
ously introduced, Control-Flow Temporal Logic (CFTL), which supports
the specification of state and time constraints over runs of functions.
VYPR minimally (in terms of reachability) instruments the input pro-
gram with respect to a CFTL specification and then uses instrumentation
information to optimise the monitoring algorithm. Our second contribu-
tion is the lifting of VYPR to the web service setting, resulting in the
VYPR2 tool. We first describe the necessary modifications to the archi-
tecture of VyPR, and then describe our experience applying VYPR2 to a
service that is critical to the physics reconstruction pipeline on the CMS
Experiment at CERN.

1 Introduction

Runtime Verification [1] is the process of checking whether a run of a system
holds a given property (often written in a temporal logic). This can be checked
while the system is running (online) or after it has run (post-mortem or offline).
Often this is presented abstractly as checking an abstraction of behaviour, cap-
tured by a trace. This abstract setting often ignores the practicalities of instru-
mentation and deployment. This paper presents a tool for the runtime verifica-
tion of Python-based web services that efficiently handles the instrumentation
problem and integrates with the widely used web-framework Flask [2]. This
work is carried out within the context of verifying web-services used at the CMS
Experiment at CERN.

Despite the wealth of existing logics [3-9], in our work [10,11] performing
verification of state and time constraints over Python-based web services on the
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CMS Experiment at CERN we have found that, in most cases, the existing logics
operate at a high level of abstraction in relation to the program under scrutiny.
This leads to (1) a less straightforward specification process for engineers, who
have to think indirectly about their programs; and (2) difficulty writing spec-
ifications about behaviour inside functions themselves. These observations led
us to develop Control-Flow Temporal Logic [10,11] (CFTL), a logic that has a
tight-coupling with the control flow of the program under scrutiny (so operates
at a lower level of abstraction which, in our experience, makes writing specifi-
cations with it easier for engineers) and is easy to use to specify state and time
constraints over single runs of functions.

After the introduction of CFTL (Sect. 2), the first contribution of this paper is
a description of the VYPR tool (Sect.3), which verifies single-threaded Python
programs with respect to CFTL specifications. It does this by (1) providing
PyCFTL, the Python binding for CFTL, for writing specifications; (2) instru-
menting the input program minimally with respect to reachability; and (3) using
the resulting instrumentation information to make its online monitoring algo-
rithm more efficient.

Since the development of VYPR as a prototype verification tool for CFTL, we
have found that there are, to the best of our knowledge, no frameworks for fully-
automated instrumentation and verification of multiple functions in web services
with respect to low-level properties. Therefore, the second contribution of this
paper is the lifting of CFTL and VYPR to the web service setting in a tool we call
VYPR2 (Sect. 4). We present a general infrastructure for the runtime verification
of Python-based web services with respect to CFTL specifications. Moving from
VYPR to VYPR2 presents a number of challenges, which we discuss in detail.
For the moment, we focus on web services that use the Flask framework, a
Python framework that allows one to write a web service by writing Python
functions to serve as end-points. VyPR2 admits a simple specification process
using PyCFTL, performs automatic and optimised instrumentation of the web
service under scrutiny, and provides a separate verdict server for collection of
verdicts obtained by monitoring CFTL specifications.

Our final contribution is a case study (Sect.5) applying VYPR2 to the CMS
Conditions Upload Service [12], a single-threaded Python-based web service used
on the CMS Experiment at CERN. We find that our verification infrastructure
induces minimal overhead on Conditions uploads, with experiments showing
an overhead of approximately 4.7%. We also find unexpected violations of the
specification, one of which has triggered investigations into a mechanism that was
designed to be an optimisation but is in danger of adding unnecessary latency.
Ultimately, VYPR2 has made analysis of the performance of a critical part of
CMS’ physics reconstruction pipeline much more straightforward.

