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Abstract. Many problems in reactive synthesis are stated using two
formulas—an environment assumption and a system guarantee—and
ask for an implementation that satisfies the guarantee in environments
that satisfy their assumption. Reactive synthesis tools often produce
strategies that formally satisfy such specifications by actively preventing
an environment assumption from holding. While formally correct, such
strategies do not capture the intention of the designer. We introduce an
additional requirement in reactive synthesis, non-conflictingness, which
asks that a system strategy should always allow the environment to fulfill
its liveness requirements. We give an algorithm for solving GR(1) syn-
thesis that produces non-conflicting strategies. Our algorithm is given by
a 4-nested fixed point in the p-calculus, in contrast to the usual 3-nested
fixed point for GR(1). Our algorithm ensures that, in every environment
that satisfies its assumptions on its own, traces of the resulting imple-
mentation satisfy both the assumptions and the guarantees. In addition,
the asymptotic complexity of our algorithm is the same as that of the
usual GR(1) solution. We have implemented our algorithm and show
how its performance compares to the usual GR(1) synthesis algorithm.

1 Introduction

Reactive synthesis from temporal logic specifications provides a methodology to
automatically construct a system implementation from a declarative specifica-
tion of correctness. Typically, reactive synthesis starts with a set of requirements
on the system and a set of assumptions about the environment. The objective of
the synthesis tool is to construct an implementation that ensures all guarantees
are met in every environment that satisfies all the assumptions; formally, the
synthesis objective is an implication A = G. In many synthesis problems, the
system can actively influence whether an environment satisfies its assumptions.
In such cases, an implementation that prevents the environment from satisfying
its assumptions is considered correct for the specification: since the antecedent
of the implication A = G does not hold, the property is satisfied.

N. Piterman—Supported by project “d-SynMA” that is funded by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 772459).

© The Author(s) 2019

T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part II, LNCS 11428, pp. 229-246, 2019.
https://doi.org/10.1007/978-3-030-17465-1_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17465-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-17465-1_13

230 R. Majumdar et al.

l R Q Q R
11, T ]le) 55 o
=] g B ]

qo q1

s
g3 q4 qs g6

DB i (o] m]
gs q9 |

(@) [m]
[m] [e)
q2 qr

e

Fig. 1. Pictorial representation of a desired strategy for a robot (square) moving in a
maze in presence of a moving obstacle (circle). Obstacle and robot start in the lower
left and right corner, can move at most one step at a time (to non-occupied cells) and
cells that they should visit infinitely often are indicated in light and dark gray (see qo),
respectively. Nodes with self-loops (q{1,3,6,s3) can be repeated finitely often with the
obstacle located at one of the dotted positions.

Such implementations satisfy the letter of the specification but not its intent.
Moreover, assumption-violating implementations are not a theoretical curiosity
but are regularly produced by synthesis tools such as slugs [14]. In recent years,
a lot of research has thus focused on how to model environment assumptions [2,
4,5,11,18], so that assumption-violating implementations are ruled out. Existing
research either removes the “zero sum” assumption on the game by introducing
different levels of co-operation [5], by introducing equilibrium notions inspired by
non-zero sum games [7,16,20], or by introducing richer quantitative objectives
on top of the temporal specifications [1,3].

Contribution. In this paper, we take an alternative approach. We consider the
setting of GR(1) specifications, where assumptions and guarantees are both con-
junctions of safety and Biichi properties [6]. GR(1) has emerged as an expressive
specification formalism [17,24,28] and, unlike full linear temporal logic, synthesis
for GR(1) can be implemented in time quadratic in the state/transition space.
In our approach, the environment is assumed to satisfy its assumptions provided
the system does not prevent this. Conversely, the system is required to pick a
strategy that ensures the guarantees whenever the assumptions are satisfied, but
additionally ensures non-conflictingness: along each finite prefix of a play accord-
ing to the strategy, there exists the persistent possibility for the environment to
play such that its liveness assumptions will be met.

Our main contribution is to show a p-calculus characterization of winning
states (and winning strategies) that rules out system strategies that are winning
by preventing the environment from fulfilling its assumptions. Specifically, we
provide a 4-nested fixed point that characterizes winning states and strategies
that are non-conflicting and ensure all guarantees are met if all the assump-
tions are satisfied. Thus, if the environment promises to satisfy its assumption if
allowed, the resulting strategy ensures both the assumption and the guarantee.

Our algorithm does not introduce new notions of winning, or new logics or
winning conditions. Moreover, since p-calculus formulas with d alternations can
be computed in O(n!%/21) time [8,26], the O(n?) asymptotic complexity for the
new symbolic algorithm is the same as the standard GR(1) algorithm.

Motivating Example. Consider a small two-dimensional maze with 3 x 2 cells
as depicted in Fig. 1, state go. A robot (square) and an obstacle (circle) are
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Fig. 2. Pictorial representation of the GR(1) winning strategy synthesized by slugs
for the robot (square) in the game described in Fig. 1.

located in this maze and can move at most one step at a time to non-occupied
cells. There is a wall between the lower and upper left cell and the lower and
upper right cell. The interaction between the robot and the object is as follows:
first the environment chooses where to move the obstacle to, and, after observing
the new location of the obstacle, the robot chooses where to move.

