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Abstract. An appealing feature of Signal Temporal Logic (STL) is the
existence of efficient monitoring algorithms both for Boolean and real-
valued robustness semantics, which are based on computing an aggregate
function (conjunction, disjunction, min, or max) over a sliding window.
On the other hand, there are properties that can be monitored with the
same algorithms, but that cannot be directly expressed in STL due to
syntactic restrictions. In this paper, we define a new specification lan-
guage that extends STL with the ability to produce and manipulate
real-valued output signals and with a new form of until operator. The
new language still admits efficient offline monitoring, but also allows to
express some properties that in the past motivated researchers to extend
STL with existential quantification, freeze quantification, and other fea-
tures that increase the complexity of monitoring.

1 Introduction

Signal Temporal Logic (STL [16,17]) is a temporal logic designed to specify
properties of real-valued dense-time signals. It gained popularity due to the
rigour and the ability to reason about analog and mixed signals; and it found
use in such domains as analog circuits, systems biology, cyber-physical control
systems (see [3] for a survey). A major use of STL is in monitoring: given a signal
and an STL formula, an automated procedure can decide whether the formula
holds at a given time point.

Monitoring of STL is reliably efficient. A monitoring procedure typically
traverses the formula bottom up, and for every sub-formula computes a satisfac-
tion signal, based on satisfaction signals of its operands. Boolean monitoring is
based on the computation of conjunctions and disjunctions over a sliding window
(“until” is implemented using a specialized version of running conjunction), and
robustness monitoring (computing how well a signal satisfies a formula [9,10]) is
based on the computation of minimum and maximum over a sliding window. The
complexity of both Boolean and robustness monitoring is linear in the length of
the signal and does not depend on the width of temporal windows appearing in
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the formula. At the same time, for a range of applications, pure STL is either
not expressive enough or difficult to use, and specifying a desired property often
becomes a puzzle of its own. The existence of robustness and other real-valued
semantics does not always help, since a monitor can perform a limited set of
operations that the semantics assigns to Boolean operators. For example, for
robustness semantics, min and max are the only operations beyond the atomic
proposition level.

One way to work around the expressiveness issues of STL is pre-processing:
a computation that cannot be performed by an STL monitor can be performed
by a pre-processor and supplied as an extra input signal. For a number of rea-
sons, this is not always satisfactory. First, for monitoring of continuous-time
signals, there is a big gap between the logical definitions of properties and the
implementation of monitors. In continuous-time setting, properties are defined
using quantification, upper and lower bounds, and similar mathematical tools
for dense sets, while a monitor works with a finite piecewise representation of a
signal and performs a computation that is based on induction and other tools
for discrete sets. Leaving this gap exposed to the user, who has to implement
the pre-processing step, is not very user-friendly. Second, monitoring of some
properties cannot be cleanly decomposed into a pre-processing step followed by
standard STL monitoring. Later, we give a concrete example using an extended
“until” operator, and for now, notice that “until” instructs the monitor to com-
pute a conjunction over the window that is not fixed in advance, but is defined
by its second operand. Because of that, multiple researches have been motivated
to search for a more expressive superset of STL that would allow to specify the
properties they were interested in.

One direction for extension is to add to the original quantifier-free logic
(MTL, STL) a form of variable binding: a freeze quantifier as in STL* [6], a
clock reset as in TPTL [1], or even first order quantification [2]. Unfortunately,
such extensions are detrimental to complexity of monitoring. When monitoring
logics with quantifiers using standard bottom-up approach, subformulas con-
taining free variables evaluate not to Boolean- or real-valued signals, but to
maps from time to non-convex sets, and they cannot in general be efficiently
manipulated (although for some classes of formulas monitoring of logics with
quantifiers works well [4,13]). Perhaps the most benign in this respect but also
least expressive extension is 1-TPTL (TPTL with one active clock), which is
as expressive as MITL, but is easier to use and admits a reasonably efficient
monitoring procedure [11].

An alternative direction is to define a quantifier-free specification language
with more flexible syntax and sliding window operations. For example, Signal
Convolution Logic (SCL [20]) allows to specify properties using convolution with
a set of select kernels. In particular, it can express properties of the form “state-
ment ¢ holds on an interval for at least X% of the time”. In SCL, every formula
has a Boolean satisfaction signal, but some works go further and allow a for-
mula to produce a real-valued output signal based on the real-valued signals of
its subformulas. This already happens for robustness of STL in a very limited



Specification and Efficient Monitoring Beyond STL 81

way, and can be extended. For example, [19] presents temporal logic monitor-
ing as filtering, which allows to derive multiple different real-valued semantics.
Another work [7] focuses on the practical application of robustness in falsifica-
tion and allows to choose between different possible robust semantics for “even-
tually” and “always”, in particular to replace min or max with integration where
necessary.

This paper is our take on extending STL in the latter direction. We define a
specification language that is more expressive than STL, but not less efficient to
monitor offline, i.e., the complexity of monitoring is linear in the length of the
signal and does not depend on the width of temporal windows in the formula
(the latter property tends to be missing from the STL extensions, even when the
authors can achieve linear complexity for a fixed formula). The most important
features of the new language are as follows.

