l‘)

Check for
updates

1

Higher Dimensional Automata (HDA, for short), introduced by Pratt in [23],
are a geometric model of true concurrency. Geometric, because they are defined
very similarly to simplicial sets, and can be interpreted as glueings of geometric
objects, here hypercubes of any dimension. Similarly to other models of concur-
rency much as event structures [21], asynchronous systems [1,25], or transition
systems with independence [22], they model true concurrency, in the sense that
they distinguish interleaving behaviours from simultaneous behaviours. In [12],
van Glabbeek proved that they form the most powerful models of a hierarchy of
concurrent models. In [6], Fahrenberg described a notion of bisimilarity of HDA
using the general framework of open maps from [17]. If this work is very natural,

The author was supported by ERATO HASUO Metamathematics for Systems Design

Trees in Partial Higher Dimensional
Automata

Jérémy Dubut!2(®)
! National Institute of Informatics, Tokyo, Japan
dubut@nii.ac.jp
2 Japanese-French Laboratory for Informatics, Tokyo, Japan

Abstract. In this paper, we give a new definition of partial Higher
Dimension Automata using lax functors. This definition is simpler and
more natural from a categorical point of view, but also matches more
clearly the intuition that pHDA are Higher Dimensional Automata with
some missing faces. We then focus on trees. Originally, for example in
transition systems, trees are defined as those systems that have a unique
path property. To understand what kind of unique property is needed in
pHDA, we start by looking at trees as colimits of paths. This definition
tells us that trees are exactly the pHDA with the unique path property
modulo a notion of homotopy, and without any shortcuts. This property
allows us to prove two interesting characterisations of trees: trees are
exactly those pHDA that are an unfolding of another pHDA; and trees
are exactly the cofibrant objects, much as in the language of Quillen’s
model structure. In particular, this last characterisation gives the pre-
misses of a new understanding of concurrency theory using homotopy
theory.

Keywords: Higher Dimensional Automata - Trees *
Homotopy theories

Introduction

27 Project (No. JPMJER1603), JST.

© The Author(s) 2019
M. Bojariczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 224-241, 2019.
https://doi.org/10.1007/978-3-030-17127-8_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_13

Trees in Partial Higher Dimensional Automata 225

it is confronted with a design problem: paths (or executions) cannot be nicely
encoded as HDA. Indeed, in a HDA, it is impossible to model the fact that two
actions must be executed at the same time, or that two actions are executed
at the same time but one must start before the other. From a geometric point
of view, those impossibilities are expressed by the fact that we deal with closed
cubes, that is, cubes that must contain all of their faces. Motivated by those
examples, Fahrenberg, in [7], extended HDA to partial HDA, intuitively, HDA
with cubes with some missing faces. If the intuition is clear, the formalisation is
still complicated to achieve: the definition from [7] misses the point that faces
can be not uniquely defined. This comes from the fact that Fahrenberg wanted
to stick to the ‘local’ definition of precubical sets, that is, that cubes must satisfy
some local conditions about faces. As we will show, those local equations are not
enough in the partial case. Another missed point is the notion of morphisms of
partial HDA: as defined in [7], the natural property that morphisms map execu-
tions to executions is not satisfied. In Sect. 2, we address those issues by giving
a new definition of partial HDA in terms of lax functors. This definition, similar
to the presheaf theoretic definition of HDA, avoid the issues discussed above by
considering global inclusions, instead of local equations. This illustrates more
clearly the intuition of partial HDA being HDA with missing faces: we coher-
ently replace sets and total functions by sets and partial functions. From this
similarity with the original definition of HDA, we can prove that it is possible to
complete a partial HDA to turn it into a HDA| by adding the missing faces, and
from this completion, it is possible to define a geometric realisation of pHDA
(which was impossible with Fahrenberg’s definition).

The geometry of Higher Dimensional Automata, and more generally, of
true concurrency, has been studied since Goubault’s PhD thesis [13]. Since
then, numerous pieces of work relating algebraic topology and true concurrency
have been achieved (for example, see the textbooks [9,14]). In particular, some
attempts of defining nice homotopy theories for true concurrency (or directed
topology), through the language of model structures of Quillen [24], have been
made by Gaucher [10], and the author [3]. In the second part of this paper
(Sects. 3, 4 and 5), we consider another point of view of this relationship between
HDA and model structures. The goal is not to understand the true concurrency
of HDA, that is, understanding the homotopy theory of HDA as an abstract
homotopy theory, but to understand the concurrency theory of HDA. By this
we mean to understand how paths (or executions) and extensions of paths can
be understood using (co)fibrations (in Quillen’s sense). Also, the goal is not to
construct a model structure, as Quillen’s axioms would fail, but to give intuitions
and some preliminary formal statements toward the understanding of concur-
rency using homotopy theory. Using this point of view, many constructions in
concurrency can be understood using the language of model structures:

— Open maps from [17] can be understood as trivial fibrations, namely weak
equivalences (here, bisimulations) that have the right lifting properties with
respect to some morphisms.
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— Those morphisms are precisely extensions of executions, which means that
they can be seen as cofibration generators (in the language of cofibrantly
generated model structures [15]).