2 Control-Flow Temporal Logic (CFTL)

Both of the tools presented in this paper make use of the CFTL specification
language [10,11]. We briefly describe this language, focusing on the kinds of
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¢ =VqETs:¢p|Vtelr:d|dVe|-d|true|pa
ba = S(x) = v| S(@) = S() | S(z) € (n,m) | S(z) € [n,m]
| duration(T’) € (n, m) | duration(T") € [n,m]
I's := changes(z) | futures (g, changes(x)) | futures(¢, changes(z))
I'p := calls(f) | futurer (g, calls(f)) | futurer (¢, calls(f))
S :=q| source(T) | dest(T) | nexts (S, changes(z)) | nexts (7T, changes(z))
T :=t|incident(S) | nextr (S, calls(f)) | nextr (T, calls(f))

Fig. 1. Syntax of CFTL.

properties it can capture. CFTL is a linear-time temporal logic whose formulas
reason over two central types of objects: states, instantaneous checkpoints in a
program’s runtime; and transitions, the computation that must happen to move
between states.

Consider the following property, taken from the case study in Sect. 5:

Whenever authenticated is changed, if it is set to True, then all
future calls to execute should take no more than 1 second.

This can be expressed in CFTL as

Vq € changes(authenticated) :
Vt € future(q, calls(execute)) : (1)
g(authenticated) = True = duration(t) € [0, 1]

This first quantifies over the states ¢ in which the program variable
authenticated is changed and then over the transitions ¢ occurring after that
state that correspond to a call of a program function called execute. Given this
pair of ¢ and ¢, the specification then states that if authenticated is mapped
to True by ¢ then the duration of the transition ¢ is within the given range.

Syntaz. Figurel gives the syntax of CFTL. CFTL specifications take prenex
form consisting of a list of quantifiers followed by a quantifier-free part. The
quantification domains are defined by I's (for states) and Iy (for transitions).
Terms produced by the S and T cases denote states and transitions respectively.
We often drop the S and T subscripts from future and next when the meaning is
clear from the context. The quantifier-free part of CFTL formulas is a boolean
combination of atoms generated by ¢ 4. Let A(p) be the set of atoms of a CFTL
formula ¢ and, for a@ € A(yp), let var(a) be the variable on which « is based.
In the above example A(p) = {g(authenticated) = True, duration(t) € [0, 1]},
var(g(authenticated) = True) = ¢, and var(duration(¢) € [0,1]) = t. A CFTL
formula is well-formed if it does not contain any free variables (those not captured
by a quantifier) and every nested quantifier depends on the previously quantified
variable.



VYPR2: A Framework for Runtime Verification of Python Web Services 101

Forall (g = changes (’authenticated’)) .\
Forall (t = calls(’execute’, after='qg’)).\
Check (lambda g, t : (
If(g("authenticated’) .equals (True)) .then
t.duration()._in ([0, 11)
)
))

Fig. 2. An example of a CFTL specification written in Python using PyCFTL.

Semantics. The semantics of CFTL is defined over a dynamic run of the pro-
gram. A dynamic run is a sequence of states 7 = (o,t), where o is a map
(partial functions with finite domain) from program variables/functions to val-
ues and t € RZ is a timestamp. Transitions are then pairs (7, ;) for states 7
and 7;. The product quantification domain over which a CFTL formula is evalu-
ated is derived from the dynamic run using the quantifier list e.g. by extracting
all states where some variable changes. Elements of the product quantification
domain are maps from specification variables to concrete states/transitions and
will be referred to as concrete bindings.

3 VYPR

We now present VYPR, which can perform runtime verification on a single
Python function with respect to some CFTL specification . Further details can
be found in a paper [11] and technical report [10], and the tool is available online
at http://cern.ch/vypr/.

Tool Workflow. To runtime verify a Python function we follow the following
steps. Firstly the property is captured as a CFTL specification using a Python
binding called PyCFTL. Given this specification, VYPR instruments the input
program so that the monitoring algorithm receives data from any points in the
program that could contribute to a verdict. Finally, the modified program will
communicate with the monitor at runtime, which will process the observations
to produce a verdict.

