
Foundations for Parallel Information Flow
Control Runtime Systems

Marco Vassena1(B), Gary Soeller2, Peter Amidon2, Matthew Chan3,
John Renner2, and Deian Stefan2(B)

1 Chalmers University, Gothenburg, Sweden
vassena@chalmers.se

2 UC San Diego, San Diego, USA
deian@cs.ucsd.edu

3 Awake Security, Sunnyvale, USA

Abstract. We present the foundations for a new dynamic information
flow control (IFC) parallel runtime system, LIOPAR. To our knowledge,
LIOPAR is the first dynamic language-level IFC system to (1) support
deterministic parallel thread execution and (2) eliminate both internal-
and external-timing covert channels that exploit the runtime system.
Most existing IFC systems are vulnerable to external timing attacks
because they are built atop vanilla runtime systems that do not account
for security—these runtime systems allocate and reclaim shared resources
(e.g., CPU-time and memory) fairly between threads at different secu-
rity levels. While such attacks have largely been ignored—or, at best,
mitigated—we demonstrate that extending IFC systems with parallelism
leads to the internalization of these attacks. Our IFC runtime system
design addresses these concerns by hierarchically managing resources—
both CPU-time and memory—and making resource allocation and recla-
mation explicit at the language-level. We prove that LIOPAR is secure,
i.e., it satisfies progress- and timing-sensitive non-interference, even when
exposing clock and heap-statistics APIs.

1 Introduction

Language-level dynamic information flow control (IFC) is a promising approach
to building secure software systems. With IFC, developers specify application-
specific, data-dependent security policies. The language-level IFC system—often
implemented as a library or as part of a language runtime system—then enforces
these policies automatically, by tracking and restricting the flow of information
throughout the application. In doing so, IFC can ensure that different application
components—even when buggy or malicious—cannot violate data confidentiality
or integrity.

This work was supported in part by the CONIX Research Center, one of six centers
in JUMP, a Semiconductor Research Corporation program sponsored by DARPA and
by gifts from Cisco and Fujitsu. This work was partly done while Marco Vassena and
Matthew Chan were at UCSD.

c© The Author(s) 2019
F. Nielson and D. Sands (Eds.): POST 2019, LNCS 11426, pp. 1–28, 2019.
https://doi.org/10.1007/978-3-030-17138-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17138-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-17138-4_1

2 M. Vassena et al.

The key to making language-level IFC practical lies in designing real-world
programming language features and abstractions without giving up on security.
Unfortunately, many practical language features are at odds with security. For
example, even exposing language features as simple as -statements can expose
users to timing attacks [42,64]. Researchers have made significant strides towards
addressing these challenges—many IFC systems now support real-world fea-
tures and abstractions safely [10,15,20,34,43,50,51,54,55,59,60,62,67,68]. To
the best of our knowledge, though, no existing language-level dynamic IFC sup-
ports parallelism. Yet, many applications rely on parallel thread execution. For
example, modern Web applications typically handle user requests in parallel, on
multiple CPU cores, taking advantage of modern hardware. Web applications
built atop state-of-the-art dynamic IFC Web frameworks (e.g., Jacqueline [67],
Hails [12,13], and LMonad [45]), unfortunately, do not handle user requests in
parallel—the language-level IFC systems that underlie them (e.g., Jeeves [68]
and LIO [54]) do not support parallel thread execution.

In this paper we show that extending most existing IFC systems—even con-
current IFC systems such as LIO—with parallelism is unsafe. The key insight
is that most IFC systems do not prevent sensitive computations from affecting
public computations; they simply prevent public computations from observing
such sensitive effects. In the sequential and concurrent setting, such effects are
only observable to attackers external to the program and thus outside the scope
of most IFC systems. However, when computations execute in parallel, they are
essentially external to one another and thus do not require an observer external
to the system—they can observe such effects internally.

Consider a program consisting of three concurrent threads: two public
threads—p0 and p1—and a secret thread—s0. On a single core, language-level
IFC can ensure that p0 and p1 do not learn anything secret by, for example,
disallowing them from observing the return values (or lack thereof) of the secret
thread. Systems such as LIO are careful to ensure that public threads cannot
learn secrets even indirectly (e.g., via covert channels that abuse the runtime sys-
tem scheduler). But, secret threads can leak information to an external observer
that monitors public events (e.g., messages from public threads) by influencing
the behavior of the public threads. For example, s0 can terminate (or not) based
on a secret and thus affect the amount of time p0 and p1 spend executing on
the CPU—if s0 terminated, the runtime allots the whole CPU to public threads,
otherwise it only allots, say, two thirds of the CPU to the public threads; this
allows an external attacker to trivially infer the secret (e.g., by measuring the
rate of messages written to a public channel). Unfortunately, such external tim-
ing attacks manifest internally to the program when threads execute in parallel,
on multiple cores. Suppose, for example, that p0 and s0 are co-located on a core
and run in parallel to p1. By terminating early (or not) based on a secret, s0
affects the CPU time allotted to p0, which can be measured by p1. For example,
p1 can count the number of messages sent from p0 on a public channel—the
number of p0 writes indirectly leaks whether or not s0 terminated.

Foundations for Parallel Information Flow Control Runtime Systems 3

We demonstrate that such attacks are feasible by building several proof-
of-concept programs that exploit the way the runtime system allocates and
reclaims shared resources to violate LIO’s security guarantees. Then, we design a
new dynamic parallel language-level IFC runtime system called LIOPAR, which
extends LIO to the parallel setting by changing how shared runtime system
resources—namely CPU-time and memory—are managed. Ordinary runtime
systems (e.g., GHC for LIO) fairly balance resources between threads; this means
that allocations or reclamations for secret LIO threads directly affect resources
available for public LIO threads. In contrast, LIOPAR makes resource manage-
ment explicit and hierarchical. When allocating new resources on behalf of a
thread, the LIOPAR runtime does not “fairly” steal resources from all threads.
Instead, LIOPAR demands that the thread requesting the allocation explicitly
gives up a portion of its own resources. Similarly, the runtime does not auto-
matically relinquish the resources of a terminated thread—it requires the parent
thread to explicitly reclaim them.

Nevertheless, automatic memory management is an integral component of
modern language runtimes—high-level languages (e.g., Haskell and thus LIO)
are typically garbage collected, relieving developers from manually reclaiming
unused memory. Unfortunately, even if memory is hierarchically partitioned,
some garbage collection (GC) algorithms, such as GHC’s stop-the-world GC,
may introduce timing covert channels [46]. Inspired by previous work on real-time
GCs (e.g., [3,5,6,16,44,48]), we equip LIOPAR with a per-thread, interruptible
garbage collector. This strategy is agnostic to the particular GC algorithm used:
our hierarchical runtime system only demands that the GC runs within the
memory confines of individual threads and their time budget.

In sum, this paper makes three contributions:

� We observe that several external timing attacks manifest internally in the
presence of parallelism and demonstrate that LIO, when compiled to run on
multiple cores, is vulnerable to such attacks (Sect. 2).

� In response to these attacks, we propose a novel parallel runtime system
design that safely manages shared resources by enforcing explicit and hier-
archical resource allocation and reclamation (Sect. 3). To our knowledge,
LIOPAR is the first parallel language-level dynamic IFC runtime system to
address both internal and external timing attacks that abuse the runtime
system scheduler, memory allocator, and GC.

� We formalize the LIOPAR hierarchical runtime system (Sect. 4) and prove
that it satisfies progress- and timing-sensitive non-interference (Sect. 5); we
believe that this is the first general purpose dynamic IFC runtime system to
provide such strong guarantees in the parallel setting [64].

Neither our attack nor our defense is tied to LIO or GHC—we focus on LIO
because it already supports concurrency. We believe that extending any existing
language-level IFC system with parallelism will pose the same set of challenges—
challenges that can be addressed using explicit and hierarchical resource
management.

4 M. Vassena et al.

2 Internal Manifestation of External Attacks

In this section we give a brief overview of LIO and discuss the implications
of shared, finite runtime system resources on security. We demonstrate several
external timing attacks against LIO that abuse two such resources—the thread
scheduler and garbage collector—and show how running LIO threads in parallel
internalizes these attacks.

2.1 Overview of the Concurrent LIO Information Flow Control
System

At a high level, the goal of an IFC system is to track and restrict the flow
of information according to a security policy—almost always a form of non-
interference [14]. Informally, this policy ensures confidentiality, i.e., secret data
should not leak to public entities, and integrity, i.e., untrusted data should not
affect trusted entities.

To this end, LIO tracks the flow of information at a coarse-granularity, by
associating labels with threads. Implicitly, the thread label classifies all the values
in its scope and reflects the sensitivity of the data that it has inspected. Indeed,
LIO “raises” the label of a thread to accommodate for reading yet more sensitive
data. For example, when a public thread reads secret data, its label is raised to
secret—this reflects the fact that the rest of the thread computation may depend
on sensitive data. Accordingly, LIO uses the thread’s current label or program
counter label to restrict its communication. For example, a secret thread can
only communicate with other secret threads.