— Cofibrations are then morphisms that have the left lifting property with
respect to open maps. In particular, this allows us to define cofibrant objects
as those objects whose unique morphisms from the initial object is a cofibra-
tion. In a way, cofibrant objects are those objects that are constructed by just
using extensions of paths, and should correspond to trees.

— The cofibrant replacement is then given by canonically constructing a cofi-
brant object, which is weakly equivalent (here, bisimilar) to a given object.

That should correspond to the unfolding.
The main ingredient is to understand what trees are in this context. In the case

of transition systems for semantics of CCS [19], synchronisation trees are those
systems with exactly one path from the initial state to any state. Those trees are
then much simpler to reason on, but they are still powerful enough to capture any
bisimulation type: by unfolding, it is possible to canonically construct a tree from
a system. The goal of Sects. 3 and 4 will be to understand how to generalise this
to pHDA. In this context, it is not clear what kind of unique path property should
be considered as, in general, in truly concurrent systems, we have to deal with
homotopies, namely, equivalences of paths modulo permutation of independent
actions. Following [4], we will first consider trees as colimits of paths. This will
guide us to determine what kind of unique path property is needed: a tree is
a pHDA with exactly one class of paths modulo a notion of homotopy, from
the initial state to any state, and without any shortcuts. This will be proved
by defining a suitable notion of unfolding of pHDA. Finally, in Sect.5, we prove
that those trees coincide exactly with the cofibrant objects, illustrating the first
steps of this new understanding of concurrency, using homotopy theory.

2 Fixing the Definition of pHDA

In this Section, we review the definitions of HDA (Sect. 2.1), the first one using
face maps, and the second one using presheaves. In Sect.2.2, we describe the
definition of partial HDA from [7] and explain why it does not give us what we
are expecting. We tackle those issues by introducing a new definition in Sect. 2.3,
extending the presheaf theoretic definition, using lax functors instead of strict
functors. Finally, in Sect. 2.4, we prove that HDA form a reflective subcategory
of partial HDA, by constructing a completion of a partial HDA.

2.1 Higher Dimensional Automata

Higher Dimensional Automata are an extension of transition systems: they are
labeled graphs, except that, in addition to vertices and edges, the graph structure
also has higher dimensional data, expressing the fact that several actions can be
made at the same time. Those additional data are intuitively cubes filling up
interleaving: if @ and b can be made at the same time, instead of having an
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empty square as on the left figure, with a.b and b.a as only behaviours, we have
a full square as on the right figure, with any possible behaviours in-between. This
requires to extend the notion of graph to add those higher dimensional cubical
data: that is the notion of precubical sets.

a a
o — 0 e —— @
a and b
b| |b b at the same time b
[ ) [ ) o — 0
a a

Concrete Definition of Precubical Sets. A precubical set X is a col-
lection of sets (X,)nen together with a collection of functions (95, : X, —
Xn—1)n>0,1<i<n,acf0,1} satisfying the local equations 05, o 8£n+1 = 853,” o
08 1 i1 for every o, 3 € {0,1}, n > 0 and 1 < j <4 < n. A morphism of
precubical sets from X to Y is a collection of functions (f, : X, — Y, )nen
satisfying the equations f, 0 0, = 07, o fn41 for every n € N, 1 <4 < n and
a € {0,1}. The elements of X are called points, X; segments, X, squares,
X, n-cubes. In the following, we will call past (resp. future) i-face maps the

82n (resp. 321n) We denote this category of precubical sets by pCub.

Precubical Sets as Presheaves. Equivalently, pCub is the category of
preshea-ves over the cubical category . [J is the subcategory of Set whose
objects are the sets {0,1}™ for n € N and whose morphisms are generated by
the so-called coface maps:

dzqfn : {Oa l}n_l — {071}n (ﬂlv s 7ﬂn—1) — (ﬁla s 761’—1’&’5% s 7ﬂn—1)

A precubical set is a functor X : [(0°° — Set, that is, a presheaf over [J, and a
morphism of precubical sets is a natural transformation.

Higher Dimensional Automata [11]. From now on, fix a set L, called the
alphabet. We can form a precubical set also noted L such that L, = L™ and
the i-face maps are given by 6&(ay...an) = a1...a;—1.04i11 ... a,. We can also
form the following precubical set * such that xg = {x} and %, = @ for n > 0.
A HDA X on L is a bialgebra * — X — L in pCub. In other words, a HDA
X is a precubical set, also noted X, together with a specified point, the initial
state, i € X and a labelling function ) : X; — L satisfying the equations
Ao d)y = Xod}, for i € {1,2} (see previous figure, right). A morphism of
HDA from X to Y is a morphism f of precubical sets from X to Y such that
folix) = iy and Ax = Ay o f;. HDA on L and morphisms of HDA form a
category that we denote by HDAj,. This category can also be defined as a
the double slice category */pCub/L. Remark that we are only concerned with
labelling-preserving morphisms, not general morphisms as described in [5].
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2.2 Original Definition of Partial Higher Dimensional Automata

