
22nd International Conference, FOSSACS 2019,
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019, Proceedings

Foundations
of Software Science and
Computation StructuresLN

CS
 1

14
25

AR
Co

SS
Mikołaj Bojańczyk
Alex Simpson (Eds.)

Lecture Notes in Computer Science 11425

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, Peking University, Beijing, China
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Mikołaj Bojańczyk • Alex Simpson (Eds.)

Foundations
of Software Science and
Computation Structures
22nd International Conference, FOSSACS 2019
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2019
Prague, Czech Republic, April 6–11, 2019
Proceedings

Editors
Mikołaj Bojańczyk
University of Warsaw
Warsaw, Poland

Alex Simpson
University of Ljubljana
Ljubljana, Slovenia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-17126-1 ISBN 978-3-030-17127-8 (eBook)
https://doi.org/10.1007/978-3-030-17127-8

Library of Congress Control Number: 2019936298

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-17127-8
http://creativecommons.org/licenses/by/4.0/

ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.

The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President

vi ETAPS Foreword

Preface

This volume contains the papers presented at the 22nd International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS), which took
place in Prague during April 8–11, 2019. The conference is dedicated to foundational
research with a clear significance for software science. It brings together research on
theories and methods to support the analysis, integration, synthesis, transformation, and
verification of programs and software systems.

The volume contains 29 contributed papers selected from 85 full paper submissions,
and also a paper accompanying an invited talk by Thomas Colcombet (IRIF, France).
Each submission was reviewed by at least three Program Committee members, with the
help of external reviewers, and the final decisions took into account the feedback from
a rebuttal phase. The conference submissions were managed using the EasyChair
system, which was also used to assist with the compilation of the proceedings.

We wish to thank all the authors who submitted to FoSSaCS 2019, the Program
Committee members, and the external reviewers. In addition, we would like to thank
the ETAPS organization for providing an excellent environment for FoSSaCS along-
side the other ETAPS conferences and workshops.

February 2019 Mikołaj Bojańczyk
Alex Simpson

Organization

Program Committee

Luca Aceto Reykjavik University, Iceland
Achim Blumensath Masaryk University, Brno, Czech Republic
Mikołaj Bojańczyk University of Warsaw
Agata Ciabattoni Vienna University of Technology, Austria
Flavio Corradini University of Camerino, Italy
Nathanaël Fijalkow CNRS, LaBRI, University of Bordeaux, France
Sergey Goncharov FAU Erlangen-Nürnberg, Germany
Matthew Hague Royal Holloway University of London, UK
Chris Heunen The University of Edinburgh, UK
Patricia Johann Appalachian State University, USA
Bartek Klin University of Warsaw, Poland
Naoki Kobayashi The University of Tokyo, Japan
Dexter Kozen Cornell University, USA
Orna Kupferman Hebrew University, Israel
Paul Blain Levy University of Birmingham, UK
Peter Lefanu Lumsdaine Stockholm University, Sweden
Radu Mardare Aalborg University, Denmark
Angelo Montanari University of Udine, Italy
Anca Muscholl LaBRI, University of Bordeaux, France
Rasmus Ejlers Møgelberg IT University of Copenhagen, Denmark
K. Narayan Kumar Chennai Mathematical Institute, India
Dirk Pattinson The Australian National University, Australia
Daniela Petrisan Université Paris Diderot - Paris 7, France
Davide Sangiorgi University of Bologna, Italy
Alex Simpson University of Ljubljana, Slovenia
Ana Sokolova University of Salzburg, Austria
James Worrell University of Oxford, UK

Additional Reviewers

Achilleos, Antonis
Ahn, Ki Yung
Ahrens, Benedikt
Andres Martinez, Pablo
Atig, Mohamed Faouzi
Atkey, Robert
Bacci, Giorgio
Bacci, Giovanni

Bahr, Patrick
Bartocci, Ezio
Basold, Henning
Becker, Ruben
Benerecetti, Massimo
Bernardi, Giovanni
Blahoudek, František
Blondin, Michael

Bonchi, Filippo
Bresolin, Davide
Bruyère, Véronique
Cacciagrano, Diletta Romana
Cassar, Ian
Cerna, David
Chakraborty, Soham
Chen, Xiaohong
Clouston, Ranald
Dal Lago, Ugo
de Frutos Escrig, David
de Paiva, Valeria
Degorre, Aldric
Della Monica, Dario
Din, Crystal Chang
Dougherty, Daniel
Doumane, Amina
Dubut, Jérémy
Emmi, Michael
Enrique Moliner, Pau
Escardo, Martin
Faella, Marco
Ferreira, Carla
Furber, Robert
Fábregas, Ignacio
Gadducci, Fabio
Galesi, Nicola
García-Pérez, Álvaro
Gastin, Paul
Gavazzo, Francesco
Gorogiannis, Nikos
Goubault-Larrecq, Jean
Grädel, Erich
Haar, Stefan
Hamana, Makoto
Haselwarter, Philipp
Hasuo, Ichiro
Hausmann, Daniel
Heindel, Tobias
Herbreteau, Frédéric
Hoshino, Naohiko
Hosseini, Mehran
Hunt, Seb
Hyvernat, Pierre
Jaber, Guilhem
Jacq, Clément

Johnsen, Einar Broch
Kaarsgaard, Robin
Kaminski, Benjamin Lucien
Kammar, Ohad
Karvonen, Martti
Katsumata, Shin-Ya
Kerjean, Marie
Kop, Cynthia
Kurz, Alexander
Kuznets, Roman
Kučera, Antonín
Laird, James
Lefaucheux, Engel
Leitsch, Alexander
Leroux, Jérôme
Lhote, Nathan
Lindley, Sam
Loreti, Michele
Mamouras, Konstantinos
Marsden, Dan
Masini, Andrea
Mazowiecki, Filip
Mazza, Damiano
Mellies, Paul-Andre
Melliès, Paul-André
Merelli, Emanuela
Mostarda, Leonardo
Mukund, Madhavan
Neves, Renato
Norman, Gethin
North, Paige
Ohlmann, Pierre
Olarte, Carlos
Oortwijn, Wytse
Otop, Jan
Paquet, Hugo
Pedersen, Mathias Ruggaard
Perez, Guillermo
Peron, Adriano
Petrov, Tatjana
Pédrot, Pierre-Marie
Pérez, Jorge A.
Quaas, Karin
Ramanujam, R.
Rampersad, Narad
Rauch, Christoph

x Organization

Re, Barbara
Rehak, Vojtech
Sala, Pietro
Schoepp, Ulrich
Schrijvers, Tom
Schröder, Lutz
Schwoon, Stefan
Sin’Ya, Ryoma
Sobocinski, Pawel
Sojakova, Kristina
Staton, Sam
Sumii, Eijiro
Sutre, Grégoire
Tang, Qiyi
Tesei, Luca
Thinnayam, Ramanathan
Tiezzi, Francesco

Tschaikowski, Max
Tsukada, Takeshi
Turrini, Andrea
Unno, Hiroshi
Uustalu, Tarmo
van Dijk, Tom
van Heerdt, Gerco
Vicary, Jamie
Vidal, German
Vignudelli, Valeria
Voigtländer, Janis
Wallbridge, James
Weil, Pascal
Winskel, Glynn
Wojtczak, Dominik
Wolter, Uwe
Ziemiański, Krzysztof

Organization xi

Contents

Universal Graphs and Good for Games Automata: New Tools for Infinite
Duration Games . 1

Thomas Colcombet and Nathanaël Fijalkow

Resource-Tracking Concurrent Games . 27
Aurore Alcolei, Pierre Clairambault, and Olivier Laurent

Change Actions: Models of Generalised Differentiation 45
Mario Alvarez-Picallo and C.-H. Luke Ong

Coalgebra Learning via Duality . 62
Simone Barlocco, Clemens Kupke, and Jurriaan Rot

Tight Worst-Case Bounds for Polynomial Loop Programs 80
Amir M. Ben-Amram and Geoff W. Hamilton

A Complete Normal-Form Bisimilarity for State . 98
Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk

Identifiers in Registers: Describing Network Algorithms with Logic 115
Benedikt Bollig, Patricia Bouyer, and Fabian Reiter

The Impatient May Use Limited Optimism to Minimize Regret 133
Michaël Cadilhac, Guillermo A. Pérez, and Marie van den Bogaard

Causality in Linear Logic: Full Completeness and Injectivity
(Unit-Free Multiplicative-Additive Fragment) . 150

Simon Castellan and Nobuko Yoshida

Rewriting Abstract Structures: Materialization Explained Categorically 169
Andrea Corradini, Tobias Heindel, Barbara König, Dennis Nolte,
and Arend Rensink

Two-Way Parikh Automata with a Visibly Pushdown Stack 189
Luc Dartois, Emmanuel Filiot, and Jean-Marc Talbot

Kleene Algebra with Hypotheses. 207
Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic

Trees in Partial Higher Dimensional Automata . 224
Jérémy Dubut

The Bernays-Schönfinkel-Ramsey Class of Separation Logic
on Arbitrary Domains . 242