In LIO, developers can express programs that manipulate data of varying
sensitivity—for example programs that handle both public and secret data—by
forking multiple threads, at run-time, as necessary. However, naively implement-
ing concurrency in an IFC setting is dangerous: concurrency can amplify and
internalize the termination covert channel [1,58], for example, by allowing public
threads to observe whether or not secret threads terminated. Moreover, concur-
rency often introduces internal timing covert channels wherein secret threads
leak information by influencing the scheduling behavior of public threads. Both
classes of covert channels are high-bandwidth and easy to exploit.

Stefan et al. [54] were careful to ensure that LIO does not expose these
termination and timing covert channels internally. LIO ensures that even if secret
threads terminate early, loop forever, or otherwise influence the runtime system
scheduler, they cannot leak information to public threads. But, secret threads do
affect public threads with those actions and thus expose timing covert channels
externally—public threads just cannot detect it. In particular, LIO disallows
public threads from (1) directly inspecting the return values (and thus timing
and termination behavior) of secret threads, without first raising their program
counter label, and (2) observing runtime system resource usage (e.g., elapsed
time or memory availability) that would indirectly leak secrets.

LIO prevents public threads from measuring CPU-time usage directly—
LIO does not expose a clock API—and indirectly—threads are scheduled fairly

Foundations for Parallel Information Flow Control Runtime Systems 5

in a round-robin fashion [54]. Similarly, LIO prevents threads from measur-
ing memory usage directly—LIO does not expose APIs for querying heap
statistics—and indirectly, through garbage collection cycles (e.g., induced by
secret threads) [46]—GHC’s stop-the-world GC stops all threads. Like other IFC
systems, the security guarantees of LIO are weaker in practice because its formal
model does not account for the GC and assumes memory to be infinite [54,55].

2.2 External Timing Attacks to Runtime Systems

Since secret threads can still influence public threads by abusing the sched-
uler and GC, LIO is vulnerable to external timing and termination attacks, i.e.,
attacks that leak information to external observers. To illustrate this, we craft
several LIO programs consisting of two threads: a public thread p that writes
to the external channel observed by the attacker and a secret thread s, which
abuses the runtime to influence the throughput of the public thread. The secret
thread can leak in many ways, for example, thread s can:

1. fork bomb, i.e., fork thousands of secret threads that will be interleaved with
p and thus decrease its write throughput;

2. terminate early to relinquish theCPUto p and thus double itswrite throughput;
3. exhaust all memory to crash the program, and thus stop p from further writing

to the channel;
4. force a garbage collection which, because of GHC’s stop-the-world GC, will

intermittently stop p from writing to the channel.

These attacks abuse the runtime’s automatic allocation and reclamation of
shared resources, i.e., CPU time and memory. In particular, attack 1 hinges on
the runtime allocating CPU time for the new secret threads, thus reducing the
CPU time allotted to the public thread. Dually, attack 2 relies on it reclaiming
the CPU time of terminated threads—it reassigns it to public threads. Simi-
larly, attacks 3 and 4 force the runtime to allocate all the available memory and
preemptively reassign CPU time to the GC, respectively.

These attacks are not surprising, but, with the exception of the GC-
based attack [46], they are novel in the IFC context. Moreover these attacks
are not exhaustive—there are other ways to exploit the runtime system—
nor optimized—our implementation leaks sensitive data at a rate of roughly
2bits/second1. Nevertheless, they are feasible and—because they abuse the
runtime—they are effective against language-level external-timing mitigation
techniques, including [54,71]. The attacks are also feasible on other systems—
similar attacks that abuse the GC have been demonstrated for both the V8 and
JVM runtimes [46].

1 A more assiduous attacker could craft similar attacks that leak at higher bit-rates.

6 M. Vassena et al.

Fig. 1. In this attack three threads run in parallel, colluding to leak secret secret. The
two public threads write to a public output channel; the relative number of messages
written on the channel by each thread directly leaks the secret (as inferred by p1). To
affect the rate that p0 can write, s0 conditionally terminates—which will free up time
on core c0 for p0 to execute.

2.3 Internalizing External Timing Attacks

LIO, like almost all IFC systems, considers external timing out of scope for its
attacker model. Unfortunately, when we run LIO threads on multiple cores, in
parallel, the allocation and reclamation of resources on behalf of secret threads
is indirectly observable by public threads. Unsurprisingly, some of the above
external timing attacks manifest internally—a thread running on a parallel core
acts as an “external” attacker. To demonstrate the feasibility of such attacks, we
describe two variants of the aforementioned scheduler-based attacks which leak
sensitive information internally to public threads.

Secret threads can leak information by relinquishing CPU time, which the
runtime reclaims and unsafely redistributes to public threads running on the
same core. Our attack program consists of three threads: two public threads—p0
and p1—and a secret thread—s0. Figure 1 shows the pseudo-code for this attack.
Note that the threads are secure in isolation, but leak the value of secret when
executed in parallel, with a round robin scheduler. In particular, threads p0 and
s0 run concurrently on core c0 using half of the CPU time each, while p1 runs in
parallel alone on core c1 using all the CPU time. Both public threads repeatedly
write their respective thread IDs to a public channel. The secret thread, on the
other hand, loops forever or terminates depending on secret. Intuitively, when
the secret thread terminates, the runtime system redirects its CPU time to p0,
causing both p1 and p0 to write at the same rate. In converse, when the secret
thread does not terminate early, p0 is scheduled in a round-robin fashion with
s0 on the same core and can thus only write half as fast as p1. More specifically:

� If secret = true, thread s0 terminates and the runtime system assigns all
the CPU time of core c0 to public thread p0, which then writes at the same
rate as thread p1 on core c1. Then, p0 writes as many times as p1, which then
returns true.

Foundations for Parallel Information Flow Control Runtime Systems 7

� If secret = false, secret thread s0 loops and public thread p0 shares the
CPU time on core c0 with it. Then, p0 writes messages at roughly half the rate
of thread p1, which writes more often—it has all the CPU time on c1—and
thus returns false.2

Secret LIO threads can also leak information by allocating many secret
threads on a core with public threads—this reduces the CPU-time available
to the public threads. For example, using the same setting with three threads
from before, the secret thread forks a spinning thread on core c1 by replacing
command terminate with command fork (forever skip) c1 in the code of
thread s0 in Fig. 1. Intuitively, if secret is false, then p1 writes more often
than p0 before, otherwise the write rate of p1 decreases—it shares core c1 with
the child thread of s0—and p0 writes as often as p1.

Not all external timing attacks can be internalized, however. In particular,
GHC’s approach to reclaiming memory via a stop-the-world GC simultaneously
stops all threads on all cores, thus the relative write rate of public threads remain
constant. Interestingly, though, implementing LIO on runtimes (e.g., Node.js as
proposed by Heule et al. [17]) with modern parallel garbage collectors that do not
always stop the world would internalize the GC-based external timing attacks.
Similarly, abusing GHC’s memory allocation to exhaust all memory crashes all
the program threads and, even though it cannot be internalized, it still results
in information leakage.

3 Secure, Parallel Runtime System

To address the external and internal timing attacks, we propose a new dynamic
IFC runtime system design. Fundamentally, today’s runtime systems are vulner-
able because they automatically allocate and reclaim resources that are shared
across threads of varying sensitivity. However, the automatic allocation and
reclamation is not in itself a problem—it is only a problem because the run-
time steals (and grants) resources from (and to) differently-labeled threads.

Our runtime system, LIOPAR, explicitly partitions CPU-time and memory
among threads—each thread has a fixed CPU-time and memory budget or quota.
This allows resource management decisions to be made locally, for each thread,
independent of the other threads in the system. For example, the runtime sched-
uler of LIOPAR relies on CPU-time partitioning to ensure that threads always
run for a fixed amount of time, irrespective of the other threads running on the
same core. Similarly, in LIOPAR, the memory allocator and garbage collector rely
on memory partitioning to be able to allocate and collect memory on behalf of
a thread without being influenced or otherwise influencing other threads in the
system. Furthermore, partitioning resources among threads enables fine-grained
control of resources: LIOPAR exposes secure primitives to (i) measure resource
usage (e.g., time and memory) and (ii) elicit garbage collection cycles.

2 The attacker needs to empirically find parameter n, so that p1 writes roughly twice
as much as thread p0 with half CPU time on core c0.

8 M. Vassena et al.

The LIOPAR runtime does not automatically balance resources between
threads. Instead, LIOPAR makes resource management explicit at the language
level. When forking a new thread, for example, LIOPAR demands that the par-
ent thread give up part of its CPU-time and memory budgets to the children.
Indeed, LIOPAR even manages core ownership or capabilities that allow threads
to fork threads across cores. This approach ensures that allocating new threads
does not indirectly leak any information externally or to other threads. Dually,
the LIOPAR runtime does not re-purpose unused memory or CPU-time, even
when a thread terminates or “dies” abruptly—parent threads must explicitly
kill their children when they wish to reclaim their resources.