1. We remove several syntactic constrains from STL: we allow a formula to have
a real-valued output signal; we allow these signals to be combined in a point-
wise way with arithmetic operations, comparisons, etc. This distinguishes us
from the works that use standard MTL or STL syntax and assign them new
semantics [10,19].

2. We allow to apply an efficiently computable aggregate function over a sliding
window. We currently focus on min and max, which are enough to specify
properties that motivated the development of more expressive and hard to
monitor logics.

3. We offer a version of “until” operator that performs aggregation over a sliding
window of dynamic width, that depends on satisfaction of some formula.
This distinguishes us from the works that focus on aggregation over a fixed
window [20].

Finally, we focus our attention on continuous-time piecewise-constant and piece-
wise linear signals; we describe the algorithms and prepare an implementation
only for piecewise-constant.

2 Motivating Examples

Before formally defining the new language, let us look at some examples of
properties that we would like to express. In particular, we look at properties that
motivated the development of more expressive and harder to monitor logics.

Example 1 (Stabilization). The first interesting property is stabilization
around a value that is not known in advance, e.g., “x stays within 0.05 units of
some value for at least 200 time units”. It is tempting, to formalize this prop-
erty using existential quantification “there exists a threshold v, such that...”,
which is possible with first-order logic of signals (and was one of its motiva-
tional properties [2]), but it is actually not necessary. Instead, we can compute
the minimum and maximum of x over the next 200 time units and compare
their distance to 0.1 = 2 - 0.05. In some imaginary language, we could write
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max|o,200] X — mingg 200) X < 0.1. At this point we propose to separate the aggre-
gate operators from the operator that defines the temporal window, which will
be useful later, when the “until” operator will define a window of variable width.
We use the operator On, ) to define the temporal window of constant width
and the operators Min and Max (capitalized) to denote the minimum and max-
imum over the previously defined window. Signal = stabilizes within 0.05 units
of an unknown value for 200 time units:

On[O’Q(]O] Max x — On[O,Q()O] Minx < 0.1

Figure 1 shows an example of a signal x(¢) (red) performing damped oscillation
with the period of 250 time units. Blue and green curves are the maximum
and the minimum of x over a siding window [z, + 200]. Finally, the orange
Boolean signal (its y scale is on the right) evaluates to true (i.e., y = 1) when
the maximum and minimum of x over the next 200 time units are within 0.1.

Example 2 (Local Maximum). Consider the property: “the current value
of x is a minimum or maximum in some neighbourhood of current time point”.
Previously, a similar property became a motivation to extend STL with freeze
quantifiers [6], but we can also express it by comparing the value of a signal with
some aggregate information about its neighbourhood, which we can do similarly
to the previous example.

Current value of x is a local mazimum on the interval [0, 85] relative to the
current time.

x > Onjo 51 Max x

Figure 2 shows an example of a sine wave x(¢) (red) with the period of 250 time
units. Blue curve is the maximum x over a siding window [¢, 7 + 85]. The orange
Boolean signal evaluates to true when the current value of x is a maximum for
the next 85 time units.
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Fig. 1. Damped oscillation x(¢) and its max- Fig. 2. Sine wave x(¢), its maxi-
imum and minimum over the window [¢,¢ + mum over the window [¢,7 + 200],
200]. (Color figure online) and whether x(7) is a local max-

imum on the interval [f,¢ + 200].
(Color figure online)
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Example 3 (Stabilization Contd.). We want to be able to assert that x
becomes stable around some value not for a fixed duration, but until some signal
q becomes true. We will be able to do this with our version of “until” operator.
Signal x is stable within 0.05 units of an unknown value until q becomes true:

(Maxx U g)— (Minx U ¢g) <0.1

Intuitively, for a given time point, we want the monitor to find the closest future
time point, where g holds and compute Min and Max of x over the resulting
interval. Note that this property cannot be easily monitored in the framework
of “STL with pre-processing”, since it requires the monitor to compute Min and
Max over a sliding window of variable width, which depends on the satisfaction
signal of g.

Example 4 (Linear Increase). At this point, we can assert x to follow a
more complex shape, for example, to increase or decrease with a given slope.
Let T denote an auxiliary signal that linearly increases with rate 1 (like a clock
of a timed automaton), i.e. we define T(z) = r; this example works as well for
T(t) =t + ¢, where ¢ is a constant. To specify that x increases with the rate 2.5,
we assert that the distance from x to 2.5 - T stays within some bounds.

Signal x increases approximately with slope 2.5 during the next 100 time units:

On[O,lOO] Max |x - 25T| - On[o’lool Min |x - 25T| <0.1

3 Syntax and Semantics

From the examples above we can foresee how the new language looks like. For-
mally, an (input) signal is a function w : T — R", where the time domain T is a
closed real interval [0, |w|] € R, and the number |w| is the duration of the signal.
We refer to signal components using their own letters: x,y,--- € T — R. We
assume that every signal component is piecewise-constant or piecewise-linear.

