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Abstract. There are different categorical approaches to variations of
transition systems and their bisimulations. One is coalgebra for a functor
G, where a bisimulation is defined as a span of G-coalgebra homomor-
phism. Another one is in terms of path categories and open morphisms,
where a bisimulation is defined as a span of open morphisms. This simi-
larity is no coincidence: given a functor G, fulfilling certain conditions, we
derive a path-category for pointed G-coalgebras and lax homomorphisms,
such that the open morphisms turn out to be precisely the G-coalgebra
homomorphisms. The above construction provides path-categories and
trace semantics for free for different flavours of transition systems: (1)
non-deterministic tree automata (2) regular nondeterministic nominal
automata (RNNA), an expressive automata notion living in nominal sets
(3) multisorted transition systems. This last instance relates to Lasota’s
construction, which is in the converse direction.
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1 Introduction

Coalgebras [25] and open maps [16] are two main categorical approaches to tran-
sition systems and bisimulations. The former describes the branching type of
systems as an endofunctor, a system becoming a coalgebra and bisimulations
being spans of coalgebra homomorphisms. Coalgebra theory makes it easy to
consider state space types in different settings, e.g. nominal sets [17,18] or alge-
braic categories [5,11,20]. The latter, open maps, describes systems as objects of
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Table 1. Two approaches to categorical (bi)simulations

a category and the execution types as particular objects called paths. In this case,
bisimulations are spans of open morphisms. Open maps are particularly adapted
to extend bisimilarity to history dependent behaviors, e.g. true concurrency [7,8],
timed systems [22] and weak (bi)similarity [9]. Coalgebra homomorphisms and
open maps are then key concepts to describe bisimilarity categorically. They
intuitively correspond to functional bisimulations, that is, those maps between
states whose graph is a bisimulation.

We are naturally interested in the relationship between those two categor-
ical approaches to transition systems and bisimulations. A reduction of open
maps situations to coalgebra was given by Lasota using multi-sorted transition
systems [19]. In this paper, we give the reduction in the other direction: from
the category Coalgl(TF ) of pointed TF -coalgebras and lax homomorphisms, we
construct the path-category Path and a functor J : Path −→ Coalgl(TF ) such
that Path-open morphisms coincide with strict homomorphisms, hence functional
bisimulations. Here, T is a functor describing the branching behaviour and F
describes the input type, i.e. the type of data that is processed (e.g. words or
trees). This development is carried out with the case where T is a powerset-like
functor, and covers transition systems allowing non-deterministic branching.

The key concept in the construction of Path are F -precise maps. Roughly
speaking in set, a map f : X −→FY is F -precise if every y ∈ Y is used precisely
once in f , i.e. there is a unique x such that y appears in f(x) and addition-
ally y appears precisely once in f(x). Such an F -precise map represents one
deterministic step (of shape F ). Then a path P ∈ Path is a finite sequence of
deterministic steps, i.e. finitely many precise maps. J converts such a data into
a pointed TF -coalgebra. There are many existing notions of paths and traces in
coalgebra [4,12,13,21], which lack the notion of precise map, which is crucial for
the present work.

Once we set up the situation J : Path −→ Coalgl(TF ), we are on the frame-
work of open map bisimulations. Our construction of Path using precise maps
is justified by the characterisation theorem: Path-open morphisms and strict
coalgebra homomorphisms coincide (Theorems 3.20 and 3.24). This coincidence
relies on the concept of path-reachable coalgebras, namely, coalgebras such that
every state can be reached by a path. Under mild conditions, path-reachability
is equivalent to an existing notion in coalgebra, defined as the non-existence of
a proper sub-coalgebra (Sect. 3.5). Additionally, this characterization produces
a canonical trace semantics for free, given in terms of paths (Sect. 3.6).
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We illustrate our reduction with several concrete situations: different classes
of non-deterministic top-down tree automata using analytic functors (Sect. 4.1),
Regular Nondeterministic Nominal Automata (RNNA), an expressive automata
notion living in nominal sets (Sect. 4.2), multisorted transition systems, used in
Lasota’s work to construct a coalgebra situation from an open map situation
(Sect. 4.3).

Notation. We assume basic categorical knowledge and notation (see e.g. [1,3]).
The cotupling of morphisms f : A → C, g : B → C is denoted by [f, g] : A+B →
C, and the unique morphsim to the terminal object is ! : X → 1 for every X.

2 Two Categorical Approaches for Bisimulations

We introduce the two formalisms involved in the present paper: the open maps
(Sect. 2.1) and the coalgebras (Sect. 2.2). Those formalisms will be illustrated on
the classic example of Labelled Transition Systems (LTSs).

Definition 2.1. Fix a set A, called the alphabet. A labelled transition system is
a triple (S, i,Δ) with S a set of states, i ∈ S the initial state, and Δ ⊆ S×A×S

the transition relation. When Δ is obvious from the context, we write s
a−→ s′

to mean (s, a, s′) ∈ Δ.

For instance, the tuple ({0, · · · , n}, 0, {(k − 1, ak, k) | 1 ≤ k ≤ n}) is an LTS,
and called the linear system over the word a1 · · · an ∈ A�. To relate LTSs, one
considers functions that preserves the structure of LTSs:

Definition 2.2. A morphism of LTSs from (S, i,Δ) to (S′, i′,Δ′) is a function
f : S −→ S′ such that f(i) = i′ and for every (s, a, s′) ∈ Δ, (f(s), a, f(s′)) ∈ Δ′.
LTSs and morphisms of LTSs form a category, which we denote by LTSA.