To ensure that CPU-time and memory can always be reclaimed, LIOPAR

allows threads to kill their children at any time. Unsurprisingly, this feature
requires restricting the LIOPAR floating-label approach more than that of LIO—
LIOPAR threads cannot raise their current label if they have already forked other
threads. As a result, in LIOPAR threads form a hierarchy—children threads are
always at least as sensitive as their parent—and thus it is secure to expose an
API to allocate and reclaim resources.

Attacks Revisited. LIOPAR enforces security against reclamation-based attacks
because secret threads cannot automatically relinquish their resources. For exam-
ple, our hierarchical runtime system stops the attack in Fig. 1: even if secret
thread s0 terminates (secret = true), the throughput of public thread p0
remains constant—LIOPAR does not reassign the CPU time of s0 to p0, but keeps
s0 spinning until it gets killed. Similarly, LIOPAR protects against allocation-
based attacks because secret threads cannot steal resources owned by other public
threads. For example, the fork-bomb variant of the previous attack fails because
LIOPAR aborts command fork (forever skip) c1—thread s0 does not own the
core capability c1—and thus the throughput of p1 remains the same. In order
to substantiate these claims, we first formalize the design of the hierarchical
runtime system (Sect. 4) and establish its security guarantees (Sect. 5).

Trust Model. This work addresses attacks that exploit runtime system resource
management — in particular memory and CPU-time. We do not address attacks
that exploit other shared runtime system state (e.g., event loops [63], lazy eval-
uation [7,59]), shared operating system state (e.g., file system locks [24], events
and I/O [22,32]), or shared hardware (e.g., caches, buses, pipelines and hard-
ware threads [11,47]) Though these are valid concerns, they are orthogonal and
outside the scope of this paper.

4 Hierarchical Calculus

In this section we present the formal semantics of LIOPAR. We model LIOPAR

as a security monitor that executes simply typed λ-calculus terms extended
with LIO security primitives on an abstract machine in the style of Sestoft [53].
The security monitor reduces secure programs and aborts the execution of leaky
programs.

Foundations for Parallel Information Flow Control Runtime Systems 9

Fig. 2. Sequential LIOPAR.

10 M. Vassena et al.

Semantics. The state of the monitor, written (Δ, pc, N | t ,S), stores the state
of a thread under execution and consists of a heap Δ that maps variables to
terms, the thread’s program counter label pc, the set N containing the identifiers
of the thread’s children, the term currently under reduction t and a stack of
continuations S . Figure 2 shows the interesting rules of the sequential small-step
operational semantics of the security monitor. The notation s �μ s ′ denotes a
transition of the machine in state s that reduces to state s ′ in one step with
thread parameters μ = (h, cl).3 Since we are interested in modeling a system
with finite resources, we parameterize the transition with the maximum heap
size h ∈ N. Additionally, the clearance label cl represents an upper bound over
the sensitivity of the thread’s floating counter label pc. Rule [App1] begins a
function application. Since our calculus is call-by-name, the function argument
is saved as a thunk (i.e., an unevaluated expression) on the heap at fresh location
x and the indirection is pushed on the stack for future lookups.4 Note that the
rule allocates memory on the heap, thus the premise |Δ| < h forbids a heap
overflow, where the notation |Δ| denotes the size of the heap Δ, i.e., the number
of bindings that it contains.5 To avoid overflows, a thread can measure the
size of its own heap via primitive size (Sect. 4.2). If t1 evaluates to a function,
e.g., λy .t , rule [App2] starts evaluating the body, in which the bound variable
y is substituted with the heap-allocated argument x , i.e., t [x / y]. When the
evaluation of the function body requires the value of the argument, variable x is
looked up in the heap (rule [Var]). In the next paragraph we present the rules
of the basic security primitives. The other sequential rules are available in the
extended version of this paper.

Security Primitives. A labeled value Labeled � t◦ of type Labeled τ consists
of term t of type τ and a label �, which reflects the sensitivity of the content.
The annotation t◦ denotes that term t is closed and does not contain any free
variable, i.e., fv(t) = ∅. We restrict the syntax of labeled values with closed
terms for security reasons. Intuitively, LIOPAR allocates free variables inside a
secret labeled values on the heap, which then leaks information to public threads
with its size. For example, a public thread could distinguish between two secret
values, e.g., Labeled H x with heap Δ = [x �→ 42], and Labeled H 0 with heap
Δ = ∅, by measuring the size of the heap. To avoid that, labeled values are
closed and the size of the heap of a thread at a certain security level, is not
affected by data labeled at different security levels. A term of type LIO τ is
a secure computation that performs side effects and returns a result of type τ .
Secure computations are structured using standard monadic constructs return t ,
which embeds term t in the monad, and bind, written t1>>=t2, which sequentially

3 We use record notation, i.e., μ.h and μ.cl , to access the components of μ.
4 The calculus does not feature lazy evaluation. Laziness, because of sharing, intro-

duces a covert channel, which has already been considered in previous work [59].
5 To simplify reasoning, our generic memory model is basic and assumes a uniform

size for all the objects stored in the heap. We believe that it is possible to refine our
generic model with more accurate memory models (e.g., GHC’s tagless G-machine
(STG) [23], the basis for GHC’s runtime [39]), but leave this to future work.

Foundations for Parallel Information Flow Control Runtime Systems 11

composes two monadic actions, the second of which takes the result of the first as
an argument. Rule [Bind1] deconstructs a computation t1>>=t2 into term t1 to be
reduced first and pushes on the stack the continuation >>=t2 to be invoked after
term t1.6 Then, the second rule [Bind2] pops the topmost continuation placed
on the stack (i.e., >>=t2) and evaluates it with the result of the first computation
(i.e., t2 t1), which is considered complete when it evaluates to a monadic value,
i.e., to syntactic form return t1. The runtime monitor secures the interaction
between computations and labeled values. In particular, secure computations can
construct and inspect labeled values exclusively with monadic primitives label
and unlabel respectively. Rules [Label1] and [Unlabel1] are straightforward
and follow the pattern seen in the other rules. Rule [Label2] generates a labeled
value at security level �, subject to the constraint pc � � � cl , which prevents
a computation from labeling values below the program counter label pc or above
the clearance label cl .7 The rule computes the closure of the content, i.e., closed
term t◦, by recursively substituting every free variable in term t with its value in
the heap, written Δ∗(t). Rule [Unlabel2] extracts the content of a labeled value
and taints the program counter label with its label, i.e., it rises it to pc � �, to
reflect the sensitivity of the data that is now in scope. The premise pc � � � cl
ensures that the program counter label does not float over the clearance cl . Thus,
the run-time monitor prevents the program counter label from floating above the
clearance label (i.e., pc � cl always holds).

The calculus also includes concurrent primitives to allocate resources when
forking threads (fork and spawn in Sect. 4.1), reclaim resources and measure
resource usage (kill , size, and time in Sect. 4.2), threads synchronization and
communication (wait , send and receive in the extended version of this paper).

4.1 Core Scheduler

In this section, we extend LIOPAR with concurrency, which enables (i) interleaved
execution of threads on a single core and (ii) simultaneous execution on κ cores.
To protect against attacks that exploit the automatic management of shared
finite resource (e.g., those in Sect. 2.3), LIOPAR maintains a resource budget for
each running thread and updates it as threads allocate and reclaim resources.
Since κ threads execute at the same time, those changes must be coordinated in
order to preserve the consistency of the resource budgets and guarantee deter-
ministic parallelism. For this reason, the hierarchical runtime system is split in
two components: (i) the core scheduler, which executes threads on a single core,
ensures that they respect their resource budgets and performs security checks,
and (ii) the top-level parallel scheduler, which synchronizes the execution on mul-
tiple cores and reassigns resources by updating the resource budgets according
to the instructions of the core schedulers. We now introduce the core scheduler
and describe the top-level parallel scheduler in Sect. 4.3.

6 Even though the stack size is unbounded in this model, we could account for its
memory usage by explicitly allocating it on the heap, in the style of Yang et al. [66].

7 The labels form a security lattice (L , �, �).

12 M. Vassena et al.

Fig. 3. Concurrent LIOPAR.

Syntax. Figure 3 presents the core scheduler, which has access to the global state
Σ = (T,B,H , θ, ω), consisting of a thread pool map T , which maps a thread id
to the corresponding thread’s current state, the time budget map B, a memory
budget map H , core capabilities map θ, and the global clock ω. Using these maps,
the core scheduler ensures that thread n: (i) performs B(n) uninterrupted steps
until the next thread takes over, (ii) does not grow its heap above its maximum
heap size H (n), and (iii) has exclusive access to the free core capabilities θ(n).
Furthermore, each thread id n records the initial current label when the thread
was created (n.pc), its clearance (n.cl), and the core where it runs (n.k), so that

Foundations for Parallel Information Flow Control Runtime Systems 13

the runtime system can enforce security. Notice that thread ids are opaque to
threads—they cannot forge them nor access their fields.

