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Abstract. The correctness of control software in many safety-critical
applications such as autonomous vehicles is very crucial. One approach to
achieve this goal is through “symbolic control”, where complex physical
systems are approximated by finite-state abstractions. Then, using those
abstractions, provably-correct digital controllers are algorithmically syn-
thesized for concrete systems, satisfying some complex high-level require-
ments. Unfortunately, the complexity of constructing such abstractions
and synthesizing their controllers grows exponentially in the number of
state variables in the system. This limits its applicability to simple phys-
ical systems.

This paper presents a unified approach that utilizes sparsity of the
interconnection structure in dynamical systems for both construction
of finite abstractions and synthesis of symbolic controllers. In addition,
parallel algorithms are proposed to target high-performance comput-
ing (HPC) platforms and Cloud-computing services. The results show
remarkable reductions in computation times. In particular, we demon-
strate the effectiveness of the proposed approach on a 7-dimensional
model of a BMW 320i car by designing a controller to keep the car
in the travel lane unless it is blocked.

1 Introduction

Recently, the world has witnessed many emerging safety-critical applications
such as smart buildings, autonomous vehicles and smart grids. These applica-
tions are examples of cyber-physical systems (CPS). In CPS, embedded control
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software plays a significant role by monitoring and controlling several physical
variables, such as pressure or velocity, through multiple sensors and actuators,
and communicates with other systems or with supporting computing servers.
A novel approach to design provably correct embedded control software in an
automated fashion, is via formal method techniques [10,11], and in particular
symbolic control.

Symbolic control provides algorithmically provably-correct controllers based
on the dynamics of physical systems and some given high-level requirements.
In symbolic control, physical systems are approximated by finite abstractions
and then discrete (a.k.a. symbolic) controllers are automatically synthesized for
those abstractions, using automata-theoretic techniques [5]. Finally, those con-
trollers will be refined to hybrid ones applicable to the original physical systems.
Unlike traditional design-then-test workflows, merging design phases with for-
mal verification ensures that controllers are certified-by-construction. Current
implementations of symbolic control, unfortunately, take a monolithic view of
systems, where the entire system is modeled, abstracted, and a controller is syn-
thesized from the overall state sets. This view interacts poorly with the symbolic
approach, whose complexity grows exponentially in the number of state variables
in the model. Consequently, the technique is limited to small dynamical systems.

1.1 Related Work

Recently, two promising techniques were proposed for mitigating the computa-
tional complexity of symbolic controller synthesis. The first technique [2] utilizes
sparsity of internal interconnection of dynamical systems to efficiently construct
their finite abstractions. It is only presented for constructing abstractions while
controller synthesis is still performed monolithically without taking into account
the sparse structure. The second technique [4] provides parallel algorithms tar-
geting high performance (HPC) computing platforms, but suffers from state-
explosion problem when the number of parallel processing elements (PE) is fixed.
We briefly discuss each of those techniques and propose an approach that effi-
ciently utilizes both of them.

Many abstraction techniques implemented in existing tools, including SCOTS
[9], traverse the state space in a brute force way and suffer from an exponen-
tial runtime with respect to the number of state variables. The authors of [2]
note that a majority of continuous-space systems exhibit a coordinate structure,
where the governing equation for each state variable is defined independently.
When the equations depend only on a few continuous variables, then they are
said to be sparse. They proposed a modification to the traditional brute-force
procedure to take advantage of such sparsity only in constructing abstractions.
Unfortunately, the authors do not leverage sparsity to improve synthesis of sym-
bolic controllers, which is, practically, more computationally complex. In this
paper, we propose a parallel implementation of their technique to utilize HPC
platforms. We also show how sparsity can be utilized, using a parallel implemen-
tation, during the controller synthesis phase as well.

The framework pFaces [4] is introduced as an acceleration ecosystem for
implementations of symbolic control techniques. Parallel implementations of the
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abstraction and synthesis algorithms are introduced as computation kernels in
pFaces, which are were originally done serially in SCOTS [9]. The proposed algo-
rithms treat the problem as a data-parallel task and they scale remarkably well
as the number of PEs increases. pFaces allows controlling the complexity of
symbolic controller synthesis by adding more PEs. The results introduced in
[4] outperform all exiting tools for abstraction construction and controller syn-
thesis. However, for a fixed number of PEs, the algorithms still suffer from the
state-explosion problem.

In this paper, we propose parallel algorithms that utilize the sparsity of the
interconnection in the construction of abstraction and controller synthesis. In
particular, the main contributions of this paper are twofold:

(1) We introduce a parallel algorithm for constructing abstractions with a dis-
tributed data container. The algorithm utilizes sparsity and can run on
HPC platforms. We implement it in the framework of pFaces and it shows
remarkable reduction in computation time compared to the results in [2].

(2) We introduce a parallel algorithm that integrates sparsity of dynamical sys-
tems into the controller synthesis phase. Specifically, a sparsity-aware pre-
processing step concentrates computational resources in a small relevant
subset of the state-input space. This algorithm returns the same result as
the monolithic procedure, while exhibiting lower runtimes. To the best of
our knowledge, the proposed algorithm is the first to merge parallelism with
sparsity in the context of symbolic controller synthesis.