Some authors choose other notions of morphisms (e.g. [16]), allowing them
to operate between LTSs with different alphabets for example. The usual way
of comparing LTSs is by using simulations and bisimulations [23]. The for-
mer describes what it means for a system to have at least the behaviours of
another, the latter describes that two systems have exactly the same behaviours.
Concretely:

Definition 2.3. A simulation from (S, i,Δ) to (S′, i′,Δ′) is a relation R ⊆
S × S′ such that (1) (i, i′) ∈ R, and (2) for every s

a−→ t and (s, s′) ∈ R, there
is t′ ∈ S′ such that s′ a−→ t′ and (t, t′) ∈ R. Such a relation R is a bisimulation
if R−1 = {(s′, s) | (s, s′) ∈ R} is also a simulation.

Morphisms of LTSs are functional simulations, i.e. functions between states
whose graph is a simulation. So how to model (1) systems, (2) functional simu-
lations and (3) functional bisimulations categorically? In the next two sections,
we will describe known answers to this question, with open maps and coalgebra.
In both cases, it is possible to capture similarity and bisimilarity of two LTSs T
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and T ′. Generally, a simulation is a (jointly monic) span of a functional bisim-
ulation and a functional simulation, and a bisimulation is a simulation whose
converse is also a simulation, as depicted in Table 1. Consequently, to under-
stand similarity and bisimilarity on a general level, it is enough to understand
functional simulations and bisimulations.

2.1 Open Maps

The categorical framework of open maps [16] assumes functional simulations to
be already modeled as a category M. For example, for M := LTSA, objects are
LTSs, and morphisms are functional simulations. Furthermore, the open maps
framework assumes another category P of ‘paths’ or ‘linear systems’, together
with a functor J that tells how a ‘path’ is to be understood as a system:

Definition 2.4 [16]. An open map situation is given by categories M (‘systems’
with ‘functional simulations’) and P (‘paths’) together with a functor J : P → M.

For example with M := LTSA, we pick P := (A�,≤) to be the poset of words over
A with prefix order. Here, the functor J maps a word w ∈ A� to the linear system
over w, and w ≤ v to the evident functional simulation J(w ≤ v) : Jw −→ Jv.

In an open map situation J : P−→M, we can abstractly represent the concept
of a run in a system. A run of a path w ∈ P in a system T ∈ M is simply defined
to be an M-morphism of type Jw −→ T . With this definition, each M-morphism
h : T −→ T ′ (i.e. functional simulation) inherently transfers runs: given a run
x : Jw −→ T , the morphism h · x : Jw −→ T ′ is a run of w in T ′. In the example
open map situation J : (A�,≤) −→ LTSA, a run of a path w = a1 · · · an ∈ A�

in an LTS T = (S, i,Δ) is nothing but a sequence of states x0, . . . , xn ∈ S such
that x0 = i and xk−1

ak−→ xk holds for all 1 ≤ k ≤ n.
We introduce the concept of open map [16]. This is an abstraction of the

property posessed by functional bisimulations. For LTSs T = (S, i,Δ) and T ′ =
(S′, i′,Δ′), an LTSA-morphism h : T −→ T ′ is a functional bisimulation if the
graph of h is a bisimulation. This implies the following relationship between
runs in T and runs in T ′. Suppose that w ≤ w′ holds in A�, and a run x of w
in T is given as in (1); here n,m are lengths of w,w′ respectively. Then for any
run y′ of w′ in T ′ extending h · x as in (2), there is a run x′ of w′ extending x,
and moreover its image by h coincides with y′ (that is, h · x′ = y′). Such x′ is
obtained by repetitively applying the condition of functional bisimulation.

→
x

︷ ︸︸ ︷

i
w1−−→ x1

w2−−→ · · · wn−−→ xn

w′
n+1−−−→ x′

n+1

w′
n+2−−−→ · · · w′

m−−→ x′
m

︸ ︷︷ ︸

x′

(in T ) (1)

→ i′ w1−−→ h(x1)
w2−−→ · · · wn−−→ h(xn)

w′
n+1−−−→ y′

n+1

wn+2−−−→ · · · w′
m−−→ y′

m
︸ ︷︷ ︸

y′

(in T ′) (2)

Observe that y′ extending h · x can be represented as y′ · J(w ≤ w′) = h · x,
and x′ extending x as x′ · J(w ≤ w′) = x. From these, we conclude that if an
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LTSA-morphism h : T −→ T ′ is a functional bisimulation, then for any w ≤ w′

in A� and run x : Jw −→ T and y′ : Jw′ −→ T ′ such that y′ · J(w ≤ w′) = h · x,
there is a run x′ : Jw′ −→ T such that x′ · J(w ≤ w′) = x and h · x′ = y′ (the
converse also holds if all states of T are reachable). This necessary condition of
functional bisimulation can be rephrased in any open map situation, leading us
to the definition of open map.

Definition 2.5 [16]. Let J : P−→M be an open map situation.
An M-morphism h : T −→ T ′ is said to be open if for every
morphism Φ : w −→ w′ ∈ P making the square on the right
commute, there is x′ making the two triangles commute.

Jw T

Jw′ T ′

x

JΦ h

y′
∃x

′

Open maps are closed under composition and stable under pullback [16].