Our objective is to synthesize a strategy for the robot s.t. it visits both the
upper left and the lower right corner of the maze (indicated in dark gray in
Fig. 1, state qp) infinitely often. Due to the walls in the maze the robot needs to
cross the two white middle cells infinitely often to fulfill this task. If we assume
an arbitrary, adversarial behavior of the environment (e.g., placing the obstacle
in one white cell and never moving it again) this desired robot behavior cannot
be enforced. We therefore assume that the obstacle is actually another robot
that is required to visit the lower left and the upper right corner of the maze
(indicated in light gray in Fig. 1, state ¢o) infinitely often. While we do not know
the precise strategy of the other robot (i.e., the obstacle), its liveness assumption
is enough to infer that the obstacle will always eventually free the white cells.
Under this assumption the considered synthesis problem has a solution.

Let us first discuss one intuitive strategy for the robot in this scenario, as
depicted in Fig. 1. We start in go with the obstacle (circle) located in the lower
left corner and the robot (square) located in the lower right corner. Recall that
the obstacle will eventually move towards the upper right corner. The robot can
therefore wait until it does so, indicated by ¢;. Here, the dotted circles denote
possible locations of the obstacle during the (finitely many) repetitions of ¢; by
following its self loop. Whenever the obstacle moves to the upper part of the
maze, the robot moves into the middle part (¢2). Now it waits until the obstacle
reaches its goal in the upper right, which is ensured to happen after a finite
number of visits to g3. When the obstacle reaches the upper right, the robot
moves up as well (g4). Now the robot can freely move to its goal in the upper
left (g5). This process symmetrically repeats for moving back to the respective
goals in the lower part of the maze (g to g9 and then back to qp). With this
strategy, the interaction between environment and system goes on for infinitely
many cycles and the robot fulfills its specification.

The outlined synthesis problem can be formalized as a two player game with
GR(1) winning condition. When solving this synthesis problem using the tool
slugs [14], we obtain the strategy depicted in Fig.2 (not the desired one in
Fig.1). The initial state, denoted by ¢o is the same as in Fig. 1 and if the envi-
ronment moves the obstacle into the middle passage (¢1) the robot reacts as
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before; it waits until the object eventually proceeds to the upper part of the
maze (g2). However, after this happens the robot takes the chance to simply
move to the lower left cell of the maze and stays there forever (gs). By this,
the robot prevents the environment from fulfilling its objective. Similarly, if the
obstacle does not immediately start moving in qq, the robot takes the chance to
place itself in the middle passage and stays there forever (g4). This obviously
prevents the environment from fulfilling its liveness properties.

In contrast, when using our new algorithm to solve the given synthesis prob-
lem, we obtain the strategy given in Fig. 1, which satisfies the guarantees while
allowing the environment assumptions to be satisfied.

Related Work. Our algorithm is inspired by supervisory controller synthesis
for non-terminating processes [23,27], resulting in a fixed-point algorithm over a
Rabin-Biichi automaton. This algorithm has been simplified for two interacting
Biichi automata in [22] without proof. We adapt this algorithm to GR(1) games
and provide a new, self-contained proof in the framework of two-player games,
which is distinct from the supervisory controller synthesis setting (see [13,25] for
a recent comparison of both frameworks).

The problem of correctly handling assumptions in synthesis has recently
gained attention in the reactive synthesis community [4]. As our work does
not assume precise knowledge about the environment strategy (or the ability
to impose the latter), it is distinct from cooperative approaches such as assume-
guarantee [9] or rational synthesis [16]. It is closest related to obliging games [10],
cooperative reactive synthesis [5], and assume-admissible synthesis [7]. Obliging
games [10] incorporate a similar notion of non-conflictingness as our work, but
do not condition winning of the system on the environment fulfilling the assump-
tions. This makes obliging games harder to win. Cooperative reactive synthesis
[5] tries to find a winning strategy enforcing A N G. If this specification is not
realizable, it is relaxed and the obtained system strategy enforces the guaran-
tees if the environment cooperates “in the right way”. Instead, our work always
assumes the same form of cooperation; coinciding with just one cooperation
lever in [5]. Assume-admissible synthesis [7] for two players results in two indi-
vidual synthesis problems. Given that both have a solution, only implementing
the system strategy ensures that the game will be won if the environment plays
admissible. This is comparable to the view taken in this paper, however, assum-
ing that the environment plays admissible is stronger then our assumption on
an environment attaining its liveness properties if not prevented from doing so.
Moreover, we only need so solve one synthesis problem, instead of two. However,
it should be noted that [5,7,10] handle w-regular assumptions and guarantees.
We focus on the practically important GR(1) fragment and our method better
leverages the computational benefits for this fragment.

All proofs of our results and additional examples can be found in the extended
version [21]. We further acknowledge that the same problem was independently
solved in the context of reactive robot mission plans [12] which was brought to
our attention only shortly before the final submission of this paper.
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2 Two Player Games and the Synthesis Problem
2.1 Two Player Games

Formal Languages. Let X be a finite alphabet. We write X*, X, and X for
the sets of finite words, non-empty finite words, and infinite words over Y. We
write w < v (resp., w < v) if w is a prefix of v (resp., a strict prefix of v). The
set of all prefixes of a word w € X* is denoted pfx(w) C X*. For L C X*, we
have L C pfx(L). For £ C X we denote by L its complement X% \ L.

