
Optimal Time-Bounded Reachability
Analysis for Concurrent Systems

Yuliya Butkova(B) and Gereon Fox

Saarland University, Saarbrücken, Germany
{butkova,fox}@depend.uni-saarland.de

Abstract. Efficient optimal scheduling for concurrent systems on a
finite horizon is a challenging task up to date: Not only does time have
a continuous domain, but in addition there are exponentially many pos-
sible decisions to choose from at every time point.

In this paper we present a solution to the problem of optimal time-
bounded reachability for Markov automata, one of the most general
formalisms for modelling concurrent systems. Our algorithm is based
on the discretisation of the time horizon. In contrast to most existing
algorithms for similar problems, the discretisation step is not fixed. We
attempt to discretise only in those time points when the optimal sched-
uler in fact changes its decision. Our empirical evaluation demonstrates
that the algorithm improves on existing solutions up to several orders of
magnitude.

1 Introduction

Modern technologies grow and complexify rapidly, making it hard to ensure their
dependability and reliability. Formal approaches to describing these systems
include (generalised) stochastic Petri nets [Mol82,MCB84,MBC+98,Bal07],
stochastic activity networks [MMS85], dynamic fault trees [BCS10] and others.
The semantics of these modelling languages is often defined in terms of contin-
uous time Markov chains (CTMCs). CTMCs can model the behaviour of seem-
ingly independent processes evolving in memoryless continuous time (according
to exponential distributions).

Modelling a system as a CTMC, however, strips it of any notion of choice,
e. g., which of a number of requests to process first, or how to optimally bal-
ance the load over multiple servers of a cluster. Making sure that the system is
safe for all possible choices of this kind is an important issue when assessing its
reliability. Non-determinism allows the modeller to capture these choices. Mod-
elling systems with non-determinism is possible in formalisms such as interactive
Markov chains [Her02], or Markov automata (MA) [EHKZ13]. The latter are one

This work is supported by the ERC Advanced Investigators Grant 695614 (POWVER)
and by the German Research Foundation (DFG) Grant 389792660, as part of CRC 248
(see https://perspicuous-computing.science).

c© The Author(s) 2019
T. Vojnar and L. Zhang (Eds.): TACAS 2019, Part II, LNCS 11428, pp. 191–208, 2019.
https://doi.org/10.1007/978-3-030-17465-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17465-1_11&domain=pdf
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-17465-1_11

192 Y. Butkova and G. Fox

of the most general models for concurrent systems available and can serve as a
semantics for generalised stochastic Petri nets and dynamic fault trees.

A similar formalism, continuous time Markov decision processes (CTMDPs)
[Ber00,Put94], has seen wide-spread use in control theory and operations
research. In fact, MA and CTMDPs are closely related: They both can model
exponential Markovian transitions and non-determinism. However, MA are com-
positional, while CTMDPs are not: In general it is not possible to model a system
as a CTMDP by modelling each of its sub-components as smaller CTMDP and
then combining them. This is why modelling large systems with many com-
municating sub-components as a CTMDP is cumbersome and error-prone. In
fact, most modern model checkers, such as Storm [DJKV17], Modest [HH14]
and PRISM [KNP11], do not offer any support for CTMDPs.

In the analysis of MA and CTMDPs, one of the most challenging problems is
the approximation of optimal time-bounded reachability probability, i. e. the max-
imal (or minimal) probability of a system to reach a set of goal states (e. g. unsafe
states) within a given time bound. Due to the presence of non-determinism this
value depends on which decisions are taken at which time points. Since the opti-
mal strategy is time dependent there are continuously many different strategies.
Classically, one deals with continuity by discretising the values, as is the case in
most algorithms for CTMDPs and MA [Neu10,FRSZ16,HH15,BS11]: The time
horizon is discretised into finitely many intervals, and the value within each
interval is approximated by e. g. polynomial or exponential functions.

0 0.5 1 1.5

0

0.2

0.4

0.6

Time bound

P
ro
ba

bi
lit
y

option 1
option 2

Fig. 1. Reachability proba-
bility for different decisions

Discretisation is closely related to the scheduler
that is optimal for a specific MA. As an example,
consider Fig. 1: The plot shows the probabilities of
reaching a goal state for a certain time bound, by
choosing options 1 and 2. If less than 0.9 seconds
remain, option 1 has a higher probability of reach-
ing the goal set, while option 2 is preferable as long
as more than 0.9 seconds are left. In this exam-
ple it is enough to discretise the time horizon with
roughly 2 intervals: [0, 0.9] and (0.9, 1.5]. The algo-
rithms known to date however use from 200 to 2·106

intervals, which is far too many. The solution that
we present in this paper discretises the time horizon
in only three intervals for this example.

Our contribution consists in an algorithm that computes time bounded reach-
ability probabilities for Markov automata. The algorithm discretises the time
horizon by intervals of variable length, making them smaller near those time
points where the optimal scheduler switches from one decision to another. We
give a characterisation of these time points, as well as tight sufficient conditions
for no such time point to exist within an interval. We present an empirical eval-
uation of the performance of the algorithm and compare it to other algorithms
available for Markov automata. The algorithm does perform well in the com-
parison, improving in some cases by several orders of magnitude, but does not
strictly outperform available solutions.

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 193

2 Preliminaries

Given a finite set S, a probability distribution over S is a function μ : S → [0, 1],
s. t.

∑
s∈S μ(s) = 1. We denote the set of all probability distributions over S by

Dist(S). The sets of rational, real and natural numbers are denoted with Q, R
and N resp., X�0 = {x ∈ X | x�0}, for X ∈ {Q,R},� ∈ {>,�}, N�0 = N∪{0}.

Definition 1. A Markov automaton (MA)1 is a tuple M = (S,Act,P,Q, G)
where S is a finite set of states partitioned into probabilistic (PS) and Marko-
vian (MS), G ⊆ S is a set of goal states, Act is a finite set of actions,
P : PS × Act → Dist(S) is the probabilistic transition matrix, Q : MS × S → Q

is the Markovian transition matrix, s. t. Q(s, s′) � 0 for s �= s′, Q(s, s) =
−

∑
s′ �=s Q(s, s′).

Fig. 2. An example MA.