2.2 Coalgebras

The theory of G-coalgebras is another categorical framework to study bisimu-
lations. The type of systems is modelled using an endofunctor G : C −→ C and
a system is then a coalgebra for this functor, that is, a pair of an object S
of C (modeling the state space), and of a morphism of type S −→ GS (mod-
eling the transitions). For example for LTSs, the transition relation is of type
Δ ⊆ S×A×S. Equivalently, this can be defined as a function Δ : S −→ P(A×S),
where P is the powerset. In other words, the transition relation is a coalgebra for
the Set-functor P(A× ). Intuitively, this coalgebra gives the one-step behaviour
of an LTS: S describes the state space of the system, P describes the ‘branch-
ing type’ as being non-deterministic, A × S describe the ‘computation type’ as
being linear, and the function itself lists all possible futures after one-step of
computation of the system. Now, changing the underlying category or the end-
ofunctor allows to model different types of systems. This is the usual framework
of coalgebra, as described for example in [25].

Initial states are modelled coalgebraically by a pointing to the carrier i : I−→
S for a fixed object I in C, describing the ‘type of initial states’ (see e.g. [2,
Sec. 3B]). For example, an initial state of an LTS is the same as a function from
the singleton set I := {∗} to the state space S. This object I will often be the
final object of C, but we will see other examples later. In total, an I-pointed G-
coalgebra is a C-object S together with morphisms α : S −→ GS and i : I −→ S.
E.g. an LTS is an I-pointed G-coalgebra for I = {∗} and GX = P(A × X).

In coalgebra, functional bisimulations are the first class citizens to be mod-
elled as homomorphisms. The intuition is that those preserve the initial state,
and preserve and reflect the one-step relation.

Definition 2.6. An I-pointed G-coalgebra homomorphism

from I
i−→ S

α−→ GS to I
i′

−→ S′ α′
−−→ GS′ is a morphism

f : S −→ S′ making the right-hand diagram commute.

I S GS

S′ GS′

i

i′

α

f Gf

α′
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For instance, when G = P(A × ), one can easily see that a function f is a
G-coalgebra homomorphism iff it is a functional bisimulation. Thus, if we want
to capture functional simulations in LTSs, we need to weaken the condition of
homomorphism to the inequality Gf(α(s)) ⊆ α′(f(s)) (instead of equality). To
express this condition for general G-coalgebras, we introduce a partial order
�X,Y on each homset C(X,GY ) in a functorial manner.

Definition 2.7. A partial order on G-homsets is a functor � : Cop × C−→ Pos
such that U · � = C( , G ); here, U : Pos−→ Set is the forgetful functor from
the category Pos of posets and monotone functions.

The functoriality of � amounts to that f1 � f2 implies Gh · f1 · g � Gh · f2 · g.

Definition 2.8. Given a partial order on G-homsets, an
I-pointed lax G-coalgebra homomorphism f : (S, α, i) −→
(S′, α′, i′) is a morphism f : S−→S′ making the right-hand
diagram commute. The I-pointed G-coalgebras and lax
homomorphisms form a category, denoted by Coalgl(I,G).

I S GS

S′ GS′

i

i′

α

f

�

Gf

α′

Conclusion 2.9. In Set, with I = {∗}, G = P(A× ), define the order f � g in
Set(X,P(A×Y )) iff for every x ∈ X, f(x) ⊆ g(x). Then Coalgl({∗},P(A× )) =
LTSA. In particular, we have an open map situation

P = (A�,≤) J−→ M = LTSA = Coalgl({∗},P(A × ))

and the open maps are precisely the coalgebra homomorphisms (for reachable
LTSs). In this paper, we will construct a path category P for more general I and
G, such that the open morphisms are precisely the coalgebra homomorphisms.

3 The Open Map Situation in Coalgebras

Lasota’s construction [19] transforms an open map situation J : P −→ M into
a functor G (with a partial order on G-homsets), together with a functor
Beh : M −→ Coalgl(I,G) that sends open maps to G-coalgebra homomorphisms
(see Sect. 4.3 for details). In this paper, we provide a construction in the converse
direction for functors G of a certain shape.

As exemplified by LTSs, it is a common pattern that G is the composition
G = TF of two functors [12], where T is the branching type (e.g. partial, or
non-deterministic) and F is the data type, or the ‘linear behaviour’ (words,
trees, words modulo α-equivalence). If we instantiate our path-construction to
T = P and F = A × , we obtain the known open map situation for LTSs
(Conclusion 2.9).

Fix a category C with pullbacks, functors T, F : C −→ C, an object I ∈ C
and a partial order �T on T -homsets. They determine a coalgebra situation
(C, I, TF,�) where � is the partial order on TF -homsets defined by �X,Y =
�T

X,FY . Under some conditions on T and F , we construct a path-category
Path(I, F +1) and an open map situation Path(I, F +1) ↪→ Coalgl(I, TF ) where
TF -coalgebra homomorphisms and Path(I, F + 1)-open morphisms coincide.
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x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y′
1

y′
2

y′
3

y′
4

Y ′

y1

y2

y3

y4

Y

⊥

⊥

⊥

⊥

f f ′ h

Fig. 1. A non-precise map f that factors through the F -precise f ′ : X−→Y ′×Y ′+{⊥}

3.1 Precise Morphisms

While the path category is intuitively clear for FX = A × X, it is not for inner
functors F that model tree languages. For example for FX = A+X ×X, a PF -
coalgebra models transition systems over binary trees with leaves labelled in A,
instead of over words. Hence, the paths should be these kind of binary trees. We
capture the notion of tree like shape (“every node in a tree has precisely one
route to the root”) by the following abstract definition:

Definition 3.1. For a functor F : C −→ C, a morphism s : S −→ FR is called
F -precise if for all f, g, h the following implication holds:

S FC

FR FD

f

s Fh
Fg

∃d=⇒
S FC

FR

f

s
Fd

&
C

R D

h
g

d

Remark 3.2. If F preserves weak pullbacks, then a morphism s is F -precise iff
it fulfils the above definition for g = id.