Mnacho Echenim, Radu Iosif, and Nicolas Peltier

Continuous Reachability for Unordered Data Petri Nets is in PTime 260
Utkarsh Gupta, Preey Shah, S. Akshay, and Piotr Hofman

Optimal Satisfiability Checking for Arithmetic l-Calculi 277
Daniel Hausmann and Lutz Schröder

Constructing Inductive-Inductive Types in Cubical Type Theory 295
Jasper Hugunin

Causal Inference by String Diagram Surgery . 313
Bart Jacobs, Aleks Kissinger, and Fabio Zanasi

Higher-Order Distributions for Differential Linear Logic 330
Marie Kerjean and Jean-Simon Pacaud Lemay

Languages Ordered by the Subword Order . 348
Dietrich Kuske and Georg Zetzsche

Strong Adequacy and Untyped Full-Abstraction for Probabilistic
Coherence Spaces . 365

Thomas Leventis and Michele Pagani

A Sound and Complete Logic for Algebraic Effects 382
Cristina Matache and Sam Staton

Equational Axiomatization of Algebras with Structure 400
Stefan Milius and Henning Urbat

Towards a Structural Proof Theory of Probabilistic l-Calculi 418
Christophe Lucas and Matteo Mio

Partial and Conditional Expectations in Markov Decision Processes
with Integer Weights . 436

Jakob Piribauer and Christel Baier

Equational Theories and Monads from Polynomial
Cayley Representations . 453

Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 470
Pierre Pradic and Colin Riba

Deciding Equivalence of Separated Non-nested Attribute Systems
in Polynomial Time. 488

Helmut Seidl, Raphaela Palenta, and Sebastian Maneth

xiv Contents

Justness: A Completeness Criterion for Capturing Liveness
Properties (Extended Abstract) . 505

Rob van Glabbeek

Path Category for Free: Open Morphisms from Coalgebras
with Non-deterministic Branching . 523

Thorsten Wißmann, Jérémy Dubut, Shin-ya Katsumata,
and Ichiro Hasuo

Author Index . 541

Contents xv

Universal Graphs and Good for Games
Automata: New Tools for Infinite

Duration Games

Thomas Colcombet1(B) and Nathanaël Fijalkow2

1 CNRS, IRIF, Université Paris-Diderot, Paris, France
thomas.colcombet@irif.fr

2 CNRS, LaBRI, Université de Bordeaux, Bordeaux, France

Abstract. In this paper, we give a self contained presentation of a recent
breakthrough in the theory of infinite duration games: the existence of a
quasipolynomial time algorithm for solving parity games. We introduce
for this purpose two new notions: good for small games automata and
universal graphs.

The first object, good for small games automata, induces a generic
algorithm for solving games by reduction to safety games. We show that
it is in a strong sense equivalent to the second object, universal graphs,
which is a combinatorial notion easier to reason with. Our equivalence
result is very generic in that it holds for all existential memoryless win-
ning conditions, not only for parity conditions.

1 Introduction

In this abstract, we are interested in the complexity of deciding the winner of
finite turn-based perfect-information antagonistic two-player games. So typically,
we are interested in parity games, or mean-payoff games, or Rabin games, etc. . .

In particular we revisit the recent advances showing that deciding the winner
of parity games can be done in quasipolynomial time. Whether parity games can
be solved in polynomial time is the main open question in this research area,
and an efficient algorithm would have far-reaching consequences in verification,
synthesis, logic, and optimisation. From a complexity-theoretic point of view,
this is an intriguing puzzle: the decision problem is in NP and in coNP, imply-
ing that it is very unlikely to be NP-complete (otherwise NP = coNP). Yet
no polynomial time algorithm has yet been constructed. For decades the best
algorithms were exponential or mildly subexponential, most of them of the form
nO(d), where n is the number of vertices and d the number of priorities (we refer
to Section 2 for the role of these parameters).

Recently, Calude, Jain, Khoussainov, Li, and Stephan [CJK+17] constructed
a quasipolynomial time algorithm for solving parity games, of complexity

This work was supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No.
670624), and by the DeLTA ANR project (ANR-16-CE40-0007).

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 1–26, 2019.
https://doi.org/10.1007/978-3-030-17127-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_1

2 T. Colcombet and N. Fijalkow

nO(log d). Two subsequent algorithms with similar complexity were constructed
by Jurdziński and Lazić [JL17], and by Lehtinen [Leh18].

Our aim in this paper is to understand these results through the prism of
good for small games automata, which are used to construct generic reductions
to solving safety games. A good for small games automaton can be understood
as an approximation of the original winning condition which is correct for small
games. The size of good for small games automata being critical in the complex-
ity of these algorithms, we aim at understanding this parameter better.

A concrete instanciation of good for small games automata is the
notion of separating automata, which was introduced by Bojańczyk and
Czerwiński [BC18] to reformulate the first quasipolynomial time algorithm
of [CJK+17]. Later Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and
Parys [CDF+19] showed that the other two quasipolynomial time algorithms also
can be understood as the construction of separating automata, and proved a
quasipolynomial lower bound on the size of separating automata.

In this paper, we establish in particular Theorem 9 which states
an equivalence between the size of good for small games automata, non-
deterministic of separating automata, of deterministic separating automata and
of universal graphs. This statement is generic in the sense that it holds for any
winning condition which is memoryless for the existential player, hence in par-
ticular for parity conditions. At a technical level, the key notion that we intro-
duce to show this equivalence is the combinatorial concept of universal graphs.

Our second contribution, Theorem 10, holds for the parity condition only,
and is a new equivalence between universal trees and universal graphs. In par-
ticular we use a technique of saturation of graphs which simplifies greatly the
arguments. The two theorems together give an alternative simpler proof of the
result in [CDF+19].

Let us mention that the equivalence results have been very recently used to
construct algorithms for mean-payoff games, leading to improvements over the
best known algorithm [FGO18].

Structure of the paper In Section 2 we introduce the classical notions of
games, automata, and good for games automata. In Section 3, we introduce
the notion of good for small games automata, and show that in the context of
memoryless for the existential player winning conditions these automata can be
characterised in different ways, using in particular universal graphs (Theorem 9).
In Section 4, we study more precisely the case of parity conditions.

2 Games and automata

We describe in this subsection classical material: arenas, games, strategies,
automata and good for games automata. Section 2.1 introduces games,
Section 2.2 the concept of memoryless strategy, and Section 2.3 the class of
automata we use. Finally, Section 2.4 explains how automata can be used
for solving games, and in particular defines the notion of automata that are
good for games.

Universal Graphs and Good for Games Automata 3

2.1 Games

We will consider several forms of graphs, which are all directed labelled graph
with a root vertex. Let us fix the terminology now. Given a set X, an X-graph
H = (V ,E, rootH) has a set of vertices V , a set of X-labelled edges E ⊆
V × X × V , and a root vertex rootH . We write x

u−→H y if there exists a path

from vertex x to vertex y labelled by the word u ∈ X∗. We write x
u−→H ∞ if

there exists an infinite path starting in vertex x labelled by the word u ∈ Xω.
The graph is trimmed if all vertices are reachable from the root and have out-
degree at least one. Note that as soon as a graph contains some infinite path
starting from the root, it can be made trimmed by removing the bad vertices.
A morphism of X-graphs from G to H is a map α from vertices of G to vertices
of H, that sends the root of G to the root of H, and sends each edge of G to
an edge of H, i.e., for all a ∈ X, p

a−→G q implies α(p) a−→H α(q). A weak
morphism of X-graphs is like a morphism but we lift the property that the root
of G is sent to the root of H and instead require that if root a−→G x then
root a−→H α(x).

Definition 1. Let C be a set (of colors). A C-arena A is a C-graph in which
vertices are split into V = VE � VA. The vertices are called positions. The
positions in VE are the positions owned by the existential player, and the ones
in VA are owned by the universal player. The root is the initial position. The
edges are called moves. Infinite paths starting in the initial position are called
plays. Finite paths starting in the initial position are called partial plays. The
dual of an arena is obtained by swapping VA and VE, i.e., exchanging the own-
ernship of the positions.

A W-game G = (A,W) consists of a C-arena A together with a set W ⊆ Cω

called the winning condition.
For simplicity, we assume in this paper the following epsilon property1: there

is a special color ε ∈ C such that for all words u, v ∈ Cω, if u and v are equal
after removing all the ε-letters, then u ∈ W if and only if v ∈ W.

The dual of a game is obtained by dualising the arena, and complementing
the winning condition.

If one compares with usual games – for instance checkers – then the arena
represents the set of possible board configurations of the game (typically, the
configuration of the board plus a bit telling whose turn to play it is). The config-
uration is an existential position if it is the first player’s turn to play, otherwise
it is a universal position. There is an edge from u to v if it is a valid move for
the player to go from configuration u to configuration v. The interest of having
1 This assumption is satisfied in an obvious way for all winning conditions seen in

this paper. It could be avoided, but at the technical price of considering slightly
different forms of games: games in which the moves are positive boolean combina-
tions of pairs of colors and positions. Such ‘move relations’ form a joint generali-
sation of existential positions (which can be understood as logical disjunction) and
universal position (which can be understood as logical conjunction).