Figure 2 shows an example MA. Grey and white
colours denote Markovian and probabilistic states cor-
respondingly. Transitions labelled as α or β are actions
of state s1. Dashed transitions associated with an
action represent the distribution assigned to the action.
Purely solid transitions are Markovian.

Notation and further definitions: For a Markovian state
s ∈ MS and s′ �= s, we call Q(s, s′) the transition rate
from s to s′. The exit rate of a Markovian state s is
E(s) :=

∑
s′ �=s Q(s, s′). Emax denotes the maximal exit

rate among all the Markovian states of M. For a probabilistic state s ∈ PS ,
Act(s) = {α ∈ Act | ∃μ ∈ Dist(S) : P(s, α) = μ} denotes the set of actions
that are enabled in s. P[s, α, ·] ∈ Dist(S) is defined by P[s, α, s′] := μ(s′), where
P(s′, α) = μ. We impose the usual non-zenoness [GHH+14] restriction on MA.
This disallows e. g., probabilistic states with no outgoing transitions, or with
only self-loop transitions.

A (timed) path in M is a finite or infinite sequence ρ = s0
α0,t0−→ s1

α1,t1−→
· · · αk,tk−→ sk+1

αk+1,tk+1−→ · · · , where αi ∈ Act(si) for si ∈ PS , and αi = ⊥ for

si ∈ MS . For a finite path ρ = s0
α0,t0−→ s1

α1,t1−→ · · · αk−1,tk−1−→ sk we define ρ↓ = sk.
The set of all finite (infinite) paths of M is denoted by Paths∗ (Paths).

Time passes continuously in Markovian states. The system leaves the state
after the amount of time that is governed by an exponential distribution, i. e.
the probability of leaving s ∈ MS within t ≥ 0 time units is given by 1−e−E(s)·t,
after which the next state s′ is chosen with probability Q(s, s′)/E(s).

Probabilistic transitions happen instantaneously. Whenever the system is in
a probabilistic state s and an action α ∈ Act(s) is chosen, the successor s′ is
1 Strictly speaking, this is the definition of a closed Markov automaton in which no

state has two actions with the same label. This is however not a restriction since the
analysis of general Markov automata is always performed only after the composition
under the urgency assumption is performed. Additional renaming of the actions does
not affect the properties considered in this work.

194 Y. Butkova and G. Fox

selected according to the distribution P[s, α, ·] and the system moves from s to
s′ right away. Thus, the residence time in probabilistic states is always 0.

2.1 Time-Bounded Reachability

In this work we are interested in the probability to reach a certain set of states of
a Markov automaton within a given time bound. However, due to the presence
of multiple actions in probabilistic states the behaviour of a Markov automaton
is not a stochastic process and thus no probability measure can be defined. This
issue is resolved by introducing the notion of a scheduler.

A general scheduler (or strategy) π : Paths∗ → Dist(Act) is a measurable
function, s. t. ∀ρ ∈ Paths∗ if ρ↓ ∈ PS then π(ρ) ∈ Dist(Act(ρ↓)). General sched-
ulers provide a distribution over enabled actions of a probabilistic state given
that the path ρ has been observed from the beginning of the system evolu-
tion. We call stationary such a general scheduler π that can be represented as
π : PS → Act, i. e. it is non-randomised and depends only on the current state.
The set of all general (stationary) schedulers is denoted by Πgen (Πstat resp.).

Given a general scheduler π, the behaviour of a Markov automaton is a fully
defined stochastic process. For the definition of the probability measure Prπ

M on
Markov automata we refer to [Hat17].

Let s ∈ S, T ∈ Q�0 be a time bound and π ∈ Πgen be a general scheduler.
The (time-bounded) reachability probability (or value) for a scheduler π and state
s in M is defined as follows:

valM,π
s (T) := Prπ

M
[
♦�T

s G
]
,

where ♦�T
s G = {s

α0,t0−→ s1
α1,t1−→ s2 . . . | ∃i : si ∈ G ∧

∑i−1
j=0 tj ≤ T} is the set of

paths starting from s and reaching G before T .
For opt ∈ {sup, inf}, the optimal (time-bounded) reachability probability (or

value) of state s in M is defined as follows:

valMs (T) := optπ∈Πgen
valM,π

s (T)

We denote by valM,π(T) (valM(T)) the vector of values valM,π
s (T) (valMs (T))

for all s ∈ S. A general scheduler that achieves optimum for valM(T) is called
optimal, and the one that achieves value v, s. t. ||v − valM(T)||∞ < ε, is
ε-optimal.

Optimal Schedulers. For the time-bounded reachability problem it is known
[RS13] that there exists an optimal scheduler π of the form π : PS ×R�0 → Act.
This scheduler does not need to know the full history of the system, but only the
current probabilistic state it is in and the total time left until time bound. It is
deterministic, i. e. not randomised, and additionally, this scheduler is piecewise
constant, meaning that there exists a finite partition I(π) of the time interval
[0, T] into intervals I0 = [t0, t1], I1 = (t1, t2], · · · , Ik−1 = (tk−1, tk], such that

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 195

t0 = 0, tk = T and the value of the scheduler remains constant throughout each
interval of the partition, i. e. ∀I ∈ I(π),∀t1, t2 ∈ I,∀s ∈ PS : π(s, t1) = π(s, t2).
The value of π on an interval I ∈ I(π) and s ∈ PS is denoted by π(s, I), i. e.
π(s, I) = π(s, t) for any t ∈ I.

As an example, consider the MA in Fig. 2 and time bound T = 1. Here the
optimal scheduler for state s1 chooses the reliable but slow action β if there is
enough time, i. e. if at least 0.62 time is left. Otherwise the optimal scheduler
switches to a more risky, but faster path via action α.

In the literature this subclass of schedulers is sometimes referred to as total-
time positional deterministic, piecewise constant schedulers. From now on we call
a scheduler from this subclass simply a scheduler (or strategy) and denote the
set of such schedulers with Π. An important notion of schedulers is the switching
point, the point of time separating two intervals of constant decisions:

Definition 2. For a scheduler π and s ∈ PS we call τ ∈ R�0 a switching
point, iff ∃I1, I2 ∈ I(π), s. t. τ = sup I1 and τ = inf I2 and ∃s ∈ PS : π(s, I1) �=
π(s, I2).