Game Graphs and Strategies. A two player game graph H =
(Q°,Q1,6°, 61, qo) consists of two finite disjoint state sets Q¥ and Q*, two tran-
sition functions §° : Q° — 2Q" and 4 : Q' — ZQO, and an initial state gy € Q°.
We write Q@ = Q° U Q'. Given a game graph H, a strategy for player 0 is
a function f0 : (Q'QYH*Q° — Q% it is memoryless if fO(vq") = f1(¢°) for
all v € (Q°QYH* and all ¢° € Q°. A strategy f' : (Q°QY)T — QU for player
1 is defined analogously. The infinite sequence 7 € (Q°Q')¥ is called a play
over H if m(0) = qo and for all k € N holds that 7(2k + 1) € 6°(m(2k)) and
7(2k+2) € §1(m(2k +1)); 7 is compliant with f9 and/or f! if additionally holds
that fO(m|jp2x)) = 7(2k + 1) and/or f*(7|j,2641]) = 7(2k + 2). We denote by
L(H, f9), L(H, f') and L(H, f°, f!) the set of plays over H compliant with f°,
f*, and both f° and f!, respectively.

Winning Conditions. We consider winning conditions defined over sets of
states of a given game graph H. Given F' C @, we say a play m satisfies
the Biichi condition F if Inf(r)NF # (), where Inf(r) = {¢ € Q | 7n(k) =
q for infinitely many k € N}. Given a set F = {F1,..., F,,}, where each F; C @,
we say a play 7 satisfies the generalized Biichi condition F if Inf(w) NF; # (
for each ¢ € [1;m]. We additionally consider generalized reactivity winning con-
ditions with rank 1 (GR(1) winning conditions in short). Given two general-
ized Biichi conditions F° = {F?,...,F%} and F' = {F},...,F!}, a play =
satisfies the GR(1) condition if either Inf(r) NFY = 0 for some i € [1;m] or
Inf(m) ﬂFjl # ) for each j € [1;m]. That is, whenever the play satisfies 70, it
also satisfies F1. We use the tuples (H, F'), (H,F) and (H,F°, F!) to denote a
Biichi, generalized Biichi and GR(1) game over H, respectively, and collect all
winning plays in these games in the sets L(H, F), L(H,F) and L(H, F°, F'). A
strategy f! is winning for player [ in a Biichi, generalized Biichi, or GR(1) game,
if L(H, f') is contained in the respective set of winning plays.

Set Transformers on Games. Given a game graph H, we define the existen-
tial, universal, and player 0-, and player 1-controllable pre-operators. Let P C Q.

Pre’(P) ={¢° € Q°|8°(¢") NP £ 0} U {q" € Q"6 (¢") NP #0}, and (1)
Pre”(P) = {¢° € Q°|0°(¢°) C PYU{¢' € Q'|5' (¢ C P}, (2)

Pre’( {q EQO‘(SO ﬂP#@}U{q e Q! ’5 QP}, and (3)
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Pre'(P) = {° € Q°|"(") C P} U {¢" € Q|3 (@) NP #£0}. (&)

Observe that Q \ Pre?(P) = Pre”(Q \ P) and Q \ Pre!(P) = Pre®(Q \ P).
We combine the operators in (1)—(4) to define a conditional predecessor
CondPre and its dual CondPre for sets P, P’ C Q by

CondPre(P, P') :=Pre”(P) N Pre! (P U P’), and (5)
CondPre(P, P') :=Pre”(P) UPre’(P N P). (6)

We see that @ \ CondPre(P, P’) = CondPre(Q \ P, @\ P’).

p-Calculus. We use the p-calculus as a convenient logical notation used to
define a symbolic algorithm (i.e., an algorithm that manipulates sets of states
rather then individual states) for computing a set of states with a particular
property over a given game graph H. The formulas of the p-calculus, interpreted
over a two-player game graph H, are given by the grammar

pu=p| X |oUp|eiNes|pre(e) | pX.@ | vX.p

where p ranges over subsets of (), X ranges over a set of formal variables,
pre € {Prea, Pre”, Pre”, Pre!, CondPre, CondPre} ranges over set transformers,
and p and v denote, respectively, the least and greatest fixpoint of the functional
defined as X — ¢(X). Since the operations U, N, and the set transformers pre
are all monotonic, the fixpoints are guaranteed to exist. A p-calculus formula
evaluates to a set of states over H, and the set can be computed by induction
over the structure of the formula, where the fixpoints are evaluated by iteration.
We omit the (standard) semantics of formulas [19].

2.2 The Considered Synthesis Problem

The GR(1) synthesis problem asks to synthesize a winning strategy for the
system player (player 1) for a given GR(1) game (H,F.,Fg) or determine
that no such strategy exists. This can be equivalently represented in terms of
w-languages, by asking for a system strategy f' over H s.t.

0 7é ‘C(Hafl) - ‘C(Haf.A) UE(H,fg)

That is, the system wins on plays m € L(H, f!) if either 7 ¢ L(H,F.) or
m e L(H,FA)NL(H,Fg). The only mechanism to ensure that sufficiently many
computations will result from f! is the usage of the environment input, which
enforces a minimal branching structure. However, the system could still win this
game by falsifying the assumptions; i.e., by generating plays m ¢ L(H, F.4) that
prevent the environment from fulfilling its liveness properties.