Originally [7], partial HDA are defined similarly to the concrete definition of
HDA, except that the face maps can be partial functions and the local equations
hold only when both sides are well defined. There are two reasons why it fails to
give the good intuition:

— first the ‘local’ equations are not enough
in the partial case. Imagine that we want to
model a full cube ¢ without its lower face,
that is, 89 5 is not defined on ¢, and such that
1 5 is undefined on 0] 3(c) and 93 5(c), that
is, we remove an edge. We cannot prove using
the local equations that 9f 099 0] (c) = df o
09 0 94(c), that is, that the vertices of the | — be-eeeo-a- - - -
cube are uniquely defined. Indeed, to prove / not defined
this equality using the local equations, you
can only permute two consecutive 9. From
01 098 0 81 (c), you can:

not defined
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e cither permute the first two and you obtain 9] o 81 o 8(c),
e or permute the last two and you obtain 9 o 9} o 91 (c).

and both faces are not defined. On the other hand, those two should be equal
because the comaps di o d9 o d} and d} o d9 o d} are equal in 0J, and 91 o 99 o 9}
and 91 0 99 0 9} are both defined on c.

— secondly, the notion of morphism is not good (or at segment
least, ambiguous). The equations f, o 07, x = 07,y © o a o
fn+1 bhold in [7] only when both face maps are defined, v
which authorises many morphisms. For example, consider . v 4
the segment I, and the ‘split’ segment I’ which is defined ®* — o« = ®
as I, except that no face maps are defined (geometrically, split segment

this corresponds to two points and an open segment). The

identity map from I to I’ is a morphism of partial precubical sets in the sense of
[7], which is unexpected. A bad consequence of that is that the notion of paths in
a partial HDA does not correspond to morphisms from some particular partial
HDA, and paths are not preserved by morphisms, as we will see later.

2.3 Partial Higher Dimensional Automata as Lax Functors

The idea is to generalise the ‘presheaf’ definition of precubical sets. The problem
is to deal with partial functions and when two of them should coincide. Let pSet
be the category of sets and partial functions. A partial function f : X — Y
can be either seen as a pair (A4, f) of a subset A C X and a total function
f:A—Y, or as a functional relation f C X x Y, that is, a relation such that
for every x € X, there is at most one y € Y with (z,y) € f. We will freely use
both views in the following. For two partial maps f,g: X — Y, we denote by
f = g if and only if for every € X such that f(z) and g(x) are defined, then
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f(z) = g(z). Note that this is not equality, but equality on the intersection of the
domains. We also write f C g if and only if f is include in g as a relation, that is,
if and only if, for every x € X such that f(z) is defined, then g(x) is defined and
f(z) = g(z). By a lax functor F' : C — pSet, we mean the following data [20]:

— for every object c of C, a set Fc,
— for every morphism i : ¢ — ¢/, a partial function Fi : Fe — F¢c/

satisfying that Fid. = idp. and Fijo Fi C F(jo1).

The point is that partial precubical sets as defined in [7] do not satisfy the
second condition, while they should. In addition, this definition will authorise
a square to have vertices, that is, that some 09 are defined, while having no
edge, that is, no 0 defined. This may be useful to define paths as discrete traces
in [8] (that we will call shortcuts later), that is, paths that can go directly
from a point to a square for example. Observe also that if j o = 5’ o4’ then
Fjo Fi = Fj’ o Fi', which gives us the local equations from [7]. A partial
precubical set X is then a lax functor F' : (0°° — pSet. It becomes harder to
describe explicitly what a partial precubical set is, since we cannot restrict to
the 0% anymore. It is a collection of sets (X, )nen together with a collection of
partial functions (952 2F + Xpyx — Xp) satisfying the inclusions (‘351 lg::jg’;'m o

o zgr C o slytm  where the kg and s are defined as follows. (k1 < ... <

Fntmi Vs Yntm) = (11 < oo <ldpjan,..,an) % (1 < oo < Jmi B, Bm)
where x is defined by induction on n + m:

- ifn:ove*(jl<'~‘<jm;511"'7ﬂm):(jl<'~~<jm;ﬁ17"'7ﬁm)a

—ifm=0, (i1 <...<ip;a1,...,0p)*ke= (i1 < ...<ip;Q1,...,Q),

—if 1 < jl, (il < ..o < in;al,...,an)*(jl < ... < jm?ﬁl,---;ﬁm) =
(i1;01).((ia < ... <ipjas,...,an)*(J1+1< ... <Jm+ 181, 8m)),

—if 71 > j17 (7,1 < ..o < in;al,...,an)*(jl < ..o < ]m,ﬂl,,ﬁm) =

(j1;51)~((i1 <...<in;a1,...,an)*(j2 <... <jm;52,...,ﬁm)).