Whether the switching points can be computed exactly or not is an open
problem. In fact, the theorem of Lindemann-Weierstrass suggests that switching
points are non-algebraic numbers, what hints at a negative answer.

3 Related Work

In this section we briefly review the algorithms designed to approximate time
bounded reachability probabilities. We only discuss the algorithms that guaran-
tee to compute ε-close approximation of the reachability value.

The majority of the algorithms [Neu10,BS11,FRSZ16,SSM18,BHHK15] are
available for continuous time Markov decision processes (CTMDPs) [Ber00]. Two
of those, [Neu10] and [BHHK15], are also applicable to MA. We compare to them
in our empirical evaluation in Sect. 5. All the algorithms utilise such known tech-
niques as discretisation, uniformisation, or a combination thereof. The drawback
of most of the algorithms is that they do not adapt to a specific instance of a
problem. Namely, given a model M to analyse, they perform as many computa-
tions as is needed for M̂, which is the worst-case model in a subclass of models
that share certain parameters with M, such as Emax, for example. Experimental
evaluation performed in [BHHK15] shows that such approaches are not promis-
ing, because most of the time the algorithms perform too many unnecessary
computations. This is not the case for [BS11] and [BHHK15]. The latter per-
forms the analysis via uniformisation and schedulers that cannot observe time.
The former, designed for CTMDPs, performs discretisation of the time horizon
with intervals of variable length, however is not applicable to MA. Just like
in [BS11], our approach is to adapt the discretisation of the time horizon to a
specific instance of the problem.

196 Y. Butkova and G. Fox

4 Our Solution

In this section we present a novel approach to approximating optimal time-
bounded reachability and the optimal scheduler for an arbitrary Markov automa-
ton. Throughout the section we work with an MA M = (S,Act,P,Q, G), time
bound T ∈ Q�0 and precision ε ∈ Q>0. To simplify the presentation we concen-
trate on supremum reachability probability.

Given a scheduler, computation (or approximation) of the reachability prob-
ability is relatively easy:

Lemma 1. For a scheduler π ∈ Π and a state s ∈ S, the function valM,π
s :

[0, T] → [0, 1] is the solution to the following system of equations:

fs(t) = 1 if s ∈ G

− dfs(t)
dt

=
∑

s′∈S

Q(s, s′) · fs′(t) else if s ∈ MS

fs(t) =
∑

s′∈S

P[s, π(s, t), s′] · fs′(t) else if s ∈ PS

(1)

fs(0) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if s ∈ G
∑

s′∈S

P[s, π(s, 0), s′] · fs′(0) else if s ∈ PS

0 otherwise

(2)

Let 0 = τ0 < τ1 < . . . < τk−1 < τk = T , where τi are the switching
points of π for i = 1..k − 1. The solution of the system of Equations (1)–(2)
can be obtained separately on each of the intervals (τi−1, τi],∀i = 1..k, where
the value of the scheduler remains constant for all states. Given the solution
valM,π

s (t) on interval (τi−1, τi], we derive the solution for (τi, τi+1] by using the
values valM,π

s (τi) as boundary conditions. Later in Sect. 4.1 we will show that
the approximation of the solution for each interval (τi−1, τi] can be achieved via
a combination of known techniques, such as uniformisation (for the Markovian
states) and untimed reachability analysis (for probabilistic states).

Thus, given an optimal scheduler, Lemma 1 can be used to compute or
approximate the optimal reachability value. Finding an optimal scheduler is
therefore the challenge for optimal time-bounded reachability analysis. Our solu-
tion is based on approximating the optimal reachability value up to an arbitrary
ε > 0 by discretising the time horizon with intervals of variable length. On each
interval the value of our ε-optimal scheduler remains constant. The discretisation
we use attempts to reflect the partition I(π) of a minimal2 optimal scheduler π,
i. e. it mimics intervals on which π has constant value.

Our solution is presented in Algorithm 1. It computes an ε-optimal scheduler
πopt and approximates the system of Equations (1)–(2) for πopt. The algorithm
iterates over intervals of constant decisions of an ε-optimal strategy. At each

2 In the size of I(π).

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 197

iteration it computes: (i) a stationary scheduler π that is close to be optimal on
the current interval (line 7), (ii) length δ of the interval, on which π introduces
acceptable error (line 8) and (iii) the reachability values for time t + δ (line 9).
The following sections discuss the steps of the algorithm in more detail.

Theorem 1. Algorithm1 approximates the value of an arbitrary Markov
automaton for time bound T ∈ Q�0 up to a given ε ∈ Q>0.

Algorithm 1. SwitchStep

Input: MA M = (S, Act,P, Q, G), time bound T ∈ Q�0, precision ε ∈ Q>0

Output: u(T) ∈ [0, 1]|S|, s. t. ||u(T) − valM(T)||∞ < ε, ε-optimal scheduler πopt

Parameters: w ∈ (0, 1), and εi < ε, by default w = 0.1, εi = w · ε

1: δmin = (1 − w) · 2 · (ε − εi)/Emax
2/T

2: εΨ = εr = wεδmin/T
3: t = 0, εt

acc = εi

4: ∀s ∈ MS : us(t) = (s ∈ G)?1 : 0 and ∀s ∈ PS : us(t) = R∗
εi

(s, G)
5: ∀s ∈ PS : πopt(s, 0) = arg max R∗

εi
(s, G)

6: while t < T do
7: π = FindStrategy(u(t))
8: δ, εδ = FindStep(M, T − t, δmin,u(t), εΨ, εr, π)
9: compute u(t + δ) according to (5) for εΨ and εr

10: t = t + δ, εt
acc = εt−δ

acc + εδ

11: ∀s ∈ PS , τ ∈ (0, δ] : πopt(s, t + τ) = π(s)

12: return us(T), πopt

4.1 Computing the Reachability Value

In this section we discuss steps 4 and 9, that require computation of the reacha-
bility probability according to the system of Equations (1)–(2). Our approach is
based on the approximation of the solution. The presence of two types of states,
probabilistic and Markovian, demands separate treatment of those. Informally,
we will combine two techniques: time-bounded reachability analysis on continu-
ous time Markov chains3 for Markovian states and time-unbounded reachability
analysis on discrete time Markov chains4 for probabilistic states. Parameters
w and εi of Algorithm 1 control the error allowed by the approximation. Here
εi bounds the error for the very first instance of time-unbounded reachability
in line 4. While w defines the fraction of the error that can be used by the
approximations in subsequent iterations (εΨ and εr).