4 T. Colcombet and N. Fijalkow

colors and winning conditions may not appear clearly in this context, but the
intent would be, for example, to tell who is the winner if the play is infinite.

Informally, the game is played as follows by two players: the existential
player and the universal player2. At the beginning, a token is placed at the
initial position of the game. Then the game proceeds in rounds. At each round,
if the token is on an existential position then it is the existential player’s turn
to play, otherwise it is the universal player’s turn. This player chooses an out-
going move from the position, and the token is pushed along this move. This
interaction continues forever, inducing a play (defined as an infinite path in the
arena) labelled by an infinite sequence of colors. If this infinite sequence belongs
to the winning condition W, then the existential player wins the play, otherwise,
the universal player wins the play. It may happen that a player has to play but
there is no move available from the current position: in this case the player
immediately loses.

Classical winning conditions Before describing more precisely the semantics of
games, let us recall what are the classical winning conditions considered in this
context.

Definition 2. We define the following classical winning conditions:

safety condition The safety condition is Safety = {0}ω over the unique
color 0. Expressed differently, all plays are winning. Note that the color 0
fulfills the requirement of the epsilon property.

Muller condition Given a finite set of colors C, a Muller condition is
a Boolean combination of winning conditions of the form “the color c
appears infinitely often”. In general, no color fulfills the requirement of the
epsilon property, but it is always possible to add an extra fresh color ε. The
resulting condition satisfies the epsilon property.

Rabin condition Given a number p, we define the Rabin condition Rabinp ⊆
{{1, 2, 3}p}ω by u ∈ Rabinp if there exists some i ∈ 1, . . . , p such that
when projected on this component, 2 appears infinitely often in u, and 3
finitely often. Note that the constant vector 1 fulfills the epsilon property.
The Rabin condition is a special case of Muller conditions.

parity condition Given a interval of integers C = [i, j] (called priorities), a
word u = c1c2c3 · · · ∈ Cω belongs to ParityC if the largest color appearing
infinitely often in u is even.

Büchi condition The Büchi condition Buchi is a parity condition over the
restricted interval [1, 2] of priorities. A word belongs to Buchi if it contains
infinitely many occurrences of 2.

coBüchi condition The coBüchi condition coBuchi is a parity condition over
the restricted interval [0, 1] of priorities. A word belongs to coBuchi if it it
has only finitely many occurrences of 1’s.

2 In the literature, the players have many other names: ‘Eve’ and ‘Adam’, ’Eloise’ and
‘Abelard’, ‘Exist’ and ‘Forall’, ‘0’ and ‘1’, or in specific contexts: ‘Even’ and ‘Odd’,
‘Automaton’ and ‘Pathfinder’, ‘Duplicator’ and ‘Spoiler’, . . .

Universal Graphs and Good for Games Automata 5

mean-payoff condition Given a finite set C ⊆ R, a word u = c1c2c3 · · · ∈ Cω

belongs to meanpayoffC if

lim inf
n→∞

c1 + c2 + · · · + cn

n
� 0 .

There are many variants of this definition (such as replacing lim inf with
lim sup), that all turn out to be equivalent on finite arenas.

Strategies We describe now formally what it means to win a game. Let us take
the point of view of the existential player. A strategy for the existential player is
an object that describes how to play in every situation of the game that could be
reached. It is a winning strategy if whenever these choices are respected during a
play, the existential player wins this play. There are several ways one can define
the notion of a strategy. Here we choose to describe a strategy as the set of
partial plays that may be produced when it is used.

Definition 3. A strategy s for the existential player sE is a set of partial plays
of the game that has the following properties:

– sE is prefix-closed and non-empty,
– for all partial plays π ∈ sE ending in some v ∈ VE, there exists exactly one

partial play of length |π| + 1 in sE that prolongs π,
– for all partial plays π ∈ sE ending in some v ∈ VA, then all partial plays that

prolong π of length |π| + 1 belong to sE.

A play is compatible with the strategy sE if all its finite prefixes belong to s.
A play is winning if it belongs to the winning condition W. A game is won by
the existential player if there exists a strategy for the existential player such that
all plays compatible with it are won by the existential player. Such a strategy is
called a winning strategy.

Symmetrically, a (winning) strategy for the universal player is a (winning)
strategy for the existential player in the dual game. A game is won by the univer-
sal player if there exists a strategy for the universal player such that all infinite
plays compatible with it are won by the universal player.

The idea behind this definition is that at any moment in the game, when
following a strategy, a sequence of moves has already been played, yielding a
partial play in the arena. The above definition guarantees that: 1. if a partial
play belongs to the strategy, it is indeed reachable by a succession of moves that
stay in the strategy, 2. if, while following the strategy, a partial play ends in a
vertex owned by the existential player, there exists exactly one move that can be
followed by the strategy at that moment, and 3. if, while following the strategy,
a partial play ends in a vertex owned by the universal player, the strategy is able
to face all possible choices of the opponent.

Remark 1. It is not possible that in a strategy defined in this way one reaches
an existential position that would have no successor: indeed, 2. would not hold.

6 T. Colcombet and N. Fijalkow

Remark 2. There are different ways to define a strategy in the literature. One is
as a strategy tree: indeed one can see sE as a set of nodes equipped with prefix
ordering as the ancestor relation. Another way is to define a strategy as a partial
map from paths to moves. All these definitions are equivalent. The literature also
considers randomized strategies (in which the next move is chosen following a
probability distribution): this is essential when the games are concurrent or with
partial information, but not in the situation we consider in this paper.

Lemma 1 (at most one player wins). It is not possible that both the
existential player and the universal player win the same game.

Of course, keeping the intuition of games in mind, one would expect also
that one of the player wins. However, this is not necessarily the case. A game is
called determined if either the existential or the universal player wins the game.
The fact that a game is determined is referred to as its determinacy. A
winning condition W is determined if all W-games are determined. It happens
that not all games are determined.

Theorem 1. There exist winning conditions that are not determined (and it
requires the axiom of choice to prove it).

However, there are some situations in which games are determined. This is
the case of finite duration games, of safety games, and more generally:

Theorem 2 (Martin’s theorem of Borel determinacy [Mar75]). Games
with Borel winning conditions are determined.

Defining the notion of Borel sets is beyond the scope of this paper. It suffices
to know that this notion is sufficiently powerful for capturing a lot of natural
winning conditions, and in particular all winning conditions in this paper are
Borel; and thus determined.

2.2 Memory of strategies

A key insight in understanding a winning condition is to study the
amount of memory required by winning strategies. To define the notion of
memoryless strategies, we use an equivalent point of view on strategies, using
strategy graphs.

Definition 4. Given a C-arena A, an existential player strategy graph SE, γ
in A is a trimmed C-graph SE together with a graph morphism γ from SE to A
such that for all vertices x in SE,

– if γ(x) is an existential position, then there exists exactly one edge of the
form (x, c, y) in SE,

– if γ(x) is a universal position, then β induces a surjection between the edges
originating from x in SE and the moves originating from β(x), i.e., for all
moves of the form (β(x), c, v), there exists an edge of the form (x, c, y) in SE

such that β(y) = v.

Universal Graphs and Good for Games Automata 7

The existential player strategy graph SE, γ is memoryless if γ is injective. In
general the memory of the strategy is the maximal cardinality of γ−1(v) for v
ranging over all positions in the arena. For G a W-game with W ⊆ Cω, an
existential player strategy graph SE is winning if the labels of all its paths issued
from the root belong to W.

The (winning) universal player strategy graphs are defined as the (winning)
existential player strategy graphs in the dual game.

The winning condition W is memoryless for the existential player if,
whenever the existential player wins in a W-game, there is a memoryless
winning existential player strategy graph. It is memoryless for the existential
player over finite arenas if this holds for finite W-games only. The dual notion
is the one of memoryless for the universal player winning condition.

Of course, as far as existence is concerned the two notions of strategy coincide:
Lemma 2. There exists a winning existential player strategy graph if and only
if there exists a winning strategy for the existential player.

Proof. A strategy for the existential player sE can be seen as a C-graph (in fact a
tree) SE of vertices sE, of root ε, and with edges of the form (π, a, πa) for all πa ∈
sE. If the strategy sE is winning, then the strategy graph SE is also winning.

Conversely, given an existential player strategy graph SE, the set sE of its paths
starting from the root is itself a strategy for the existential player. Again, the
winning property is preserved.

We list a number of important results stating that some winning conditions
do not require memory.

Theorem 3 ([EJ91]). The parity condition is memoryless for the existential
player and for the universal player.

Theorem 4 ([EM79,GKK88]). The mean-payoff condition is memoryless for
the existential player over finite arenas as well as for the universal player.

Theorem 5 ([GH82]). The Rabin condition is memoryless for the existential
player, but not in general for the universal player.

Theorem 6 ([McN93]). Muller conditions are finite-memory for both players.

Theorem 7 ([CFH14]). Topologically closed conditions for which the residuals
are totally ordered by inclusion are memoryless for the existential player.