The semantics of a formula is a piecewise-constant or piecewise-linear func-
tion from real time (thus, has real-valued switching points) to a dual number
(rather than a real). We defer the discussion of dual numbers until Sect. 3.2; for
now we note that they extend reals, and a dual number can be written in the
form a + be, which, when b # 0, denotes a point infinitely close to a. We denote
the set of dual numbers as R,. Our primary use of a dual number is to represent
a time point strictly after an event (switching point, threshold crossing, etc.)
but before any other event can happen; as a result we have to allow an output
signal to have a dual value, denoting a value that is attained at this dual time
point.

Syntax. We can write the abstract syntax of our language as follows:

pur=clx]| fler - on)l On[a,b] AR Ufla,b] olerl Ufia’b]¢2

: (1)
Y = Min g | Max ¢
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where ¢ is a real-valued constant; x refers to an input signal; f is a real-valued
function symbol (e.g., sum, absolute value, etc.); for the On-operator, a and b
can be real numbers or (with some abuse of notation) +co, i.e., the interval may
refer to both past and future, bounded or unbounded; for the U-operator, d is a
real value, and a, b are non-negative, and b can be oo, i.e., the interval refers to
bounded or unbounded future. Let us go over some of the features of the new
language and then formally write down its semantics.

Point-wise Functions. Function symbol f ranges over real-valued functions
R" — R that preserve the chosen shape of signals (and can be lifted to dual num-
bers). In this paper, we focus on piecewise-constant and piecewise-linear signals,
so when f is applied point-wise to a piecewise-constant input, we want the result
to be piecewise-constant; when f is applied point-wise to a piecewise-linear input,
we want the result to be piecewise-linear. Examples of such functions are addi-
tion, subtraction, min and max of finitely many operands (we use lowercase min
and max to denote a real-valued n-ary function), multiplication by a constant,
absolute value, etc.

Boolean Output Signals. Output signals of some formulas can informally
be interpreted as Boolean-valued. In Example 2, “x” and “Onpggs Max x” are
dual-valued, but the result of their comparison, “x > Ong g5; Max x” should be
interpreted as Boolean. Here, we take the more simple path and treat a Boolean
signal as a special case of a real-valued signal that can take the value of 0 or 1.
We expect comparison operators to produce a value in {0, 1}, e.g., 1 < ¢3 is a
shortcut for “if ¢1 < @2 then 1 else 0”. Standard Boolean connectives can then
be defined as follows:

@1 A 2 = min{ey, g2} @1V g2 = max{gi, p2} p=1-9¢

Another option would be to distinguish Boolean-valued formulas on the syntactic
level.

Temporal p-Formulas. Symbol ¢ denotes a temporal formula that has a dual-
valued output signal. In other words, it can be evaluated at a time point and
produces a dual value. A ¢-formula may:

1. refer to an input signal x;

2. apply a real-valued function f pointwise to the outputs its p-subformulas;

3. apply an aggregate function over the sliding window [a, b] (with some abuse
of notation a can be —co, and b can be o);

4. be an “until” formula, which is described in Sect. 3.3.

Interval y-Formulas. A y-formula is evaluated on an interval and does not
have an output signal by itself. Instead, it supplies an aggregate operation that
will be computed when evaluating the containing On-formula or “until”-formula.
It should be possible to efficiently compute this aggregate operation over a sliding
window, and it should preserve the chosen shape of signals. Since we focus on
piecewise-constant and piecewise-linear signals, the two operations that we can
immediately offer are Min and Max, which can be efficiently computed over a
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sliding window using the algorithm of Lemire [9,15], and preserve the piecewise-
constant and piecewise-linear shapes. In discrete time or for piecewise-polynomial
signals, we could use more aggregate operations, e.g., integration.

“Eventually” and “Always”. Standard STL “eventually” and “always” oper-
ators can be expressed in the new language as follows:

F[a,b] @ = On[a’b] ManO G[a,b] Y = Onla»bl Mil’ltp

3.1 Semantics of Until-Free Fragment

The semantics of the until-free fragment is straightforward. The semantics of a
@-formula is a function [¢] : T — R, mapping real time to a dual value. We
define it as:

[x](2) = x(2) [Onpap¢](@) = [w](lz + a1 + b))
[fler .- en)]®) = f([er] @) - .. [en] ()

We abuse the notation so that x is both a symbol referring to a component of
an input signal and the corresponding real-valued function; similarly, f is both
a function symbol and the corresponding function.

The semantics of a y-formula is a function [¢] : (R U —o0) X (Rz U 00) — R,
from an interval of time with real lower bound to a dual value. The upper bound
of the interval can be dual-valued, which will be used by the “until” operation
(see Sect. 3.3).

(2)

[Min ¢][a, b] = glibri[[soﬂ [Max ¢][a, b] = I[rawﬁ[[sa]] (3)

The way we define min and max over an interval for a discontinuous piecewise-
linear function relies on dual numbers, which we explain just below.