Hierarchical Scheduling. The core scheduler performs deterministic and hier-
archical scheduling—threads lower in the hierarchy are scheduled first, i.e., par-
ent threads are scheduled before their children. The scheduler manages a core
run queue Q , which is structured as a binary tree with leaves storing thread ids
and residual time budgets. The notation nb indicates that thread n can run for
b more steps before the next thread runs. When a new thread is spawned, the
scheduler creates a subtree with the parent thread on the left and the child on
the right. The scheduler can therefore find the thread with the highest priority
by following the left spine of the tree and backtracking to the right if a thread has
no residual budget.8 We write Q [〈nb〉] to mean the first thread encountered via
this traversal is n with budget b. As a result, given the slice Q [〈n1+b〉], thread
n is the next thread to run, and Q [〈n0〉] occurs only if all threads in the queue
have zero residual budget. We overload this notation to represent tree updates: a
rule Q [〈n1+b〉] → Q [〈nb〉] finds the next thread to run in queue Q and decreases
its budget by one.

Semantics. Figure 3 formally defines the transition Q
(n,s,e)−−−−→Σ Q ′, which

represents an execution step of the core scheduler that schedules thread n in
core queue Q , executes it with global state Σ = (T,B,H , θ, ω) and updates the
queue to Q ′. Additionally, the core scheduler informs the parallel scheduler of
the final state s of the thread and requests on its behalf to update the global
state by means of event message e. In rule [Step], the scheduler retrieves the
next thread in the schedule, i.e., Q [〈n1+b〉] and its state in the thread pool
from the global state, i.e., Σ.T (n) = s. Then, it executes the thread for one
sequential step with its memory budget and clearance, i.e., s �μ s ′ with μ =
(Σ .H (n),n.cl), sends the empty event ε to the parallel scheduler, and decrements
the thread’s residual budget in the final queue, i.e., Q [〈nb〉]. In rule [Fork],
thread n creates a new thread t with initial label �L and clearance �H, such
that �L � �H and pc � �L. The child thread runs on the same core of
the parent thread, i.e., n.k , with fresh id n ′, which is then added to the set of
children, i.e., {n ′} ∪ N . Since parent and child threads do not share memory,
the core scheduler must copy the portion of the parent’s private heap reachable
by the child’s thread, i.e., Δ′; we do this by copying the bindings of the variables
that are transitively reachable from t , i.e., fv∗(t ,Δ), from the parent’s heap
Δ. The parent thread gives h2 of its memory budget Σ .H (n) to its child. The
conditions |Δ| � h1 and |Δ′| � h2, ensure that the heaps do not overflow their
new budgets. Similarly, the core scheduler splits the residual time budget of

8 When implemented, this procedure might introduce a timing channel that leaks
the number of threads running on the core. In practice, techniques from real time
schedulers can be used to protect against such timing channels. The model of LIOPAR

does not capture the execution time of the runtime system itself and thus this issue
does not arise in the security proofs.

14 M. Vassena et al.

the parent into b1 and b2 and informs the parallel scheduler about the new
thread and its resources with event fork(Δ′,n ′, t , b2, h2), and lastly updates the
tree Q by replacing the leaf 〈n1+b1+b2〉 with the two-leaves tree 〈〈nb1〉|〈n ′b2〉〉,
so that the child thread will be scheduled immediately after the parent has
consumed its remaining budget b1, as explained above. Rule [Spawn] is similar
to [Fork], but consumes core capability resources instead of time and memory.
In this case, the core scheduler checks that the parent thread owns the core
where the child is scheduled and the core capabilities assigned to the child, i.e.,
θ(n) = {k } ∪ K1 ∪ K2 for some set K2, and informs the parallel scheduler with
event spawn(Δ′,n ′, t ,K1). Rule [Stuck] performs busy waiting by consuming
the time budget of the scheduled thread, when it is stuck and cannot make any
progress—the premises of the rule enumerate the conditions under which this
can occur (see the extended version of this paper for details). Lastly, in rule
[ContextSwitch] all the threads scheduled in the core queue have consumed
their time budget, i.e., Q [〈n0〉] and the core scheduler resets their residual budget
using the budget map Σ.B. In the rule, the notation Q [〈nb

i 〉] selects the i-th leaf,
where i ∈ {1 . . |Q |} and |Q | denotes the number of leaves of tree Q and symbol
◦ denotes the thread identifier of the core scheduler, which updates a dummy
thread that simply spins during a context-switch or whenever the core is unused.

4.2 Resource Reclamation and Observations

The calculus presented so far enables threads to manage their time, memory and
core capabilities hierarchically, but does not provide any primitive to reclaim
their resources. This section rectifies this by introducing (i) a primitive to kill a
thread and return its resources back to the owner and (ii) a primitive to elicit a
garbage collection cycle and reclaim unused memory. Furthermore, we demon-
strate that the runtime system presented in this paper is robust against timing
attacks by exposing a timer API allowing threads to access a global clock.9

Intuitively, it is secure to expose this feature because LIOPAR ensures that the
time spent executing high threads is fixed in advanced, so timing measurements
of low threads remain unaffected. Lastly, since memory is hierarchically par-
titioned, each thread can securely query the current size of its private heap,
enabling fine-grained control over the garbage collector.

Kill. A parent thread can reclaim the resources given to its child thread n ′, by
executing kill n ′. If the child thread has itself forked or spawned other threads,
they are transitively killed and their resources returned to the parent thread.
The concurrent rule [Kill2] in Fig. 4 initiates this process, which is completed
by the parallel scheduler via event kill(n ′). Note that the rule applies only when
the thread killed is a direct child of the parent thread—that is when the parent’s
children set has shape {n ′} ∪ N for some set N . Now that threads can unre-
strictedly reclaim resources by killing their children, we must revise the primitive
9 An external attacker can take timing measurements using network communications.

An attacker equipped with an internal clock is equally powerful but simpler to
formalize [46].

Foundations for Parallel Information Flow Control Runtime Systems 15

Fig. 4. LIOPAR with resource reclamation and observation primitives.

unlabel , since the naive combination of kill and unlabel can result in information
leakage. This will happen if a public thread forks another public thread, then
reads a secret value (raising its label to secret), and based on that decides to
kill the child. To close the leak, we modify the rule [Unlabel2] by adding the
highlighted premise, causing the primitive unlabel to fail whenever the parent
thread’s label would float above the initial current label of one of its children.

Garbage Collection. Rule [GC] extends LIOPAR with a time-sensitive hierar-
chical garbage collector via the primitive gc t . The rule elicits a garbage collec-
tion cycle which drops entries that are no longer needed from the heap, and then
evaluates t . The sub-heap Δ′ includes the portion of the current heap that is
(transitively) reachable from the free variables in scope (i.e. those present in the
term, fv∗(t ,Δ) or on the stack fv∗(S ,Δ)). After collection, the thread resumes
and evaluates term t under compacted private heap Δ′.10 In rule [App-GC], a
collection is automatically triggered when the thread’s next memory allocation
would overflow the heap.
10 In practice a garbage collection cycle takes time that is proportional to the size of

the memory used by the thread. That does not hinder security as long as the garbage
collector runs on the thread’s time budget.

16 M. Vassena et al.

Resource Observations. All threads in the system share a global fine-grained
clock ω, which is incremented by the parallel scheduler at each cycle (see below).
Rule [Time] gives all threads unrestricted access to the clock via monadic prim-
itive time.

4.3 Parallel Scheduler

This section extends LIOPAR with deterministic parallelism, which allows to
execute κ threads simultaneously on as many cores. To this end, we introduce
the top-level parallel scheduler, which coordinates simultaneous changes to the
global state by updating the resource budgets of the threads in response core
events (e.g., fork, spawn, and kill) and ticks the global clock.

Fig. 5. Top-level parallel scheduler.

Semantics. Figure 5 formalizes the operational semantics of the parallel sched-
uler, which reduces a configuration c = 〈Σ,Φ〉 consisting of global state Σ and

Foundations for Parallel Information Flow Control Runtime Systems 17

core map Φ mapping each core to its run queue, to configuration c′ in one step,
written c ↪→ c′, through rule [Parallel] only. The rule executes the threads
scheduled on each of the κ cores, which all step at once according to the con-
current semantics presented in Sects. 4.1–4.2, with the same current global state
Σ. Since the execution of each thread can change Σ concurrently, the top-level
parallel scheduler reconciles those actions by updating Σ sequentially and deter-
ministically.11 First, the scheduler updates the thread pool map T and core
map Φ with the final state obtained by running each thread in isolation, i.e.,
T ′ = Σ.T [ni �→ si] and Φ′ = Φ[i �→ Qi] for i ∈ {1 . . κ}. Then, it collects all
concurrent events generated by the κ threads together with their thread id, sorts
the events according to type, i.e., sort [(n1, e1), ..., (nκ, eκ)], and computes the
updated configuration by processing the events in sequence.12 In particular, new
threads are created first (event spawn(·) and fork(·)), and then killed (event
kill(·))—the ordering between events of the same type is arbitrary and assumed
to be fixed. Trivial events (ε) do not affect the configuration and thus their order-
ing is irrelevant. The function 〈〈es〉〉c computes a final configuration by processing
a list of events in order, accumulating configuration updates (next(·) updates the
current configuration by one event-step): 〈〈(n, e) : es〉〉c = 〈〈es〉〉next(n,e,c). When
no more events need processing, the configuration is returned 〈〈[]〉〉c = c.