2.3 Automata

Definition 5 (automata over infinite words). Let W ⊆ Cω. A (non-
deterministic) W-automaton A over the alphabet A is a (C × A)-graph. The
convention is to call states its vertices, and transitions its edges. The root vertex
is called the initial state. The set W is called the accepting condition (whereas it

8 T. Colcombet and N. Fijalkow

is the winning condition for games). The automaton Ap is obtained from A by
setting the state p to be initial.

A run of the automaton A over u ∈ Aω is an infinite path in A that starts
in the initial state and projects on its A-component to u. A run is accepting
if it projects on its C-component to a word v ∈ W. The language accepted
by A is the set L(A) of infinite words u ∈ Aω such that there exists an
accepting run of A on u.

An automaton is deterministic (resp. complete) if for all states p and all
letters a ∈ A, there exists at most one (resp. at least one) transition of the form
(p, (a, c), q). If the winning condition is parity, this is a parity automaton. If the
winning condition is safety, this is a safety automaton, and we do not mention
the C-component since there is only one color. I.e., the transitions form a subset
of Q × A × Q, and the notion coincides with the one of a A-graph. For this
reason, we may refer to the language L(H) accepted by an A-graph H: this is
the set of labelling words of infinite paths starting in the root vertex of H.

Note that here we use non-deterministic automata for simplicity. However,
the notions developed in this paper can be adapted to alternating automata.

The notion of ω-regularity. It is not the purpose of this paper to describe the
rich theory of automata over infinite words. It suffices to say that a robust
concept of ω-regular language emerges. These are the languages that are equiva-
lently defined by means of Büchi automata, parity automata, Rabin automata,
Muller automata, deterministic parity automata, deterministic Rabin automata,
deterministic Muller automata, as well as many other formalisms (regular
expressions, monadic second-order logic, ω-semigroup, alternating automata,
. . .). However, safety automata and deterministic Büchi automata define a sub-
class of ω-regular languages.

Note that the mean-payoff condition does not fall in this category, and
automata defined with this condition do not recognize ω-regular languages in
general.

2.4 Automata for solving games

There is a long tradition of using automata for solving games. The general prin-
ciple is to use automata as reductions, i.e. starting from a V-game G and a
W-automaton A that accepts the language V, we construct a W-game G × A
called the product game that combines the two, and which is expected to have
the same winner: this means that to solve the V-game G, it is enough to solve the
W-game G × A. We shall see below that, unfortunately, this expected property
does not always hold (Remark 4). The automata that guarantee the correction of
the construction are called good for games, originally introduced by Henzinger
and Piterman [HP06].

We begin our description by making precise the notion of product game.
Informally, the new game requires the players to play like in the original game,
and after each step, the existential player is required to provide a transition in
the automaton that carries the same label.

Universal Graphs and Good for Games Automata 9

Definition 6. Let D be an arena over colors C, with positions P and
moves M . Let also A be a W-automaton over the alphabet C with states Q and
transitions Δ. We construct the product arena D × A as follows:

– The set of positions in the product game is (P � M) × Q.
– The initial position is (initD, initA), in which initD is the initial position of G,

and initA is the initial state of A.
– The positions of the form (x, p) ∈ P × Q are called game positions and are

owned by the owner of x in G. There is a move, called a game move, of the
form ((x, p), ε, ((x, c, y), p)) for all moves (x, c, y) ∈ M .

– The positions of the form ((x, c, y), p) ∈ M ×Q are called automaton positions
and are owned by the existential player. There is a move, called an automa-
ton move, of the form (((x, c, y), p), d, (y, q)) for all transitions of the form
(p, (c, d), q) in A.

Note that every game move ((x, p), ε, ((x, c, y), p)) of G × A can be trans-
formed into a move (x, c, y) of G, called its game projection. Similarly
every automaton move (((x, c, y), p), d, (y, q)) can be turned into a transition
(p, (c, d), q) of the automaton A called its automaton projection. Hence, every
play π of the product game can be projected into the pair of a play π′ in G of
label u (called the game projection), and an infinite run ρ of the automaton
over u (called the automaton projection). The product game is the game over the
product arena, using the winning condition of the automaton.

Lemma 3 (folklore3). Let G be a V-game, and A be a W-automaton that
accepts a language L ⊆ V, then if the existential player wins G × QA, she
wins G.

Proof. Assume that the existential player wins the game G × A using a strategy
sE. This strategy can be turned into a strategy for the existential player s′

E in G
by performing a game projection. It is routine to check that this is a valid
strategy.

Let us show that this strategy s′
E is V-winning, and hence conclude that the

existential player wins the game G. Indeed, let π′ be a play compatible with s′
E,

say labelled by u. This play π′ has been obtained by game projection of a play π
compatible with sE in G × A. The automaton projection ρ of π is a run of A
over u, and is accepting since sE is a winning strategy. Hence, u is accepted by A
and as a consequence belongs to V. We have proved that sE is winning.

Corollary 1. Let G be a V-game, and A be a deterministic W-automaton that
accepts the language V, then the games G and G × A have the same winner.

Proof. We assume without loss of generality that A is deterministic and com-
plete (note that this may require to slightly change the accepting condition, for
instance in the case of safety). The results then follows from the application of
Lemma 3 to the game G and its dual.
3 This technique of reduction is in fact more general, since the automaton may not be

a safety automaton. Its use can be traced back, for instance, to the work of Büchi
and Landweber [BL69].

10 T. Colcombet and N. Fijalkow

The consequence of the above lemma is that when we know how to solve
W-games, and we have a deterministic W-automaton A for a language V,
then we can decide the winner of V-games by performing the product of the
game with the automaton, and deciding the winner of the resulting game.
Good for games automata are automata that need not be deterministic, but for
which this kind of arguments still works.

Definition 7 (good for games automata [HP06]). Let V be a language,
and A be a W-automaton. Then A is good for V-games if for all V-games G, G
and G × A have the same winner.

Note that Lemma 1 says that deterministic automata are good for games
automata.

Remark 3. It may seem strange, a priori, not to require in the definition that
L(A) = V. In fact, it holds anyway: if an automaton is good for V-games, then
it accepts the language V. Indeed, let us assume that there exists a word u ∈
L(A) \ V, then one can construct a game that has exactly one play, labelled u.
This game is won by the universal player since u �∈ V, but the existential player
wins G × A. A contradiction. The same argument works if there is a word in
V \ L(A).

Examples of good for games automata can be found in [BKS17], together
with a structural analysis of the extent to which they are non-deterministic.

Remark 4. We construct an automaton which is not good for games. The alpha-
bet is {a, b}. The automaton A is a Büchi automaton: it has an initial state from
which goes two ε-transitions: the first transition guesses that the word contains
infinitely many a’s, and the second transition guesses that the word contains
infinitely many b’s. Note that any infinite word contains either infinitely many
a’s or infinitely many b’s, so the language V recognised by this automaton is
the set of all words. However, this automaton requires a choice to be made at
the very first step about which of the two alternatives hold. This makes it not
good for games: indeed, consider a game G where the universal player picks any
infinite word, letter by letter, and the winning condition is V. It has only one
position owned by the universal player. The existential player wins G because all
plays are winning. However, the existential player loses G × A, because in this
game she has to declare at the first step whether there will be infinitely many
a’s or infinitely many b’s, which the universal player can later contradict.

Let us conclude this part with Lemma 4, stating the possibility to compose
good for games automata. We need before hand to defined the composition of
automata.

Given A × B-graph A, and B × C-graph B, the composed graph B ◦ A has
as states the product of the sets of states, as initial state the ordered pair of
the initial states, and there is a transition ((p, q), (a, c), (p′, q′)) if there is a
transition (p, (a, b), p′) in A and a transition (q, (b, c), q′). If A is in fact an
automaton that uses the accepting condition V, and B an automaton that uses

Universal Graphs and Good for Games Automata 11

the accepting condition W, then the composed automaton B ◦ A uses has as
underlying graph the composed graphs, and as accepting condition W.

Lemma 4 (composition of good for games automata). Let A be a
good for games W-automaton for the language V, and B be good for games
V-automaton for the language L, then the composed automaton A ◦ B is a
good for games W-automaton for the language L.

3 Efficiently solving games

From now on, graphs, games and automata are assumed to be finite.
We now present more recent material. We put forward the notion of

good for n-games automata (good for small games) as a common explanation
for the several recent algorithms for solving parity games ‘efficiently’. After
describing this notion in Section 3.1, we shall give more insight about it in
the context of winning conditions that are memoryless for the existential player
in Section 3.2

Much more can be said for parity games and good for small games
safety automata: this will be the subject of Section 4.

3.1 Good for small games automata

We introduce the concept of (strongly) good for n-games automata (good for
small games). The use of these automata is the same as for good for games
automata, except that they are cannot be composed with any game, but only
with small ones. In other words, a good for (W, n)-game automaton yields
a reduction for solving W-games with at most n positions (Lemma 6). We
shall see in Section 3.2 that as soon as the underlying winning condition is
memoryless for the existential player, there are several characterisations for the
smallest strongly good for n-games automata. It is good to keep in mind the
definition of good for games automata (Definition 7) when reading the following
one.