2 Preliminaries

Given two sets A and B, we denote by |A| the cardinality of A, by 2A the
set of all subsets of A, by A × B the Cartesian product of A and B, and by
A \ B the Pontryagin difference between the sets A and B. Set R

n represents
the n-dimensional Euclidean space of real numbers. This symbol is annotated
with subscripts to restrict it in the obvious way, e.g., Rn

+ denotes the positive
(component-wise) n-dimensional vectors. We denote by πA : A × B → A the
natural projection map on A and define it, for a set C ⊆ A × B, as follows:
πA(C) = {a ∈ A | ∃b∈B (a, b) ∈ C}. Given a map R : A → B and a set A ⊆ A,
we define R(A) :=

⋃

a∈A
{R(a)}. Similarly, given a set-valued map Z : A → 2B

and a set A ⊆ A, we define Z(A) :=
⋃

a∈A
Z(a).

We consider general discrete-time nonlinear dynamical systems given in the
form of the update equation:

Σ : x+ = f(x, u), (1)

where x ∈ X ⊆ R
n is a state vector and u ∈ U ⊆ R

m is an input vector. The
system is assumed to start from some initial state x(0) = x0 ∈ X and the map
f is used to update the state of the system every τ seconds. Let set X̄ be a
finite partition on X constructed by a set of hyper-rectangles of identical widths
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Fig. 1. The sparsity graph of the vehicle example as introduced in [2].

η ∈ R
n
+ and let set Ū be a finite subset of U . A finite abstraction of (1) is a

finite-state system Σ̄ = (X̄, Ū , T ), where T ⊆ X̄ × Ū × X̄ is a transition relation
crafted so that there exists a feedback-refinement relation (FRR) R ⊆ X × X̄
from Σ to Σ̄. Interested readers are referred to [8] for details about FRRs and
their usefulness on synthesizing controllers for concrete systems using their finite
abstractions.

For a system Σ, an update-dependency graph is a directed graph of verticies
representing input variables {u1, u2, · · · , um}, state variables {x1, x2, · · · , xn},
and updated state variables {x+

1 , x+
2 , · · · , x+

n }, and edges that connect input
(resp. states) variables to the affected updated state variables based on map f .
For example, Fig. 1 depicts the update-dependency graph of the vehicle case-
study presented in [2] with the update equation:

⎡

⎣
x+
1

x+
2

x+
3

⎤

⎦ =

⎡

⎣
f1(x1, x3, u1, u2)
f2(x2, x3, u1, u2)

f3(x3, u1, u2)

⎤

⎦ ,

for some nonlinear functions f1, f2, and f3. The state variable x3 affects all
updated state variables x+

1 , x+
2 , and x+

3 . Hence, the graph has edges connecting
x3 to x+

1 , x+
2 , and x+

3 , respectively. As update-dependency graphs become denser,
sparsity of their corresponding abstract systems is reduced. The same graph
applies to the abstract system Σ̄.

We sometimes refer to X̄, Ū , and T as monolithic state set, monolithic input
set and monolithic transition relation, respectively. A generic projection map

P f
i : A → πi(A)

is used to extract elements of the corresponding subsets affecting the updated
state x̄+

i . Note that A ⊆ X̄ := X̄1 × X̄2 × · · · × X̄n when we are interested in
extracting subsets of the state set and A ⊆ Ū := Ū1 × Ū2 ×· · ·× Ūm when we are
interested in extracting subsets of the input set. When extracting subsets of the
state set, πi is the projection map πX̄k1×X̄k2×···×X̄kK

, where kj ∈ {1, 2, · · · , n},
j ∈ {1, 2, · · · ,K}, and X̄k1 × X̄k2 × · · · × X̄kK

is a subset of states affecting
the updated state variable x̄+

i . Similarly, when extracting subsets of the input
set, πi is the projection map πŪp1×Ūp2×···×ŪpP

, where pi ∈ {1, 2, · · · ,m}, i ∈
{1, 2, · · · , P}, Ūp1 × Ūp2 × · · · × ŪpP

is a subset of inputs affecting the updated
state variable x̄+

i .
For example, assume that the monolithic state (resp. input) set of the system

Σ̄ in Fig. 1 is given by X̄ := X̄1 × X̄2 × X̄3 (resp. Ū := Ū1 × Ū2) such that for
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any x̄ := (x̄1, x̄2, x̄3) ∈ X̄ and ū := (ū1, ū2) ∈ Ū , one has x̄1 ∈ X̄1, x̄2 ∈ X̄2,
x̄3 ∈ X̄3, ū1 ∈ Ū1, and ū2 ∈ Ū2. Now, based on the dependency graph, P f

1 (x̄) :=
πX̄1×X̄3

(x̄) = (x̄1, x̄3) and P f
1 (ū) := πŪ1×Ū2

(ū) = (ū1, ū2). We can also apply
the map to subsets of X̄ and Ū , e.g., P f

1 (X̄) = X̄1 × X̄3, and P f
1 (Ū) = Ū1 × Ū2.