Example 3.3. Intuitively speaking, for a polynomial Set-functor F , a map
s : S → FR is F -precise iff every element of R is mentioned precisely once
in the definition of the map f . For example, for FX = A × X + {⊥}, the case
needed later for LTSs, a map f : X −→ FY is precise iff for every y ∈ Y , there
is a unique pair (x, a) ∈ X ×A such that f(x) = (a, y). For FX = X ×X + {⊥}
on Set, the map f : X −→FY in Fig. 1 is not F -precise, because y2 is used three
times (once in f(x2) and twice in f(x3)), and y3 and y4 do not occur in f at
all. However, f ′ : X −→ FY ′ is F -precise because every element of Y ′ is used
precisely once in f ′, and we have that Fh · f ′ = f . Also note that f ′ defines a
forest where X is the set of roots, which is closely connected to the intuition
that, in the F -precise map f ′, from every element of Y ′, there is precisely one
edge up to a root in X.

So when transforming a non-precise map into a precise map, one duplicates
elements that are used multiple times and drops elements that are not used.
We will cover functors F for which this factorization pattern provides F -precise
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maps. If F involves unordered structure, this factorization needs to make choices,
and so we restrict the factorization to a class S of objects that have that choice-
principle (see Example 4.5 later):

Definition 3.4. Fix a class of objects S ⊆ objC closed under
isomorphism. We say that F admits precise factorizations
w.r.t. S if for every f : S → FY with S ∈ S, there exist Y ′ ∈ S,
h : Y ′ → Y and f ′ : S → FY ′ F -precise with Fh · f ′ = f .

S FY ′

FY

∀f

∃f ′

Fh

∗
P0

P1

P2 P3
P4

a

a

⊥ ⊥

⊥

p0

p1
p2 p3

Fig. 2. A path of length 4 for FX = {a} × X + X × X + {⊥} with I = {∗}.

For C = Set, S contains all sets. However for the category of nominal sets, S
will only contain the strong nominal sets (see details in Subsect. 4.2).

Remark 3.5. Precise morphisms are essentially unique. If f1 : X −→ FY1 and
f2 : X −→FY2 are F -precise and if there is some h : Y1 −→Y2 with Fh · f1 = f2,
then h is an isomorphism. Consequently, if f : S −→FY with S ∈ S is F -precise
and F -admits precise factorizations, then Y ∈ S.

Functors admitting precise factorizations are closed under basic constructions:

Proposition 3.6. The following functors admit precise factorizations w.r.t. S:
1. Constant functors, if C has an initial object 0 and 0 ∈ S.
2. F · F ′ if F : C −→ C and F ′ : C −→ C do so.
3.

∏

i∈I

Fi, if all (Fi)i∈I do so and S is closed under I-coproducts.

4.
∐

i∈I

Fi, if all (Fi)i∈I do so, C is I-extensive and S is closed under I-

coproducts.
5. Right-adjoint functors, if and only if its left-adjoint preserves S-objects.
Example 3.7. When C is infinitary extensive and S is closed under coproducts,
every polynomial endofunctor F : C −→ C admits precise factorizations w.r.t. S.
This is in particular the case for C = S = Set. In this case, we shall see later
(Sect. 4.1) that many other Set-functors, e.g. the bag functor B, where B(X) is
the set of finite multisets, have precise factorizations. In contrast, F = P does
not admit precise factorizations, and if f : X −→PY is P-precise, then f(x) = ∅
for all x ∈ X.
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3.2 Path Categories in Pointed Coalgebras

We define a path for I-pointed TF -coalgebras as a tree according to F . Following
the observation in Example 3.3, one layer of the tree is modelled by a F -precise
morphism and hence a path in a TF -coalgebra is defined to be a finite sequence
of (F + 1)-precise maps, where the + 1 comes from the dead states w.r.t. T ;
the argument is given later in Remark 3.23 when reachability is discussed. Since
the + 1 is not relevant yet, we define Path(I, F ) in the following and will use
Path(I, F + 1) later. For simplicity, we write Xn for finite families (Xk)0≤k<n.

Definition 3.8. The category Path(I, F ) consists of the following. An object
is (P n+1,pn) for an n ∈ N with P0 = I and pn a family of F -precise maps
(pk : Pk −→ FPk+1)k<n. We say that (P n+1,pn) is a path of length n. A mor-
phism φn+1 : (P n+1,pn)−→(Qm+1, qm), m ≥ n, is a family (φk : Pk−→Qk)k≤n

with φ0 = idI and qk · φk = Fφk+1 · pk for all 0 ≤ k ≤ n.

Example 3.9. Paths for FX = A × X + 1 and I = {∗} singleton are as follows.
First, a map f : I −→ FX is precise iff (up-to isomorphism) either X = I and
f(∗) = (a, ∗) for some a ∈ A; or X = ∅ and f(∗) = ⊥. Then a path is isomorphic
to an object of the form: Pi = I for i ≤ k, Pi = ∅ for i > k, pi(∗) = (ai, ∗) for
i < k, and pk(∗) = ⊥. A path is the same as a word, plus some “junk”, concretely,
a word in A�.⊥�. For LTSs, an object in Path(I, F ) with FX = A×X is simply
a word in A�. For a more complicated functor, Fig. 2 depicts a path of length
4, which is a tree for the signature with one unary, one binary symbol, and a
constant. The layers of the tree are the sets P 4. Also note that since every pi is
F -precise, there is precisely one route to go from every element of a Pk to ∗.