3.1 Writing CFTL Specifications with PyCFTL

The first step is to write a CFTL specification. Note that such a specification is
specific to a particular function being verified as it refers directly to the symbols
in that function. For specification we provide PyCFTL, a Python binding for
CFTL. Figure 2 shows the PyCFTL specification for the CFTL specification in
Eq.1. A CFTL specification is defined in PyCFTL in two parts:

1. The first part is the quantification sequence. For example, the quantification
Vq € changes(z) is given as Forall (g = changes(’'x’)).
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2. The second part, the argument to Check (), gives the property to be eval-
uated for each concrete binding in the quantification domain. This is done
by specifying a template for the specification with a lambda expression (an
anonymous function in Python) whose arguments match the variables in the
quantification sequence.

3.2 Instrumenting for CFTL

VYPR instruments a Python program for a CFTL specification ¢ by building
up the set Inst containing all points in the program that could contribute to the
verdict of p. VYPR works at the level of the abstract syntax tree (AST) of the
program and the program points of interest are nodes in the AST. Once this set
of nodes has been computed, the AST is modified to add instruments at each of
these points.

During runtime monitoring the most expensive operation is usually the
lookup of the relevant monitor state that needs to be modified. To make moni-
toring more efficient, our instrumentation algorithm computes Inst by computing
a direct lookup structure that allows the monitoring algorithm to go directly to
this state. This structure can be abstractly viewed as a tree, H,, whose leaves
are sets that form a partition of Inst and whose intermediate nodes contain the
information required to identify the relevant monitoring state.

The first step in computing H, is to construct the Symbolic Control-Flow
Graph (SCFG) of the body of a (Python) function f.

Definition 1. A symbolic control-flow graph (SCFG) is a directed graph
(V, E,vs) whereV is a finite set of symbolic states (maps from all program sym-
bols, e.g. program variables/functions, to a status in {changed, unchanged, called,
undefined} ), E CV XV is a finite set of edges, and vy € V is the initial symbolic
state.

The SCFG of a function f is independent of any property ¢ being checked.
Our construction of the SCFG of a program encodes information about state
changes (by symbolic states) and reachability (by edges being generated for
each state-changing instruction in code), making it an ideal structure from
which to derive candidate points for state changes. The SCFG is used to find all
symbolic states or edges that could generate concrete bindings in the product
quantification domain of a formula. For example, if the CFTL specification is
Vq € changes(z) : g(x) < 10, all symbolic states representing changes to x will
be identified as having potential to generate concrete bindings. From this, we
construct a set of static bindings, which are maps from specification variables to
candidate symbolic states/edges in the SCFG. The key distinction between con-
crete and static bindings is that static bindings are computed from the SCFG
before runtime, and can correspond to zero or more concrete bindings during
runtime. We call the set of static bindings the binding space for ¢ with respect
to the SCFG and denote it by B, with the SCFG implicit. Elements 3 of B,
form the top level of the tree H,,.
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Data: ¢ and the SCFG (V, E,v,) of function f

Result: Lookup tree H,,

// Construct B,

B, = {0};

foreach quantified variable (x; € predicate) in ¢ in order do

for v € V do
if v is a candidate for predicate then

By, ={BU[zi—v]|B € By Ai>1— reaches((zi—1),v)};
end
end
// Construct H,
He = 0;
for § € B, with index ig do
for quantified variable z; in ¢ with index iq do
foreach a € {a € A(p) | var(a) = z;} with index i do
| Holig,igyia) < lift(a, B(xi));
end
end
end

Algorithm 1: VYPR’s algorithm for construction of the tree H,,.

Once B, is constructed, for each 3 € By, VYPR lifts each o € A(yp) (the
atoms of ¢) from the dynamic context to the SCFG in order to find the relevant
symbolic states/edges around the symbolic state/edge ((var(c)). This process
constructs the second and third levels of the tree H,: the second level consisting
of variables, and the third level of atoms in A(y). The leaves on the fourth level
of the tree H, are then the subsets of Inst; sets of symbolic states or edges from
the SCFG.