We start with time-unbounded reachability analysis for probabilistic states.
Let π ∈ Πstat, s, s

′ ∈ S. We define

3 Markov automata without probabilistic states.
4 Markov automata without Markovian states and such that ∀s ∈ PS : |Act(s)| = 1.

198 Y. Butkova and G. Fox

R(s, π, s′) =

⎧
⎪⎨

⎪⎩

1 if s = s′
∑

p∈S

P[s, π(s), p] · R(p, π, s′) else if s ∈ PS

0 otherwise

(3)

This value denotes the probability to reach state s′ starting from state s by
performing any number of probabilistic transitions and no Markovian transi-
tions. This system of linear equations can be either solved exactly, e. g. via
Gaussian elimination, or approximated (numerical methods). If R(s, π, s′) is
under-approximated we denote it by Rε(s, π, s′), where ε is the approxima-
tion error. For A ⊆ S we define R(s, π,A) =

∑
s′∈A R(s, π, s′), Rε(s, π,A) =∑

s′∈A Rε(s, π, s′).
For time bound 0, s ∈ PS the value valMs (0) is the optimal probability

to reach any goal state via only probabilistic transitions. We denote it by
R∗(s,G) = maxπ∈Πstat

R(s, π,G) (step 4). It is a well-known problem on dis-
crete time Markov decision processes [Put94] and can be computed or approxi-
mated by policy iteration, linear programming [Put94] or interval value iteration
[HM14,QK18,BKL+17]. If the value is approximated up to ε, we denote it by
R∗

ε (s,G).
The reachability analysis on Markovian states is solved with the well-known

uniformisation approach [Jen53]. Informally, Markovian states will be implicitly
uniformised : The exit rate for each Markovian state will be equal Emax (by
adding a self-loop transition), but this will not affect the reachability value.

We will first define the discrete probability to reach the target vector within
k Markovian transitions. Let x ∈ [0, 1]|S| be a vector of values for each state.
For k ∈ N�0, π ∈ Πstat we define Dk

x(s, π) = 1 if s ∈ G and otherwise:

Dk
x (s, π) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xs if k = 0
∑

s′ �=s

Q(s,s′)
Emax

· Dk−1
x (s′, π) + (1 − E(s)

Emax
) · Dk−1

x (s, π) if k > 0, s ∈ MS

∑

s′∈MS∪G

R(s, π, s′) · Dk
x (s′, π) if k > 0, s ∈ PS

(4)
The value Dk

x(s, π) is the weighted sum over all states s′ of the value xs′ and the
probability to reach s′ starting from s within k Markovian transitions. There-
fore the counter k decreases only when a Markovian state performs a transition
and is not affected by probabilistic transitions. If values R(s, π, s′) are approx-
imated up to precision ε, i. e. Rε(s, π, s′) is used for probabilistic states instead
of R(s, π, s′) in (4), we use the notation Dk

x,ε(s, π).
We denote with Ψλ the probability mass function of the Poisson distribution

with parameter λ. For a τ ∈ R�0 and εΨ ∈ (0, 1], N(τ, εΨ) is some natural
number satisfying

∑N(τ,εΨ)
i=0 ΨEmax·τ (i) � 1− εΨ, e. g. N(τ, εΨ) = �Emax · τ · e2 −

ln(εΨ)� [BHHK15], where e is the Euler’s number.
We are now in position to describe a way to compute u(t + δ) at line 9 of

Algorithm 1. Let u(t) ∈ [0, 1]|S| be a vector of values computed by the previous
iteration of Algorithm 1 for time t. Let ṽalM,π(t + δ) be the solution of the

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 199

system of Equation (1) for time point t+δ, a stationary scheduler π : PS → Act
and where u(t) is used instead of valM,π(t) as the boundary condition5. The
following Lemma shows that ṽalM,π(t+δ) can be efficiently approximated up to
εΨ + εr:

Lemma 2. Let εΨ ∈ (0, 1], εr ∈ [0, 1], εN = εr/N((T − t), εΨ) and δ ∈ [0, T − t].
Then ∀s ∈ S : us(t + δ) � ṽalM,π

s (t + δ) � us(t + δ) + εΨ + εr, where:

us(t + δ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if s ∈ G
N(δ,εΨ)∑

i=0

ΨEmax·δ(i) · Di
u(t),εN

(s, π) else if s ∈ MS
∑

s′MS∪G

RεN
(s, π, s′) · us′(t + δ) else if s ∈ PS

(5)

4.2 Choosing a Strategy

The strategy for the next interval is computed in Step 7 and implicitly in Step
4. The latter has been discussed in Sect. 4.1. We proceed to Step 7.

Here we search for a strategy that remains constant for all time points within
interval (t, t + δ], for some δ > 0, and introduces only an acceptable error.
Analogously to results for continuous time Markov decision processes [Mil68],
we prove that derivatives of function u(τ) at time τ = t help finding the strategy
π that remains optimal for interval (t, t + δ], for some δ > 0. This is rooted in
the Taylor expansion of function u(t + δ) via the values of u(t). We define sets

F0 = {π ∈ Πstat | ∀s ∈ PS : π = arg maxπ′∈Πstat
d

(0)
π′ (s)}

Fi = {π ∈ Fi−1 | ∀s ∈ PS : π = arg maxπ′∈Fi−1(−1)i−1d
(i)
π′ (s)}, i � 1,

where for π ∈ Πstat, s ∈ G : d(0)
π (s) = 1, for s ∈ MS \ G : d(0)

π (s) = us(t), for
s ∈ PS \ G : d

(0)
π (s) =

∑
s′∈MS∪G R(s, π, s′) · us′(t) and for i � 1:

d
(i)
π (s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if s ∈ G
∑

s′∈S

Q(s, s′) · d(i−1)(s′) if s ∈ MS \ G

∑

s′∈MS

R(s, π, s′) · d(i)(s′) if s ∈ PS \ G

d(i) = d
(i)
π for any π ∈ Fi,

The value d
(i)
π (s) is the ith derivative of us(t) at time t for a scheduler π.