Remark 3.10. The inductive continuation of Remark 3.5 is as follows. Given a
morphism φn+1 in Path(I, F ), since φ0 is an isomorphism, then φk is an isomor-
phism for all 0 ≤ k ≤ n. If F admits precise factorizations and if I ∈ S, then for
every path (P n+1,pn), all Pk, 0 ≤ k ≤ n, are in S.

Remark 3.11. If in Definition 3.4, the connecting morphism h : Y ′−→Y uniquely
exists, then it follows by induction that the hom-sets of Path(I, F ) are at most
singleton. This is the case for all polynomial functors, but not the case for the
bag functor on sets (discussed in Subsect. 4.1).

Definition 3.12. The path poset PathOrd(I, F ) is the set
∐

0≤n C(I, Fn1) equipped with the order: for u : I −→ Fn1 and
v : I −→ Fm1, we define u ≤ v if n ≤ m and Fn(!) · v = u.

FnFm−n1

I Fn1

Fn!
v

u

So u ≤ v if u is the truncation of v to n levels. This matches the morphisms in
Path(I, F ) that witnesses that one path is prefix of another:

Proposition 3.13. 1. The functor Comp : Path(I, F )−→PathOrd(I, F ) defined

by I = P0
p0→ FP1 · · · → FnPn

Fn!→ Fn1 on (P n+1,pn) is full, and reflects isos.
2. If F admits precise factorizations w.r.t. S and I ∈ S, then Comp is sujective.
3. If additionally h in Definition 3.4 is unique, then Comp has a right-inverse.
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In particular, PathOrd(I, F ) is Path(I, F ) up to isomorphism. In the
instances, it is often easier to characterize PathOrd(I, F ). This also shows that
Path(I, F ) contains the elements – understood as morphisms from I – of the

finite start of the final chain of F : 1 !←− F1 F !←− F 21 F 2!←−− F 31 ←− · · · .

Example 3.14. When FX = A × X + 1, Fn1 is isomorphic to the set of words
in A�.⊥� of length n. Consequently, PathOrd(I, F ) is the set of words in A�.⊥�,
equipped with the prefix order. In this case, Comp is an equivalence of categories.

3.3 Embedding Paths into Pointed Coalgebras

The paths (P n+1,pn) embed into Coalgl(I, TF ) as one expects it for examples
like Fig. 2: one takes the disjoint union of the Pk, one has the pointing I = P0

and the linear structure of F is embedded into the branching type T .
During the presentation of the results, we require T , F , and I to have cer-

tain properties, which will be introduced one after the other. The full list of
assumptions is summarized in Table 2:

(Ax1) – The main theorem will show that coalgebra homomorphisms in
Coalgl(I, TF ) are the open maps for the path category Path(I, F + 1). So from
now on, we assume that C has finite coproducts and to use the results from
the previous sections, we fix a class S ⊆ objC such that F + 1 admits precise
factorizations w.r.t. S and that I ∈ S.

(Ax2) – Recall, that a family of morphisms (ei : Xi −→ Y )i∈I with common
codomain is called jointly epic if for f, g : Y −→Z we have that f ·ei = g ·ei ∀i ∈ I
implies f = g. For Set, this means, that every element y ∈ Y is in the image
of some ei. Since we work with partial orders on T -homsets, we also need the
generalization of this property if f � g are of the form Y −→ TZ ′.

(Ax3) – In this section, we encode paths as a pointed coalgebra by construct-
ing a functor J : Path(I, F +1) ↪→ Coalgl(I, TF ). For that we need to embed the
linear behaviour FX + 1 into TFX. This is done by a natural transformation
[η,⊥] : Id +1 −→ T , and we require that ⊥ : 1 −→ T is a bottom element for �.

Example 3.15. For the case where T is the powerset functor P, η is given by the
unit ηX(x) = {x}, and ⊥ is given by empty sets ⊥X(∗) = ∅.

Definition 3.16. We have an inclusion functor J : Path(I, F + 1) ↪→
Coalgl(I, TF ) that maps a path (P n+1,pn) to an I-pointed TF -coalgebra on
∐

P n+1 :=
∐

0≤k≤n Pk. The pointing is given by in0 : I = P0 −→ ∐

P n+1 and
the structure by:

∐

0≤k<n

Pk + Pn
[(F ink+1+1)·pk]0≤k<n+!−−−−−−−−−−−−−−−−→ F

∐

P n+1 + 1
[η,⊥]−−−→ TF

∐

P n+1.

Example 3.17. In the case of LTSs, a path, or equivalently a word a1...ak.⊥...⊥ ∈
A�.⊥�, is mapped to the finite linear system over a1...ak (see Sect. 2.1), seen as
a coalgebra (see Sect. 2.2).
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Proposition 3.18. Given a morphism [xk]k≤n :
∐

P n+1−→X for some system
(X, ξ, x0) and a path (P n+1,pn), we have

J(P n+1,pn)
[xk]k≤n−−−−−→ (X, ξ, x0)

a run in Coalgl(I, TF )
⇐⇒ ∀k < n :

Pk X

FPk+1 + 1 FX + 1 TFX.

xk

pk ξFxk+1+1 �
[η,⊥]X

Also note that the pointing x0 of the coalgebra is necessarily the first component
of any run in it. In a run [xk]k≤n, pk corresponds to an edge from xk to xk+1.