Definition 8. Let V be a language, and A be a W-automaton. Then A is good
for (V, n)-games if for all V-games G with at most n positions, G and G × A
have the same winner (we also write good for small games when there is no need
for V and n to be explicit).

It is strongly good for (V, n)-games if it is good for (V, n)-games and the
language accepted by A is contained in V.

Example 1 (automata that are good for small games). We have naturally the fol-
lowing chain of implications:

good for games =⇒ strongly good for n-games =⇒ good for n-games

The first implication is from Remark 3, and the second is by definition. Thus
the first examples of automata that are strongly good for small games are the
automata that are good for games.

12 T. Colcombet and N. Fijalkow

Example 2. We consider the case of the coBüchi condition: recall that the set
of colors is {0, 1} and the winning plays are the ones such that there ulti-
mately contain only 0’s. It can be shown that if the existential player wins
in a coBüchi game with has at most n positions, then she also wins for the
winning condition L = (0∗(ε + 1))n0ω, i.e., the words in which there is at
most n occurrences of 1 (indeed, a winning memoryless strategy for the con-
dition coBuchi cannot contain a 1 in a cycle, and hence cannot contain more
than n occurrences of 1 in the same play; thus the same strategy is also win-
ning in the same game with the new winning condition L). As a consequence,
a deterministic safety automaton that accepts the language L ⊆ coBuchi (the
minimal one has n + 1 states) is good for (coBuchi, n)-games.

Mimicking Lemma 4 which states the closure under composition of good
for games automata, we obtain the following variant for good for small games
automata:

Lemma 5 (composition of good for small games automata). Let
B be a good for n-games V-automaton for the language L with k
states, and A be a good for kn-games W-automaton for the language V,
then the composed automaton A ◦ B is a good for n-games W-automaton
for the language L.

We also directly get an algorithm from such reductions.

Lemma 6. Assume that there exists an algorithm for solving W-games of
size m in time f(m). Let G be a V-game with at most n positions and A be
a good for (V, n)-games W-automaton of size k, there exists an algorithm for
solving G of complexity f(kn).

Proof. Construct the game G × A, and solve it.

The third quasipolynomial time algorithm for solving parity games due to
Lehtinen [Leh18] can be phrased using good for small games automata (note
that it is not originally described in this form).

Theorem 8 ([Leh18,BL19]). Given positive integers n, d, there exists a
parity automaton with n(logd+O(1)) states and 1 +
log n� priorities which is
strongly good for n-games.

Theorem 8 combined with Lemma 6 yields a quasipolynomial time algorithm
for solving parity games. Indeed, consider a parity game G with n positions and d
priorities. Let A be the good for n-games automaton constructed by Theorem 8.
The game G × A is a parity game equivalent to G, which has m = n(log d+O(1))

states and d′ = 1 +
log n� priorities. Solving this parity game with a simple

algorithm (of complexity O(md′
)) yields an algorithm of quasipolynomial com-

plexity:
O(md′

) = O(n(log d+O(1))d′
) = nO(log(d) log(n)).

Universal Graphs and Good for Games Automata 13

3.2 The case of memoryless winning conditions

In this section we fix a winning condition W which is memoryless for the
existential player, and we establish several results characterising the smallest
strongly good for small games automata in this case.

Our prime application is the case of parity conditions, that will be stud-
ied specifically in Section 4, but this part also applies to conditions such as
mean-payoff or Rabin.

The goal is to establish the following theorem (the necessary definitions are
introduced during the proof).

Theorem 9. Let W be a winning condition which is memoryless for the exis-
tential player, then the following quantities coincide for all positive integers n:

1. the least number of states of a strongly (W, n)-separating deterministic safety
automaton,

2. the least number of states of a strongly good for (W, n)-games safety automa-
ton,

3. the least number of states of a strongly (W, n)-separating safety automaton,
4. the least number of vertices of a (W, n)-universal graph.

The idea of separating automata4 was introduced by Bojańczyk and Czerwiński
[BC18] to reformulate the first quasipolynomial time algorithm [CJK+17].
Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF+19] showed
that the other two quasipolynomial time algorithms [JL17,Leh18] also can be
understood as the construction of separating automata.

The proof of Theorem 9 spans over Sections 3.2 and 3.3. It it a consequence
of Lemmas 7, 8, 11, and 12. We begin our proof of Theorem 9 by describing the
notion of strongly separating automata.

Definition 9. An automaton A is strongly (W, n)-separating if

W|n ⊆ L(A) ⊆ W ,

in which W|n is the union of all the languages accepted by safety automata with n
states that accept sublanguages of W.5

Lemma 7. In the statement of Theorem 9, (1) =⇒ (2) =⇒ (3).

Proof. Assume (1), i.e., there exists a strongly (W, n)-separating deterministic
safety automaton A, then L(A) ⊆ W. Let G be a W-game with at most n
positions. By Lemma 3, if the existential player wins G × A, she wins the
4 The definition used in [BC18] is not strictly equivalent to the one we use here: a sepa-

rating automaton in [BC18] is a strongly separating automaton in our sense, but not
conversely.

5 Note that there is a natural, more symetric, notion of (W, n)-separating automata

in which the requested inclusions are W|n ⊆ L(A) ⊆
(
W

�
∣∣∣
n

)�
. However, nothing is

known about this notion.

14 T. Colcombet and N. Fijalkow

game G. Conversely, assume that the existential player wins G, then, by assump-
tion she has a winning memoryless strategy graph SE, γ : SE → G, i.e., L(SE) ⊆
W and γ is injective. By injectivity of γ, SE has at most n vertices and

hence L(SE) ⊆ W|n ⊆ L(A). As a consequence, for every (partial) play π
compatible with SE, there exists a (partial) run of A over the labels of π (call
this property
). We construct a new strategy for the existential player in G × A
as follows: When the token is in a game position, the existential player plays as
in SE; When the token is in an automaton position, the existential player plays
the only available move (indeed, the move exists by property
, and is unique
by the determinism assumption). Since this is a safety game, the new strat-
egy is winning. Hence the existential player wins G × A, proving that A is
good for (W, n)-games. Item 2 is established.

Assume now (2), i.e., that A is some strongly good for (W, n)-games automa-
ton. Then by definition L(A) ⊆ W. Now consider some word u in W|n. By defi-
nition, there exists some safety automaton B with at most n states such that u ∈
L(B) ⊆ W. This automaton can be seen as a W-game G in which all positions are
owned by the universal player. Since L(B) ⊆ W, the existential player wins the
game G. Since furthermore A is good for (W, n)-games, the existential player has
a winning strategy SE in G × A. Assume now that the universal player is play-
ing the letters of u in the game G × A, then the winning strategy SE constructs
an accepting run of A on u. Thus u ∈ L(A), and Item 3 is established.

We continue our proof of Theorem 9 by introducing the notion of
(W, n)-universal graph.

Definition 10. Given a winning condition W ⊆ Cω and a positive integer n, a
C-graph U is (W, n)-universal6 if

– L(U) ⊆ W, and
– for all C-graphs H such that L(U) ⊆ W and with at most n vertices, there is

a weak graph morphism from H to U .

We are now ready to prove one more implication of Theorem 9.

Lemma 8. In the statement of Theorem 9, (4) =⇒ (1)

Proof. Assume that there is a (W, n)-universal graph U . We show that U seen as
an safety automaton is strongly good for (W, n)-games. One part is straightfor-
ward: L(U) ⊆ W is by assumption. For the other part, consider a W-game G with
at most n positions. Assume that the existential player wins G, this means that
there exists a winning memoryless strategy for the existential player SE, γ : SE →
G in G. We then construct a strategy for the existential player S′

E that maintains
the property that the only game positions in G × U that are met in S′

E are of the
form (x, γ(x)). This is done as follows: when a game position is encountered, the
existential player plays like the strategy SE, and when an automaton position
is encountered, the existential player plays in order to follow γ. This is possible
since γ is a weak graph morphism.
6 Note that this is not the notion of (even weak) universality in categorical terms since

U is not in general itself of size n.

Universal Graphs and Good for Games Automata 15

3.3 Maximal graphs

In order to continue our proof of Theorem 9, more insight is needed: we have to
understand what are the W-maximal graphs. This is what we do now.

Definition 11. A C-graph H is W-maximal if L(H) ⊆ W and if it is not
possible to add a single edge to it without breaking this property, i.e., without
producing an infinite path from the root vertex that does not belong to W.

Lemma 9. For a winning condition W ⊆ C which is memoryless for the exis-
tential player, and H a W-maximal graph, then the ε-edges in H form a transi-
tive and total relation.

Proof. Transitivity arises from the epsilon property of winning conditions (Def-
inition 1): Consider three vertices x, y and z such that α = (x, ε, y) and
β = (y, ε, z) are edges of H. Let us add a new edge δ = (x, ε, y) yielding a
new graph H ′. Let us consider now any infinite path π in H ′ starting in the
root (this path may contain finitely of infinitely many occurrences of δ, but not
almost only δ’s since x �= y). Let π′ be obtained from π by replacing each occur-
rence of δ by the sequence αβ. The resulting path π′ belongs H, and thus its
labelling belongs to W. But since the labelings of π and π′ agree after removing
all the occurrences of ε, the epsilon property guarantees that the labelling of π
belongs to W. Since this holds for all choices of π, we obtain L(H ′) ⊆ W. Hence,
by maximality, δ ∈ H, which means that the ε-edges form a transitive relation.