3.2 Dual Numbers

Dual numbers extend reals with a new element & that has a property £2 = 0.
A dual number can be written in a form a + be, where a,b € R. We denote
the set of dual numbers as R.. Dual numbers were proposed by the English
mathematician W. Clifford in 1873 and later applied in geometry by the German
mathematician E. Study. One of modern applications of dual numbers and their
extensions is in automatic differentiation [12]: one can exactly compute the value
of the first derivative at a given point using the identity f(x+¢&) = f(x)+ f'(x)e.
Intuitively, & can be understood as an infinitesimal value, and a + be (for b # 0)
is a point that is infinitely close to a. Polynomial functions can be extended
to dual numbers, and via Taylor expansion, so can exponents, logarithms, and
trigonometric functions. We work with piecewise-constant and piecewise-linear
functions with real switching points, and we only make use of basic arithmetic.
For example, if on the interval (b1, b2) the signal x is defined as x(f) = a1t + ay,
then x(by + &) = a1by + ag + a1€ and x(by — &) = a by + ag — a1 €.
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Fig. 3. Signals x and y for Example 8. Fig. 4. Signals x and y for Examples 5
and 6.

Our primary use of a dual number is to represent a time point strictly after
an event (a switching point, a threshold crossing, etc.) but before any other
event can happen, i.e., we use t’ + € to represent the time point that happens
right after ¢t’. The coefficient 1 at & denotes that time advances with the rate of
1 (although another consistently used coefficient works as well). Consequently,
we also allow an output signal to produce a dual value, denoting a value that is
attained at this dual time point. On the other hand, we require that signals are
defined over real time, switching points of piecewise signals are reals, and time
constants in formulas are reals. That is, dual-valued time is only used internally
by the temporal operators and cannot be directly observed.

Minimum and Maximum of a Discontinuous Function. We also use dual-
valued time to define the result of Min and Max for a discontinuous piecewise-
linear function. The standard way to compute minimum and maximum of a
continuous piecewise-linear function on a closed interval is based on the fact
that they are attained at the endpoints of the interval or at the endpoints of
the segments on which the function is defined. Using dual numbers, we extend
it to discontinuous functions: if for ¢ € (by, bs), x(t) = a1t + as then we consider
time points b1 + € and by — & as the candidates for reaching the minimum or
maximum. Let us demonstrate this with an example.

Example 5. Consider the signal x defined as: “x(t) = -0.5r + 1.5ifr €
[0,1);x(r) = 0.5t + 1ifr > 17, as shown in Fig.4. Let us find the minimum
of x on the interval [0, 2+ &]. By our definition, min, ¢[o,2+¢] X(¢) = min{x(0), x(1 —
€),x(1), x(2+¢&)} = x(1—-¢&) = 1+0.5&. This result should be understood as follows:
x(t) approaches the value of 1 from the above with derivative —0.5, but never
reaches it.

Example 6. Our definition of minimum and maximum allows to correctly com-
pare values of piecewise-linear functions around their discontinuity points. In
Example 5, x never reaches the value of its lower bound, and our definition of
minimum produces a dual number that reflects this fact and also specifies the
rate at which x approaches its lower bound. This information would be lost
if we computed the infimum of x. Again consider the signals in Fig.4, with x
defined as before, and “y(t) = ¢, if t € [0,1), y(r) = —=0.5¢ + 1, if t > 17, Let us
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evaluate at time ¢ = 0 the formula Onjg o) Min x > Onjg o) Max y, which denotes
the property Vt,¢t’ € [0,2]. x(¢) > y(¢'). From the previous example, we have
that [Onpg ) Minx[}(0) = 1 + 0.5¢. By a similar argument, [Onpg 2 Max y](0) =
y(1 — &) = 1 — &, which means that y approaches 1 from below with the rate of
1. Since, 1 + 0.5¢ > 1 — &, our property holds at time 0, as expected.

We want to emphasize that while an output signal can take a dual value, its
domain is considered to be a subset of reals. The semantics of temporal operators
are allowed to internally use dual-valued time points, but has to produce an
output signal that is defined over real time. This ensures that a piecewise signal
always has real-valued switching points and that no event can happen at a dual-
valued time point.

Example 7. Consider a formula ¢ = F|g 2)(x = On(_inginf) Min x), where x is as
in Fig. 4. The meaning of ¢ is that within 2 time units x reaches its global mini-
mum. In our semantics, this formula does not hold at time 0. By our definition,
the global minimum of x is 1+ 0.5&, so the semantics of the formula at time 0 is
equivalent to:

[¢l(0) = [Flo,2)(x = 1 + 0.5¢)](0)
= ifIreT.t€[0,2] Ax(t) =1+ 0.5¢ then 1 else 0

where T = [0, |w|] € R. There is no real value of time, where x(¢) yields a dual
value, so the formula does not hold.

3.3 Semantics of Until

The On-operator allowed us to compute minima and maxima over a sliding
window of fixed width. In this section, we introduce a new version of “until”
operator that allows the window to have variable width that depends on the
output signal of some formula.