Whilst we can abstractly view H, as a tree, in practice we represent it as
a map from triples (ig,iv,iq) to symbolic states/edges of the SCFG where iz,
iy and i, are indices into the binding space, quantifier list, and set of atoms
respectively. An instrument placed in the input program for an atom «, using
H,, contains a triple to identify a subset of Inst and a value obs which is whatever
code is required to obtain the value necessary to compute a truth value for c.
For example, if the instrument is being placed to record the value of a program
variable, obs is the name of the variable which, at runtime, is evaluated to give
the value the variable holds. Such an instrument, which pushes its triple and
evaluated obs value to a queue to be consumed by the monitoring thread, is
placed by modifying the Abstract Syntax Tree (AST) of the program.

Our algorithm for construction of H, is Algorithm 1. This makes use of a
predicate reaches which checks whether one symbolic state is reachable from
another in the SCFG; and a function lift(a, v) for a € A(p) and v € V which
gives the symbolic states reachable from v obtained by lifting « to the static
context. With the tree H, and binding space B, defined, in the next section we
present our monitoring approach.
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3.3 Monitoring for CFTL

The modified version of the body of f resulting from instrumentation is run
alongside VYPR/’s monitoring algorithm, which consumes data from instruments
via a consumption queue populated by the main program thread. Monitoring is
performed asynchronously. VYPR’s monitoring algorithm involves instantiating
a formula tree (an and-or tree) for each binding in the quantification domain
of a formula. This algorithm uses the triple (ip,iv,is) and evaluated obs value
given by each instrument to perform lookup (to find in which formula trees to
update the truth value of a specific atom), decide if new formula trees should be
instantiated and compute the truth value of the atom at index i, in A(y).

Given a CFTL formula Vg1 € In,...,Yg, € I, : ¥(q1,...,qn), when
monitoring one can interpret multiple quantification as single quantification
over a product space I7 X --- X I,. Such a space contains concrete bindings
[q1 — v1,...,qn +— v,] for states or transitions v;. Each of these concrete bind-
ings generated at runtime corresponds to a single static binding 5 € B,. Using
this correspondence, we say that each concrete binding has a supporting static
binding B € B,.

Given that monitoring is performed by instantiating a formula tree for each
concrete binding in the product quantification domain, the speed of lookup of
relevant formula trees is greatly increased by grouping them by the indices of
supporting static bindings (determined by iz). Hence, to either update or instan-
tiate formula trees, when information is observed from an instrument that helps
to evaluate 1 at some concrete binding, the supporting static binding must be
found, giving rise to the requirement for static information during monitoring.
During monitoring, lookup of which set of formula trees to use is straightforward
since the index i is given by the instrument.

Once lookup has been performed, the result is a set of formula trees corre-
sponding to the static binding index i5 received from the instrument. From here,
the index i, is used to determine the atom in A(p) whose truth value (computed
using the value given by obs) must be updated in each formula tree.

3.4 Verdict Reports

Once execution has finished, a verdict report is generated, which VYPR keeps
in memory. Since each formula tree corresponds to a single concrete binding,
verdicts share concrete bindings’ correspondence with static bindings. Hence,
verdicts can be grouped by the supporting static bindings. Given the binding
space B, computed during instrumentation, a verdict report V from a single run
of a function can be seen as a partial function

V N li(J — ({T,L} X Rz)*,

sending a static binding 3 € B, to a sequence of pairs containing a verdict
from {T, L} and a timestamp (the time at which the verdict was obtained).
The map V sends static bindings to sequences of pairs, rather than single pairs,
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because single static bindings can support multiple concrete bindings, generating
multiple verdicts. This is the case if, for example, the static binding is inside a
loop that iterates more than once at runtime.

4 An Architecture for Web Service Verification

We begin our description of the architecture of VYPR2, the extension of VYPR
to web services, by isolating a number of requirements imposed by web ser-
vice deployment environments, and production software environments in general,
that must be met.

The environment at CERN inside which our verification infrastructure must
function is similar to most production environments. It consists of machines
for development and production, with each machine automatically pulling the
relevant tags from a central repository once engineers have pushed their (locally-
tested) code. Based on this deployment architecture, and the architecture of web
services, requirements for our Runtime Verification framework include:

Centralised specifications over multiple functions with multiple properties. It
should be possible to verify each function in a web service with respect to multi-
ple properties. Further, specifications for the whole web service should be written
in a single file, to minimise intrusion into the web service’s code.