A function-valued op-lax transformation [20] from F' : C — pSet to
G : C — pSet is a collection (fe)ccon(c) of total functions such that for every
i:c—c, fooF(i) C G(i) o fo. A morphism of partial precubical sets
from X to Y is then a function-valued op-lax transformation. In other words,
this is a collection of total functions (f, : X, — Y}, )nen satisfying the equations
fno07 2 2E C 07 2E o fuyk. Partial precubical sets and morphisms of partial
precubical sets form a category that we denote by ppCub. pCub is a full
subcategory of ppCub. In particular, the precubical sets * and L are partial
precubical sets. A partial HDA X on L is a partial precubical set, also noted
X, together with a specified point, the initial state i € Xy and a morphism
of ppCub, the labelling functions, (A, : X, — L"),en. A morphism of
pHDA from X to Y is a morphism f of partial precubical sets from X to Y
such that fo(ix) =iy and Ax = Ay o f. Partial HDA on L and morphisms of
partial HDA form a category that we note pHDA [ . In other words, this is the
double slice category */ppCub/L.
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2.4 Completion of a pHDA

Let us describe how it is possible to construct a HDA from a pHDA X, by
‘completing’” X, that is, by adding the faces that are missing, and by connecting
the faces that are not. Let

Yo=A((i1 <...<igjoq,...,01),2) | ¢ € Xpyr Nix <n+k}

Y = (Ya)nen is intuitively the collection of all abstract faces of all cubes of X,
that is, pairs of a cube and all possible ways to define a face from it. Of course,
some of those are the same, since there are several ways to describe a cube as
the face of some other cube. Define ~ as the smallest equivalence relation such
that:

— if 9722k () is defined, then

17 <...<tg
((i1 < ... <ig;Qpy. .., 0E),T) ~ (e,@izgfk(x))

This means that, if a face of a cube exists in X, this face is identified with
both abstract faces (¢,0;2 "2f (x)) (i.e., the cube 972 "2F (x) itself) and
((i1 < ... <igjoq,...,01),x) (i.e., the face of , which consists of taking the
(ix, ) face, then the (ig_1,ax_1) face, and so on).

i (i < ... <idgsar,...,ap),x) ~ ((J1 <...<ji;;081,---,01),y), then ((i; <

coe<ldgyar, .o ap) x (Ga),z) ~ (< ..o < g By -, 00) x (4, @), y). This
means that if two abstract faces coincide, then taking both their (i, «) face
gives two abstract faces that also coincide.
Let x(X), = Y,/ ~ and we denote by < (i1 < ... < ig;Q1,...,Q8),T >
the equivalence class of ((i1 < ... < ig;aq,...,ax),z) modulo ~. We define
the i-face map as 02 (< (i1 < ... < ig;00,...,08), 2 >) = K (i1 <...<
Ig; 1, ..., ak) * (1,),x >, the initial state as < €,7 > and the labelling
function as M(< (i1 < ... <igjai,...,ax),x>) =06, o... 085 (A(x)).

Theorem 1. x is a well-defined functor and is the left adjoint of T, the injec-
tion of HDAy into pHDA . Furthermore, HDA L is a reflective subcategory of
pHDA;.

Now, we can define the geometric realisation of a pHDA X as the subspace
of the realisation of x(X) consisting of points whose carrier is of the form <
€,x > for some x € X. This really corresponds to the drawings we have been
using to depict pHDA until now.

3 Paths in Partial Higher Dimensional Automata

Executions of HDA are defined using the notion of paths. Those paths describe
the succession of starting and finishing of actions in a HDA. For example, a
HDA can start an action then start another at the same time, and finish the two
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actions. This sequence is then not just a sequence of 1-dimensional transitions,
since some actions can be made at the same time, but a sequence of hypercubes
corresponding to the evolution of the state of the system. We will formalise this
idea in Sect. 3.2, and we will see in particular that those paths can be encoded
in the category pHDA;, (while it is not possible in the category HDAy,) as
morphisms from particular pHDA, called path shapes. In Sect.3.1, let us first
start by recalling the general framework of [17].

3.1 Path Category, Open Maps, Coverings

In the general framework of [17], we start with a category M of systems, together
with a subcategory P of execution shapes. For example, keep in mind the case
where M is the category of transition systems and P is the full subcategory of
finite linear systems. One interesting remark about this case is that executions
of a given systems are in bijective correspondance with morphisms from a finite
linear system to this given system. This means that to reason about behaviours
of such systems, it is enough to reason about morphisms and execution shapes.