Example 3.19. For LTSs, since the Pk are singletons, xk just picks the kth state
of the run. The right-hand side of this lemma describes that this is a run iff there
is a transition from the kth state and the (k + 1)−th state.

3.4 Open Morphisms Are Exactly Coalgebra Homomorphisms

In this section, we prove our main contribution, namely that Path(I, F + 1)-
open maps in Coalgl(I, TF ) are exactly coalgebra homomorphisms. For the first
direction of the main theorem, that is, that coalgebra homomorphisms are open,
we need two extra axioms:

(Ax4) – describing that the order on C(X,TY ) is point-wise. This holds for
the powerset because every set is the union of its singleton subsets.

(Ax5) – describing that C(X,TY ) admits a choice-principle. This holds for
the powerset because whenever y ∈ h[x] for a map h : X −→ Y and x ⊆ X, then
there is some {x′} ⊆ x with h(x′) = y.

Theorem 3.20. Under the assumptions of Table 2, a coalgebra homomorphism
in Coalgl(I, TF ) is Path(I, F + 1)-open.

Table 2. Main assumptions on F, T : C −→ C, �T , S ⊆ objC

F (Ax1) F + 1 admits precise factorizations, w.r.t. S and I ∈ S
T (Ax2) If (ei : Xi −→ Y )i∈I jointly epic, then f · ei � g · ei for all i ∈ I ⇒ f � g.

(Ax3) [η, ⊥] : Id+1 −→ T , with ⊥Y ·!X � f for all f : X −→ TY

(Ax4) For every f : X −→ TY , X ∈ S,
f =

⊔{[η, ⊥]Y · f ′ � f | f ′ : X −→ Y + 1}

(Ax5) ∀A ∈ S
A TX

Y + 1 TY

x

y � Th

[η,⊥]Y

∃x′
=⇒

A

X + 1
TX

Y + 1 TY

x

x′

y

�

[η,⊥]X

h+1
Th

[η,⊥]Y

The converse is not true in general, because intuitively, open maps reflect
runs, and thus only reflect edges of reachable states, as we have seen in Sect. 2.1.
The notion of a state being reached by a path is the following:
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Definition 3.21. A system (X, ξ, x0) is path-reachable if the family of runs
[xk]k≤n : J(P n+1,pn)−→(X, ξ, x0) (of paths from Path(I, F +1)) is jointly epic.

Example 3.22. For LTSs, this means that every state in X is reached by a run,
that is, there is a path from the initial state to every state of X.

Remark 3.23. In Definition 3.21, it is crucial that we consider Path(I, F +1) and
not Path(I, F ) for functors incorporating ‘arities ≥ 2’. This does not affect the
example of LTSs, but for I = 1, FX = X × X and T = P in Set, the coalge-
bra (X, ξ, x0) on X = {x0, y1, y2, z1, z2} given by ξ(x0) = {(y1, y2)}, ξ(y1) =
{(z1, z2)}, ξ(y2) = ξ(z1) = ξ(z2) = ∅ is path-reachable for Path(I, F +1). There
is no run of a length 2 path from Path(I, F ), because y2 has no successors, and
so there is no path to z1 or to z2.

Theorem 3.24. Under the assumptions of Table 2, if (X, ξ, x0) is path-
reachable, then an open morphism h : (X, ξ, x0) −→ (Y, ζ, y0) is a coalgebra
homomorphism.

3.5 Connection to Other Notions of Reachability

There is another concise notion for reachability in the coalgebraic literature [2].

Definition 3.25. A subcoalgebra of (X, ξ, x0) is a coalgebra homomorphism
h : (Y, ζ, y0) −→ (X, ξ, x0) that is carried by a monomorphism h : X � Y . Fur-
thermore (X, ξ, x0) is called reachable if it has no proper subcoalgebra, i.e. if any
subcoalgebra h is an isomorphism.

Under the following assumptions, this notion coincides with the path-based def-
inition of reachability (Definition 3.21).

Assumption 3.26. For the present Subsect. 3.5, let C be cocomplete, have
(epi,mono)-factorizations and wide pullbacks of monomorphisms.

The first direction follows directly from Theorem 3.20:

Proposition 3.27. Every path-reachable (X, ξ, x0) has no proper subcoalgebra.

For the other direction it is needed that TF preserves arbitrary intersections,
that is, wide pullbacks of monomorphisms. In Set, this means that for a family
(Xi ⊆ Y )i∈I of subsets we have

⋂

i∈I TFXi = TF
⋂

i∈I Xi as subsets of TFY .

Proposition 3.28. If, furthermore, for every monomorphism m : Y −→ Z, the
function C(−, Tm) : C(X,TY ) −→ C(X,TZ) reflects joins and if TF pre-
serves arbitrary intersections, then a reachable coalgebra (X, ξ, x0) is also path-
reachable.

All those technical assumptions are satisfied in the case of LTSs, and will also
be satisfied in all our instances in Sect. 4.
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3.6 Trace Semantics for Pointed Coalgebras

The characterization from Theorems 3.20 and 3.24 points out a natural way
of defining a trace semantics for pointed coalgebras. Indeed, the paths category
Path(I, F +1) provides a natural way of defining the runs of a system. A possible
way to go from runs to trace semantics is to describe accepting runs as the
subcategory J ′ : Path(I, F ) ↪→ Path(I, F +1). We can define the trace semantics
of a system (X, ξ, xo) as the set:

tr(X, ξ, x0) = {Comp(P n+1,pn) |∃ run [xk]k≤n : JJ ′(P n+1,pn) −→ (X, ξ, x0)
with (P n+1,pn) ∈ Path(I, F )}

Since Path(I, F )-open maps preserve and reflect runs, we have the following:

Corollary 3.29. tr : Coalgl(I, TF )−→(P(PathOrd(I, F )),⊆) is a functor and if
f : (X, ξ, x0) −→ (Y, ζ, y0) is Path(I, F +1)-open, then tr(X, ξ, x0) = tr(Y, ζ, y0).