Event Processing. Figure 5 defines function next(n, e, c), which takes a thread
identifier n, the event e that thread n generated, the current configuration and
outputs the configuration obtained by performing the thread’s action. The empty
event ε is trivial and leaves the state unchanged. Event (n1, fork(Δ,n2, t , b, h))
indicates that thread n1 forks thread t with identifier n2, sub-heap Δ, time bud-
get b and maximum heap size h. The scheduler deducts these resources from the
parent’s budgets, i.e., B ′ = B[n1 �→ B(n1) − b] and H ′ = H [n1 �→ H (n1) − h]
and assigns them to the child, i.e., B ′[n2 �→ b] and H ′[n2 �→ h].13 The new child
shares the core with the parent—it has no core capabilities i.e., θ′ = θ[n2 �→ ∅]—
and so the core map is left unchanged. Lastly, the scheduler adds the child to
the thread pool and initializes its state, i.e., T [n2 �→ (Δ,n2.�L, ∅ | t , [])]. The
scheduler handles event (n1, spawn(Δ,n2, t ,K)) similarly. The new thread t
gets scheduled on core n2.k , i.e., Φ[n2.k �→ 〈nB0

2 〉], where the thread takes all
the time and memory resources of the core, i.e., B[n2 �→ B0] and H [n2 �→ H0],
and extra core capabilities K , i.e., θ′[n2 �→ K]. For simplicity, we assume that
all cores execute B0 steps per-cycle and feature a memory of size H0. Event
(n,kill(n ′)) informs the scheduler that thread n wishes to kill thread n ′. The
scheduler leaves the global state unchanged if the parent thread has already been
killed by the time this event is handled, i.e., when the guard n �∈ Dom(T) is
true—the resources of the child n ′ will have been reclaimed by another ancestor.

11 Non-deterministic updates would make the model vulnerable to refinement attacks
[40].

12 Since the clock only needs to be incremented, we could have left it out from the
configuration c = 〈T ′, B,H , θ, Σ.ω + 1, Φ′〉; function 〈〈es〉〉c does not use nor change
its value.

13 Notice that |Δ| < h by rule [Fork].

18 M. Vassena et al.

Otherwise, the scheduler collects the identifiers of the descendants of n ′ that are
alive (N = �{n ′}�T)—they must be killed (and reclaimed) transitively. The set
N is computed recursively by �N�T , using the thread pool T , i.e., �∅�T = ∅,
�{n }�T = {n } ∪ �T (n).N�T and �N1 ∪ N2�

T = �N1�
T ∪ �N2�

T . The scheduler
then increases the time and memory budget of the parent with the sum of the
budget of all its descendants scheduled on the same core, i.e.,

∑
i ∈ N,i.k=n.k B(i)

(resp.
∑

i ∈ N,i.k=n.k H (i))—descendants running on other cores do not share
those resources. The scheduler reassigns to the parent thread their core capabil-
ities, which are split between capabilities explicitly assigned but not in use, i.e.,⋃

i ∈ N θ(i) and core capabilities assigned and in use by running threads, i.e.,
{i.k | i ∈ N, i.k �= n.k }. Lastly, the scheduler removes the killed threads from
each core, written Φ(i) \ N , by pruning the leaves containing killed threads and
reassigning their leftover time budget to their parent, see the extended version
of this paper for details.

5 Security Guarantees

In this section we show that LIOPAR satisfies a strong security condition that
ensures timing-agreement of threads and rules out timing covert channels. In
Sect. 5.1, we describe our proof technique based on term erasure, which has
been used to verify security guarantees of functional programming languages
[30], IFC libraries [8,17,54,56,61], and an IFC runtime system [59]. In Sect. 5.2,
we formally prove security, i.e., progress- and timing-sensitive non-interference,
a strong form of non-interference [14], inspired by Volpano and Smith [64]—
to our knowledge, it is considered here for the first time in the context of
parallel runtime systems. Works that do not address external timing channels
[59,62] normally prove progress-sensitive non-interference, wherein the number
of execution steps of a program may differ in two runs based on a secret. This
condition is insufficient in the parallel setting: both public and secret threads
may step simultaneously on different cores and any difference in the number
of execution steps would introduce external and internal timing attacks. Sim-
ilar to previous works on secure multi-threaded systems [36,52], we establish
a strong low-bisimulation property of the parallel scheduler, which guarantees
that attacker-indistinguishable configurations execute in lock-step and remain
indistinguishable. Theorem 1 and Corollary 1 use this property to ensure that
any two related parallel programs execute in exactly the same number of steps.

5.1 Erasure Function

The term erasure technique relies on an erasure function, written εL(·), which
rewrites secret data above the attacker’s level L to special term •, in all the
syntactic categories: values, terms, heaps, stacks, global states and configura-
tions.14 Once the erasure function is defined, the core of the proof technique
14 For ease of exposition, we use the two-point lattices {L,H }, where H �� L is the

only disallowed flow. Neither our proofs nor our model rely on this particular lattice.

Foundations for Parallel Information Flow Control Runtime Systems 19

consists of proving an essential commutativity relationship between the erasure
function and reduction steps: given a step c ↪→ c′, there must exist a reduction
that simulates the original reduction between the erased configurations, i.e.,
εL(c) ↪→ εL(c′). Intuitively, if the configuration c leaked secret data while step-
ping to c′, that data would be classified as public in c′ and thus would remain
in εL(c′)— but such secret data would be erased by εL(c) and the property
would not hold. The erasure function leaves ground values, e.g., (), unchanged
and on most terms it acts homomorphically, e.g., εL(t1 t2) = εL(t1) εL(t2).
The interesting cases are for labeled values, thread configurations, and resource
maps. The erasure function removes the content of secret labeled values, i.e.,
εL(Labeled H t◦) = Labeled H •, and erases the content recursively other-
wise, i.e., εL(Labeled L t◦) = Labeled L εL(t)◦. The state of a thread is erased
per-component, homomorphically if the program counter label is public, i.e.,
εL(Δ,L, N, | t ,S) = (εL(Δ),L, N | εL(t), εL(S)), and in full otherwise, i.e.,
εL(Δ,H , N, | t ,S) = (•, •, • | •, •).

Resource Erasure. Since LIOPAR manages resources explicitly, the simulation
property above requires to define the erasure function for resources as well. The
erasure function should preserve information about the resources (e.g., time,
memory, and core capabilities) of public threads, since the attacker can explicitly
assign resources (e.g., with fork and swap) and measure them (e.g., with size).
But what about the resources of secret threads? One might think that such
information is secret and thus it should be erased—intuitively, a thread might
decide to assign, say, half of its time budget to its secret child depending on
secret information. However, public threads can also assign (public) resources
to a secret thread when forking: even though these resources currently belong
to the secret child, they are temporary—the public parent might reclaim them
later. Thus, we cannot associate the sensitivity of the resources of a thread
with its program counter label when resources are managed hierarchically, as
in LIOPAR. Instead, we associate the security level of the resources of a secret
thread with the sensitivity of its parent: the resources of a secret thread are
public information whenever the program counter label of the parent is public
and secret information otherwise. Furthermore, since resource reclamation is
transitive, the erasure function cannot discard secret resources, but must rather
redistribute them to the hierarchically closest set of public resources, as when
killing them.

Time Budget. First, we project the identifiers of public threads from the thread
pool T : DomL(T) = {nL | n ∈ Dom(T) ∧ T (n).pc ≡ L}, where notation
nL indicates that the program counter label of thread n is public. Then, the
set P =

⋃
n ∈ DomL(T){n } ∪ T (n).N contains the identifiers of all the public

threads and their immediate children.15 The resources of threads n ∈ P are
public information. However, the program counter label of a thread n ∈ P is not
necessarily public, as explained previously. Hence P can be disjointly partitioned

15 The id of the spinning thread on each free core is also public, i.e., ◦k ∈ P for
k ∈ {1 . . κ}.

20 M. Vassena et al.

by program counter label: P = PL ∪ PH , where PL = {nL | n ∈ P } and
PH = {nH | n ∈ P }. Erasure of the budget map then proceeds on this
partition, leaving the budget of the public threads untouched, and summing the
budget of their secret children threads to the budgets of their descendants, which
are instead omitted. In symbols, εL(B) = BL ∪ BH , where BL = {nL �→ B(nL) |
nL ∈ PL} and BH = {nH �→ B(nH) +

∑
i ∈ �{nH }�T B(i) | nH ∈ PH }.