This idea was formalised by describing precisely which , x
. . . . X —X
morphisms are witnesses for the existence of a bisimula- A
tion between systems. This description uses right lifting T
properties: we say that a morphism f: X — Y has the 9 I

right lifting property with respect to g : X' — Y’

if for every z : X’ — X and y : Y/ — Y such that i
fox =yog, there exists # : Y/ — X such that x =foyg y/'
and f o = y. For example, let us assume that f is a
morphism of transition systems and that X’ and Y’ are finite linear systems.
Then = (resp. y) is the same as an execution in X (resp. V), and fox =yog
means that the execution y is a extension of the image of the execution z by f.
The right lifting property means that the longer execution y of Y can be lifted
to a longer execution 6 of X, that is, 6 is an extension of x and the image of
0 by f is y. This property of lifting longer executions is precisely the property
needed on a morphism to make its graph relation a bisimulation. They are also
very similar to morphisms of coalgebras [16]. We call P-open (or simply open
when P is clear), a morphism that has the right lifting property with respect
to every morphism in P. From open maps, it is possible to describe similarity
and bismilarity as the existence of a span of morphisms/open maps, and many
kinds of bisimilarities can be captured in this way [17]. An open map is said to
be a P-covering (or simply covering) if furthermore the lifts in the right lifting
properties are unique. Being a covering is a very strong requirement, as they
correspond to partial unfolding of a system.

Y
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3.2 Encoding Paths in pHDA

In this section, we describe the classical notion of execution of HDA from [12],
extended to partial HDA in [7], defined using the notion of path. We then show
that those executions can be encoded as an execution — & » ot defined
shapes subcategory, as in the general framework of [17], g@ s st 0000t s ®°
proving in particular that paths are in bijective corre-

spondance with a class of morphisms. A path 7 of a
Ji,o1 J2,02 Jn,0n a vy
Z1

HDA X is a sequence i = xg
x,, where zy € X, jr > 0 and oy € {0,1} are such that

for every k:
0 B !
3 — — A0 In red: path
— if ag, =0, then zp_1 = 8% (zk), 010, 520, L1
. _ a1 ™= ¢ v
— if ag, = 1, then zy, = 0;, (zx—1). in the pHDA X

This definition can easily be extended to pHDA, by requiring that the jj-face
maps are defined on zy, or x1_1. A natural property of executions and morphisms
is that morphisms map executions to executions. This is the case here (while it
is not for [7], e.g., the split segment):

Ji,o1 J2,02

Proposition 1. If f: X — Y is a map of pHDA and if 1 = g —— 1 ——

J"’—"wcn is a path in X, then 7’ = f(x0) Juea, (1) Juo2,  Imon, f(zn)
s a path in'Y.

One advantage of considering pHDA instead of HDA is that paths can be
encoded in pHDA, which is not really possible in HDA. It is done as follows. A

spine o is a sequence (0,€) = (dp, wp) Juen, (dy,wn) ELI N LN (dn,wn)

where ji > 0, d € N, wy € L% and oy, € {0,1} are such that:

— if ap =0, then dp—1 =dp — 1, 9, (wg) = wi—1 and ji < dg,
— if ap =1, then dy = d—1 — 1, §j, (wx—1) = wi and ji, < di—1.

A path 7 has a underlying spine o, by mapping S ot defined
1, to the pair of its dimension and its label. A spine & 5//////////////><'*
o induces a pHDA Bo as follows: ”02
g7
" Bo,={ke{0,....n} | dy = p}, 2 b
— the partial face maps ;.2 72r are the smallest ‘gz
(as relations ordered by inclusion) partial func- 2
tions such that: T a e
o if a; =0, then 89 (k) =k — 1, N
o if o = 1 then 81 ( ) —k path shape of the;opme
Biror B o ALy Yrgrn o= (0, e) (1,a) = (2, ab)
* aj1< <dm az1< <zn - ak1<...<kn+m7 for 24, (1,0)

(kla' --7kn+m7717' "771’7,-‘1-177,) = (Zl7vln7
ala"'7an)*(.jlv"'mjm;ﬂla"'aﬂ”rn)'
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— the initial state is 0,
— the labelling functions A,, map k to wy.

By a path shape, we mean such a pHDA Bo. The set Spine;, of spines can
be partially ordered by prefix. B can then be extended to an embedding from
Spine;, to pHDA . We note PSy, the image of this embedding, i.e., the full
sub-category of path shapes.

Proposition 2. There is a bijection between paths in a pHDA X and morphisms
of pHDA from a path shape to X.

Again, this is not true with the definition of morphisms from [7] (e.g., the
split segment). As an example, the red path 7w above corresponds to a morphism
from the path shape Bo to X.

4 Trees and Unfolding in pHDA

In this section, we introduce our notion of trees. Following [4], we consider trees
as colimits (or glueings of paths). Section4.1 is dedicated to proving that those
colimits actually exist, by giving an explicit construction of those. From this
explicit construction, we will describe the kind of unique path properties that are
satisfied by those trees in Sect. 4.2. Starting by showing, that the strict unicity of
path fails, we then describe a notion of homotopy, the confluent homotopy, which
is weaker than the one from [12], for which every tree has the property that there
is exactly one homotopy class of paths form the initial state to any state. We will
also see that, because the face maps of trees are defined in a local way, they do
not have any shortcuts, that is, paths that ‘skip’ dimensions, for example, going
from a point to a square without going through a segment. Finally, in Sect. 4.3,
we will prove that those two properties — the unicity of paths modulo confluent
homotopy, and the non-existence of shortcuts — completely characterise trees.
This proof will use a suitable notion of unfolding of pHDA, showing furthermore
that trees form a coreflective subcategory of pHDA.