We suggest an alternative view to the usage of the assumptions on the envi-
ronment F 4 in a GR(1) game. The condition F4 can be interpreted abstractly
as modeling an underlying mechanism that ensures that the environment player
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(player 0) generates only inputs (possibly in response to observed outputs) that
conform with the given assumption. In this context, we would like to ensure
that the system (player 1) allows the environment, as much as possible, to ful-
fill its liveness and only restricts the environment behavior if needed to enforce
the guarantees. We achieve this by forcing the system player to ensure that the
environment is always able to play such that it fulfills its liveness, i.e.

pix(L(H, f1)) = pix(L(H, f') N L(H, Fa)) -

As the D-inclusion trivially holds, the constraint is given by the C-inclusion.
Intuitively, the latter holds if every finite play o compliant with f! over H can
be extended (by a suitable environment strategy) to an infinite play = compliant
with f! that fulfills the environment liveness assumptions. It is easy to see that
not every solution to the GR(1) game (H, F 4, Fg) (in the classical sense) supplies
this additional requirement. We therefore propose to synthesize a system strategy
f' with the above properties, as summarized in the following problem statement.

Problem 1. Given a GR(1) game (H, F 4, Fg) synthesize a system strategy f*

s.t. Q]#E(Hafl)Q’C(vaA)UC(H,fg)v (7&)
and  pix(L(H, f1)) = pix(L(H, f1) N L(H, F4)) (7b)
both hold, or verify that no such system strategy exists. O

Problem 1 asks for a strategy f' s.t. every play 7 compliant with f! over
H fulfills the system guarantees, i.e., 7 € L(H,Fg), if the environment ful-
fills its liveness properties, i.e., if # € L(H,F4) (from (7a)), while the lat-
ter always remains possible (by a suitably playing environment) due to (7b).
Inspired by algorithms solving the supervisory controller synthesis problem for
non-terminating processes [23,27], we propose a solution to Problem 1 in terms
of a vectorized 4-nested fixed-point in the remaining part of this paper. We show
that Problem 1 can be solved by a finite-memory strategy, if a solution exists.

We note that (7b) is not a linear time but a branching time property and
can therefore not be “compiled away” into a different GR(1) or even w-regular
objective. Satisfaction of (7b) requires checking whether the set F4 remains
reachable from any reachable state in the game graph realizing £(H, f1)*.

3 Algorithmic Solution for Singleton Winning Conditions

We first consider the GR(1) game (H, F 4, Fg) with singleton winning conditions
Fa = {Fa} and Fg = {Fg}, i.e., n = m = 1. It is well known that a system
winning strategy f! for this game can be synthesized by solving a three color
parity game over H. This can be expressed by the p-calculus formula (see [15])

w3 :=vZ .Y .vX . (FgnPre'(Z))UPre! (Y)U(Q\ FanPre’(X)). (8)

! Tt can indeed be expressed by the CTL* formula AGEFF 4 (see [13], Sect. 3.3.2).
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It follows that qo € [¢s] if and only if the synthesis problem has a solution
and the winning strategy f! is obtained from a ranking argument over the sets
computed during the evaluation of (8).

To obtain a system strategy f' solving Problem 1 instead, we propose to
extend (8) to a 4-nested fixed-point expressed by the u-calculus formula

pg=vZ . pY .vX . uyW. 9
(Fg NPre'(Z)) U Pre'(Y) U ((Q\ Fa) N CondPre(W, X \ Fy)). )

Compared to (8) this adds an inner-most largest fixed-point and substitutes
the last controllable pre-operator by the conditional one. Intuitively, this distin-
guishes between states from which player 1 can force visiting Fg and states from
which player 1 can force avoiding F4. This is in contrast to (8) and allows to
exclude strategies that allow player 1 to win by falsifying the assumptions.

The remainder of this section shows that ¢y € [¢4] if and only if Problem 1
has a solution and the winning strategy f! fulfilling (7a) and (7b) can be obtained
from a ranking argument over the sets computed during the evaluation of (9).

Soundness

We prove soundness of (9) by showing that every state ¢ € [p4] is winning for
the system player. In view of Problem 1 this requires to show that there exists
a system strategy f! s.t. all plays starting in a state ¢ € [¢4] and evolving in
accordance to f1 result in an infinite play that fulfills (7a) and (7b).

We start by defining f! from a ranking argument over the iterations of (9).
Consider the last iteration of the fixed-point in (9) over Z. As (9) terminates
after this iteration we have Z = Z°° = [p4]. Assume that the fixed point over Y’
is reached after k iterations. If Y is the set obtained after the i-th iteration, we
have that Z> = |Jf_, Y with Y? C Y*! Y0 = ) and Y* = Z*. Furthermore,
let X* = Y" denote the fixed-point of the iteration over X resulting in Y* and
denote by W; the set obtained in the jth iteration over W performed while using

the value X* for X and Y?~! for Y. Then it holds that Y’ = X? = U?:O sz
with VVJZ C W;+1, W¢ =0 and VVlZ =Y for all i € [0;k].
Using these sets, we define a ranking for every state ¢ € Z° s.t.

rank(q) = (i,j) iff g € (Y \Y"")n (W \W}_,) fori,j >0.  (10)
We order ranks lexicographically. It further holds that (see [21])
geD & rank(q) =(1,1) & qgeFgnZzZ> (11a)
qE€EE" & rank(q) =(i,1)Ni>1 < g€ (Fa\Fg)NZ>™ (11b)
qE€ER, & rank(q)=(i,j)Nj>1 & qe(Z°\(FaUFg)), (llc)
where D, E* and R} denote the sets added to the winning state set by the first,
second and third term of (9), respectively, in the corresponding iteration.