Lemma 3. If π ∈ F|S|+1 then ∃δ > 0 such that π is optimal on (t, t + δ].

Thus in order to compute a stationary strategy that is optimal on time-
interval (t, t+δ], for some δ > 0, one needs to compute at most |S|+1 derivatives

5 ṽalM,π(t + δ) may differ from valM,π(t + δ) since its boundary condition u(t) is an
approximation of the boundary condition valM,π(t), used by valM,π(t + δ).

200 Y. Butkova and G. Fox

of u(τ) at time t. Procedure FindStrategy does exactly that. It computes sets
Fi until for some j ∈ 0..(|S| + 1) there is only 1 strategy left, i. e. |Fj | = 1.
Otherwise it outputs any strategy in F|S|+1. Similarly to Sect. 4.1, the scheduler
that maximises the values R(s, π, s′) can be approximated. This question and
other optimisations are discussed in detail in Sect. 4.4.

4.3 Finding Switching Points

Given that a strategy π is computed by FindStrategy, we need to know for
how long this strategy can be followed before the action has to change for at least
one of the states. We consider the behaviour of the system in the time interval
[t, T]. Recall the function ṽalπ(t + δ), δ ∈ [0, T − t], defined in Sect. 4.1 (Lemma
2) as the solution of the system of Equation (1) with the boundary condition
u(t), for a stationary scheduler π. For a probabilistic state s the following holds:

ṽalπs (t + δ) =
∑

s′∈MS∪G

R(s, π, s′) · ṽalπs′(t + δ) (6)

Let s ∈ PS , π ∈ Πstat, α ∈ Act(s). Consider the following function:

ṽalπ,s→α
s (t + δ) =

∑

s′∈MS∪G

∑

s′′∈S

P[s, α, s′′] · R(s′′, π, s′)

Rs→α(s,π,s′)

·ṽalπs′(t + δ)

This function denotes the reachability value for time bound t + δ and a
scheduler that is different from π. Namely, this is such a scheduler, that all
states follow strategy π, except for state s, that selects action α for the very first
transition, and afterwards selects action π(s). Between two switching points the
strategy π is optimal and therefore the value of ṽalπ,s→α

s (t+δ) is not greater than
ṽalπs (t+δ) for all s ∈ PS , α ∈ Act(s). If for some δ ∈ [0, T −t], s ∈ PS , α ∈ Act(s)
it holds that ṽalπ,s→α

s (t + δ) > ṽalπs (t + δ), then action α is better for s then
π(s), and therefore π(s) is not optimal for s at t + δ. We show that the next
switching point after time point t is such a value t + δ, δ ∈ (0, T − t], that

∀s ∈ PS ,∀α ∈ Act(s),∀τ ∈ [0, δ) : ṽalπs (t + τ) � ṽalπ,s→α
s (t + τ)

and ∃s ∈ PS , α ∈ Act(s) : ṽalπs (t + δ) < ṽalπ,s→α
s (t + δ)

(7)

Procedure FindStep approximates switching points iteratively. It splits the
time interval [0, T] into subintervals [t1, t2], . . . , [tn−1, tn] and at each iteration
k checks whether (7) holds for some δ ∈ [tk, tk+1]. The latter is performed
by procedure CheckInterval. If ∀δ ∈ [tk, tk+1] (7) does not hold, FindStep
repeats by increasing k. Otherwise, it outputs the largest δ ∈ [tk, tk+1] for which
(7) does not hold (line 11). This is done by binary search up to distance δmin.
Later in this section we will show that establishing that (7) does not hold for all
δ ∈ [tk, tk+1] can be efficiently performed by considering only 2 time points of
the interval [tk, tk+1] and a subset of state-action pairs.

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 201

Algorithm 2. FindStep

Input: MA M = (S, Act,P, Q, G), time left t ∈ Q�0, minimal step size δmin,
vector u ∈ [0, 1]|S|, εΨ ∈ (0, 1], εr ∈ [0, 1], π ∈ Πstat

Output: step δ ∈ [δmin, t] and upper bound on accumulated error εδ � 0

1: if (t � δmin) then return t, (Emax · t)2/2
2: k = 1, t1 = δmin

3: do
4: tk+1 = min{t, TΨ(k + 1, εΨ), (�tk · Emax� + 1)/Emax}
5: set A = Tmax(k + 1) or A = PS × Act � see discussion in the end of Sect. 4.3
6: toswitch = CheckInterval(M, [tk, tk+1], A, εΨ, εr)
7: k = k + 1
8: while (not toswitch) and tk < t)
9: k = k − 1

10: if (toswitch = true) then
11: find the largest δ ∈ [tk, tk+1], s. t. CheckInterval(M, [tk, δ], A, εΨ, εr) =false
12: if (δ > δmin) then ε = 0 else ε = (Emaxδmin)2/2
13: return δ, ε
14: else return t, 0

Selectingtk. This step is a heuristic. The correctness of our algorithm does not
depend on the choices of tk, but its runtime is supposed to benefit from it:
Obviously, the runtime of FindStrategy is best given an oracle that produces
time points tk which are exactly the switching points of the optimal strategy.
Any other heuristic is just a guess.

At every iteration k we choose such a time point tk that the MA is very
likely to perform at most k Markovian transitions within time tk. “Very likely”
here means with probability 1 − εΨ. For k ∈ N we define TΨ(k, εΨ) as follows:
TΨ(1, εΨ) = δmin, and for k > 1: TΨ(k, εΨ) satisfies

∑k
i=0 ΨEmax·TΨ(k,εΨ)(i) �

1 − εΨ.
Searching for switching points within [tk, tk+1]. In order to check whether ṽalπ(t+
δ) � ṽalπ,s→α(t + δ) for all δ ∈ [tk, tk+1] we only have to check whether the
maximum of function diff(s, α, t + δ) = ṽalπ,s→α

s (t + δ) − ṽalπs (t + δ) is at most 0
on this interval for all s ∈ PS , α ∈ Act(s). In order to achieve this we work on
the approximation of diff(s, α, t + δ) derived from Lemma 2, thus establishing a
sufficient condition for the scheduler to remain optimal:

ṽalπ,s→α
s (t + δ) =

∑

s′∈MS∪G

Rs→α(s, π, s′) · ṽalπs′(t + δ)

�
∑

s′∈MS\G

Rs→α,εN(s, π, s′)
k∑

i=0

ΨEmax·δ(i) · Di
u (t),εN(s′, π)

+ Rs→α,εN(s, π, G) + εΨ + εr

(8)

202 Y. Butkova and G. Fox

Here Rs→α,εN(s, π, s′) (Rs→α,εN(s, π,G)) denotes an under-approximation
of the value Rs→α(s, π, s′) (Rs→α(s, π,G) resp.) up to εN, defined in Lemma 2.
And analogously for ṽalπ(t + δ). Simple rewriting leads to the following:

ṽalπ,s→α
s (t + δ) − ṽalπs (t + δ) �

k∑

i=0

ΨEmax·δ(i) · Bi
π,εN

(s, α) + Cπ,εN(s, α), (9)

where Bi
π,εN

(s, α) =
∑

s′∈MS\G

(
Rs→α,εN(s, π, s′)−RεN(s, π, s′)

)
·Di

u(t),εN
(s′, π)

and Cπ,εN(s, α) = Rs→α,εN(s, π,G)−RεN(s, π,G)+ εΨ + εr. In order to find the
supremum of the right-hand side of (9) over all δ ∈ [a, b] we search for extremum
of each yi(δ) = ΨEmax(t+δ)(i) ·Bi

π,εN
(s, α), i = 0..k, separately as a function of δ.

Simple derivative analysis shows that the extremum of these functions is achieved
at δ = i/Emax. Truncation of the time interval by (�tk · Emax� + 1)/Emax (step
4, Algorithm 2) ensures that for all i = 0..k the extremum of yi(δ) is attained
at either δ = tk or δ = tk+1.

Lemma 4. Let [tk, tk+1] be the interval considered by CheckInterval at iter-
ation k. ∀δ ∈ [tk, tk+1], s ∈ PS , α ∈ Act:

diff(s, α, t + δ) �
k∑

i=0

ΨEmaxδ(s,α,i)(i) · Bi
π,εN

(s, α) + Cπ,εN
(s, α), (10)

where

δ(s, α, i) =

⎧
⎪⎨

⎪⎩

tk if Bi
π,εN

(s, α) � 0 and i/Emax � tk

or Bi
π,εN

(s, α) � 0 and i/Emax > tk

tk+1 otherwise

CheckInterval returns false iff for all s ∈ PS , α ∈ Act the right-hand side
of (10) is less or equal to 0. Since Lemma 4 over-approximates diff(s, α, t+δ) false
positives are inevitable. Namely, it is possible that procedure CheckInterval
suggests that there exists a switching point within [tk, tk+1], while in reality
there is none. This however does not affect correctness of the algorithm and only
its running time.

Finding Maximal Transitions. Here we show that there exists a subset of states,
such that, if the optimal strategy for these states does not change on an interval,
then the optimal strategy for all states does not change on this interval.

In the following we call a pair (s, α) ∈ PS × Act a transition. For transitions
(s, α), (s′, α′) ∈ PS ×Act we write (s, α) �k (s′, α′) iff Cπ,εN(s, α) � Cπ,εN(s′, α′)
and ∀i = 0..k : Bi

π,εN
(s, α) � Bi

π,εN
(s′, α′). We say that a transition (s, α) is

maximal if there exists no other transition (s′, α′) that satisfies the following:
(s, α) �k (s′, α′) and at least one of the following conditions hold: Cπ,εN(s, α) <
Cπ,εN(s′, α′) or ∃i = 0..k : Bi

π,εN
(s, α) < Bi

π,εN
(s′, α′). The set of all maximal

transitions is denoted with Tmax(k).

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 203

We prove that if inequality (10) holds for all transitions from Tmax(k), then it
holds for all transitions. Thus only transitions from Tmax(k) have to be checked
by procedure CheckInterval. In our implementation we only compute Tmax(k)
before the call to CheckInterval at line 11 of Algorithm 2, and use the set
A = PS × Act within the while-loop.

4.4 Optimisation for Large Models

Here we discuss a number of implementation improvements developers should
consider when applying our algorithm to large case studies:

Switching points. It may happen that the optimal strategy switches very often
on a time interval, while the effect of these frequent switches is negligible. The
difference may be so small that the ε-optimal strategy actually stays stationary
on this interval. In addition, floating-point computations may lead to imprecise
results: Values that are 0 in theory might be represented by non-zero float-point
numbers, making it seem as if the optimal strategy changed its decision, when
in fact it did not. To counteract these issues we can modify CheckInterval
such that it outputs false even if the right-hand side of (10) is positive, as long
as it is sufficiently small. The following lemma proves that the error introduced
by not switching the decision is acceptable:

Lemma 5. Let δ = tk+1 − tk, ε′ = ε − εi, ε ∈ (0, ε′ · δ/T) and N(δ, ε) =
(Emaxδ)2/2.0/ε. If ∀s ∈ PS , α ∈ Act, τ ∈ [tk, tk+1] the right-hand side of (10) is
not greater than (ε′δ/T − ε)/N(δ, ε), then π is ε′δ/T -optimal in [tk, tk+1].

Optimal strategy. In some cases computation of the optimal strategy in the way
it was described in Sect. 4.2 is computationally expensive, or is not possible at
all. For example, if some values |d(i)

π (s)| are larger than the maximal floating
point number that a computer can store, or if the computation of |S|+1 deriva-
tives is already too prohibitive for models of large state space, or if the values
R(s, π, s′) can only be approximated and not computed precisely. With the help
of Lemma 5 and minor modifications to Algorithm 1, the correctness and con-
vergence of Algorithm 1 can be preserved even when the strategy computed by
FindStrategy is not guaranteed to be optimal.

5 Empirical Evaluation

We implemented our algorithm as a part of IMCA [GHKN12]. Experiments were
conducted as single-thread processes on an Intel Core i7-4790 with 32 GB of
RAM. We compare the algorithm presented in this paper with [Neu10] and
[BHHK15]. Both are available in IMCA. We use the following abbreviations
to refer to the algorithms: FixStep for [Neu10], Unif+ for [BHHK15] and
SwitchStep for Algorithm 1. The value of the parameter w in Algorithm 1
is set to 0.1, εi = 0. We keep the default values of all other algorithms.