For a transition element t = (x̄, ū, x̄′) ∈ T , we define P f
i (t) := (P f

i (x̄),
P f

i (ū), πX̄i
(x̄′)), for any component i ∈ {1, 2, · · · , n}. Note that for t, the suc-

cessor state x̄′ is treated differently as it is related directly to the updated state
variable x̄+

i . We can apply the map to subsets of T , e.g., for the given update-
dependency graph in Fig. 1, one has P f

1 (T ) = X̄1 × X̄3 × Ū1 × Ū2 × X̄1.
On the other hand, a generic recovery map

Df
i : P f

i (A) → 2A,

is used to recover elements (resp. subsets) from the projected subsets back to
their original monolithic sets. Similarly, A ⊆ X̄ := X̄1 × X̄2 × · · · × X̄n when we
are interested in subsets of the state set and A ⊆ Ū := Ū1 × Ū2 × · · ·× Ūm when
we are interested in subsets of the input set.

For the same example in Fig. 1, let x̄ := (x̄1, x̄2, x̄3) ∈ X̄ be a state. Now,
define x̄p := P f

1 (x̄) = (x̄1, x̄3). We then have Df
1 (x̄p) := {(x̄1, x̄

∗
2, x̄3) | x̄∗

2 ∈ X̄2}.
Similarly, for a transition element t := ((x̄1, x̄2, x̄3), (ū1, ū2), (x̄′

1, x̄
′
2, x̄

′
3)) ∈ T

and its projection tp := P f
1 (t) = ((x̄1, x̄3), (ū1, ū2), (x̄′

1)), the recovered transi-
tions is the set Df

1 (tp) = {((x̄1, x̄
∗
2, x̄3), (ū1, ū2), (x̄′

1, x̄
′∗
2 , x̄′∗

3 )) | x̄∗
2 ∈ X̄2, x̄′∗

2 ∈
X̄2, and x̄′∗

3 ∈ X̄3}.
Given a subset X̃ ⊆ X̄, let [X̃] := Df

1 ◦P f
1 (X̃). Note that [X̃] is not necessarily

equal to X̃. However, we have that X̃ ⊆ [X̃]. Here, [X̃] over-approximates X̃.
For an update map f in (1), a function Ωf : X̄ × Ū → X × X characterizes

hyper-rectangles that over-approximate the reachable sets starting from a set
x̄ ∈ X̄ when the input ū is applied. For example, if a growth bound map (β :
R

n × U → R
n) is used, Ωf can be defined as follows:

Ωf (x̄, ū) = (xlb, xub) := (−r + f(x̄c, ū), r + f(x̄c, ū)),

where r = β(η/2, u), and x̄c ∈ x̄ denotes the centroid of x̄. Here, β is the growth
bound introduced in [8, Section VIII]. An over-approximation of the reachable
sets can then be obtained by the map Of : X̄ × Ū → 2X̄ defined by:

Of (x̄, ū) := Q ◦ Ωf (x̄, ū),

where Q is a quantization map defined by:

Q(xlb, xub) = {x̄′ ∈ X̄ | x̄′ ∩ [[xlb, xub]] �= ∅}, (2)

where [[xlb, xub]] = [xlb,1, xub,1] × [xlb,2, xub,2] × · · · × [xlb,n, xub,n].
We also assume that Of can be decomposed component-wise (i.e., for each

dimension i ∈ {1, 2, · · · , n}) such that for any (x̄, ū) ∈ X̄ × Ū , Of (x̄, ū) =
⋂n

i=1 Df
i (Of

i (P f
i (x̄), P f

i (ū))), where Of
i : P f

i (X̄) × P f
i (Ū) → 2P f

i (X̄) is an over-
approximation function restricted to component i ∈ {1, 2, · · · , n} of f . The same
assumption applies to the underlying characterization function Ωf .
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Algorithm 1: Serial algorithm for constructing abstractions (SA).

Input: X̄, Ū , Of

Output: A transition relation T ⊆ X̄ × Ū × X̄.
1 T ← ∅ ; � Initialize the set of transitions
2 for all x̄ ∈ X̄ do
3 for all ū ∈ Ū do
4 for all x̄′ ∈ Of (x̄, ū) do
5 T ← T ∪ {(x̄, ū, x̄′)} ; � Add a new transition
6 end
7 end
8 end

Algorithm 2: Serial sparsity-aware algorithm for constructing abstractions
(Sparse-SA) as introduced in [2].

Input: X̄, Ū , Of

Output: A transition relation T ⊆ X̄ × Ū × X̄.
1 T ← X̄ × Ū × X̄ ; � Initialize the set of transitions
2 for all i ∈ {1, 2, · · · , n} do
3 Ti ← SA(P f

i (X̄), P f
i (Ū), Of

i ) ; � Transitions of sub-spaces

4 T ← T ∩ Df
i (Ti) ; � Add transitions of sub-spaces

5 end

3 Sparsity-Aware Distributed Constructions
of Abstractions

Traditionally, constructing Σ̄ is achieved monolithically and sequentially. This
includes current state-of-the-art tools, e.g. SCOTS [9], PESSOA [6], CoSyMa [7], and
SENSE [3]. More precisely, such tools have implementations that serially traverse
each element (x̄, ū) ∈ X̄ × Ū to compute a set of transitions {(x̄, ū, x̄′) | x̄′ ∈
Of (x̄, ū)}. Algorithm 1 presents the traditional serial algorithm (denoted by SA)
for constructing Σ̄.