Figure 3 (left) shows a schematic representation of this construction for an
example with k = 3, 1; = 4,1l = 2 and I3 = 3. The set D = Fg N Z* is
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Fig. 3. Schematic representation of the ranking defined in (10) (left) and in (16) (right).
Diamond, ellipses and rectangles represent the sets D, E* and R;, while blue, green
and red indicate the sets Y', Y2\ Y' and Y\ Y? (annotated by %/*® for the right
figure). Labels (4, 7) and (a, ¢, b, j) indicate that all states ¢ associated with this set fulfill
rank(q) = (4,7) and “rank(q) = (i, §), respectively. Solid, colored arcs indicate system-
enforceable moves, dotted arcs indicate existence of environment or system transitions
and dashed arcs indicate possible existence of environment transitions. (Color figure
online)

represented by the diamond at the top where the label (1,1) denotes the asso-
ciated rank (see (11a)). The ellipses represent the sets E* C (Fq \ Fg) N Z*°,
where the corresponding ¢ > 1 is indicated by the associated rank (i,1). Due to
the use of the controllable pre-operator in the first and second term of (9), it is
ensured that progress out of D and E? can be enforced by the system, indicated
by the solid arrows. This is in contrast to all states in R} C Z>\ F1\ Fg, which
are represented by the rectangular shapes in Fig. 3 (left). These states allow the
environment to increase the ranking (dashed lines) as long as Z°°\ F4 \ Fg is not
left and there exists a possible move to decrease the j-rank (dotted lines). While
this does not strictly enforce progress, we see that whenever the environment
plays such that states in F4 (i.e., the ellipses) are visited infinitely often (i.e., the
environment fulfills its assumptions), the system can enforce progress w.r.t. the
defined ranking and states in Fg (i.e., the diamond shape) is eventually visited.
The system is restricted to take the existing solid or dotted transitions in
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Fig. 3 (left). With this, it is easy to see that the constructed strategy is winning
if the environment fulfills its assumptions, i.e., (7a) holds. However, to ensure
that (7b) also holds, we need an additional requirement. This is necessary as
the used construction also allows plays to cycle through the blue region of Fig. 3
(left) only, and by this not surely visiting states in F 4 infinitely often. However,
if L(H,Fg) C L(H, F4) we see that (7b) holds as well. It should be noted that
the latter is a sufficient condition which can be easily checked symbolically on
the problem instance but not a necessary one.

Based on the ranking in (10) we define a memory-less system strategy f! :
Q' N Z>® — Q° C §' s.t. the rank is always decreased, i.e.,

rank(q’) < rank(q), rank(q) > (1,1)

1
_ . 12
q f(q) {q/ € 7%, otherwise 42

The next theorem shows that this strategy indeed solves Problem 1.

Theorem 1. Let (H,Fa,Fg) be a GR(1) game with singleton winning condi-
tions Fao = {Fa} and Fg = {Fg}. Suppose f' is the system strategy in (12)
based on the ranking in (10). Then it holds for all q € [pa4] that?

Lo(H, f1) C Ly(H, Fa)ULy(H, Fg), (13a)
Lo(H, fY) N Ly(H, Fg) #0, and (13b)
Lq(Hv Fg) C ﬁq(Hv Fa) = pfx(ﬁq(H,fl)) :pfx(ﬁq(H,fl) ﬂﬁq(H, Fa)). (13c)

Completeness

We show completeness of (9) by establishing that every state ¢ € @\ [pa] = [@4]
is losing for the system player. In view of Problem 1 this requires to show that for
all ¢ € [p,] and all system strategies f! either (7a) or (7b) does not hold. This is
formalized in [21] by first negating the fixed-point in (9) and deriving the induced
ranking of this negated fixed-point. Using this ranking, we first show that the
environment can (i) render the negated winning set Z  invariant and (i) can
always enforce the play to visit Fg only finitely often, resulting in a violation
of the guarantees. Using these observations we finally show that whenever (7a)
holds for an arbitrary system strategy f! starting in [,], then (7b) cannot hold.
With this, completeness, as formalized in the following theorem, directly follows.

Theorem 2. Let (H,Fa,Fg) be a GR(1) game with singleton winning condi-
tions Fa = {Fa} and Fg = {Fg}. Then it holds for all q € [@,] and all system
strategies f1 over H that either

0# Ly(H, f') C Ly(H,Fa)ULy(H,Fg), or (14a)
pix(Lqy(H, f1) = pfx(Ly(H, f1) N Ly(H, F4)) does not hold.  (14b)

2 Given a state ¢ € Q = Q° U Q' we use the subscript g to denote that the respective
set of plays is defined by using g as the initial state of H.
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A Solution for Problem 1

We note that the additional assumption in Theorem 1 is required only to ensure
that the resulting strategy fulfills (7b). Suppose that this assumption holds for
the initial state go of H. That is, consider a GR(1) game (H, F 4, Fg) with single-
ton winning conditions F4 = {Fa} and Fg = {Fg} s.t. L(H,Fg) C L(H, Fy).
Then it follows from Theorem2 that Problem 1 has a solution iff gy € [p4].
Furthermore, if gy € [¢4], based on the intermediate values maintained for the
computation of o4 in (10) and the ranking defined in (12), we can construct f*
that wins the GR(1) condition in (7a) and is non-conflicting, as in (7b).