Let us prove the totality. Let x and y be distinct vertices of H. We have to

show that either x
ε−→ y or y

ε−→ x. We can turn H into a game G as follows:

– all the vertices of H become positions that are owned by the universal player
and we add a new position z owned by the existential player;

– all the edges of H that end in x or y become moves of G that now end in z,
– all the other edges of H become moves of G without change,
– and there are two new moves in G, (z, ε, x) and (z, ε, y).

We claim first that the game G is won by the existential player. Let us construct
a strategy sE in G as follows. The only moment the existential player has a choice
to make is when the play reaches the position z. This has to happen after a move
of the form (t, a, z). This move originates either from an edge of the form (t, a, x),
or from an edge of the form (t, a, y). In the first case the strategy sE chooses
the move (z, ε, x), and in the second case the move (z, ε, y). Let us consider a
play π compatible with sE, and let π′ be obtained from π by replacing each
occurrence of (t, a, z)(z, ε, x) with (t, a, x) and each occurrence of (t, a, z)(z, ε, y)
with (t, a, y). The resulting π′ is a path in H and hence its labeling belongs
to W. Since the labelings of π and π′ are equivalent up to ε-letters, by the
epsilon property, the labeling of π also belongs to W. Hence the strategy sE
witnesses the victory of the existential player in G. The claim is proved.

16 T. Colcombet and N. Fijalkow

By assumption on W, this means that there exists a winning memory-
less strategy for the existential player SE in G. In this strategy, either the
existential player always chooses (z, ε, x), or she always chooses (z, ε, y). Up to
symmetry, we can assume the first case. Let now H ′ be the graph H to which
a new edge δ = (y, ε, x) has been added. We aim that L(H ′) ⊆ W. Let π be an
infinite path in H ′ starting from the root vertex. In this path, each occurrences
of δ are preceded by an edge of the form (t, a, y). Thus, let π′ be obtained from π
by replacing each occurrence of a sequence of the form (t, a, y)δ by (t, a, y). The
resulting path is a play compatible with SE. Hence the labeling of π′ belongs
to W, and as a consequence, by the epsilon property, this is also the case for π.
Since this holds for all choices of π, we obtain that L(H ′) ⊆ W. Hence, by
W-maximality assumption, (y, ε, x) is an edge of H.

Overall, the ε-edges form a total transitive relation.

Let �ε be the least relation closed under reflexivity and that extends the
ε-edge relation.

Lemma 10. For a winning condition W which is memoryless for the existential
player, and H a W-maximal graph, then the following properties hold:

– The relation �ε is a total preorder.
– x′ �ε x

a−→H y �ε y′ implies x′ a−→H y′, for all vertices x′, x, y, y′ and
colors a.

– For all vertices p, q, L(Hp) ⊆ L(Hq) if and only q �ε p.

– for all vertices p, q and colors a, aL(Hq) ⊆ L(Hp) if and only if p
a−→H q.

Proof. The first part is obvious from Lemma 9. For the second part, it is sufficient

to prove that x
a−→ y

ε−→ z implies x
a−→ y and that x

ε−→ y
a−→ z implies

x
a−→ y. Both cases are are similar to the proof of transitivity in Lemma 97.
The two next items are almost the same. The difficult direction is to assume

the language inclusion, and deduce the existence of an edge (left to right). Let us
assume for an instant that H would be a finite word automaton, with all its states
accepting. Then it is an obvious induction to show that if aL(Hq) ⊆ L(Hp) (as
languages of finite words), it is safe to add an ε-transitions from q to p without
changing the language. The two above items are then obtained by limit passing
(this is possible because the safety condition is topologically closed).

We are now ready to provide the missing proofs for Theorem 9: from (3) to
(4), and from (3) to (1). Both implications arise from Lemma 9.

Lemma 11. In the statement of Theorem 9, (3) =⇒ (4).

7 This arises in fact from a more general simple phenomenon: if the sequence ab is
‘indistinguishable in any context’ from c (meaning that if one substitutes simulta-
neously infinitely many occurrences of ab with occurrences of c one does not change

the membership to W), then x
a−→ y

b−→ z implies x
c−→ z.

Universal Graphs and Good for Games Automata 17

Proof. Let us start from a strongly (W, n)-separating safety automaton A. With-
out loss of generality, we can assume it is W-maximal. We claim that it is
(W, n)-universal.

Let us define first for all languages K ⊆ Cω, its closure

K =
⋂

L(As)⊇K

L(As)

(in case of an empty intersection, we assume Cω). This is a closure operator:

K ⊆ K ′ implies K ⊆ K ′, K ⊆ K, and K = K. Futhermore, aK ⊆ aK, for
all letters a ∈ C. Let now H be a trimmed graph with at most n vertices such
that L(H) ⊆ W. We have L(H) ⊆ W|n by definition of W|n.

We claim that for each vertex x of H, there is a state α(x) of A such that

L(Aα(x)) = L(Hx) .

Indeed, note first that, since H is trimmed, there exists some word u such that

rootH
u−→ x. Hence, using the fact that A is strongly (W, n)-separating, we

get that for all v ∈ L(Hx), uv ∈ L(H) ⊆ W|n ⊆ L(A). Let β(v) be the state
assumed after reading u by a run of A accepting uv. It is such that v ∈ L(Aβ(v)).
Since A is finite and its states are totally ordered under inclusion of residuals
(Lemma 10), this means that there exists a state α(x) (namely the maximum
over all the β(w) for w ∈ L(Hx)) such that L(Aα(x)) = L(Hx).

Let us show that α is a weak graph morphism8 from H to A. Consider some
edge (x, a, y) of H. We have aL(Hy) ⊆ L(Hx). Hence

aL(Aα(y)) = aL(Hy) ⊆ aL(Hy) ⊆ L(Hx) = L(Aα(x)) ,

which implies by Lemma 10 that α(x) a−→A α(y). Let now rootH
a−→H x be

some edge. By hypothesis, we have

aL(Hx) ⊆ L(H) ⊆ W|n ⊆ L(A) .

Thus L(Aα(x)) = aL(Hx) ⊆ L(A) = L(ArootA). We obtain rootA
a−→A α(x)

by Lemma 10. Hence, α is a weak graph morphism.
Since this holds for all choices of H, we have proved that A is a

(W, n)-universal graph.

Lemma 12. In the statement of Theorem 9, (3) =⇒ (1).

Proof. Let us start from a strongly (W, n)-separating safety automaton A. With-
out loss of generality, we can assume it is maximal. Thus Lemma 10 holds.

8 Note that in general that α is not a (non-weak) graph morphism, even for conditions
like parity. Even more, such a graph morphism does not exist in general.

18 T. Colcombet and N. Fijalkow

We now construct a deterministic safety automaton D.

– the states of D are the same as the states of A,
– the initial state of D is the initial state of A,
– given a state p ∈ ΔD and a letter a, a transition of the form (p, a, q) exists if

and only if there is some transition of the form (p, a, r) in A, and q is chosen
to be the least state r with this property.

We have to show that this deterministic safety automaton is strongly (W, n)-
separating. Note first that by definition D is obtained from A by removing tran-
sitions. Hence L(D) ⊆ L(A) ⊆ W. Consider now some u ∈ W|n. By assumption,
u ∈ L(A). Let ρ = (p0, u1, p1)(p1, u2, p2) · · · be the corresponding accepting run
of A. We construct by induction a (the) run of D (q0, u1, q1)(q1, u2, q2) · · · in
such a way that qi �ε pi. For the initial state, p0 = q0. Assume the run up
to qi �ε pi has been constructed. By Lemma 10, (qi, ui+1, pi+1) is a transition
of A. Hence the least r such that (qi, ui+1, r) is a transition of A does exist, and
is �ε pi+1. Let us call it qi+1; we indeed have that (qi, ui+1, qi+1) is a transition
of D. Hence, u is accepted by D. Thus W|n ⊆ L(D).

Overall D is a strongly (W, n)-separating deterministic safety automaton
that has at most as many states as A.

4 The case of parity conditions

We have seen above some general results on the notion of universal graphs,
separating automata, and automata that are good for small games. In partic-
ular, we have seen Theorem 9 showing the equivalence of these objects for
memoryless for the existential player winning conditions.

We are paying now a closer attention to the particular case of the
parity condition. The technical developments that follow give an alternative
proof of the equivalence results proved in [CDF+19] between strongly separating
automata and universal trees.

4.1 Parity and cycles

We begin with a first classical lemma, which reduces the questions of satisfying
a parity condition to checking the parity of cycles.

In a directed graph labelled by priorities, an even cycle is a cycle (all cycles
are directed) such that the maximal priority occurring in it is even. Otherwise,
it is an odd cycle. As usual, an elementary cycle is a cycle that does not meet
twice the same vertex.