Making instrumentation data persistent. Web services’ code can be pulled from
a repository onto a production server and, once launched, be restarted multi-
ple times between successive deployments of different code versions. Therefore,
instrumentation data must be persistent between processes.

Persistent verdict data. Similarly, verdict data must be persistent and, further-
more, engineers must be able to perform offline analysis of the verdicts reached
by web services at runtime.

An architecture that meets these requirements is illustrated in Fig. 3, and
described in the following sections. The resulting tool, VYPR2, will soon be
publicly available from http://cern.ch/vypr.

4.1 Specifying Multiple Function, Multiple Property Specifications

For simplicity of use, we have opted to have engineers write their entire specifi-
cation in a central configuration file, in the root directory of their web service.
This is a file written in Python, specifying CFTL properties over the service
using the PyCFTL library.

Part of such a configuration file, using the PyCFTL specification given in
Fig. 2, is shown in Fig. 4: one must first give the fully-qualified name of the mod-
ule in the service in standard Python dot notation and then, for each function,
the list of properties built up using PyCFTL.
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Fig. 3. The architecture of VYPR extended to web services.

Vq € changes(authenticated) :
Pauth = | Vt € future(g, calls(execute)) :
¢q(authenticated) = True = duration(t) € [0, 1]

"app.metadata_handler" : {
"MetadataHandler.__init__ " : [
Forall (g = changes (’authenticated’)) .\
Forall (t = calls(’execute’, after="qgq’)).\
Check (lambda g, t : (
If(g("authenticated’) .equals (True)) .then(
t.duration () ._in ([0, 11])
)
))

Fig.4. A CFTL specification and its PyCFTL equivalent.

4.2 Instrumentation

Given a specification such as that in Fig. 4, VYPR’s strategy must be extended
to the multiple function, multiple property context. Multiple functions are dealt
with by constructing the SCFG for each function found in the specification and
performing instrumentation for each property.

Instrumentation for each property over the same function is performed
sequentially: VYPR2 instruments using the AST of the input code, and so instru-
mentation for each property progressively modifies the AST.

We now describe the modifications required to the actual instruments. In
VYPR’s simplified setting, instruments need only send the (ig, iv, i) triple along
with the obs value relevant to the atom for which the instrument was placed.
The multiple function, multiple property setting yields several problems that are
solved by modifying existing instruments and adding a new kind.



VYPR2: A Framework for Runtime Verification of Python Web Services 107

In our architecture, monitoring is performed by a single thread, which means
that this thread must have a way to distinguish between instruments received
from different functions. We accomplish this by adding the name of the function
to all instruments added to code. By adding the name of the function to all
instruments, we deal not only with multiple functions, but with monitored func-
tions calling other monitored functions, in which case monitor states for multiple
functions must be maintained at the same time.

We deal with multiple properties over the same function by adding a unique
identifier of a property to each of its instruments. We compute a uniquely identi-
fying string for each property by taking the SHA1 hash of the combination of the
quantification sequence and the template. We add this unique identifier to each
instrument, giving the monitoring algorithm a way to distinguish properties.

Taking the original triple (ig, iy, i), the appropriate obs code, and the new
requirements for the function name and the property hash, the new form of
instruments that are placed by VYPR2 is (function, hash, obs, iz, iv, ).

4.3 Making Instrumentation Data Persistent

The tree H, is dependent on the CFTL formula ¢ for which it has been com-
puted. Hence, if the specification for a given function in the web service consists
of aset g ={p1,...,p,} of CFTL formulas, the data required to monitor each
property at the same time over the same execution of the given function consists
of the set of maps H,, which can be identified by ¢;. In particular, when data is
received from an instrument by the monitoring algorithm, we can assume from
Sect. 4.2 that it will contain a unique identifier for the formula for which it was
placed. Therefore, the correct tree H,, can be determined for each instrument.
We make such instrumentation data persistent by creating new directories in
the root of the web service called binding_spaces and instrumentation_maps
to hold the binding spaces and trees, respectively, computed for each func-
tion/CFTL property combination. To dump the binding spaces and hierarchy
functions in files in these directories, we use Python’s pickle [13] module.