We can check symbolically whether £(H, Fg) C L(H, F4). For this we con-
struct a game graph H’ from H by removing all states in F4, and then check
whether L(H', Fg) is empty. The latter is decidable in logarithmic space and
polynomial time. If this check fails, then L(H, Fg) € L(H, F4). Furthermore,
we can replace L(H, Fg) in (7a) by L(H,Fg) N L(H, F.4) without affecting the
restriction (7a) imposes on the choice of f!. Given singleton winning conditions
Fg and Fy4, we see that L(H,Fg) N L(H,F4) = L(H,{Fg,F4}) and it triv-
ially holds that L(H,{Fg,Fa}) C L(H, F4). That is, we fulfill the conditional
by replacing the system guarantee L(H,Fg) by L(H,{Fg, F4}). However, this
results in a GR(1) synthesis problem with m = 1 and n = 2, which we discuss
next.

4 Algorithmic Solution for GR(1) Winning Conditions

We now consider a general GR(1) game (H, F 4, Fg) with F g = {1Fa,...,"F4}
and Fg = {'Fg,...,"Fg} s.t. n,m > 1. The known fixed-point for solving GR(1)
games in [6] rewrites the three nested fixed-point in (8) in a vectorized version,
which induces an order on the guarantee sets in Fg and adds a disjunction over
all assumption sets in F 4 to every line of this vectorized fixed-point. Adapting
the same idea to the 4-nested fixed-point algorithm (9) results in

iz pY o (Vs v X Wt
2z p . (Voo v 2X . p 2w 20

Yy =V , (15)

nZ U ny (\/anl v ';sz - an nbg)

where, %2 = (“Fg N Pre' (*7Z)) U Pre! () U (Q \ "F.4 N CondPre(W, X \ bF4))
and a™ denotes (¢ mod n) + 1.

The remainder of this section shows how soundness and completeness carries
over from the 4-nested fixed-point algorithm (9) to its vectorized version in (15).

Soundness and Completeness

We refer to intermediate sets obtained during the computation of the fixpoints by
similar notations as in Sect. 3. For example, the set ?Y? is the i-th approximation
of the fixpoint computing Y and ‘“’VV; is the j-th approximation of *W while
computing the i-th approximation of %, i.e., computing ?Y"* and using V¢~ 1.
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Similar to the above, we define a mode-based rank for every state ¢ € “Z°°; we
track the currently chased guarantee a € [1;n] (similar to [6]) and the currently
avoided assumption set b € [1,m] as an additional internal mode. In analogy to
(10) we define

“ank(q) = (i,4) iff g € (Y \ YN 0 (W \*W]_,) fori,j>0. (16)

Again, we order ranks lexicographically, and, in analogy to (11a), (11b) and
(11c), we have

g€’D & “rank(q) = (1,1) = q € Iy, (17a)
q€E' & “%rank(q) = (i,1) Ai> 1, (17b)
q € R, < “fank(q) = (i,j) Aj>1 = q¢'Fy. (17¢)

The sets Y?, “ij?, “D, “E' and “bRé» are interpreted in direct analogy to Sect. 3,
where a and b annotate the used line and conjunct in (15).

Figure 3 (right) shows a schematic representation of the ranking for an exam-
ple with % = 3, all, = 0, a2 = 4, a3, = 2, ¥y = 2, allg =3, a2l3 =0, and
233 = 2. Again, the set ?D C %Fg is represented by the diamond at the top of the
figure. Similarly, all ellipses represent sets °E° added in the i-th iteration over
line a of (15). Again, progress out of ellipses can be enforced by the system, indi-
cated by the solid arrows leaving those shapes. However, this might not preserve
the current b mode. It might be the environment choosing which assumption to
avoid next. Further, the environment might choose to change the b mode along
with decreasing the i-rank, as indicated by the colored dashed lines®. Finally,
the interpretation of the sets represented by rectangular shapes in Fig. 3 (right),
corresponding to (17¢), is in direct analogy to the case with singleton winning
conditions. It should be noticed that this is the only place where we preserve the
current b-mode when constructing a strategy.

Using this intuition we define a system strategy that uses enforceable and
existing transitions to decrease the rank if possible and preserves the current a
mode until the diamond shape is reached. The b mode is only preserved within
rectangular sets. This is formalized by a strategy

fY i Uneim (Q'NZ>) x ax [1;m]) — Q° x [1;n] x [1;m)] (18a)
st. (¢,-,-) = f'(q,-,-) implies ¢ € §'(¢) and (¢, a’,b") = f'(q,a,b) implies

¢ e Z®nNd =at, “Yank(q) = (1,1)
“Veank(¢') < (i —1,-) Ad = a, “rank(q) = (i,1), > 1. (18b)
“Veank(¢) < (i,j—1)Aa' =aAb =b, “ank(q) = (i,5),7 > 1

3 The strategy extraction in (18a) and (18b) prevents the system from choosing a
different b mode. The strategy choice could be optimized w.r.t. fast progress towards
%Fg in such cases.