4.1 Trees, as Colimits of Paths in pHDA

In this section, we give an explicit construction of colimits of diagrams with val-
ues in path shapes. Those will be our first definition of trees in pHDA, following
[4]. Let D : C — PSy, be a small diagram with values in PSy,, that is, a functor
from C to PSy,. Let us use some notations: for every object u of C, Du = Bo,

with o, = (d¥, wd) 2255 (dv, w (di ,w} ). The definition
of the colimit col D will be in two steps. The first step consists in putting all the
paths Du side-by-side, and in glueing them together, along the morphisms D f,

for every morphism f of C. This is done as follows. Define (X, ),en to be:

) w W
) Jo oy Tl 1@y

- Xo={(u,k) |ueClCk<Il,Nd}=0}U{e},
- X, ={(w,k) |uel,k<l,Nd} =n}
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We quotient X, by the smallest equivalence relation ~ (for inclusion) such that:

— for every u, (u,0) ~ e,
—ifi:u—wv el and if k <, 1, then (u, k) ~ (v, k).

We denote by Y;, the quotient X,,/ ~, and by [u, k] the equivalence class of (u, k)
modulo ~.

At this stage, we still do not have the colimit because it is not possible to
define the face maps. Let us consider the following example.

) X ey, ’6 2
7 7
7 7 1,0 1,0
1,0 1,0 7 7 (O E) — (1,1)) — (2 ab)
(0’6)“_’(1’b)“_’(2aab) 2 — I 2 i)( ,a)i) ,€
A 7 7 C
St s 00 P 0 s
J« v
X///////////OB 1 X 3>
1,0 1,0 T KLLN 1T
(0,€) T (1,b) T (2,ab) . %
— (1,b) = (0,¢) ?
B l D
@//IIIIIII I BII2I2277 77K

A, B and C are path shapes, and we would like to compute their pushout.
The expected outcome is D, since we must identify the three squares by the
previous construction. The problem is that the previous construction does not
identify 81 and (3. Those two must be identified because they are both the top
right corner of the same square (after identification). We hence need to quotient
a little more to be able to define the face maps, as follows. Define Z,, to be the
quotient of Y,, by the smallest equivalence relation = such that if there are two
sequences ug, . .., u; and vg, ..., v; such that:

- [Uo,k] ~ [’U07'I€]7

—forevery 0 <s <1l oy, =, =1

— for every 0 < s < I, [us, bk + s+ 1] = [ust1,k + s+ 1] and [vs, k+ s+ 1] =~
[vst1, K+ s+ 1],

- (]Z?rp D*...x (j51+1+1§ 1) = (];Zip Dox...x (.j]ZZJrlJrﬁ 1),
then, [u;, k414 1] = [u, k+1+1]. col D is the pHDA Zy with the face maps
being the smallest relations for inclusion such that:

— if o =0, then a%:«u, k)) is defined and is equal to (u,k — 1),

— if aj,; =1 then (“)}g((u, k) is defined and is equal to (u, k + 1),

_ b1, Bm Q1,...,0n V15 Yntm . _
aj1<...<jm o az'l<...<in c ak1<...<kn+m’ for (K1, s knam; Vs s Ynam) =

(Z.ly"'7in;0‘13-"aan)*(jlv'-'7jm;615"'aﬂm)'

The initial state is (¢) and the labelling A : col D — L maps (u, k) to w}.
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Proposition 3. colD is the colimit of D in pHDA

By tree we mean any pHDA that is the colimit of a diagram with values in
path shapes. We denote by Try, the full subcategory of trees.

4.2 The Unique Path Properties of Trees

Failure of the Unicity of Paths. Let us consider the pushout square above
again. In particular, the pHDA on the bottom-right corner is a tree, by definition.
However, there are two paths from « to 8 (in red and blue). This actually comes
from the fact that we needed to identify 81 and (2 to be able to define the face
maps. This means that trees do not have the unique path property.

Confluent Homotopy. A careful reader may have observed that the only dif-
ference between the two previous paths is that some future faces are swapped.
Actually, this is the only obstacle for the unicity of paths for trees: there is a

unique path modulo equivalence of paths that permutes arrows of the form L
That is what we call confluent homotopy. This confluent homotopy will be
defined by restricting the elementary homotopies of [12] to be of only one type
out of the four possible, which means our notion of homotopy makes fewer paths
equivalent than the one from [12].

We say that a path m = xg JLOL, gy 2222 A T
T, is elementary conﬂuently homotopic to a path 32 "X
' = zf g0 ) 7202 In n x,,, and denote by KLLN% ud
T g, 7, if and only if there are 0 < s <t < n such J
that:
—forall k <sork>t, o =a,

for all k < s or k > t, ji, = j;, and o = o,
—forall s <k <t ar =0} =1,
= Usyas) #ooox (G ) = (G, @) %% (g ).