4.4 Activating Verification in a Web Service

Our infrastructure is designed to minimise intrusion, both by minimising the
amount of instrumentation performed and by minimising the amount of code
engineers must add to their services for verification to be performed.

With the Flask-based implementation of VYPR2 that we present here, one
can activate verification by adding the lines from vypr import Verification
and verification = Verification (app) where app is the Flask application
object required when building a web service with the Flask framework.

Running verification = Verification(app) will start up the separate
monitoring thread, similar to VYPR, and will also read the serialised binding
spaces and trees from the directories described in Sect.4.3. It will subsequently
place them in a map G from (module.function, property hash) pairs to objects
containing the unserialised forms of the binding spaces and trees.
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4.5 A Modified Monitoring Algorithm

VYPR’s algorithm uses the tuple (ig,iv,iq) with H, to determine the set of
formula trees to update. In this case, H, is fixed. However, in the web ser-
vice setting, the additional information regarding the current function that has
control and the property to update is present and required to find the correct
binding space and tree given by G. From here the process is the same as that used
by VYPR, since the monitoring problem has once again collapsed to monitoring
a single property over a single function.

4.6 A Verdict Server

For a CFTL formula Vq; € I7,...,Vq, € I, : ¥(q1,...,qn) over a function f,
we use verdicts to refer to the sequence of truth values in ({T, L} x RZ)*, where
¥(q1,...,qn) generates a truth value in {T, L} for each binding in I x -+ x
I, at a time t € RZ. To store such verdicts from a specification written over
a web service, we now present the most substantial modification to VYPR’s
architecture: a central server to collect verdicts. This is, in itself, a separate
system; communication with it takes place via HTTP. It consists of two major
components:

— The server, a Python program that provides an API both for verdict inser-
tion by the monitoring algorithm and for querying by a front-end for verdict
visualisation.

— A relational database whose schema is derived from that of the tree H,,.

We omit further discussion of the server and first state some facts regarding
our relational schema. Functions and properties are paired, so multiple properties
over a single function yield multiple pairs; HTTP requests are used to group
function calls; function calls correspond to function/property pairs; and verdicts
are organised into bindings belonging to a function/property pair. With these
facts in mind, one can answer questions such as:

— “For a given HTTP request, function and property ¢ combination, what were
the verdicts generated by monitoring ¢ across all calls?”

— “For a given verdict and subsystem, which function/property pairs generated
the verdict?”

— “For a given function call and verdict, which lines were part of bindings that
generated this verdict while monitoring some property ?”

5 An Application: The CMS Conditions Uploader

We now present the details of the application of VYPR2 to the CMS Condi-
tions Upload Service. We begin by introducing the data with which the CMS
Conditions Upload Service works. We then give a brief overview of the existing
performance analysis approaches taken at CERN, before describing our app-
roach for replaying real data from LHC runs. Finally, we give our specification
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and present an analysis of the verdicts derived by monitoring the Conditions
Uploader with input taken from our test data, consisting of in the order of 10*
inputs recorded during LHC runs.

5.1 Conditions Data, Their Computation and Upload

CERN is home to the Large Hadron Collider (LHC) [14], the largest and most
powerful particle accelerator ever built. At one of the interaction points on the
LHC beamline lies the Compact Muon Solenoid (CMS) [15], a general purpose
detector which is a composite of sub-detector systems. Physics analysis at CERN
requires reconstruction; a process whose input consists of both Event (collisions)
and Non-Event (alignment and calibrations, or Conditions) data. The lifecycle
of Conditions data begins with its computation during LHC runs, and ends
with its upload to a central Conditions database. The service responsible for
this upload is the CMS Conditions Upload service, a precise understanding of
the performance of which is vital given planned upgrades to the LHC that will
increase the amount of data taken.