The drawback of this exhaustive search was mitigated by the technique intro-
duced in [2] which utilizes the sparsity of Σ̄. The authors suggest constructing
T by applying Algorithm1 to subsets of each component. Algorithm 2 presents
a sparsity-aware serial algorithm (denoted by Sparse-SA) for constructing Σ̄, as
introduced in [2]. If we assume a bounded number of elements in subsets of each
component (i.e., |P f

i (X̄)| and |P f
i (Ū)| from line 3 in Algorithm2), we would

expect a near-linear complexity of the algorithm. This is not clearly the case in
[2, Figure 3] as the authors decided to use Binary Decision Diagrams (BDD) to
represent transition relation T .

Clearly, representing T as a single storage entity is a drawback in Algorithm2.
All component-wise transition sets Ti will eventually need to push their results
into T . This hinders any attempt to parallelize it unless a lock-free data structure
is used, which affects the performance dramatically.
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Algorithm 3: Proposed sparsity-aware parallel algorithm for constructing
discrete abstractions.
Input: X̄, Ū , Ωf

Output: A list of characteristic sets: K :=
P⋃

p=1

n⋃

i=1
Kp

loc,i.

1 for all i ∈ {1, 2, · · · , n} do
2 for all p ∈ {1, 2, · · · , P} do
3 Kp

loc,i ← ∅ ; � Initialize local containers

4 end
5 end
6 for all i ∈ {1, 2, · · · , n} in parallel do

7 for all (x̄, ū) ∈ P f
i (X̄) × P f

i (Ū) in parallel with index j do
8 p = I(i, j) ; � Identify target PE

9 (xlb, xub) ← Ωf (x̄, ū) ; � Calculate characteristics

10 Kp
loc,i ← Kp

loc,i ∪ {(x̄, ū, (xlb, xub))} ; � Store characteristics

11 end
12 end

Fig. 2. An example task distributions for the parallel sparsity-aware abstraction.

On the other hand, Algorithm 2 in [4] introduces a technique for constructing
Σ̄ by using a distributed data container to maintain the transition set T without
constructing it explicitly. In [4], using a continuous over-approximation Ωf is
favored as opposed to the discrete over-approximation Of since it requires less
memory in practice. The actual computation of transitions (i.e., using Of to
compute discrete successor states) is delayed to the synthesis phase and done
on the fly. The parallel algorithm scales remarkably with respect to the number
of PEs, denoted by P , since the task is parallelizable with no data dependency.
However, it still handles the problem monolithically which means, for a fixed P ,
it will not probably scale as the system dimension n grows.

We then introduce Algorithm 3 which utilizes sparsity to construct Σ̄ in par-
allel, and is a combination of Algorithm 2 in [4] and Algorithm 2. Function
I : N+ \ {∞} × N+ \ {∞} → {1, 2, · · · , P} maps a parallel job (i.e., lines 9 and
10 inside the inner parallel for-all statement), for a component i and a tuple
(x̄, ū) with index j, to a PE with an index p = I(i, j). Kp

loc,i stores the char-
acterizations of abstraction of ith component and is located in PE of index p.
Collectively, K1

loc,1, . . . ,K
p
loc,i, . . . ,K

P
loc,n constitute a distributed container that

stores the abstraction of the system.
Figure 2 depicts an example of the job and task distributions for the example

presented in Fig. 1. Here, we use P = 6 with a mapping I that distributes one
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Fig. 3. Comparison between the serial and parallel algorithms for constructing abstrac-
tions of a traffic network model by varying the dimensions.

partition element of one subset P f
i (X̄)×P f

i (Ū) to one PE. We also assume that
the used PEs have equal computation power. Consequently, we try to divide
each subset P f

i (X̄) × P f
i (Ū) into two equal partition elements such that we

have, in total, 6 similar computation spaces. Inside each partition element, we
indicate which distributed storage container Kp

loc,i is used.
To assess the distributed algorithm in comparison with the serial one presented

in [2], we implement it in pFaces. We use the same traffic model presented in [2,
Subsection VI-B] and the same parameters. For this example, the authors of [2]
construct Ti, for each component i ∈ {1, 2, · · · , n}. They combine them incre-
mentally in a BDD that represents T . A monolithic construction of T from Ti is
required in [2] since symbolic controllers synthesis is done monolithically. On the
other hand, using Kp

loc,i in our technique plays a major role in reducing the com-
plexity of constructing higher dimensional abstractions. In Sect. 4, we utilize Kp

loc,i

directly to synthesize symbolic controllers with no need to explicitly construct T .
Figure 3 depicts a comparison between the results reported in [2, Figure 3] and

the ones obtained from our implementation in pFaces. We use an Intel Core i5
CPU, which comes equipped with an internal GPU yielding around 24 PEs being
utilized by pFaces. The implementation stores the distributed containers Kp

loc,i

as raw-data inside the memories of their corresponding PEs. As expected, the
distributed algorithm scales linearly and we are able to go beyond 100 dimensions
in a few seconds, whereas Figure 3 in [2] shows only abstractions up to a 51-
dimensional traffic model because constructing the monolithic T begins to incur
an exponential cost for higher dimensions.