Lemma 13. For a [i, j]-graph H that has all its vertices reachable from the
root, the following properties are equivalent:

Universal Graphs and Good for Games Automata 19

– L(H) ⊆ Parity[i,j],
– having all its cycles even,
– having all its elementary cycles even.

Proof. Clearly, since all vertices are reachable, L(H) ⊆ W implies that all
the cycles are even. Also, if all cycles are even, then all elementary cycles also
are. Finally assume that all the elementary cycles are even. Then we can con-
sider H as a game, in which every positions is owned by the universal player.
Assume that some infinite path from the root would not satisfy Parity[i,j], then
this path would be a winning strategy for the universal player in this game.
Since Parity[i,j] is a winning condition memoryless for the universal player,
this means that the universal player has a winning memoryless strategy. But
this winning memoryless strategy is nothing but a lasso, and thus contains an
elementary cycle of maximal odd priority.

4.2 The shape and size of universal graphs for parity games

We continue with a fixed d, and we consider parity conditions using priori-
ties in [0, 2d]. More precisely, we relate the size of universal graphs for the
parity condition with priorities [0, 2d] to universal d-trees as defined now:

Definition 12. A d-tree t is a balanced, unranked, ordered tree of height d (the
root does not count: all branches contain exactly d+1 nodes). The order between
nodes of same level is denoted �t. Given a leaf x, and i = 0 . . . i, we denote
ancti(t) the ancestor at depth i of x (0 is the root, d is x).

The d-tree t is n-universal if for all d-trees s with at most n nodes, there is a
d-tree embedding of s into t, in which a d-tree embedding is an injective mapping
from nodes of s to nodes of t that preserves the height of nodes, the ancestor
relation, and the order of nodes. Said differently, s is obtained from t by pruning
some subtrees (while keeping the structure of a d-tree).

Definition 13. Given a d-tree t, Graph(t) is a [0, 2d]-graph with the following
characteristics:

– the vertices are the leaves of t,

– for 0 � i � d, x
2(d−i)−→ Graph(t) y if anct

i(x) �t anct
i(y),

– for 0 < i � d, x
2(d−i)+1−→ Graph(t) y if anct

i(x) < anct
i(y).

Lemma 14. For all d-trees t, L(Graph(t)) ⊆ Parity[0,2d].

Proof. Using Lemma 13, it is sufficient to prove that all cycle in Graph(t) are
even. Thus, let us consider a cycle ρ. Assume that the highest priority occurring
in α is 2(d − i) + 1. Note then that for all edges α = (x, k, y) occurring in ρ:

– anct
i(x) �t anct

i(y) since k � i + 1,
– if k = 2(d − i) + 1, anct

i(x) < anct
i(y).

As a consequence, the first and last vertex of α cannot have the same ancestor
at level i, and thus are different.

20 T. Colcombet and N. Fijalkow

Below, we develop sufficient results for establishing:

Theorem 10 ([CF18]). For all positive integers d, n, the two following quan-
tities are equal:

– the smallest number of leaves of an n-universal d-tree, and
– the smallest number of vertices of a (Parity[0,2d], n)-universal graph.

Proof. We shall see below (Definition 14) a construction Tree that maps
all Parity[0,2d]-maximal graphs G to a d-tree Tree(G) of smaller or same
size. Corollary 4 establishes that this construction is in some sense the
converse of Tree (in fact they form an adjunction). and that this cor-
respondence preserves the notions of universality. This proves the above
result: Given a n-universal d-tree t, then, by Corollary 4, Graph(t) is a
(Parity[0,2d], n)-universal graph that has as many vertices as leaves of graphs.
Conversely, consider a (Parity[0,2d], n)-universal graph G. One can add to it
edges until it becomes a Parity[0,2d]-maximal graph G′ with as many vertices.
Then, by Corollary 4, Tree(G′) is an n-universal d-tree that has as much or less
leaves than vertices of G′.

Example 3. The complete d-tree t of degree n (that has nd leaves) is n-universal.
The [0, 2d]-graph Graph(t) obtained in this way is used in the small progress
measure algorithm [Jur00].

However, there exists n-universal d-trees that are much smaller than in the
above example. The next theorem provides an upper and a lower bound.

Theorem 11 ([Fij18,CDF+19]). Given positive integers n, d,

– there exists an n-universal d-tree with

n ·
(�log(n)
 + d − 1

�log(n)

)

leaves.
– all n-universal d-trees have at least

(
log(n)� + d − 1

log(n)�

)

leaves.

Corollary 2. The complexity of solving Parity[0,d]-games with at most n-
vertices is

O

(
mn log(n) log(d) ·

(�log(n)
 + d/2 − 1
�log(n)

))
.

and no algorithm based on good for small safety games can be faster than
quasipolynomial time.

Universal Graphs and Good for Games Automata 21

Maximal universal graphs for the parity condition We shall now analyse
in detail the shape of Parity[0,2d]-maximal graphs. This analysis culminates with
the precise description of such graphs in Lemma 19, that essentially establishes
a bijection with graphs of the form Graph(t) (Corollary 4).

Let us note that, since the parity condition is memoryless for the existential
player, using Lemma 10, and the fact that the parity condition is unchanged by
modifying finite prefixes, we can always assume that the root vertex is the min-
imal one for the �ε ordering. Thus, from now, we do not have to pay attention
to the root, in particular in weak graph morphisms. Thus, from now, we just
mention the term morphism for weak graph morphisms.

Let us recall preference ordering � between the non-negative integers is
defined as follows:

· · · � 2d + 1 � 2d − 1 � · · · � 3 � 1 � 0 � 2 � · · · � 2d − 2 � 2d � · · ·
Fact 1. Let k � � and u, v sequences of priorities. If the maximal priority
occurring in ukv is even, then the maximal priority occurring in u�v is also
even.

Lemma 15. Let G be a Parity[0,2d]-maximal graph and k � � be priorities in

[0, 2d]. For all vertices x, y of G, x
k−→G y implies x

�−→G y.

Proof. Let us add (x, �, y) to G. Let u(x, �, y)v be some elementary cycle of
the new graph involving the new edge (x, �, y). By Lemma 13, u(x, k, y)v is
an even cycle in the original graph. Hence, by Fact 1, u(x, �, y)v is also an
even cycle. Thus, by Lemma 13, G with the newly added edge also satisfies
L(G) ⊆ Parity[0,2d]. Using the maximality assumption for G, we obtain that
(x, �, y) was already present in G.

Lemma 16. Let G be a Parity[0,2d]-maximal graph. For all vertices x, y, z

of G, if x
k−→G y and y

�−→G z, then y
max(k,�)−→ G z.

Proof. Let us add (x,max(k, �), z) to G. Let u(x,max(k, �), z)v be an
elementary cycle in the new graph. By Lemma 13, u(x, k, y)(y, �, z)v, being a
cycle of G, has to be even. Since, furthermore, the maximal priority that occurs
in u(x, k, y)(y, �, z)v is the same as the maximal one in u(x,max(k, �), z)v, the
cycle u(x,max(k, �), z)v is also even. Using the maximality assumption of G, we
obtain that (x,max(k, �), z) was already present in G.

Lemma 17. Let G be a Parity[0,2d]-maximal graph, and x, y be vertices, then

x
0−→G x, and x

2d−→G y.

Proof. For x
0−→G x, it is sufficient to notice that adding the edge (x, 0, x), if it

was not present, simply creates one new elementary cycle to G, namely (x, 0, x).
Since it is an even cycle, by Lemma 13, the new graph also satisfies L(G) ⊆
Parity[0,2d]. Hence, by maximality assumption, the edge was already present

in G before.

22 T. Colcombet and N. Fijalkow

Consider the graph G with an extra edge (x, 2d, y) added. Consider now
an elementary cycle that contains (x, 2d, y), i.e., of the form u(x, 2d, y)v. Its
maximal priority is 2d, and thus even. Hence by Lemma 13 and maximality
assumption, the edge was already present in G.

Lemma 18. Let G be a Parity[0,2d]-maximal graph and k = 0, 2, . . . , 2d − 2.

For all vertices x, y, x
k+1−→G y holds if and only if y

k−→G x does not hold.

Proof. Assume first that y
k+1−→G x and x

k−→G y both holds. Then y
k+1−→G

x
k−→G y is an odd cycle contradicting Lemma 13.
Conversely, assume that adding the edge x

k+1−→G y would break the property
L(G) ⊆ Parity[0,2d]. This means that there is an elementary cycle of the form
u(x, k + 1, y)v which is odd. Let � be the maximal priority in vu. If � � k + 1,

then � is odd, and thus � � k, and we obtain y
k−→G x by Lemma 15. Otherwise,

� � k, and again � � k. Once more y
k−→G x holds by Lemma 15.

Lemma 19. A [0, 2d]-graph G is a Parity[0,2d]-maximal graph if and only if all
the following properties hold:

1. k−→G is a total preorder for all k = 0, 2, . . . , 2d,

2. k−→G⊆k+2−→G for all k = 0, 2, . . . , 2d − 2,

3. 2d−→G is the total equivalence relation,

4. k+1−→G= (k←−G)� for all k = 0, 2, . . . , 2d − 2.9

Proof. First direction. Assume first that G is a Parity[0,2d]-maximal graph.