Reinterpreting the Classical Until as “Find First”. Let us explain how
we extend the “until” operator to work in the new setting. There already exists
real-valued robust semantics of “until”, but we do not believe it to be a good
specification primitive. Instead, re-state standard the Boolean semantics and
based on the re-stated version introduce the new real-(actually, dual-)valued
semantics. Let us recall a possible semantics of untimed until in STL. Informally,
“until” computes a conjunction of the values of the first operand over an interval
that is not fixed, but defined by the second operand. Formally,

[p UST™ g (t) = 3" > 1. q(t') A Vs € [1,1]. p(s)
To denote the STL version of “until” we write it with the superscript: USTE, to
distinguish from the new version that we define for our language. The version
of “until” that we use in this paper is non-strict in the sense of [17]; it requites
that p holds both at ¢ and #’.
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Efficient monitoring of STL “until” relies on instantiating the existential
quantifier. The monitor scans the signal backwards and instantiates ¢’ based on
the earliest time point where ¢ is true. The monitor needs to consider three cases
shown in Figs. 5, 6 and 7.

1 —_— 1 o——
q q q
0 - 0 —/— . 0 —/—— .
; t t’ t '
Fig.5. Case 1: g is Fig. 6. Case 2: g there Fig. 7. Case 3: ¢ becomes
never true in the future. exists the earliest time true, but there is no earli-
point, where g becomes est time point.
true.

1. Figure5: g is false for every ¢’ > t. Then the value of p USTL ¢ at ¢ is false.

2. Figure6: there exists the smallest ' > ¢, where ¢ is true (this includes the
case, where ¢’ = t). Then the value of pUSTlg at ¢ is Vs € [t,¢']. p(s) (predicate
p is not shown in the figure). The monitor needs not consider time points after
t’, since if “forall” produces false on a smaller interval, it will produce false
on a larger one.

3. Figure7: g becomes true in the future, but there is no earliest time point.
In this case, the monitor needs to take the universal quantification over an
interval that ends just after ¢’ (the switching point of g), but before any
other event occurs. We can formalize this reasoning using dual numbers and
say that the value of p USTL g at ¢ is Vs € [t,#” + €]. p(s), where ¢’ + & can be
intuitively understood as a time point that happens after ¢’, but before any
other event can occur.

Below is the equivalent semantics of STL until that resolves the existential quan-
tifier:

Vs € [t,t']. p(s), if there exists the smallest ¢’ > ¢, s.t. g(t")
[p USTE g (¢) = Vs € [t,t’ +&]. p(s), where t' =inf{¢'|t' >t A q(t')},
if 3" > 1. g(¢t'), but there is no smallest ¢’
false, otherwise

Then, a monitor evaluates the universal quantifier via a finite conjunction, since
in practice the signal p has finite variability, i.e. every interval is intersected by
a finite number of constant segments.

Example 8. Let us consider two linear input signals: x(t) = ¢ and y(f) = 2t — 1
(see Fig.3), and let us evaluate the formula (y < x) USTV (x > 1) at time 0
using non-strict “until” semantics. We define the earliest time point where x > 1
becomes true to be 1 + &, thus we need to evaluate the expression V¢ € [0,1 +
gl. y(t) < x(t). At time 1+ &, we get y(1+¢&)=1+2e>1+& = x(1+¢), thus the
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“until” formula does not hold. Informally, we can interpret the result as follows:
when x becomes greater than 1, y becomes greater than x, while non-strict
“until” requires that there exists a point, where both its left- and right-hand
operands hold at the same time.

New Until as “Find First”. At this point, extending “until” to produce a
dual value is straightforward. With every time point, “until” possibly associates
an interval, and we can compute an arbitrary aggregate function over it, instead
of just conjunction. In fact, we introduce two flavors of “until”. The first version:
7/ Ud — works as follows. For every time point ¢, we either associate an
1nterval endlng when ¢ becomes non-zero (i.e., starts holding); or we report that
no suitable end point was found. When such 1nterval exists, we evaluate ¢ on it.
When the interval does not exist, we produce d. Formally,

[l ¢'], if 3 the smallest ¢’ € [t + a, 1 + b], s.t. [e](#) #0
[w]lt,t’ + €], where ¢’ = inf{¢'|t" € [t + a,t + b] A [@] ()},

if 3" € [t + a,t + b). @] (¢") # 0, but there is no smallest ¢’
d, otherwise

[[‘//U[a b]‘ﬁﬂ([) =

The second version: ¢1 | U %2 does not perform aggregation, but evaluates ¢,
at the time point where 902 becomes non-zero, or produces d if such time point
does not exist:

[e1](#’), if 3 the smallest ¢’ € [ + a,t + b, s.t. [p2])(t") # 0
[e1](t" + &), where ¢ = inf{t'|t’ € [t + a,1 + b] A 2] (')},

if 3t" € [t +a,t + b]. [p2](¢") # 0, but there is no smallest ¢’
d, otherwise

[p1 UE, , 02]®) =

In a similar way, we could define past versions “until”, where the interval [a, b]
refers to the past; we do not discuss them here due to space constraints.
STL Until. The standard STL “until” can be expressed in the new language
as follows:

#1 U] #2 = (Min 1) Up, ) 2

Lookup. Using “until”, we can express the “lookup” operator that queries the
value of a signal at a point in the future, or returns some default value if the
point does not exist.
d d
Dae=¢l U,

Example 9 (Spike). The ST-Lib library [14] uses the following formula to
define a start point of a spike: x” > m A Fjo 4)(x" < —m), where x" is the approx-
imation of the right derivative x’(t) = (x(¢ + 8) — x(¢))/6, m is the magnitude of
the spike, and d is the width. Using the lookup operator, we can include the
definition of x’ in the property itself:

(D x - x)/6 = m AFjgq(Dy x — x)/6 < —m)

where y gives the value of the signal outside of its original domain.
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Fig. 8. Before time 2, an event p is Fig.9. A sequence of spikes and a
followed by an event g. Boolean signal marking the detected

start times of spikes. (Color figure
online)

Example 10 (Spike of Given Width and Height). Our language offers
several alternative ways to define a spike. We can define a (start point of a)
spike by composing two ramps: an increasing one, where the signal x increases
by at least m withing w time units, and a decreasing one, where x decreases by
at least m within w time units; the two ramps should be at most w units apart.
The parameter w is the half-width of the spike.

(On[o,w] Maxx > x +m) A F[O,w](on[o,w] Minx < x —m)

Figure 9 shows an example of a series of spikes (blue) and a Boolean signal (red)
that marks the detected start times of spikes.

Example 11 (TPTL-like Assertion). The second form of “until” allows
to reason explicitly about time points and durations, somewhat similarly to
TPTL. Consider the property “within 2 time units, we should observe an event
p followed by an event ¢” (Fig. 8 shows an example of a satisfying signal). With
some case analysis, this property can be expressed in MTL [5], but probably the
best way to express it is offered by TPTL, that allows to assert “c. F(pAF(gAc <
2))”, meaning “reset a clock ¢, eventually, we should observe p and from that
point, eventually we should observe ¢, while the clock value will be at most 2”.
To express the property in our language, we introduce three auxiliary signals:
T(r) = ¢t (which we use in some other examples as well), pdelay = (T'| U®p) - T,
which denotes the duration until the next occurrence of p and similarly gdelay =
(T'] U®q) — T, the duration until the next occurrence of g. Then, the property
can be expressed as: pdelay + (gqdelay | U®p) < 2.

4 Monitoring

Similarly to other works on STL monitoring (e.g., [9]), we implement the algo-
rithms for a subset of the language, and support the remaining operators via
rewriting rules.
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Rewriting of Until. Similarly to STL, the timed “until” operator in our
language can be expressed in terms of “eventually” (which is expressed using
On), “lookup”, and untimed “until”.

(Min ¢1) Uf’a’ py 2 = if = Flap) @a then d else Onjg o) Min((Min ¢1) U go)
(Max ¢1) Ufa’b] @2 = if = F[4p] @2 then d else Onjg 4 Max((Max ¢1) U ¢2)
@1l UL, #2 = if = Flap) @2 then d else D, (¢1] Ugs)

Let us prove that the first equivalence is true, and for the other two the proof
idea is similar. Let ¢ be the time point where we evaluate (Min gal)Ufia b P2 and its
rewriting. If there is no time point s € [t+a, t+b] where @5 holds, both the original
formula and its rewriting evaluate to d. Otherwise, let s be the earliest time point
in [t + a,t + b], where s holds, which can be a real or dual value, as explained
in Sect. 3.3. Then the original formula evaluates to min{[e1](#") | ' € [z 5]}
The rewritten formula at ¢ evaluates to min{[(Min¢1) U ¢o] | ¢ € [t,t + a]}.
Notice that for every ¢’ there is a time point in the future, which we denote
g(t") where @2 holds, which is at most s, and for ¢’ = ¢ + a it is exactly s. That
is, the rewritten formula evaluates to min{min{[e1](#") | " € [t/,g(t')]} | t' €
[, + al} = min{Je1]J(t”) | ¢ € U{[t’,g(")] | ¢ € [t,t + a]}}. Notice that since
gt e[t',s] and g(t + a) = s, then J{[t’,g(t")] | t’ € [t,t + a]} = [¢,s], and thus
the rewritten formula evaluates to the same value as the original one.
Referring to Both Future and Past. In the syntax, we allow the Ony, )
operator to refer to both future and past, i.e., we allow the case when a < 0
and b > 0. Algorithms for Min/Max over a running window typically cannot
work with this situation directly, and we need to apply the following rewriting:
ifa<0and b >0,

Onyg,p) Min ¢ = min{Ony, 0 Min ¢, Onyg ) Min ¢}
Onyg,p) Max ¢ = max{Ony,,0 Max ¢, Onjg ) Max ¢}

Language of the Monitor. The following subset of the language is equally
expressive as the full language presented in (1). We implement the monitoring
algorithms for this language, and the full syntax of (1) we support via rewriting.

gu=cl x| fler @n) | Onp ¥ |y U@ @1l Ulpy | DLy
Y == Ming | Max ¢

where either @ > 0 or b < 0, i.e., the interval [a, b] cannot refer to both future
and past.