Remark 1. Both Algorithms 2 and 3 utilize sparsity of Σ to reduce the space
complexity of abstractions from |X̄ × Ū | to

∑n
i=1 |P f

i (X̄) × P f
i (Ū)|. However,

Algorithm 2 iterates over the space serially. Algorithm 3, on the other hand,
handles the computation over the space in parallel using P PEs.
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4 Sparsity-Aware Distributed Synthesis of Symbolic
Controllers

Given an abstract system Σ̄ = (X̄, Ū , T ), we define the controllable predecessor
map CPreT : 2X̄×Ū → 2X̄×Ū for Z ⊆ X̄ × Ū by:

CPreT (Z) = {(x̄, ū) ∈ X̄ × Ū | ∅ �= T (x̄, ū) ⊆ πX̄(Z)}, (3)

where T (x̄, ū) is an interpretation of the transitions set T as a map T :
X̄ × Ū → 2X̄ that evaluates a set of successor states from a state-input
pair. Similarly, we introduce a component-wise controllable predecessor map
CPreTi : 2P f

i (X̄)×P f
i (Ū) → 2P f

i (X̄)×P f
i (Ū), for any component i ∈ {1, 2, · · · , n}

and any Z̃ := P f
i (Z) := πP f

i (X̄)×P f
i (Ū)(Z), as follows:

CPreTi(Z̃) = {(x̄, ū) ∈ P f
i (X̄) × P f

i (Ū) | ∅ �= Ti(x̄, ū) ⊆ πX̄i
(Z̃)}. (4)

Proposition 1. The following inclusion holds for any i ∈ {1, 2, · · · , n} and any
Z ⊆ X̄ × Ū :

P f
i (CPreT (Z)) ⊆ CPreTi(P f

i (Z)).

Proof. Consider an element zp ∈ P f
i (CPreT (Z)). This implies that there exists

z ∈ X̄ × Ū such that z ∈ CPreT (Z) and zp = P f
i (z). Consequently, Ti(zp) �= ∅

since T (z) �= ∅. Also, since z ∈ CPreT (Z), then T (z) ⊆ πX̄(Z). Now, recall how
Ti is constructed as a component-wise set of transitions in line 2 in Algorithm 2.
Then, we conclude that Ti(zp) ⊆ πX̄i

(P f
i (Z)). By this, we already satisfy the

requirements in (4) such that zp = (x̄, ū) ∈ CPreTi(Z).

Here, we consider reachability and invariance specifications given by the LTL
formulae ♦ψ and �ψ, respectively, where ψ is a propositional formula over a
set of atomic propositions AP . We first construct an initial winning set Zψ =
{(x̄, ū) ∈ X̄ × Ū | L(x̄, ū) |= ψ)}, where L : X̄ × Ū → 2AP is some labeling
function. During the rest of this section, we focus on reachability specifications
for the sake of space and a similar discussion can be pursued for invariance
specifications.

Traditionally, to synthesize symbolic controllers for the reachability specifi-
cations ♦ψ, a monotone function:

G(Z) := CPreT (Z) ∪ Zψ (5)

is employed to iteratively compute Z∞ = μZ.G(Z) starting with Z0 = ∅. Here,
a notation from μ-calculus is used with μ as the minimal fixed point operator
and Z⊆ X̄ × Ū is the operated variable representing the set of winning pairs
(x̄, ū) ∈ X̄ × Ū . Set Z∞ ⊆ X̄ × Ū represents the set of final winning pairs,
after a finite number of iterations. Interested readers can find more details in
[5] and the references therein. The transition map T is used in this fixed-point



274 M. Khaled et al.

Algorithm 4: Traditional serial algorithm to synthesize C enforcing the
specification ♦ψ.
Input: Initial winning domain Zψ ⊂ X̄ × Ū and T

Output: A controller C : X̄w → 2Ū .
1 Z∞ ← ∅ ; � Initialize a running win-pairs set
2 X̄w ← ∅ ; � Initialize a running win-states set
3 do
4 Z0 ← Z∞ ; � Current win-pairs gets latest win-pairs
5 Z∞ ← CPreT (Z0) ∪ Zψ ; � Update the running win-pairs set
6 D ← Z∞ \ Z0 ; � Separate the new win-pairs
7 foreach x̄ ∈ πX̄(D) with x̄ �∈ X̄w do
8 X̄w ← X̄w ∪ {x̄} ; � Add new win-states
9 C(x̄) := {ū ∈ Ū |(x̄, ū) ∈ D} ; � Add new control actions

10 end
11 while Z∞ �= Z0;

computation and, hence, the technique suffers directly from the state-explosion
problem. Algorithm 4 depicts a traditional serial algorithm of symbolic controller
synthesis for reachability specifications. The synthesized controller is a map C :
X̄w → 2Ū , where X̄w ⊆ X̄ represents a winning (a.k.a. controllable) set of
states. Map C is defined as: C(x̄) = {ū ∈ Ū | (x̄, ū) ∈ μj(x̄)Z.G(Z)}, where
j(x̄) = inf{i ∈ N | x̄ ∈ πX̄(μiZ.G(Z))}, and μiZ.G(Z) represents the set of
state-input pairs by the end of the ith iteration of the minimal fixed point
computation.