Environmentally-Friendly GR(1) Synthesis 241

We say that a play 7 over H is compliant with f! if there exist mode traces a €
[1;n]¥ and B € [1;m]* s.t. for all & € N holds (7(2k +2), a(2k +2), 6(2k +2)) =
U2k +1),a(2k + 1), B(2k + 1)), and (i) a(2k + 1) = a(2k)T if *rank(7(2k +
1) = (1,1), (ii) a2k + 1) = a(2k) if ®ank(7(2k + 1)) = (i,1),7 > 1, and (iii)
a(2k +1) = «(2k) and B(2k + 1) = B(2k) if “rank(7(2k + 1)) = (4,7),7 > 1.

With this it is easy to see that the intuition behind Theorem 1 directly carries
over to every line of (15). Additionally, using Pre'(¢"Z) in “D allows to cycle
through all the lines of (15), which ensures that every set “Fg € Fg is tried to
be attained by the constructed system strategy in a pre-defined order. See [21]
for a formalization of this intuition and a detailed proof.

To prove completeness, it is also shown in [21] that the negation of (15) can
be over-approximated by negating every line separately. Therefore, the reasoning
for every line of the negated fixed-point carries over from Sect. 3, resulting in the
analogous completeness result. With this we obtain soundness and completeness
in direct analogy to Theorems 1-2, formalized in Theorem 3.

Theorem 3. Let (H,F4,Fg) be a GR(1) game with Fo = {'F4,...,"F4} and
Fg ={¥Fg,...,"Fg}. Suppose f! is the system strategy in (18a) and (18b) based
on the ranking in (16). Then it holds for all ¢ € [¢}] that (13a), (13b) and (13c)
hold. Furthermore, it holds for all q & [¢4] and all system strategies f1 over H
that either (14a) or (14b) does not hold.

A Solution for Problem 1

Given that £L(H,Fg) C L(H,F.4) it follows from Theorem 3 that Problem 1 has
a solution iff gy € [¢4]. Furthermore, if gy € [¢3] we can construct f! that wins
the GR(1) condition in (7a) and is non-conflicting, as in (7b).

Using a similar construction as in Sect. 3, we can symbolically check whether
L(H,Fg) € L(H,F ). For this, we construct a new game graph H,, for every
%F 4, b € [1;m] by removing the latter set from the state set of H and checking
whether L£(Hy, Fg) is empty. If some of these m checks fail, we have L(H, Fg) €
L(H,F4). Now observe that by checking every °F 4 separately, we know which
goals are not necessarily passed by infinite runs which visit all “Fg infinitely often
and can collect them in the set f%ile‘i. Using the same reasoning as in Sect. 3, we
can simply add the set Filed to the system guarantee set to obtain an equivalent
synthesis problem which is solvable by the given algorithm, if it is realizable.
More precisely, consider the new system guarantee set F, = Fg U ]—'if‘ibd and
observe that L(H,F;) € L(H,F4) by definition, and therefore substituting
L(H,Fg) by L(H,F{) in (7a) does not change the satisfaction of the given
inclusion.

5 Complexity Analysis

We show that the search for a more elaborate strategy does not affect the worst
case complexity. In Sect. 6 we show that this is also the case in practice. We state
this complexity formally below.
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Theorem 4. Let (H,Fa,Fg) be a GR(1) game. We can check whether there
is a winning non-conflicting strategy f1 by a symbolic algorithm that performs
O(|Q|*|Fg||Fal) nmext step computations and by an enumerative algorithm that
works in time O(m|Q|*|Fg||Fal), where m is the number of transitions of the
game.

Proof. Each line of the fixed-point is iterated O(|Q|?) times [8]. As there are
|Fg||F .l lines the upper bound follows. As we have to compute | Fg||F.4| different
ranks for each state, it follows that the complexity is O(m|Q|?|Fg||Fl)- O

We note that enumeratively our approach is theoretically worse than the
classical approach to GR(1). This follows from the straight forward reduction to
the rank computation in the rank lifting algorithm and the relative complexity
of the new rank when compared to the general GR(1) rank. We conjecture that
more complex approaches, e.g., through a reduction to a parity game and the
usage of other enumerative algorithms, could eliminate this gap.

6 Experiments

We have implemented the 4-nested fixed-point algorithm in (15) and the corre-
sponding strategy extraction in (18a) and (18b). It is available as an extension to
the GR(1) synthesis tool slugs [14]. In this section we show how this algorithm
(called 4FP) performs in comparison to the usual 3-nested fixed-point algorithm
for GR(1) synthesis (called 3FP) available in slugs. All experiments were run
on a computer with an Intel i5 processor running an x86 Linux at 2 GHz with
8 GB of memory.