Queue Erasure. The erasure of core queues follows the same intuition, pre-
serving public and secret threads n ∈ P and trimming all other secret threads
nH �∈ P . Since queues annotate thread ids with their residual time budgets,
the erasure function must reassign the budgets of all secret threads n ′

H �∈ P
to their closest ancestor n ∈ P on the same core. The ancestor n ∈ P could
be either (i) another secret thread on the same core, i.e., nH ∈ P , or, (ii) the
spinning thread of that core, ◦ ∈ P if there is no other thread n ∈ P on that
core—the difference between these two cases lies on whether the original thread
n ′ was forked or spawned on that core. More formally, if the queue contains no
thread n ∈ P , then the function replaces the queue altogether with the spinning
thread and returns the residual budgets of the threads to it, i.e., εL(Q) = 〈◦B〉 if
ni �∈ P and B =

∑
bi, for each leaf Q [〈nbi

i 〉] where i ∈ {1 . . |Q |}. Otherwise,
the core contains at least a thread nH ∈ P and the erasure function returns the
residual time budget of its secret descendants, i.e., εL(Q) = Q ↓L by combining
the effects of the following mutually recursive functions:

〈nb〉↓L= 〈nb〉
〈Q1,Q2〉↓L= (Q1 ↓L) � (Q2 ↓L)

〈nb1
1H〉 � 〈nb2

2H〉 = 〈nb1+b2
1H 〉

Q1 � Q2 = 〈Q1,Q2〉
The interesting case is 〈nb1

1H〉 � 〈nb2
2H〉, which reassigns the budget of the child

(the right leaf 〈nb2
2H〉) to the parent (the left leaf 〈nb1

1H〉), by rewriting the subtree
into 〈nb1+b2

1H 〉.

5.2 Timing-Sensitive Non-interference

The proof of progress- and timing-sensitive non-interference relies on two funda-
mental properties, i.e., determinacy and simulation of parallel reductions. Deter-
minacy requires that the reduction relation is deterministic.

Proposition 1 (Determinism). If c1 ↪→ c2 and c1 ↪→ c3 then c2 ≡ c3.

The equivalence in the statement denotes alpha-equivalence, i.e., up to the
choice of variable names. We now show that the parallel scheduler preserves
L-equivalence of parallel configurations.

Definition 1 (L-equivalence). Two configurations c1 and c2 are indistin-
guishable from an attacker at security level L, written c1 ≈L c2, if and only
if εL(c1) ≡ εL(c2).

Proposition 2 (Parallel simulation). If c ↪→ c′, then εL(c) ↪→ εL(c′).

Foundations for Parallel Information Flow Control Runtime Systems 21

By combining determinism (Proposition 1) and parallel simulation (Proposition
2), we prove progress-insensitive non-interference, which assumes progress of
both configurations.

Proposition 3 (Progress-insensitive non-interference). If c1 ↪→ c′
1, c2 ↪→

c′
2 and c1 ≈L c2, then c′

1 ≈L c′
2.

In order to lift this result to be progress-sensitive, we first prove timing-sensitive
progress. Intuitively, if a valid configuration steps then any low equivalent parallel
configuration also steps.16

Proposition 4 (Timing-sensitive progress). Given a valid configuration c1
and a parallel reduction step c1 ↪→ c′

1 and c1 ≈L c2, then there exists c′
2, such

that c2 ↪→ c′
2.

Using progress-insensitive non-interference, i.e., Proposition 3 and timing-
sensitive progress, i.e., Proposition 4 in combination, we obtain a strong L-
bisimulation property between configurations and prove progress- and timing-
sensitive non-interference.

Theorem 1 (Progress- and timing-sensitive non-interference). For all
valid configurations c1 and c2, if c1 ↪→ c′

1 and c1 ≈L c2, then there exists a
configuration c′

2, such that c2 ↪→ c′
2 and c′

1 ≈L c′
2.

The following corollary instantiates the non-interference security theorem from
above for a given LIOPAR parallel program, that explicitly rules out leaks via
timing channels. In the following, the notation ↪→u denotes u reduction steps of
the parallel scheduler.

Corollary 1. Given a well-typed LIOPAR program t of type Labeled τ1 →
LIO τ2 and two closed secrets t◦

1 , t◦
2 :: τ1, let si = ([],L, ∅, | t (Labeled H t◦

i), []),
ci = (Ti, B,H , θ, 0, Φi), where Ti = [nL �→ si, ◦j �→ s◦], B = [nL �→ B0, ◦j �→ 0],
H = [nL �→ H0, ◦j �→ H0], θ = [nL �→ {2 . . κ}, ◦j �→ ∅], Φi = [1 �→ 〈si〉, 2 �→
〈◦2〉, ..., κ �→ 〈◦κ〉], for i ∈ {1, 2}, j ∈ {1 . . κ} and thread identifier nL such
that n.k = 1 and n.cl = H . If c1 ↪→u c′

1, then there exists configuration c′
2,

such that c2 ↪→u c′
2 and c′

1 ≈L c′
2.

To conclude, we show that the timing-sensitive security guarantees of LIOPAR

extend to concurrent single-core programs by instantiating Corollary 1 with
κ = 1.

6 Limitations

Implementation. Implementing LIOPAR is a serious undertaking that requires
a major redesign of GHC’s runtime system. Conventional runtime systems freely
16 A configuration is valid if satisfies several basic properties, e.g., it does not contain

special term •. See the extended version of this paper for details.

22 M. Vassena et al.

share resources among threads to boost performance and guarantee fairness. For
instance, in GHC, threads share heap objects to save memory space and execu-
tion time (when evaluating expressions). In contrast, LIOPAR strictly partitions
resources to enforce security—threads at different security labels cannot share
heap objects. As a result, the GHC memory allocator must be adapted to isolate
threads’ private heap, so that allocation and collection can occur independently
and in parallel. Similarly, the GHC “fair” round robin scheduler must be heavily
modified to keep track of and manage threads’ time budget, to preemptively
perform a context switch when their time slice is up.

Programming Model. Since resource management is explicit, building appli-
cations atop LIOPAR introduces new challenges—the programmer must explic-
itly choose resource bounds for each thread. If done poorly, threads can spend
excessive amounts of time sitting idle when given too much CPU time, or garbage
collecting when not given enough heap space. The problem of tuning resource
allocation parameters is not unique to LIOPAR—Yang and Mazières’ [66] pro-
pose to use GHC profiling mechanisms to determine heap size while the real-
time garbage collector by Henriksson [16] required the programmer to specify the
worst case execution time, period, and worst-case allocation of each high-priority
thread. Das and Hoffmann [9] demonstrate a more automatic approach—they
apply machine learning techniques to statically determine upper bounds on exe-
cution time and heap usage of OCaml programs. Similar techniques could be
applied to LIOPAR in order to determine the most efficient resource partitions.
Moreover, this challenge is not unique to real-time systems or LIOPAR; choosing
privacy parameters in differential privacy, for example, shares many similari-
ties [21,29].

The LIOPAR programming model is also likely easier to use in certain applica-
tion domains—e.g., web applications where the tail latency of a route can inform
the thread bounds, or embedded systems where similar latency requirements are
the norm. Nevertheless, in order to simplify programming with LIOPAR, we
intend to introduce privileges (and thus declassification) similar to LIO [12,56]
or COWL [57].

Coarse-grained, floating-label systems such as LIO and LIOPAR can suffer
label creep, wherein the current computation gets tainted to a point where it
cannot perform any useful writes [55]. Sequential LIO [56] addresses label creep
through a primitive, toLabeled, which executes a computation (that may raise
the current label) in a separate context and restores the current label upon its
termination. Similar to concurrent LIO [54], LIOPAR relies on fork to address
label creep and not toLabeled—the latter exposes the termination covert-
channel [54]. Even though LIOPAR has a more restricted floating-label semantics
than concurrent LIO, LIOPAR also supports parallel execution, garbage collec-
tion, and new APIs for getting heap statistics, counting elapsed time, and killing
threads.

Foundations for Parallel Information Flow Control Runtime Systems 23

7 Related Work

There is substantial work on language-level IFC systems [10,15,20,34,43,50,51,
54,55,67,68]. Our work builds on these efforts in several ways. Firstly, LIOPAR

extends the concurrent LIO IFC system [54] with parallelism—to our knowl-
edge, this is the first dynamic IFC system to support parallelism and address the
internalization of external timing channels. Previous static IFC systems implic-
itly allow for parallelism, e.g., Muller and Chong’s [41], several works on IFC
π-calculi [18,19,25], and Rafnsson et al. [49] recent foundations for composable
timing-sensitive interactive systems. These efforts, however, do not model run-
time system resource management. Volpano and Smith [64] enforce a timing
agreement condition, similar to ours, but for a static concurrent IFC system.
Mantel et al. [37] and Li et al. [31] prove non-interference for static, concurrent
systems, using rely-guarantee reasoning.