A parallel implementation that mitigates the complexity of the fixed-point
computation is introduced in [4, Algorithm 4]. Briefly, for a set Z ⊆ X̄ × Ū , each
iteration of μZ.G(Z) is computed via parallel traversal in the complete space
X̄ × Ū . Each PE is assigned a disjoint set of state-input pairs from X̄ × Ū and
it declares whether, or not, each pair belongs to the next winning pairs (i.e.,
G(Z)). Although the algorithm scales well w.r.t P , it still suffers from the state-
explosion problem for a fixed P . We present a modified algorithm that utilizes
sparsity to reduce the parallel search space at each iteration.

First, we introduce the component-wise monotone function:

Gi(Z) := CPreTi(P f
i (Z)) ∪ P f

i (Zψ), (6)

for any i ∈ {1, 2, · · · , n} and any Z ∈ X̄ × Ū . Now, an iteration in the sparsity-
aware fixed-point can be summarized by the following three steps:

(1) Compute the component-wise sets Gi(Z). Note that Gi(Z) lives in the set
P f

i (X̄) × P f
i (Ū).

(2) Recover a monolithic set Gi(Z), for each i ∈ {1, 2, · · · , n}, using the map
Df

i and intersect these sets. Formally, we denote this intersection by:

[G(Z)] :=
n⋂

i=1

(Df
i (Gi(Z))). (7)
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Note that [G(Z)] is an over-approximation of the monolithic set G(Z), which
we prove in Theorem 1.

(3) Now, based on the next theorem, there is no need for a parallel search in
X̄ × Ū and the search can be done in [G(Z)]. More accurately, the search
for new elements in the next winning set can be done in [G(Z)] \ Z.

Theorem 1. Consider an abstract system Σ̄ = (X̄, Ū , T ). For any set Z ∈
X̄ × Ū , G(Z) ⊆ [G(Z)].

Proof. Consider any element z ∈ G(Z). This implies that z ∈ Z, z ∈ Zψ or
z ∈ CPreT (Z). We show that z ∈ [G(Z)] for any of these cases.

Case 1 [z ∈ Z]: By the definition of map P f
i , we know that P f

i (z) ∈ P f
i (Z). By

the monotonicity of map Gi, P f
i (Z) ⊆ Gi(Z). This implies that P f

i (z) ∈
Gi(Z). Also, by the definition of map Df

i , we know that z ∈ Df
i (Gi(Z)).

The above argument holds for any component i ∈ {1, 2, · · · , n} which
implies that z ∈ ⋂n

i=1(D
f
i (Gi(Z))) = [G(Z)].

Case 2 [z ∈ Zψ]: The same argument used for the previous case can be used for
this one as well.

Case 3 [z ∈ CPreT (Z)]: We apply the map P f
i to both sides of the inclu-

sion. We then have P f
i (z) ∈ P f

i (CPreT (Z)). Using Proposition 1, we
know that P f

i (CPreT (Z)) ⊆ CPreTi(Z). This implies that P f
i (z) ∈

CPreTi(P f
i (Z)). From (6) we obtain that P f

i (z) ∈ Gi(Z), and
consequently, z ∈ Df

i (Gi(Z)). The above argument holds for any
component i ∈ {1, 2, · · · , n}. This, consequently, implies that z ∈
⋂n

i=1(D
f
i (Gi(Z))) = [G(Z)], which completes the proof.

Remark 2. An initial computation of the controllable predecessor is done
component-wise in step (1) which utilizes the sparsity of Σ̄ and can be eas-
ily implemented in parallel. Only in step (3) a monolithic search is required.
However, unlike the implementation in [4, Algorithm 4], the search is performed
only for a subset of X̄ × Ū , which is [G(Z)] \ Z.

Note that dynamical systems pose some locality property (i.e., starting from
nearby states, successor states are also nearby) and an initial winning set will
grow incrementally with each fixed-point iteration. This makes the set [G(Z)]\Z
relatively small w.r.t |X̄ × Ū |. We clarify this and the result in Theorem1 with
a small example.

4.1 An Illustrative Example

For the sake of illustrating the proposed sparsity-aware synthesis technique, we
provide a simple two-dimensional example. Consider a robot described by the
following difference equation:

[
x+
1

x+
2

]

=
[
x1 + τu1

x2 + τu2

]

,
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Fig. 4. A visualization of one arbitrary fixed-point iteration of the sparsity-aware syn-
thesis technique for a two-dimensional robot system.