The Conditions data used in reconstruction by CMS must define (1) the
alignment and calibrations constants associated with a particular subdetector
of CMS and (2) the time (run of the LHC) during which those constants are
valid. The atomic unit of Conditions is the Payload, which is a serialised C++
class whose fields are specific to the subdetector of CMS to which the class
corresponds. We define when a Payload applies to the subdetector by associating
with it an Interval of Validity (IOV). We then group IOVs into sequences by
defining Tags, which define to which subdetector each Payload associated with
the IOVs it contains applies.

The CMS Conditions Uploader is used for release of Conditions by the auto-
mated Conditions computation that takes place at Tier 0 [16] (CERN’s local
computing grid) and detector experts who require their own Conditions. The
Uploader is responsible for checking whether the Conditions proposed are valid
before inserting the Conditions into the central database.

5.2 A Specification

We now give the specification with which we tested the Upload service on the
upload data we collected, along with an interpretation for each property. These
were written in collaboration with engineers working on the service.

1. app.usage.Usage.new_upload_session

Vq € changes(authenticated) : Whenever authenticated is changed,
Vt € future(q, calls(execute)) : if it is set to True, then all future calls

q(authenticated) = True to execute should take no more than
= duration(¢) € [0, 1] 1 second.
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2. app.routes.check_hashes
Vq € changes(hashes) : duration(next(q, calls(find_new_hashes))) € [0,0.3]
When the variable hashes is assigned, the next call to find_new_hashes

should take no more than 0.3 seconds.

3. app.routes.store_blobs
FEvery call to the con.execute

Vt € calls(con.execute) : method on the current database con-
duration(t) € [0, 2] nection should take no more than 2
seconds.

4. app.metadata_handler.MetadataHandler.__init__

FEvery time the method insert_iovs
s called, the next commit after the

. t(t
duration | " (% . € [0,1] insertion should take no more than 1
calls(commit)) J
second.

Vt € calls(insert_iovs) :

5. app.routes.upload_metadata

Fvery time MetadataHandler 1S
instantiated, the instantiation should
take no more than 1 second.

Vi € calls(MetadataHandler) :
duration(t) € [0, 1]

5.3 Analysis of Verdicts

We present, our analysis of the Conditions uploader with respect to the specifi-
cation in Sect. 5.2. The analysis is performed in two parts:

1. Complete Replay - performing a complete upload replay of 14,610 uploads
collected over a period of 7 months. The time between uploads in this part is
fixed.

2. Single Tag Replay - performing a smaller upload replay of ~ 900 uploads
based on a single Tag. This part is a subset of the first, but where the time
between uploads is varied.

Complete Replay. Figure5 shows the results of monitoring our specification over
a dataset of 14,610 uploads. The x axis is function/property pair IDs from the
verdict database snapshot used to generate the plot. The ID to property corre-
spondence is such that ID 99 refers to property 1; ID 100 to property 2; ID 101
to property 3; ID 102 to property 4; and ID 103 to property 5. Clearly, from
this plot, the violations of property 2 exceed those caused by other properties by
an order of magnitude. The check_hashes function carries out an optimisation
that we call hash checking, used to make sure that a Conditions upload only
sends the Payloads that are not already in the target Conditions database. This
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Violations generated across 14610 uploads
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Fig. 5. A plot of number of violations
vs properties in the specification, mon-
itored over 14,610 uploads.
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of our specification vs the replay of
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is possible because Payloads are uniquely identifiable by their hashes. This opti-
misation reduces the time spent on Payload uploads by an order of magnitude
[12], but the frequency of violation in Fig. 5 suggests that the optimisation itself
may be causing unacceptable latency.

Single Tag Replay. Figure6 shows the results of monitoring a subset of our
specification over a dataset of ~ 900 uploads from a single Tag in the Conditions
database. In this case, the x axis is runs of this upload dataset performed with
varying delays between uploads, and the y axis is the number of violations based
on a specification with 3 properties. This plot is of interest because, for the ~ 300
Payloads inserted during this replay, it shows that the latency experienced by
those insertions (in terms of violations of property 3, shown in orange) decreases
as the delay between uploads increases.