204 Y. Butkova and G. Fox

Table 1. The discretisation step used in some of the experiments shown in Fig. 3.

δF min δS avg δS max δS T precision

dpm-5-2 3.7 · 10−6 3.65 · 10−5 0.27 3.97 15 0.001

qs-2-3 1.04 · 10−6 1.04 · 10−6 0.017 7.56 15 0.001

ps-2-6 3.54 · 10−6 0.0003 6 17.4 18 0.001

The evaluation is performed on a set of published benchmarks:
dpm-j-k: A model of a dynamic power management system [QWP99], repre-

senting the internals of a Fujitsu disk drive. The model contains a queue, service
requester, service provider and a power manager. The requester generates tasks
of j types differing in energy requirements, that are stored in the queue of size
k. The power manager selects the processing mode for the service provider. A
state is a goal state if the queue of at least one task type is full.

qs-j-k and ps-j-k: Models of a queuing system [HH12] and a polling system
[GHH+13] where incoming requests of j types are buffered in two queues of size
k each, until they are processed by the server. We consider the state with both
queues being full to form the goal state set.

The memory required by all three algorithms is polynomial in the size of the
model. For the evaluation we therefore concentrate on runtime only. We set the
time limit for the experiments to 15 minutes. Timeouts are marked by x in the
plots. Runtimes are given in seconds. All the plots use the log-log axis.

Results

SwitchStep vs FixStep. Figure 3 compares
runtimes of SwitchStep and FixStep. For
these experiments precision is set to 10−3

and the state space size ranges from 102

to 105.

Fig. 3. Running time comparison of
FixStep and SwitchStep.

This plot represents the general trend
observed in many experiments: The algo-
rithm FixStep does not scale well with the
size of the problem (state space, precision,
time bound). For larger benchmarks it usu-
ally required more than 15 minutes. This is
likely due to the fact that the discretisation
step used by FixStep is very small, which
means that the algorithm performs many
iterations. In fact Table 1 reports on the size
of the discretisation steps for both FixStep and SwitchStep on a few bench-
marks. Here the column δF shows the length of the discretisation step of FixStep.
As we mentioned in Sect. 3, this step is fixed for the selected values of time
bound and precision. Columns min δS, avgδS and max δS show minimal, average

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 205

and maximal steps used by SwitchStep respectively. The average step used by
SwitchStep is several orders of magnitude larger than that of FixStep. There-
fore SwitchStep performs much less iterations. Even though each iteration takes
longer, overall significant decrease in the amount of iterations leads to much
smaller total runtime.

Table 2. Parameters of the experiments shown in Fig. 4.

|S| |Act| Emax T

dpm-[4..7]-2 2061 - 158,208 4 - 7 4.6 - 9.1 15

dpm-3-[2..20] 412 - 115,108 3 3.3 100

qs-1-[2..7] 124 - 3,614 4 - 14 11.3 - 35.3 6

qs-[1..4]-2 124 - 16,924 4 - 8 11.3 6

ps-[1..8]-2 47 - 156,315 3 - 8 3.6 - 257.6 18

ps-2-[1-7] 65 - 743,969 2 - 4 4.8 - 5.6 18

SwitchStep vs Unif+.
In order to compare
SwitchStep with Unif+

we have to restrict our-
selves to a subclass of
Markov automata in which
probabilistic and Marko-
vian states alternate, and
probabilistic states have
only 1 successor for each
action. This is due to the
fact that Unif+ is available in IMCA only for this subclass of models.

Fig. 4. Running times of algorithms SwitchStep and Unif+.

Figure 4 shows the comparison of running times of SwitchStep and Unif+.
For the plot on the left we varied those model parameters that affect state space
size, number of non-deterministic actions and maximal exit rate. In the plot on
the right the model parameters are fixed, but precision and time bounds used
for the experiments are differing. Table 2 shows the parameters of the models
used in these experiments. We observe that there are cases in which SwitchStep
performs remarkably better than Unif+, and cases of the opposite. Consider the
experiments in Fig. 4, right. They show that Unif+ may be highly sensitive to
variations of time bounds and precision, while SwitchStep is more robust in this

206 Y. Butkova and G. Fox

respect. This is due to the fact that the scheduler computed by Unif+ does not
have means to observe time precisely and can only guess it. This may be good
enough, which is the case on the ps benchmark. However if it is not, then better
precision will require many more computations. Additionally Unif+ does not use
discretisation. This means that the increase of the time bound from T1 to T2 may
significantly increase the overall running time, even if no new switching points
appear on the interval [T1, T2]. SwitchStep does not suffer from these issues due
to the fact that it considers schedulers that observe the time precisely and uses
the discretisation. Large time intervals that introduce no switching points will
likely be handled within one iteration.

In general, SwitchStep performs at its best when there are not too many
switching points, which is what is observed in most published case studies.

Conclusions: We conclude that SwitchStep does not replace all existing algo-
rithms for time bounded reachability. However it does improve the state of the
art in many cases and thus occupies its own niche among available solutions.

References

[Bal07] Balbo, G.: Introduction to generalized stochastic Petri nets. In: Bernardo,
M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83–131. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 3

[BCS10] Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and
extensible framework for dynamic fault tree analysis. IEEE Trans. Depend-
able Sec. Comput. 7(2), 128–143 (2010). https://doi.org/10.1109/TDSC.
2009.45

[Ber00] Bertsekas, D.P.: Dynamic Programming and Optimal Control, 2nd edn.
Athena Scientific, Belmont (2000)

[BHHK15] Butkova, Y., Hatefi, H., Hermanns, H., Krčál, J.: Optimal continuous time
Markov decisions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015.
LNCS, vol. 9364, pp. 166–182. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24953-7 12

[BKL+17] Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring
the reliability of your model checker: interval iteration for Markov decision
processes. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol.
10426, pp. 160–180. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-63387-9 8

[BS11] Buchholz, P., Schulz, I.: Numerical analysis of continuous time Markov
decision processes over finite horizons. Comput. OR 38(3), 651–659 (2011).
https://doi.org/10.1016/j.cor.2010.08.011

[DJKV17] Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: a modern
probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63390-9 31