We denote by ~.p, and call confluent homotopy, the reflexive transitive clo-
sure of ey,

Lemma 1. If X is a tree, then for every element (of any dimension) x of X,
there is exactly one path modulo confluent homotopy from the initial state to x.

Shortcuts. The face maps of path shapes and of the colimits we computed
in Sect.4.1 are of a very particular form' we start by defining the J5 and we
extend this definition to general 8;“11 P i - Ina way, they are locally deﬁned and
then extended to higher face maps. This means in particular that, in addition
to having unique paths modulo confluent homotopy, they also do not have any
‘shortcut’. A possible shortcut can be defined as a generalisation of paths, in
which we allow to make transitions that go, for example, from a point to a square
or to a cube, not only to segments, a shortcut being such a possible shortcut

which is not confluently homotopic to a path. Those shortcuts may occur in a
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pHDA, even if it has the unique path property. Concretely, by shortcut we mean
the following situation: the face 9;.'27 2 () is defined, but there is no sequence
(J1; B1) * - oo % (fin; Bn) = (i1 < ... <ipjQi,...,an) such that 97" o...0 07! (x)

is defined. By local-definedness of the face maps:
Lemma 2. Trees do not have any shortcuts.

Trees. We say that a pHDA has the unique path property modulo con-
fluent homotopy if it has no shortcut, and there is exactly one class of paths
modulo confluent homotopy from the initial state to any state. Given such a
pHDA X and an element = of X, by depth of x we mean the length of a path
from the initial state to x in X. Since homotopic paths have the same length,
this is uniquely defined. We deduce from the previous discussions that:

Proposition 4. Trees have unique path property modulo confluent homotopy.

In the following, we will prove the converse: trees, defined as colimits of path
shapes are exactly those pHDA that have the unique path property modulo con-
fluent homotopy. This will be done by proving that such a pHDA X is isomorphic
to its unfolding. A question that occurs now is the following. Much as the general
framework of [4], trees are colimits of paths. Everything tends to work well when
those trees have a nice property, which we called accessibility, intuitively, that
the colimit process do not ‘create’ paths. This property is actually deeply related
to the unicity of paths. Since this unicity fails in the case of pHDA, accessibility
fails too. However, an accessibility modulo confluent homotopy holds: the colimit
process in pHDA do not create confluent homotopy classes of paths.

4.3 Trees Are Unfoldings

We are now constructing our unfolding U(X) of a pHDA X by giving an explicit
definition, similar to [6,11], and proving that this is a tree. We will prove that
there is a covering unfy : U(X) — X, which in particular means that the
unfolding U(X) is PSg-bisimilar (in the general sense of [17]) to X, and that
this covering is actually an isomorphism when X has the unique path property
modulo confluent homotopy.

Unfolding of a pHDA. Let us start with a few notations. Given a path ™ =

Ji,0 J2,02 JnsCn
X1 .

Zo Tn We note e(r) = x,, I(r) = n and 7_p =

ZTp—k. Given a pHDA X its unfolding is the

J1,a1 r J2,02 In—k,0n—k

following pHDA.:

— U(X), is the set of equivalence classes [r] of paths modulo confluent homo-
topy, such that e() is of dimension n,
— the face maps are the smallest relations for inclusion such that:

e )l(a)=Im LN 01 (e(m))], for any 7 € « such that 9} (e(r)) is defined,

o 9%(a) = [r_1] for any 7 € a such that 7 = 7_; 9, e(m),
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B1y-38m (05 PERRRYe 7% Y153 Yn+m . .
¢ 8j1<..‘<jm © 6i1<...<in C ak1<.‘.<kn+m’ for (kh B kn-&-mv')/lv cee a’7n+m) -

(7:17"'77;’n;a17" '7a’n)*(j17"'7jm;ﬂ17" 7ﬁm)
— the initial state is [i],
— the labelling is given by A(a) = A(e(w)) for 7 € a.
Following ideas from [4] again, the unfolding can be seen as the glueing of all pos-
sible executions of a system, but with care needed to handle confluent homotopy.
Concretely:

Proposition 5. The unfolding of a pHDA is a tree.
We can also define unfx : U(X) — X as the function that maps [r] to e(7).
Proposition 6. unfy is a covering, and so, U(X) is PSg-bisimilar to X.

The Unique Path Property Characterises Trees. When X has exactly one
class of paths modulo confluent homotopy from the initial state to any state, it
is possible to define a function nx : X — U(X) that maps any element a of
X to the unique confluent homotopy class to . When furthermore X does not
have shortcuts, then 7 is actually a morphism of pHDA.

Proposition 7. When X has the unique path property modulo confluent homo-
topy, then nx is the inverse of unfx. In particular, X is a tree.

Together with Proposition 4, this implies the following:

Theorem 2. Trees are exactly the pHDA that have the unique path property
modulo confluent homotopy.