All operators in the language of the monitor admit efficient offline monitoring.
Minimum and maximum over a sliding window required by the On-operator can
be computed using a variation of Lemire’s algorithm [9,15]; “lookup” operator
D shifts its input signal by a constant distance; and for untimed “until” we can
scan the input signal backwards and perform a special case of running minimum
or maximum.
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4.1 Monitoring Algorithms

In this section, we briefly describe monitoring algorithms for piecewise-constant
signals.

Representation of Signals. We represent a piecewise-constant function T —
R or T — R, as a sequence of segments: (sg, 51, ..., Sm-1), where every segment
s; = J; > v; maps an interval J; to a real or dual value v;. The intervals J; form a
partition the domain of the signal and are ordered in ascending time order, i.e.,
sup J; = inf J;11 and J; N Jix1 = @. The domain of the signal corresponding to the
sequence u = (Jg — vy, ..., Ju—1 = Vip—1) is denoted by dom(u) = JoU... U Jy_1.
For example, if the function x(z) is defined as x(¢) = 0, if z € [0, 1), and x(¢) = 1,
if t € [1,2], then x(¢) is represented by the sequence u, = ([0,1) — 0,[1,2] — 1),
and dom(uy) = [0, 2].

Empty brackets () denote an empty sequence that does not represent a valid
signal, but can be used by algorithms as an intermediate value. We manipulate
the sequences with two main operations. The function append adds a segment to
the end of a sequence: append({sq,...,Sm-1)3") = (S0, ..., Sm-1,8"). The function
prepend adds a segment to the start of a sequence: prepend({sg,...,Sm-1),5") =
(s',50,...,8m-1). This may produce a sequence where the first segment does
not start time at time 0. While such a sequence does not represent a valid
signal, it can be used by the algorithms as an intermediate value. The function
removeLast removes the last segment of a sequence, assuming it was non-empty:
removeLast({sg, ..., Sm-1)) = {505 - - -» Sm—2)-

An output signal of a formula is scalar-valued and is represented by one such
sequence. An input signal usually has multiple components, i.e., it is a function
T — R", and is represented by a set of n sequences.

On-Formulas. For Onp, ) Min ¢ and Onp, ) Max ¢, a monitor needs to com-
pute the minimum or maximum of the output signal of ¢ over the sliding window.
The corresponding algorithm was developed for discrete time by Lemire [15] and
later adapted for continuous time [9].

Lookup-Formulas. Computing the output signal for D¢ ¢ is straightforward.
We need to shift every segment of u, (the representation of the output signal
of ¢) to the left by a truncating at 0 and append a padding segment with the
value of d.

Until-Formulas. Informally, monitoring the “until”’-formulas, Min ¢, U4 ¢s,
Max ¢; U9 @y, and ¢; | U4gp,, works as follows. The monitor scans the output
signals of ¢; and ¢y backwards. While ¢y evaluates to a non-zero value, the
monitor outputs the value of ¢;. When ¢, evaluates to 0, the monitor outputs
either the default value (if the monitor did not yet encounter a non-zero value
of ¢3), or the running minimum or maximum of ¢, or the value that ¢; had at
the last time point where ¢ was non-zero.

The function until and untilAnd in Fig.10 implement this idea. The inputs
to the function until are: sequences u; and us representing the output signals
of o1 and @2 (with dom(uy) = dom(usz)), default value d, and the function f
used for aggregation; it can be min, max, or the special function Ax, y. x which
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function until(uy,uy, f,d) function untilAdd(uy,s,v’,J,vi,v2)
let u) = (Jé — V(%""’Jrln—l — vrln_l) if v #0 then
’
let up = (J2 2 .. J2 > v2 ) voev
0 0 k-1 k-1 s 1

i—m-1,j—k-1
(ur, 5,v") & ((),0,d)
while i>0Aj >0 do

end

1A 72
= Jdind; prepend(uy, J > V')
(ur, 5,v") — untilAdd(uy, s,v’, J, vil, V]g) return (u,sv’)
if I el Ve J]?. fi >t then  end
je—j+1
else if e Jj?. vipeJl. n>n
then
i—i+1
else
i+l jej+1
end
end
return u,
end

else if s#0 then
v f(, )

Fig. 10. Algorithm for monitoring “until”-formulas.

returns the value of its first argument and which we use to monitor the formula
©1] U4py. The function until scans the input sequences backwards and iterates
over intervals where both input signals maintain a constant value (J). Each
such interval is passed to the function untilAdd, which updates the state of the
algorithm (v’, s) and constructs the output signal (u,).

5 Implementation and Experiments

We implemented the monitoring algorithm in a prototype tool that is available
at https://gitlab.com/abakhirkin/StlEval. The tool has a number of limitations,
notably it can only use piecewise-constant interpolation (so we cannot evaluate
examples that use the auxiliary signal T(r) = ¢) and does not support past-
time operators. It is written in C++ and uses double-precision floating point
numbers for time points and signal values. We evaluate the tool using a number
of synthetic signals and a number of properties based on the ones described
earlier in the paper.