[EHKZ13] Eisentraut, C., Hermanns, H., Katoen, J., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol.
7927, pp. 90–109. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38697-8 6

https://doi.org/10.1007/978-3-540-72522-0_3
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1109/TDSC.2009.45
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-24953-7_12
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1016/j.cor.2010.08.011
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-642-38697-8_6
https://doi.org/10.1007/978-3-642-38697-8_6

Optimal Time-Bounded Reachability Analysis for Concurrent Systems 207

[FRSZ16] Fearnley, J., Rabe, M.N., Schewe, S., Zhang, L.: Efficient approximation
of optimal control for continuous-time Markov games. Inf. Comput. 247,
106–129 (2016). https://doi.org/10.1016/j.ic.2015.12.002

[GHH+13] Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Modelling,
reduction and analysis of Markov automata. In: Joshi, K., Siegle, M.,
Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 55–
71. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40196-
1 5

[GHH+14] Guck, D., Hatefi, H., Hermanns, H., Katoen, J., Timmer, M.: Analysis of
timed and long-run objectives for Markov automata. Log. Methods Com-
put. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:17)2014

[GHKN12] Guck, D., Han, T., Katoen, J.-P., Neuhäußer, M.R.: Quantitative timed
analysis of interactive Markov chains. In: Goodloe, A.E., Person, S. (eds.)
NFM 2012. LNCS, vol. 7226, pp. 8–23. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28891-3 4

[Hat17] Hatefi-Ardakani, H.: Finite horizon analysis of Markov automata. Ph.D.
thesis, Saarland University, Germany (2017). http://scidok.sulb.uni-
saarland.de/volltexte/2017/6743/

[Her02] Hermanns, H.: Interactive Markov Chains: The Quest for Quantified Qual-
ity. LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/
3-540-45804-2

[HH12] Hatefi, H., Hermanns, H.: Model checking algorithms for Markov automata.
ECEASST 53 (2012). http://journal.ub.tu-berlin.de/eceasst/article/view/
783

[HH14] Hartmanns, A., Hermanns, H.: The modest toolset: an integrated envi-
ronment for quantitative modelling and verification. In: Ábrahám, E.,
Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 51

[HH15] Hatefi, H., Hermanns, H.: Improving time bounded reachability compu-
tations in interactive Markov chains. Sci. Comput. Program. 112, 58–74
(2015). https://doi.org/10.1016/j.scico.2015.05.003

[HM14] Haddad, S., Monmege, B.: Reachability in MDPs: refining convergence of
value iteration. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014.
LNCS, vol. 8762, pp. 125–137. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11439-2 10

[Jen53] Jensen, A.: Markoff chains as an aid in the study of markoff processes.
Scand. Actuarial J. 1953(sup1), 87–91 (1953). https://doi.org/10.1080/
03461238.1953.10419459

[KNP11] Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: verification of
probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22110-1 47

[MBC+98] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Mod-
elling with generalized stochastic Petri nets. SIGMETRICS Perform. Eval.
Rev. 26(2), 2 (1998). https://doi.org/10.1145/288197.581193

[MCB84] Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems. ACM Trans.
Comput. Syst. 2(2), 93–122 (1984). https://doi.org/10.1145/190.191

[Mil68] Miller, B.: Finite state continuous time Markov decision processes with a
finite planning horizon. SIAM J. Control 6(2), 266–280 (1968). https://
doi.org/10.1137/0306020

https://doi.org/10.1016/j.ic.2015.12.002
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.1007/978-3-642-40196-1_5
https://doi.org/10.2168/LMCS-10(3:17)2014
https://doi.org/10.1007/978-3-642-28891-3_4
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/
http://scidok.sulb.uni-saarland.de/volltexte/2017/6743/
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
http://journal.ub.tu-berlin.de/eceasst/article/view/783
http://journal.ub.tu-berlin.de/eceasst/article/view/783
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1016/j.scico.2015.05.003
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1007/978-3-319-11439-2_10
https://doi.org/10.1080/03461238.1953.10419459
https://doi.org/10.1080/03461238.1953.10419459
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/288197.581193
https://doi.org/10.1145/190.191
https://doi.org/10.1137/0306020
https://doi.org/10.1137/0306020

208 Y. Butkova and G. Fox

[MMS85] Meyer, J.F., Movaghar, A., Sanders, W.H.: Stochastic activity networks:
structure, behavior, and application. In: International Workshop on Timed
Petri Nets, Torino, pp. 106–115. IEEE Computer Society (1985)

[Mol82] Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE
Trans. Comput. C–31(9), 913–917 (1982)

[Neu10] Neuhäußer, M.R.: Model checking nondeterministic and randomly timed
systems. Ph.D. thesis, RWTH Aachen University (2010). http://darwin.
bth.rwth-aachen.de/opus3/volltexte/2010/3136/

[Put94] Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming, 1st edn. Wiley, Hoboken (1994)

[QK18] Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96145-3 37

[QWP99] Qiu, Q. Wu, Q., Pedram, M.: Stochastic modeling of a power-managed
system: construction and optimization. In: ISLPED, 1999, pp. 194–199.
ACM (1999). https://doi.org/10.1145/313817.313923

[RS13] Rabe, M.N., Schewe, S.: Optimal time-abstract schedulers for CTMDPs
and continuous-time Markov games. Theor. Comput. Sci. 467, 53–67
(2013). https://doi.org/10.1016/j.tcs.2012.10.001

[SSM18] Salamati, M., Soudjani, S., Majumdar, R.: Approximate time bounded
reachability for CTMCs and CTMDPs: a Lyapunov approach. In: McIver,
A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 389–406.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2 24

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3136/
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3136/
https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1145/313817.313923
https://doi.org/10.1016/j.tcs.2012.10.001
https://doi.org/10.1007/978-3-319-99154-2_24
http://creativecommons.org/licenses/by/4.0/

	Optimal Time-Bounded Reachability Analysis for Concurrent Systems
	1 Introduction
	2 Preliminaries
	2.1 Time-Bounded Reachability

	3 Related Work
	4 Our Solution
	4.1 Computing the Reachability Value
	4.2 Choosing a Strategy
	4.3 Finding Switching Points
	4.4 Optimisation for Large Models

	5 Empirical Evaluation
	References