Unlike most of these previous efforts, our hierarchical runtime system also
eliminates classes of resource-based external timing channels, such as memory
exhaustion and garbage collection. Pedersen and Askarov [46], however, were
the first to identify automatic memory management to be a source of covert
channels for IFC systems and demonstrate the feasibility of attacks against both
V8 and the JVM. They propose a sequential static IFC language with labeled-
partitioned memory and a label-aware timing-sensitive garbage collector, which
is vulnerable to external timing attacks and satisfies only termination-insensitive
non-interference.

Previous work on language-based systems—namely [35,66]—identify mem-
ory retention and memory exhaustion as a source of denial-of-service (DOS)
attacks. Memory retention and exhaustion can also be used as covert channels.
In addressing those covert channels, LIOPAR also addresses the DOS attacks
outlined by these efforts. Indeed, our work generalizes Yang and Mazières’ [66]
region-based allocation framework with region-based garbage collection and hier-
archical scheduling.

Our LIOPAR design also borrows ideas from the secure operating system com-
munity. Our explicit hierarchical memory management is conceptually similar to
HiStar’s container abstraction [69]. In HiStar, containers—subject to quotas, i.e.,
space limits—are used to hierarchically allocate and deallocate objects. LIOPAR

adopts this idea at the language-level and automates the allocation and reclama-
tion. Moreover, we hierarchically partition CPU-time; Zeldovich et al. [69], how-
ever, did observe that their container abstraction can be repurposed to enforce
CPU quotas. Deterland [65] splits time into ticks to address internal timing chan-
nels and mitigate external timing ones. Deterland builds on Determinator [4], an
OS that executes parallel applications deterministically and efficiently. LIOPAR

adopts many ideas from these systems—both the deterministic parallelism and
ticks (semantic steps)—to the language-level. Deterministic parallelism at the
language-level has also been explored previous to this work [27,28,38], but, dif-
ferent from these efforts, LIOPAR also hierarchically manages resources to elim-
inate classes of external timing channels.

24 M. Vassena et al.

Fabric [33,34] and DStar [70] are distributed IFC systems. Though we believe
that our techniques would scale beyond multi-core systems (e.g., to data cen-
ters), LIOPAR will likely not easily scale to large distributed systems like Fabric
and DStar. Different from Fabric and DStar, however, LIOPAR addresses both
internal and external timing channels that result from running code in parallel.

Our hierarchical resource management approach is not unique—other coun-
termeasures to external timing channels have been studied. Hu [22], for exam-
ple, mitigates both timing channels in the VAX/VMM system [32] using “fuzzy
time”—an idea recently adopted to browsers [26]. Askarov et al.’s [2] mitigate
external timing channels using predicative black-box mitigation, which delays
events and thus bound information leakage. Rather than using noise as in the
fuzzy time technique, however, they predict the schedule of future events. Some
of these approaches have also been adopted at the language-level [46,54,71]. We
find these techniques largely orthogonal: they can be used alongside our tech-
niques to mitigate timing channels we do not eliminate.

Real-time systems—when developed with garbage collected languages [3,5,6,
16]—face similar challenges as this work. Blelloch and Cheng [6] describe a real-
time garbage collector (RTGC) for multi-core programs with provable resource
bounds—LIOPAR enforces resource bounds instead. A more recent RTGC cre-
ated by Auerbach et al. [3] describes a technique to “tax” threads into con-
tributing to garbage collection as they utilize more resources. Henricksson [16]
describes a RTGC capable of enforcing hard and soft deadlines, once given upper
bounds on space and time resources used by threads. Most similarly to LIOPAR,
Pizlo et al. [48] implement a hierarchical RTGC algorithm that independently
collects partitioned heaps.

8 Conclusion

Language-based IFC systems built atop off-the-shelf runtime systems are vulner-
able to resource-based external-timing attacks. When these systems are extended
with thread parallelism these attacks become yet more vicious—they can be car-
ried out internally. We presented LIOPAR, the design of the first dynamic IFC
hierarchical runtime system that supports deterministic parallelism and elimi-
nate s both resource-based internal- and external-timing covert channels. To our
knowledge, LIOPAR is the first parallel system to satisfy progress- and timing-
sensitive non-interference.

References

1. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-insensitive noninter-
ference leaks more than just a bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008.
LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88313-5 22

2. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing
channels. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, pp. 297–307. ACM (2010)

https://doi.org/10.1007/978-3-540-88313-5_22
https://doi.org/10.1007/978-3-540-88313-5_22

Foundations for Parallel Information Flow Control Runtime Systems 25

3. Auerbach, J., et al.: Tax-and-spend: democratic scheduling for real-time garbage
collection. In: Proceedings of the 8th ACM International Conference on Embedded
Software, pp. 245–254. ACM (2008)

4. Aviram, A., Weng, S.-C., Hu, S., Ford, B.: Efficient system-enforced deterministic
parallelism. Commun. ACM 55(5), 111–119 (2012)

5. Baker Jr., H.G.: List processing in real time on a serial computer. Commun. ACM
21(4), 280–294 (1978)

6. Blelloch, G.E., Cheng, P.: On bounding time and space for multiprocessor garbage
collection. ACM SIGPLAN Not. 34, 104–117 (1999)

7. Buiras, P., Russo, A.: Lazy programs leak secrets. In: Riis Nielson, H., Gollmann,
D. (eds.) NordSec 2013. LNCS, vol. 8208, pp. 116–122. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41488-6 8

8. Buiras, P., Vytiniotis, D., Russo, A.: HLIO: mixing static and dynamic typing for
information-flow control in Haskell. In: ACM SIGPLAN International Conference
on Functional Programming. ACM (2015)

9. Das, A., Hoffmann, J.: ML for ML: learning cost semantics by experiment. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 190–207.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 11

10. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
FlowFence: practical data protection for emerging IoT application frameworks. In:
USENIX Security Symposium, pp. 531–548 (2016)

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptographic Eng.
8, 1–27 (2016)

12. Giffin, D.B., et al.: Hails: protecting data privacy in untrusted web applications.
J. Comput. Secur. 25(4–5), 427–461 (2017)

13. Giffin, D.B., et al.: Hails: protecting data privacy in untrusted web applications. In:
Proceedings of the Symposium on Operating Systems Design and Implementation.
USENIX (2012)

14. Goguen, J.A., Meseguer, J.: Unwinding and inference control, pp. 75–86, April
1984

15. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pp. 1663–1671. ACM (2014)

16. Henriksson, R.: Scheduling garbage collection in embedded systems. Ph.D. thesis,
Department of Computer Science (1998)

17. Heule, S., Stefan, D., Yang, E.Z., Mitchell, J.C., Russo, A.: IFC inside: retrofitting
languages with dynamic information flow control. In: Focardi, R., Myers, A. (eds.)
POST 2015. LNCS, vol. 9036, pp. 11–31. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-46666-7 2

18. Honda, K., Vasconcelos, V., Yoshida, N.: Secure information flow as typed pro-
cess behaviour. In: Smolka, G. (ed.) ESOP 2000. LNCS, vol. 1782, pp. 180–199.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46425-5 12

19. Honda, K., Yoshida, N.: A uniform type structure for secure information flow.
ACM Trans. Program. Lang. Syst. (TOPLAS) 29(6), 31 (2007)

20. Hritcu, C., Greenberg, M., Karel, B., Pierce, B.C., Morrisett, G.: All your IFCEx-
ception are belong to us. In: 2013 IEEE Symposium on Security and Privacy (SP),
pp. 3–17. IEEE (2013)

21. Hsu, J., et al.: Differential privacy: an economic method for choosing epsilon. In:
Proceedings of the 2014 IEEE 27th Computer Security Foundations Symposium,
CSF 2014, pp. 398–410. IEEE Computer Society, Washington, DC (2014)

https://doi.org/10.1007/978-3-642-41488-6_8
https://doi.org/10.1007/978-3-662-54577-5_11
https://doi.org/10.1007/978-3-662-46666-7_2
https://doi.org/10.1007/978-3-662-46666-7_2
https://doi.org/10.1007/3-540-46425-5_12

26 M. Vassena et al.

22. Hu, W.-M.: Reducing timing channels with fuzzy time. J. Comput. Secur. 1(3–4),
233–254 (1992)

23. Jones, S.L.P.: Implementing lazy functional languages on stock hardware: the
spineless tagless G-machine. J. Funct. Program. 2, 127–202 (1992)

24. Kemmerer, R.A.: Shared resource matrix methodology: an approach to identifying
storage and timing channels. ACM Trans. Comput. Syst. (TOCS) 1(3), 256–277
(1983)

25. Kobayashi, N.: Type-based information flow analysis for the π-calculus. Acta Infor-
matica 42(4–5), 291–347 (2005)

26. Kohlbrenner, D., Shacham, H.: Trusted browsers for uncertain times. In: USENIX
Security Symposium, pp. 463–480 (2016)

27. Kuper, L., Newton, R.R.: LVars: lattice-based data structures for deterministic
parallelism. In: Proceedings of the 2nd ACM SIGPLAN Workshop on Functional
High-Performance Computing, pp. 71–84. ACM (2013)