Fig. 5. The evolution of the fixed-point sets for the robot example by the end of fixed-
point iterations 5 (left side) and 228 (right side). A video of all iterations can be found
in: http://goo.gl/aegznf.

where (x1, x2) ∈ X̄ := X̄1×X̄2 is a state vector and (u1, u2) ∈ Ū := Ū1×Ū2 is an
input vector. Figure 4 shows a visualization of the sets related to this sparsity-
aware technique for symbolic controller synthesis for one fixed-point iteration.
Set Zψ is the initial winning-set (a.k.a. target-set for reachability specifications)
constructed from a given specification (e.g., a region in X̄ to be reached by
the robot) and Z is the winning-set of the current fixed-point iteration. For
simplicity, all sets are projected on X̄ and the readers can think of Ū as an
additional dimension perpendicular to the surface of this paper.

As depicted in Fig. 4, the next winning-set G(Z) is over-approximated by
[G(Z)], as a result of Theorem 1. Algorithm 4 in [4] searches for G(Z) in (X̄1 ×
X̄2) × (Ū1 × Ū2). This work suggests searching for G(Z) in [G(Z)] \ Z instead.

4.2 A Sparsity-Aware Parallel Algorithm for Symbolic Controller
Synthesis

We propose Algorithm 5 to parallelize sparsity-aware controller synthesis. The
main difference between this and Algorithm 4 in [4] are lines 9–12. They

http://goo.gl/aegznf
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Algorithm 5: Proposed parallel sparsity-aware algorithm to synthesize C
enforcing specification ♦ψ.
Input: Initial winning domain Zψ ⊂ X̄ × Ū and T

Output: A controller C : X̄w → 2Ū .
1 Z∞ ← ∅ ; � Initialize a shared win-pairs set
2 X̄w ← ∅ ; � Initialize a shared win-states set
3 do
4 Z0 ← Z∞ ; � Current win-pairs set gets latest win-pairs
5 for all p ∈ {1, 2, · · · , P} do
6 Zp

loc ← ∅ ; � Initialize a local win-pairs set
7 X̄p

w,loc ← ∅ ; � Initialize a local win-states set
8 end
9 [G] ← X̄ × Ū ; � Initialize [G(Z)]

10 for all i ∈ {1, 2, · · · , n} do
11 [G] ← [G] ∩ Df

i (Gi(Z∞)) ; � Over-approximate
12 end
13 for all (x̄, ū) ∈ [G] \ Z∞ in parallel with index j do
14 p = I(i) ; � Identify a PE
15 Posts ← Q ◦ Kp

loc(x̄, ū) ; � Compute successor states
16 if Posts ⊆ Z0 ∪ Zψ then
17 Zp

loc ← Zp
loc ∪ {(x̄, ū)} ; � Record a winning pair

18 X̄p
w,loc ← X̄p

w,loc ∪ {x̄} ; � Record a winning state
19 if x̄ �∈ πX̄(Z0) then
20 C(x̄) ← C(x̄) ∪ {ū} ; � Record a control action
21 end
22 end
23 end
24 for all p ∈ {1, 2, · · · , P} do
25 Z∞ ← Z∞ ∪ Zp

loc ; � Update the shared win-pairs set
26 X̄w ← X̄w ∪ X̄p

w,loc ; � Update the shared win-states set
27 end
28 while Z∞ �= Z0;

correspond to computing [G(Z)] at each iteration of the fixed-point compu-
tation. Line 13 is modified to do the parallel search inside [G(Z)] \ Z instead of
X̄ × Ū in the original algorithm. The rest of the algorithm is well documented
in [4].

The algorithm is implemented in pFaces as updated versions of the ker-
nels GBFP and GBFPm in [4]. We synthesize a reachability controller for the robot
example presented earlier. Figure 5 shows an arena with obstacles depicted as
red boxes. It depicts the result at the fixed point iterations 5 and 228. The blue
box indicates the target set (i.e., Zψ). The region colored with purple indicates
the current winning states. The orange region indicates [G(Z)] \ Z. The black
box is the next search region which is a rectangular over approximation of the
[G(Z)]\Z. We over-approximate [G(Z)]\Z with such rectangle as it is straight-
forward for PEs in pFaces to work with rectangular parallel jobs. The synthesis
problem is solved in 322 fixed-point iterations. Unlike the parallel algorithm in
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[4] which searches for the next winning region inside X̄ × Ū at each iteration,
the implementation of the proposed algorithm reduces the parallel search by an
average of 87% when searching inside the black boxes in each iteration.

Fig. 6. An autonomous vehicle trying to avoid a sudden obstacle on the highway.

5 Case Study: Autonomous Vehicle

We consider a vehicle described by the following 7-dimensional discrete-time
single track (ST) model [1]:

x+
1 = x1 + τx4 cos(x5 + x7),

x+
2 = x2 + τx4 sin(x5 + x7),

x+
3 = x3 + τu1,

x+
4 = x4 + τu2,

x+
5 = x5 + τx6,

x+
6 = x6 + τμm

Iz(lr+lf )

(
lfCS,f (glr − u2hcg)x3 + (lrCS,r(glf + u2hcg) − lfCS,f (glr

−u2hcg))x7 − (lf lfCS,f (glr − u2hcg) + l2rCS,r(glf + u2hcg))x6
x4

)
,

x+
7 = x7 + τμ

x4∗(lf+lr)