Signals. We use the following signals discretized with time step 1.

— Xsin — sine wave with amplitude 1 and period 250; see red curve in Fig. 2.

~ Xdecay — damped oscillation with period 250. For ¢ € [0,1000), x defined as
Xdecay () = :jsin(250t + 250)e‘ﬁ"7 see red curve in Fig. 1; for r > 1000, the
pattern repeats;
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— Xspike — series of spikes; a single spike is defined for ¢ € [0, 125) as: Xgpike(f) =
(t-50)2
e 210> | and after that the pattern repeats; see blue curve in Fig. 9.

Properties. We use the following properties:

— ¢stab = G F (Onpo200) Maxx — Onpg200) Minx < 0.1), x always eventually
becomes stable around some value for 200 time units.

= @stab-0 = G F Gjo,2001(]x| < 0.05): x always eventually becomes stable around
0 for 200 time units.

~ untit = Glo200 F (Maxx)Ussg, (167 > 0.1)) = (Min x)Ugss) (1’| 2 0.1)) <

0.1, where x” = (D{ x —x), x always eventually becomes stable for at least 200
time units and then starts changing with derivative of at least 0.1.

~ @max-min = G ((x = Onyg g5 Maxx) = F(x < Onjggs) Min x)), every local
maximum is followed by a local minimum.

~ Qabove-below = G (x > 0.85 = (Fx < —0.85)), if x is above 0.85, it should
eventually become below —0.85.

— @spike = (Ong16) Maxx > x + 0.5) A F[g,16)(Onjo,16) Min x < x — 0.5), spike of
half-width 16 and height at least 0.5.

~ @spike—stlib = F (x” > 0.04 A Fjg 25(x” < =0.04)), where x" = (D x — x), spike of
width at most 25 and magnitude 0.04.

Some properties are expressed in our language using On- and “until”-operators,
and some are STL properties. This allows us to see how much time it takes to
monitor a more complicated property in our language (e.g., @stap, stabilization
around an unknown value) compared to a similar but more simple STL property
(e.g., ¥stab-0, stabilization around a known value). In our experiments we see a
constant factor between 2 and 5.

Table1 shows the evaluation results. A row gives a formula and a signal
shape; a column gives the number of samples in the input signal, and a table
cell gives two time figures in seconds: the monitoring time excluding the time
required to read the input data, and the total runtime of an executable. We note
that for our tool, the total runtime is dominated by the time required to read
the input signal from a text file. For the three STL properties we include the
time it took AMT 2.0 (a monitoring tool written in Java [18]) and Breach (a
Matlab toolbox partially written in C++ [8]; Breach does not have a standalone
executable, so the we leave the corresponding columns empty) to evaluate the
formula. This way we show that our implementation of STL monitoring has
good enough performance to be used as a baseline when evaluating the cost of
the added expressiveness in the new language. Time figures were obtained using
a PC with a Core 13-2120 CPU and 8 GB RAM running 64-bit Debian 8.
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Table 1. Monitoring time for different formulas and signals.

This paper AMT 2.0 Breach
100k IM 100k IM 100k IM
®stab  Xdecay | 0.004 0.0510.048 0.39
Pstab—0 Xdecay | 0.003 0.04|0.023 0.38|0.59 4.0|2.4 7.3/0.053 -|0.42 -
®until Xdecay | 0.01 0.05/0.097 0.43
@max—min Xsin | 0.007 0.04] 0.07 04
@Pabove—below Xsin |0.002 0.04] 0.02 0.36| 0.6 3.1{24 7.5/ 005 -| 04 -
Pspike Xspike | 0.01 0.05| 0.1 045
Pspike—stlib Xspike | 0-006 0.05] 0.05 0.43] 1.0 4.0|5.0 13 |0.058 -|0.47 -

6 Conclusion and Future Work

We describe a new specification language that extends STL with the ability to
produce and manipulate real-valued output signals (while in STL, every formula
has a Boolean output signal). Properties in the new language are specified in
terms of minima and maxima over a sliding window, which can have fixed width,
when using a generalization of F- and G-operators, or variable width, when using
a new version “until”. We show how the new language can express properties that
motivated the creation of more expressive and harder to monitor logics. Offline
monitoring for the new language is almost as efficient as STL monitoring; the
complexity is linear in the length of the input signal and does not depend on the
constants appearing in the formula.

There are multiple directions for future work; perhaps more interesting one
is adding integration over a sliding window (in addition to minimum and max-
imum). This is already allowed by some formalisms [7], and when added to
our language will allow to assert that a signal approximates the behaviour of a
system defined by a given differential equation (since we will be able to assert
y(t) = fot x(t)dr). Before making integration available, we wish to investigate how
to better deal in a specification language with approximation errors. Finally, we
wish to make our language usable in falsification, which means that for every
formula with Boolean output signal we wish to be able to compute a real-valued
robustness measure.

Acknowledgements. The authors thank T. Ferrére, D. Nickovic, E. Asarin for com-
ments on the draft of this paper, and O. Lebeltel for providing a version of AMT for
the experiments.
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