We first run both algorithms on a benchmark set obtained from the maze
example in the introduction by changing the number of rows and columns of
the maze. We first increased the number of lines in the maze and added a goal
state for both the obstacle and the robot per line. This results in a maze where
in the first and last column, system and environment goals alternate and all
adjacent cells are separated by a horizontal wall. Hence, both players need to
cross the one-cell wide white space in the middle infinitely often to visit all
their goal states infinitely often. The computation times and the number of
states in the resulting strategy are shown in Table 1, upper part, column 3-
6. Interestingly, we see that the 3FP always returns a strategy that blocks the
environment. In contrast, the non-conflicting strategies computed by the 4FP are
relatively larger (in state size) and computed about 10 times slower compared
to the 3FP (compare column 3-4 and 5-6). When increasing the number of
columns instead (lower part of Table1), the number of goals is unaffected. We
made the maze wider and left only a one-cell wide passage in the middle of the
maze to allow crossings between its upper and lower row. Still, the 3FP only
returns strategies that falsify the assumption, which have fewer states and are
computed much faster than the environment respecting strategy returned by the
4FP. Unfortunately, the speed of computing a strategy or its size is immaterial
if the winning strategy so computed wins only by falsifying assumptions.
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To rule out the discrepancy between the two algorithms w.r.t. the size of
strategies, we slightly modified the above maze benchmark s.t. the environment
assumptions are not falsifiable anymore. We increased the capabilities of the
obstacle by allowing it to move at most 2 steps in each round and to “jump
over” the robot. Under these assumptions we repeated the above experiments.
The computation times and the number of states in the resulting strategy are
shown in Table 1, column 9-12. We see, that in this case the size of the strategies
computed by the two algorithms are more similar. The larger number for the
4FP is due to the fact that we have to track both the a and the b mode, possibly
resulting in multiple copies of the same a-mode state. We see that the state
difference decreases with the number of goals (upper part of Table1, column
9-12) and increases with the number of (non-goal) states (lower part of Table 1,
column 9-12). In both cases, the 3FP still computes faster, but the difference
decreases with the number of goals.

In addition to the 3FP and the 4FP we have also tested a sound but incom-
plete heuristic, which avoids the disjunction over all b’s in every line of (15)
by only investigating a = b. The state count and computation times for this
heuristic are shown in Table1, column 7-8 for the original maze benchmark,
and in column 13-14 for the modified one. We see that in both cases the heuris-
tic only returns a winning strategy if the maze is not wider then 3 cells. This
is due to the fact that in all other cases the robot cannot prevent the obstacle
from attaining a particular assumption state until the robot has moved from one
goal to the next. The 4FP handles this problem by changing between avoided
assumptions in between visits to different goals. Intuitively, the computation
times and state counts for the heuristic should be smaller then for the 4FP, as
the exploration of the disjunction over b’s is avoided, which is true for many
scenarios of the considered benchmark. It should however be noted that this is
not always the case (compare e.g. line 3, column 6 and 8). This stems from the
fact that restricting the synthesis to avoiding one particular assumption might
require more iterations over W and Y within the fixed-point computation.

Table 1. Experimental results for the maze benchmark. The size of the maze is given
in columns/lines, the number of goals is given per player. The states are counted for the
returned winning strategies. Strategies preventing the environment from fulfilling its
goals are indicated by a *. Recorded computation times are rounded wall-clock times.

falsifiable assumptions non-falsifiable assumptions
3FP 4FP Heuristic 3FP 4FP Heuristic
size |goals states[time states[time states|time states[time states[time states|time
3/2| 2 10 |<1s| 46 |<1s| 12 |<1s|| 35 |<1s| 50 |<1s| 40 [<1s
3/10| 10 34* |< 1s| 1401 | 8s [ 1307 | 3s || 1119| 1s | 1513 | 13s| 1533 | 5s
3/20| 20 64* | 21s | 5799 [201s| 5732 [337s|| 3926 | 37s | 6000 |163s| 6378 |105s
25/2 2 94" |<1s[2144 | 4s | nr. | 6s || 744 |< 1s| 2318 | 4s | n.r. | 5s
63/2| 2 397" | < 18[14259| 32s | n.r. |101s|| 4938 | 2s |15465| 54s | n.r. | 66s
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7 Discussion

We believe the requirement that a winning strategy be non-conflicting is a sim-
ple way to disallow strategies that win by actively preventing the environment
from satisfying its assumptions, without significantly changing the theoretical
formulation of reactive synthesis (e.g., by adding different winning conditions or
new notions of equilibria). It is not a trace property, but our main results show
that adding this requirement retains the algorithmic niceties of GR(1) synthesis:
in particular, symbolic algorithms have the same asymptotic complexity.

However, non-conflictingness makes the implicit assumption of a “maximally
flexible” environment: it is possible that because of unmodeled aspects of the
environment strategy, it is not possible for the environment to satisfy its spec-
ifications in the precise way allowed by a non-conflicting strategy. In the maze
example discussed in Sect. 1, the environment needs to move the obstacle to pre-
cisely the goal cell which is currently rendered reachable by the system. If the
underlying dynamics of the obstacle require it to go back to the lower left from
state g3 before proceeding to the upper right (e.g., due to a required battery
recharge), the synthesized robot strategy prevents the obstacle from doing so.

Finally, if there is no non-conflicting winning strategy, one could look for a
“minimally violating” strategy. We leave this for future work. Additionally, we
leave for future work the consideration of non-conflictingness for general LTL
specifications or (efficient) fragments thereof.
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