(
CS,f (glr − u2hcg)x3 − (CS,r(glf + u2hcg) + CS,f (glr

−u2hcg))x7 + (Cs,r(glf + u2hcg)lr − CS,f (glr − u2hcg)lf )x6
x4

) − x6,

where x1 and x2 are the position coordinates, x3 is the steering angle, x4 is the
heading velocity, x5 is the yaw angle, x6 is the yaw rate, and x7 is the slip angle.
Variables u1 and u2 are inputs and they control the steering angle and heading
velocity, respectively. Input and state variables are all members of R. The model
takes into account tire slip making it a good candidate for studies that consider
planning of evasive maneuvers that are very close to the physical limits. We
consider an update period τ = 0.1 s and the following parameters for a BMW
320i car: m = 1093 [kg] as the total mass of the vehicle, μ = 1.048 as the friction
coefficient, lf = 1.156 [m] as the distance from the front axle to center of gravity
(CoG), lr = 1.422 [m] as the distance from the rear axle to CoG, hcg = 0.574
[m] as the height of CoG, Iz = 1791.0 [kg m2] as the moment of inertia for
entire mass around z axis, CS,f = 20.89 [1/rad] as the front cornering stiffness
coefficient, and CS,r = 19.89 [1/rad] as the rear cornering stiffness coefficient.

To construct an abstract system Σ̄, we consider a bounded version of the state
set X := [0, 84]×[0, 6]×[−0.18, 0.8]×[12, 21]×[−0.5, 0.5]×[−0.8, 0.8]×[−0.1, 0.1],
a state quantization vector ηX = (1.0, 1.0, 0.01, 3.0, 0.05, 0.1, 0.02), a input set
U := [−0.4, 0.4] × [−4, 4], and an input quantization vector ηU = (0.1, 0.5).



Symbolic Controllers: A Parallelized and Sparsity-Aware Approach 279

Table 1. Used HW configurations for testing the proposed technique.

Identifier Description PEs Frequency

HW1 Local machine: Intel Xeon E5-1620 8 3.6 GHz

HW2 AWS instance p3.16xlarge: Intel(R) Xeon(R) E5-2686 64 2.3 GHz

HW3 AWS instance c5.18xlarge: Intel Xeon Platinum 8000 72 3.6 GHz

Table 2. Results obtained after running the experiments EX1 and EX2.

EX1 (Memory = 22.1 G.B.) EX2 (Memory = 49.2 G.B.)

|X̄ × Ū| = 23.8 × 109 |X̄ × Ū| = 52.9 × 109

HW Time Time Speedup HW Time Time Speedup

pFaces/GBFPm This work pFaces/GBFPm This work

HW2 2.1 h 0.5 h 4.2x HW1 ≥24 h 8.7 h ≥2.7x

HW3 1.9 h 0.4 h 4.7x HW2 8.1 h 3.2 h 2.5x

We are interested in an autonomous operation of the vehicle on a high-
way. Consider a situation on two-lane highway when an accident happens sud-
denly on the same lane on which our vehicle is traveling. The vehicle’s controller
should find a safe maneuver to avoid the crash with the next-appearing obsta-
cle. Figure 6 depicts such a situation. We over-approximate the obstacle with
the hyper-box [28, 50] × [0, 3] × [−0.18, 0.8] × [12, 21] × [−0.5, 0.5] × [−0.8, 0.8] ×
[−0.1, 0.1].

We run the implementation on different HW configurations. We use a local
machine and instances from Amazon Web Services (AWS) cloud computing
services. Table 1 summarizes those configurations. We also run two different
experiments. For the first one (denoted by EX1), the goal is to only avoid
the crash with the obstacle. We use a smaller version of the original state set
X := [0, 50]× [0, 6]× [−0.18, 0.8]× [11, 19]× [−0.5, 0.5]× [−0.8, 0.8]× [−0.1, 0.1].
The second one (denoted by EX2) targets the full-sized highway window (84 m),
and the goal is to avoid colliding with the obstacle and get back to the right
lane. Table 2 reports the obtained results. The reported times are for construct-
ing finite abstractions of the vehicle and synthesizing symbolic controllers. Note
that our results outperform easily the initial kernels in pFaces which itself out-
performs serial implementations with speedups up to 30000x as reported in [4].
The speedup in EX1 is higher as the obstacle consumes a relatively bigger vol-
ume in the state space. This makes [G(Z)] \ Z smaller and, hence, faster for our
implementation.

6 Conclusion and Future Work

A unified approach that utilizes sparsity of the interconnection structure in
dynamical systems is introduced for the construction of finite abstractions
and synthesis of their symbolic controllers. In addition, parallel algorithms are
designed to target HPC platforms and they are implemented within the frame-
work of pFaces. The results show remarkable reductions in computation times.
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We showed the effectiveness of the results on a 7-dimensional model of a BMW
320i car by designing a controller to keep the car in the travel lane unless it is
blocked.

The technique still suffers from the memory inefficiency as inherited from
pFaces. More specifically, the data used during the computation of abstraction
and the synthesis of symbolic controllers is not encoded. Using raw data requires
larger amounts of memory. Future work will focus on designing distributed data-
structures that achieve a balance between memory size and access time.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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