Let us look at two LTS-related examples (we will describe some others in the
next section). First, for FX = A × X. The usual trace semantics is given by
all the words in A� that are labelled of a run of a system. This trace semantics
is obtained because PathOrd(I, F ) =

∐

n≥0 An and because Comp maps every
path to its underlying word. Another example is given for FX = A × X + {�},
where � marks final states. In this case, a path in Path(I, F ) of length n is either
a path that can still be extended or encodes less than n steps to an accepting
state �. This obtains the trace semantics containing the set of accepted words,
as in automata theory, plus the set of possibly infinite runs.

4 Instances

4.1 Analytic Functors and Tree Automata

In Example 3.7, we have seen that every polynomial Set-functors, in particular
the functor X �→ A × X, has precise factorizations with respect to all sets.
This allowed us to see LTSs, modelled as {∗}-pointed P(A × )-coalgebra, as
an instance of our theory. This allowed us in particular to describe their trace
semantics using our path category in Sect. 3.6. This can be extended to tree
automata as follows. Assume given a signature Σ, that is, a collection (Σn)n∈N

of disjoint sets. When σ belongs to Σn, we say that n is the arity of σ or
that σ is a symbol of arity n. A top-down non-deterministic tree automata as
defined in [6] is then the same as a {∗}-pointed PF -coalgebra where F is the
polynomial functor X �→ ∐

σ∈Σn
Xn. For this functor, Fn(1) is the set of trees

over Σ�{∗(0)} of depth at most n+1 such that a leaf is labelled by ∗ if and only
if it is at depth n + 1. Intuitively, elements of Fn(1) are partial runs of length
n that can possibly be extended. Then, the trace semantics of a tree automata,
seen as a pointed coalgebra, is given by the set of partial runs of the automata.
In particular, this contains the set of accepted finite trees as those partial runs
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without any ∗, and the set of accepted infinite trees, encoded as the sequence of
their truncations of depth n, for every n.

In the following, we would like to extend this to other kinds of tree automata
by allowing some symmetries. For example, in a tree, we may not care about
the order of the children. This boils down to quotient the set Xn of n-tuples, by
some permutations of the indices. This can be done generally given a subgroup
G of the permutation group Sn on n elements by defining Xn/G as the quotient
of Xn under the equivalence relation: (x1, . . . , xn) ≡G (y1, . . . , yn) iff there is
π ∈ G such that for all i, xi = yπ(i). Concretely, this means that we replace the
polynomial functor F by a so-called analytic functor :

Definition 4.1 [14,15]. An analytic Set-functor is a functor of the form FX =
∐

σ∈Σn
Xn/Gσ where for every σ ∈ Σn, we have a subgroup Gσ of the permuta-

tion group Sn on n elements.

Example 4.2. Every polynomial functor is analytic. The bag-functor is analytic,
with Σ = ({∗})n∈N has one operation symbol per arity and Gσ = Sar(σ) is
the full permutation group on ar(σ) elements. It is the archetype of an analytic
functor, in the sense that for every analytic functor F : Set−→ Set, there is a
natural transformation into the bag functor α : F −→ B. If F is given by Σ and
Gσ as above, then αX is given by

FX =
∐

σ∈Σn
Xn/Gσ �

∐

σ∈Σn
Xn/Sn → ∐

n∈N Xn/Sn = BX.

Proposition 4.3. For an analytic Set-functor F , the following are equivalent
(1) a map f : X−→FY is F -precise, (2) αY ·f is B-precise, (3) every element
of Y appears precisely once in the definition of f , i.e. for every y ∈ Y , there is
exactly one x in X, such that f(x) is the equivalence class of a tuple (y1, . . . , yn)
where there is an index i, such that yi = y; and furthermore this index is unique.
So every analytic functor has precise factorizations w.r.t. Set.

4.2 Nominal Sets: Regular Nondeterministic Nominal Automata

We derive an open map situation from the coalgebraic situation for regular
nondeterministic nominal automata (RNNAs) [26]. They are an extension of
automata to accept words with binders, consisting of literals a ∈ A and binders
|a for a ∈ A; the latter is counted as length 1. An example of such a word of length
4 is a|cbc, where the last c is bound by |c. The order of binders makes difference:
|a|bab �= |a|bba. RNNAs are coalgebraically represented in the category of nomi-
nal sets [10], a formalism about atoms (e.g. variables) that sit in more complex
structures (e.g. lambda terms), and gives a notion of binding. Because the choice
principles (Ax4) and (Ax5) are not satisfied by every nominal sets, we instead
use the class of strong nominal sets for the precise factorization (Definition 3.4).