5.4 Resulting Investigation

Based on the observations presented in Sect.5.3, we have made investigation
of the number of violations caused by hash checking a priority. It is recognised
that this process is required, and its addition to the Conditions Uploader was a
significant optimisation, but the optimisation can only be considered as such if
it does not introduce unacceptable overhead to the upload process.

It is also clear that we should understand the pattern of violations in Fig. 6
more precisely. Given that the Conditions Uploader must operate successfully
with both the current and upgraded LHC, it is a priority to understand the
behaviour of the Uploader under varying frequencies of uploads. We suspect
that investigation into the pattern seen in Fig.6 will result in modification of
either the Conditions Uploader’s code, or the way in which Conditions are sent
for upload during LHC runs.
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5.5 Performance

We now describe the time and space overhead induced by using VYPR2 to
monitor the specification in Sect. 5.2 over the Conditions Uploader. We consider
both the time overhead on a single upload, and the space required to store
intermediate instrumentation data.

To measure the time overhead induced over a single upload, we found that
measuring overhead by running our complete upload dataset in a small period
of time resulted in erratic database latency (the dataset was recorded over 7
months), so we opted to run a single upload 10 times with and without mon-
itoring. This provided a more realistic upload scenario, and allowed us to see
the overhead induced with respect to a single upload process (the process varies
depending on the Conditions being uploaded). The result, from 10 runs of the
same upload, was an average time overhead of 4.7%. Uploads are performed by a
client sending the Conditions to the upload server over multiple HTTP requests,
so this overhead is measured starting from when the first request is received by
the upload server to when the last response is sent.

The space required to store all of the necessary instrumentation data for the
specification in Sect. 5.2 is divided into space for binding spaces (By,), instrumen-
tation maps (H,) and indices (a map from property hashes to the position in the
specification at which they are found). The binding spaces took up 170 KB, the
instrumentation maps 173 KB and the index map 4.3 KB, giving a total space
overhead for instrumentation data storage of 347.3 KB.

6 Related Work

To the best of our knowledge, there is no existing work on Runtime Verification
of web services. We are also unaware of other (available and maintained) RV
tools for Python (there is Nagini [17], but this focuses on static verification) as
most either operate offline (on log files) or focus on other languages such as Java
[5,7,18] using AspectJ for instrumentation, C [19], or Erlang [20]. Few RV tools
consider the instrumentation problem within the tool. The main exception is
Java-MaC [3] who also use the specification to rewrite the Java code directly.

High-Energy Physics. In High Energy Physics, any form of monitoring concen-
trates on instrumentation in order to carry out manual inspection. For exam-
ple, the instrumentation and subsequent monitoring of CMS’ PHEDEX system
for transfer of physics data was performed [21] and resulted in the identifica-
tion of areas in which latency could be improved. Closer to the case study we
present here, CMS uses the PCLMON tool to monitor Conditions computation
[22]. Finally, the Frontier query caching system performs offline monitoring by
analysing logs [23]. None of these approaches uses a formal specification lan-
guage, and they all collect a single type of statistics for a single defined use case.
On the contrary, VYPR2 is configurable in the sense that one can change the
specification being checked using our formal specification language, CFTL.
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7 Conclusion

We have introduced the VYPR tool for monitoring single-threaded Python pro-
grams with respect to CFTL specifications, expressed using the PyCFTL library
for Python. We then highlighted the problems that one must solve to extend
VYPR’s architecture to the web service setting, and presented the VYPR2
framework which implements our solutions. VYPRZ2 is a complete Runtime Ver-
ification framework for Flask-based web services written in Python; it provides
the PyCFTL library for writing CFTL specifications over an entire web service,
automatic minimal (with respect to reachability) instrumentation and efficient
monitoring. Finally, we have described our experience using VYPR2 to anal-
yse performance of the CMS Conditions Uploader, a critical part of the physics
reconstruction pipeline of the CMS Experiment at CERN.

With the large amount of test data we have at CERN, we plan to extend
VYPR2 to address explanation of violations of any part of a specification. This
has been agreed within the CMS Experiment as being a significant step in devel-
oping the necessary software analysis tools ready for the upgraded LHC.
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