Another consequence is that this isomorphism 7y is actually natural (in the
categorical sense) and is part of an adjunction, which implies that trees form a
coreflective subcategory of pHDA:

Corollary 1. U extends to a functor, which is the right adjoint of the embedding
t: Try — pHDA . Furthermore, this is a coreflection.

5 Cofibrant Objects

Cofibrant objects are another type of ‘simple objects’, coming from homotopy
theory, more particularly the language of model categories from [24]. Those cofi-
brant objects are those whose unique morphism from the initial object is a cofi-
bration. Intuitively (intuition which holds at least in cofibrantly generated model
structures [15]), this means that cofibrant objects are those objects constructed
from ‘nothing’, using only very basic constructions (generators of cofibrations).
In the case of the classical model structure on topological spaces (Kan-Quillen),
those spaces are those constructed from the empty space by adding ‘cells’, which
produces what is called CW-complexes. In this section, we want to mimic this
idea with trees: trees are those pHDA constructed from an initial state by only
extending paths. We also want to emphasize that much as CW-complexes gives
a kind of homotopy type of a space, trees gives a concurrency type of a pHDA, in
the sense that there is a canonical way to produce an equivalent cofibrant object
out of any object, which is called the cofibrant replacement in homotopy
theory. In concurrency theory, this is the unfolding.



238 J. Dubut

5.1 Cofibrant Objects in pHDA

Following the language of model structures from [24], we say
that a pHDA X is cofibrant if for every PSy,-open morphism
|
X

LN
f Y — Z and every morphism g : X — Z, there is a h f

morphism h : X — Y, such that f o h = g. That is, a partial

—

HDA X is cofibrant if and only if every PSy-open morphism g Z
has the right lifting property with respect to the unique morphism from * to X.
5.2 Cofibrant Objects Are Exactly Trees
In this section, we would like to prove the following:
Theorem 3. The cofibrant objects are exactly trees.

Let us start by giving the idea of the p.rc.)of of the fac't ! U(X)
that cofibrant objects are trees. By Proposition 6, unfy is .
a covering, so is open. This means that for every cofibrant !J _h Junf
object X, there is a morphism h : X — U(X) such that -
unfy o h = idx, that is, X is a retract of its unfolding. Since X idx X

we know that the unfolding is a tree by Proposition 5, it is enough to observe
the following;:

Lemma 3. A retract of a tree is a tree.

Intuitively, a pHDA is the retract of a tree only when it is obtain by retracting
branches. This can only produce a tree. For the converse:

Proposition 8. A tree is a cofibrant object. Furthermore, if f 1Y — Z is a
covering, then the lift h : X — Y is unique.

The lift h is constructed by induction as follows. We define X, as the
restriction of X to elements whose depth is smaller than n, and the face maps
951z 2r () are defined if and only if 07227 () is defined in X and belongs
to X,,. We then construct h, : X,, — Y using the unique path property mod-
ulo confluent homotopy, in a natural way (in the categorical meaning), i.e., such
that h, o kK, = hn_1, where k,, : X,,_1 — X,, is the inclusion. h is then the

inductive limit of those h,,. This proof can be seen as a small object argument.

5.3 The Unfolding Is Universal

As an application of the previous theorem, we would like to prove that the
unfolding is universal. As in the case of covering spaces in algebraic topology, a
covering corresponds to a partial unrolling of a system, in the sense that we can
unroll some loops or even partially unroll a loop (imagine for example executing
a few steps of a while-loop). In this sense, we can describe the fact that a covering
unrolls more than another one, and that, an unfolding is a complete unrolling:
since the domain is a tree, it is impossible to unroll more. Actually, much as the
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topological and the groupoidal cases (see [18] for example), unfoldings are the
only such maximal unrollings among coverings: they are initial among coverings,
that is why we call them ‘universal’. In a way, this says that our definition of
unfolding is the only reasonable one. Concretely, we say that a PSy-covering is
universal if its domain is a tree.

Corollary 2. If f : Y — X is a universal covering, then for every covering
g:Z — X there is a unique map h : Y — X such that f = g o h. Further-
more, h is itself a covering. Consequently, the universal covering is unique up-to
isomorphism, and is given by the unfolding.

This whole story is similar to the universal covering of a topological space:
just replace pHDA by spaces and trees by simply-connected spaces [2].

6 Conclusion and Future Work

In this paper, we have given a cleaner definition of partial precubical sets and
partial Higher Dimensional Automata, as they really correspond to collections
of cubes with missing faces. From this categorical definition, we derived that
pHDA can be completed, giving rise to a geometric realisation. We also describe
the first premisses of a homotopy theory of the concurrency of pHDA where the
cofibrant objects are trees, and replacement is the unfolding. As a future work,
we could look at wider class of paths, typically allowing shortcuts as paths, or
introducing general homotopies in the path category, which is possible because
we can encode those inside the category of pHDA. Another direction would be
to continue the description of this homotopy theory, to see if it corresponds to
some kind of Quillen’s model structure, or at least to some weaker version (e.g.,
category of cofibrant objects).
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