28. Kuper, L., Todd, A., Tobin-Hochstadt, S., Newton, R.R.: Taming the parallel effect
zoo: extensible deterministic parallelism with LVish. ACM SIGPLAN Not. 49(6),
2–14 (2014)

29. Lee, J., Clifton, C.: How much is enough? Choosing ε for differential privacy. In:
Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 325–340. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24861-0 22

30. Li, P., Zdancewic, S.: Arrows for secure information flow. Theoret. Comput. Sci.
411(19), 1974–1994 (2010)

31. Li, X., Mantel, H., Tasch, M.: Taming message-passing communication in com-
positional reasoning about confidentiality. In: Chang, B.-Y.E. (ed.) APLAS 2017.
LNCS, vol. 10695, pp. 45–66. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-71237-6 3

32. Lipner, S., Jaeger, T., Zurko, M.E.: Lessons from VAX/SVS for high-assurance
VM systems. IEEE Secur. Priv. 10(6), 26–35 (2012)

33. Liu, J., Arden, O., George, M.D., Myers, A.C.: Fabric: building open distributed
systems securely by construction. J. Comput. Secur. 25(4–5), 367–426 (2017)

34. Liu, J., George, M.D., Vikram, K., Qi, X., Waye, L., Myers, A.C.: Fabric: a plat-
form for secure distributed computation and storage. In: Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles. ACM (2009)

35. Liu, J., Myers, A.C.: Defining and enforcing referential security. In: Abadi, M.,
Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 199–219. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54792-8 11

36. Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and
multi-threaded programs. J. Comput. Secur. 11(4), 615–676 (2003)

37. Mantel, H., Sands, D., Sudbrock, H.: Assumptions and guarantees for composi-
tional noninterference. In: 2011 IEEE 24th Computer Security Foundations Sym-
posium, pp. 218–232, June 2011

38. Marlow, S., Newton, R., Peyton Jones, S.: A monad for deterministic parallelism.
ACM SIGPLAN Not. 46(12), 71–82 (2012)

39. Marlow, S., Peyton Jones, S.: Making a fast curry: push/enter vs. eval/apply for
higher-order languages. J. Funct. Program. 16(4–5), 415–449 (2006)

40. McCullough, D.: Specifications for multi-level security and a hook-up. In: 1987
IEEE Symposium on Security and Privacy (SP), p. 161, April 1987

41. Muller, S., Chong, S.: Towards a practical secure concurrent language. In: Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Languages, Systems, Languages, and Applications, pp. 57–74. ACM Press,
New York, October 2012

https://doi.org/10.1007/978-3-642-24861-0_22
https://doi.org/10.1007/978-3-319-71237-6_3
https://doi.org/10.1007/978-3-319-71237-6_3
https://doi.org/10.1007/978-3-642-54792-8_11

Foundations for Parallel Information Flow Control Runtime Systems 27

42. Myers, A.C., Zheng, L., Zdancewic, S., Chong, S., Nystrom, N.: Jif 3.0: Java infor-
mation flow, July 2006

43. Nadkarni, A., Andow, B., Enck, W., Jha, S.: Practical DIFC enforcement on
android. In: USENIX Security Symposium, pp. 1119–1136 (2016)

44. North, S.C., Reppy, J.H.: Concurrent garbage collection on stock hardware. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 113–133. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-18317-5 8

45. Parker, J.L.: LMonad: information flow control for Haskell web applications. Ph.D.
thesis, University of Maryland, College Park (2014)

46. Pedersen, M.V., Askarov, A.: From trash to treasure: timing-sensitive garbage col-
lection. In: Proceedings of the 38th IEEE Symposium on Security and Privacy.
IEEE (2017)

47. Percival, C.: Cache missing for fun and profit (2005)
48. Pizlo, F., Hosking, A.L., Vitek, J.: Hierarchical real-time garbage collection. In:

Proceedings of the 2007 ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, LCTES 2007, pp. 123–133. ACM,
New York (2007)

49. Rafnsson, W., Jia, L., Bauer, L.: Timing-sensitive noninterference through com-
position. In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 3–25.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 1

50. Roy, I., Porter, D.E., Bond, M.D., McKinley, K.S., Witchel, E.: Laminar: practical
fine-grained decentralized information flow control, vol. 44. ACM (2009)

51. Russo, A.: Functional pearl: two can keep a secret, if one of them uses Haskell.
ACM SIGPLAN Not. 50, 280–288 (2015)

52. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of the 13th IEEE Workshop on Computer Security Foundations,
CSFW 2000, p. 200. IEEE Computer Society, Washington, DC (2000)

53. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(1997)

54. Stefan, D., Russo, A., Buiras, P., Levy, A., Mitchell, J.C., Mazières, D.: Addressing
covert termination and timing channels in concurrent information flow systems. In:
International Conference on Functional Programming (ICFP). ACM SIGPLAN,
September 2012

55. Stefan, D., Russo, A., Mazières, D., Mitchell, J.C.: Flexible dynamic information
flow control in the presence of exceptions. J. Funct. Program. 27 (2017)

56. Stefan, D., Russo, A., Mitchell, J.C., Mazières, D.: Flexible dynamic information
flow control in Haskell. In: Haskell Symposium. ACM SIGPLAN, September 2011

57. Stefan, D., et al.: Protecting users by confining JavaScript with COWL. In:
USENIX Symposium on Operating Systems Design and Implementation. USENIX
Association (2014)

58. Tsai, T.-C., Russo, A., Hughes, J.: A library for secure multi-threaded information
flow in Haskell. In: 20th IEEE Computer Security Foundations Symposium, CSF
2007, pp. 187–202. IEEE (2007)

59. Vassena, M., Breitner, J., Russo, A.: Securing concurrent lazy programs against
information leakage. In: 30th IEEE Computer Security Foundations Symposium,
CSF 2017, Santa Barbara, CA, USA, 21–25 August 2017, pp. 37–52 (2017)

60. Vassena, M., Buiras, P., Waye, L., Russo, A.: Flexible manipulation of labeled val-
ues for information-flow control libraries. In: Askoxylakis, I., Ioannidis, S., Katsikas,
S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 538–557. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 27

https://doi.org/10.1007/3-540-18317-5_8
https://doi.org/10.1007/978-3-662-54455-6_1
https://doi.org/10.1007/978-3-319-45744-4_27

28 M. Vassena et al.

61. Vassena, M., Russo, A.: On formalizing information-flow control libraries. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, PLAS 2016, pp. 15–28. ACM, New York (2016)

62. Vassena, M., Russo, A., Buiras, P., Waye, L.: MAC a verified static information-
flow control library. J. Log. Algebraic Methods Program. (2017)

63. Vila, P., Köpf, B.: Loophole: timing attacks on shared event loops in chrome. In:
USENIX Security Symposium (2017)

64. Volpano, D., Smith, G.: Eliminating covert flows with minimum typings. In: Pro-
ceedings of the 10th IEEE Workshop on Computer Security Foundations, CSFW
1997, p. 156. IEEE Computer Society, Washington, DC (1997)

65. Wu, W., Zhai, E., Wolinsky, D.I., Ford, B., Gu, L., Jackowitz, D.: Warding off tim-
ing attacks in Deterland. In: Conference on Timely Results in Operating Systems,
Monterey, CS, US (2015)

66. Yang, E.Z., Mazières, D.: Dynamic space limits for Haskell. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2014, pp. 588–598. ACM, New York (2014)

67. Yang, J., Hance, T., Austin, T.H., Solar-Lezama, A., Flanagan, C., Chong, S.: Pre-
cise, dynamic information flow for database-backed applications. ACM SIGPLAN
Not. 51, 631–647 (2016)

68. Yang, J., Yessenov, K., Solar-Lezama, A.: A language for automatically enforcing
privacy policies. ACM SIGPLAN Not. 47, 85–96 (2012)

69. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, pp. 263–278. USENIX Association (2006)

70. Zeldovich, N., Boyd-Wickizer, S., Mazieres, D.: Securing distributed systems with
information flow control. NSDI 8, 293–308 (2008)

71. Zhang, D., Askarov, A., Myers, A.C.: Predictive mitigation of timing channels in
interactive systems. In: Proceedings of the 18th ACM Conference on Computer
and Communications Security, pp. 563–574. ACM (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Foundations for Parallel Information Flow Control Runtime Systems
	1 Introduction
	2 Internal Manifestation of External Attacks
	2.1 Overview of the Concurrent LIO Information Flow Control System
	2.2 External Timing Attacks to Runtime Systems
	2.3 Internalizing External Timing Attacks

	3 Secure, Parallel Runtime System
	4 Hierarchical Calculus
	4.1 Core Scheduler
	4.2 Resource Reclamation and Observations
	4.3 Parallel Scheduler

	5 Security Guarantees
	5.1 Erasure Function
	5.2 Timing-Sensitive Non-interference

	6 Limitations
	7 Related Work
	8 Conclusion
	References