Definition 4.4 [10,24]. Fix a countably infinite set A, called the set of atoms.
For the group Sf(A) of finite permutations on the set A, a group action (X, ·)
is a set X together with a group homomorphism · : Sf(A) −→ Sf(X), written in
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infix notation. An element x ∈ X is supported by S ⊆ A, if for all π ∈ Sf(A)
with π(a) = a ∀a ∈ S we have π · x = x. A nominal set is a group action
for Sf(A) such that every x ∈ X is finitely supported, i.e. supported by a finite
S ⊆ A. A map f : (X, ·) −→ (Y, 
) is equivariant if for all x ∈ X and π ∈ Sf(A)
we have f(π · x) = π 
 f(x). The category of nominal sets and equivariant maps
is denoted by Nom. A nominal set (X, ·) is called strong if for all x ∈ X and
π ∈ Sf(A) with π · x = x we have π(a) = a for all a ∈ supp(x).

Intuitively, the support of an element is the set of free literals. An equivariant
map can forget some of the support of an element, but can never introduce new
atoms, i.e. supp(f(x)) ⊆ supp(x). The intuition behind strong nominal sets is
that all atoms appear in a fixed order, that is, An is strong, but Pf(A) (the finite
powerset) is not. We set S to be the class of strong nominal sets:

Example 4.5. The Nom-functor of unordered pairs admits precise factorizations
w.r.t. strong nominal sets, but not w.r.t. all nominal sets.

In the application, we fix the set I = A#n of distinct n-tuples of atoms (n ≥ 0)
as the pointing. The hom-sets Nom(X,PufsY ) are ordered point-wise.

Proposition 4.6. Uniformly finitely supported powerset Pufs(X) = {Y ⊆ X |
⋃

y∈Y supp(y) finite} satisfies (Ax2-5) w.r.t. S the class of strong nominal sets.1

As for F , we study an LTS-like functor, extended with the binding functor [10]:

Definition 4.7. For a nominal set X, define the α-equivalence relation ∼α on
A× X by: (a, x) ∼α (b, y) ⇔ ∃c ∈ A \ supp(x) \ supp(y) with (a c) · x = (b c) · y.
Denote the quotient by [A]X := A × X/∼α. The assignment X �→ [A]X extends
to a functor, called the binding functor [A] : Nom−→Nom.

RNNA are precisely PufsF -coalgebras for FX = {�} + [A]X + A × X [26]. In
this paper we additionally consider initial states for RNNAs.

Proposition 4.8. The binding functor [A] admits precise factorizations w.r.t.
strong nominal sets and so does FX = {�} + [A]X + A × X.

An element in PathOrd(A#n, F ) may be regarded as a word with binders
under a context a � w, where a ∈ A#n, all literals in w are bound or in a, and w
may end with �. Moreover, two word-in-contexts a � w and a′ � w′ are identified
if their closures are α-equivalent, that is, |a1 · · · |an

w = |a′
1
· · · |a′

n
w′. The trace

semantics of a RNNA T contains all the word-in-contexts corresponding to runs
in T . This trace semantics distinguishes whether words are concluded by �.

4.3 Subsuming Arbitrary Open Morphism Situations

Lasota [19] provides a translation of a small path-category P ↪→ M into a func-
tor F : SetobjP −→SetobjP defined by F

(

XP

)

P
= (

∏

Q∈P

(P(XQ))P(P,Q)
)

P∈P
.

1 There are two variants of powersets discussed in [26]. The finite powerset Pf also
fulfils the axioms. However, finitely supported powerset Pfs does not fulfil (Ax5).
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So the hom-sets SetobjP(X,FY ) have a canonical order, namely the point-wise
inclusion. This admits a functor Beh from M to F-coalgebras and lax coalgebra
homomorphisms, and Lasota shows that f ∈ M(X,Y ) is P-open iff Beh(f) is
a coalgebra homomorphism. In the following, we show that we can apply our
framework to F by a suitable decomposition F = TF and a suitable object I for
the initial state pointing. As usual in open map papers, we require that P and
M have a common initial object 0P. Observe that we have F = T · F where

T (XP )P∈P =
(P(XP )

)

P∈P
and F (XP )P∈P =

(∐

Q∈PP(P,Q) × XQ

)

P∈P
.

Lasota considers coalgebras without pointing, but one indeed has a canonical
pointing as follows. For P ∈ P, define the characteristic family χP ∈ SetobjP by
χP

Q = 1 if P = Q and χP
Q = ∅ if P �= Q. With this, we fix the pointing I = χ0P .

Proposition 4.9. T , F and I satisfy the axioms from Table 2, with S =
SetobjP.

The path category in Coalgl(I, TF ) from our theory can be described as follows.

Proposition 4.10. An object of Path(I, F ) is a sequence of composable P-mor-
phisms 0P

m1−−→ P1
m2−−→ P2 · · · mn−−→ Pn.

5 Conclusions and Further Work

We proved that coalgebra homomorphisms for systems with non-deterministic
branching can be seen as open maps for a canonical path-category, constructed
from the computation type F . This limitation to non-deterministic systems is
unsurprising: as we have proved in Sect. 4.3 on Lasota’s work [19], every open
map situation can been encoded as a coalgebra situation with a powerset-like
functor, so with non-deterministic branching. As a future work, we would like to
extend this theory of path-categories to coalgebras for further kinds of branching,
especially probabilistic and weighted. This will require (1) to adapt open maps
to allow those kinds of branching (2) adapt the axioms from Table 2, by replacing
the “+1” part of (Ax1) to something depending on the branching type.
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2. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Logical
Methods Comput. Sci. 9(3), 1–51 (2013)

3. Awodey, S.: Category Theory, 2nd edn. Oxford University Press, Inc., New York
(2010)
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P. (eds.) Combinatoire énumérative. LNM, vol. 1234, pp. 126–159. Springer, Hei-
delberg (1986). https://doi.org/10.1007/BFb0072514

16. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput.
127, 164–185 (1996)
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