(1) Let k = 0, 2, . . . , 2d; k−→G is transitive by Lemma 16. Furthermore, by

Lemma 17, x
0−→G x for all vertices x, and thus by Lemma 15, since 0 � k,

x
k−→G x. Hence k−→G is also reflexive and hence a preorder. Consider now

another vertex y. By Lemma 18, either x
k−→G y or y

k+1−→G x. But by Lemma 15,

y
k+1−→G x implies y

k−→G x. Hence either x
k−→G y or y

k−→G k. Thus k−→G is a
total preorder.

(2) For k = 0, 2, . . . , 2d − 2, since k � k + 2, by Lemma 15, k−→G⊆k+2−→G.

(3) 2d−→G is the maximal relation by Lemma 15.

(4) For k = 0, 2, . . . , 2d − 2 and x, y, we know that y
k−→G x holds if and only if

x
k+1−→G y does not. This shows k+1−→G= (k←−G)�.

Second direction. Assume now that G satisfies the conditions (1)-(4). Let us
first show that L(G) ⊆ Parity[0,2d]. For the sake of contradiction, consider
an elementary cycle that would be odd. It can be written as u(x, k, y)v with a

9 Note that this also means, since
k−→G is a total preorder, that

k+1−→G=
k−→G \ k←−G.

Universal Graphs and Good for Games Automata 23

maximal odd priority k. Note first that �−→⊆k−1−→ for all � � k: indeed, by (2),

this is true if � is even, and by (1) and (4),
j−→⊆ j−1−→ for all j odd. Also k−→G is

the strict version of the preorder k−1−→G. Hence, the path u(x, k, y)v has to strictly

advance with respect to the preorder k−1−→G: it cannot be a cycle.
Assume now that an edge (x, k, y) is not present in G. If k is even,

since (x, k, y) is not present, by (4) this means that (y, k+1, x) is present. Hence,
adding the edge (x, k, y) would create the odd cycle (x, k, y)(y, k + 1, x). If k is
odd, since (x, k, y) is not present, by (4) this means that (y, k − 1, x) is present.
Hence, adding the edge (x, k, y) would create the odd cycle (x, k, y)(y, k − 1, x).
Hence G is Parity[0,2d]-maximal.

Corollary 3. Given a morphism α from a Parity[0,2d]-maximal graph H to a

Parity[0,2d]-maximal graph G, then x
k−→H y if and only if α(x) k−→G α(y), for

all vertices x, y of H and integers k in [0, 2d]. Furthermore, if α is surjective,
then every map β from G to H, such that α◦β is the identity on G is an injective
morphism.

Proof. First part. From left to right, this is the definition of a morphism. The
other direction is by (4) of Lemma 19: if α(x) k−→G α(y) and k is odd, then
α(x) k−1−→G α(y) does not hold by (4), thus x

k−1−→H y does not hold by morphism,
thus x

k−→H y holds by (4) again. The case of k even is similar (using k + 1 this
time).
For the second part, since α ◦ β is the identity, β has to be injective. It is a
morphism by the first part.

The next definition, allowing to go from graphs to trees is shown meaningful
by Lemma 19:

Definition 14. Let G be a Parity[0,2d]-maximal graph. The d-tree Tree(G) is
constructed as follows:

– the nodes of level i = 0, . . . , d are the pairs (i, C) for C ranging over the

equivalence classes of
2(d−i)−→ G ∩ 2(d−i)←− G,

– a node (i, C) is an ancestor of (j,D) if i � j and D ⊆ C,

– (i, C) �Tree(G) (i,D) if x
2(d−i)−→ G x′ for all x ∈ C and x′ ∈ C ′.

We shall see that Graph and Tree are almost the inverse one of the other.
This is already transparent in the following lemma, which is just a reformulation
of the definitions.

Lemma 20. Let q be the quotient map from vertices of G to leaves of Tree(G)

that maps each vertex to its (0−→G ∩ 0←−G)-equivalence class. It has the following
property for all vertices x, y of G:

24 T. Colcombet and N. Fijalkow

x
2(d−i)−→ G y if and only if anc

Tree(G)
i (q(x)) �Tree(G) anc

Tree(G)
i (q(y)) ,

and x
2(d−i)+1−→ G y if and only if anc

Tree(G)
i (q(x)) < [Tree(G)]anc

Tree(G)
i (q(y)) .

The identity maps the vertices of Graph(t) to the leaves of t, and has the
property that for all vertices x, y:

x
2(d−i)−→ Graph(t) y if and only if anct

i(x) �t anc
t
i(y) ,

and x
2(d−i)+1−→ Graph(t) y if and only if anct

i(x) < anct
i(y) .

Corollary 4. 10For all Parity[0,2d]-maximal graphs G,H, all d-trees t, and all
positive integers n,

– Graph(Tree(G)) is a quotient and an induced subgraph of G,
– Tree(Graph(t)) is isomorphic to t,
– there is a morphism from H to Graph(t) if and only if there is a tree embedding

from Tree(H) to t,
– Tree(G) is n-universal if and only if G is (Parity[0,2d], n)-universal,
– Graph(t) is (Parity[0,2d], n)-universal if and only if t is n-universal.

Proof. Let q be the quotient from Lemma 20. It can be seen as a surjective
map from vertices of Graph(Tree(G)) to G. By Lemma 20 it is a morphism. By
Corollary 3, Graph(Tree(G)) is also an induced subgraph of G.

The leaves of Tree(Graph(t)) are the singletons consisting of leaves of t.
Hence, there is a bijective map from leaves of Tree(Graph(t)) to leaves of t
that sends{�} to �. By Lemma 20, this is a morphism, and by Corollary 3 an
isomorphism.

For the third item, assume first that there is a morphism from H to Graph(t).
By the first point, there is an injective morphism from Graph(Tree(H)) to H.
By composition, we obtain a morphism from Graph(Tree(H)) to Graph(t). By
Lemma 20, it is also a tree embedding from Tree(H) to t. Conversely, assume
that there exists an embedding from Tree(H) to t. It can be raised by Lemma 20
to a morphism from Graph(Tree(H)) to Graph(t). By the first point, there is
a morphism from H to Graph(Tree(H)). By composition, we get a morphism
from H to Graph(t).

The two last items are obvious from the one just before.

Acknowledgements. We thank Pierre Ohlmann for many interesting discussions,
and Marcin Jurdziński for his comments on an earlier draft of this paper.

10 The careful reader will recognize Tree and Graph as left and right adjoints.

Universal Graphs and Good for Games Automata 25

References

[BC18] Bojańczyk, M., Czerwiński, W.: An automata toolbox, February 2018.
https://www.mimuw.edu.pl/∼bojan/papers/toolbox-reduced-feb6.pdf

[BKS17] Boker, U., Kupferman, O., Skrzypczak, M.: How deterministic are good-
for-games automata? In: FSTTCS, pp. 18:1–18:14 (2017)

[BL69] Büchi, J.R., Landweber, L.H.: Definability in the monadic second-order
theory of successor. J. Symbolic Logic 34(2), 166–170 (1969)

[BL19] Boker, U., Lehtinen, K.: Register games. Logical Methods Comput. Sci.
(Submitted, 2019)

[CDF+19] Czerwiński, W., Daviaud, L., Fijalkow, N., Jurdziński, M., Lazić, R., Parys,
P.: Universal trees grow inside separating automata: quasi-polynomial lower
bounds for parity games. In: SODA, pp. 2333–2349 (2019)

[CF18] Colcombet, T., Fijalkow, N.: Parity games and universal graphs. CoRR,
abs/1810.05106 (2018)

[CFH14] Colcombet, T., Fijalkow, N., Horn, F.: Playing safe. In: FSTTCS, pp. 379–
390 (2014)

[CJK+17] Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity
games in quasipolynomial time. In: STOC, pp. 252–263 (2017)

[EJ91] Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: FOCS, pp. 368–377 (1991)

[EM79] Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games.
Int. J. Game Theory 109(8), 109–113 (1979)

[FGO18] Fijalkow, N., Gawrychowski, P., Ohlmann, P.: The complexity of mean
payoff games using universal graphs. CoRR, abs/1812.07072 (2018)

[Fij18] Fijalkow, N.: An optimal value iteration algorithm for parity games. CoRR,
abs/1801.09618 (2018)

[GH82] Gurevich, Y., Harrington, L.: Trees, automata, and games. In: STOC, pp.
60–65 (1982)

[GKK88] Gurvich, V.A., Karzanov, A.V., Khachiyan, L.G.: Cyclic games and an
algorithm to find minimax cycle means in directed graphs. USSR Comput.
Math. Math. Phys. 28, 85–91 (1988)

[HP06] Henzinger, T.A., Piterman, N.: Solving games without determinization. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 395–410. Springer, Heidelberg
(2006). https://doi.org/10.1007/11874683 26

[JL17] Jurdziński, M., Lazić, R.: Succinct progress measures for solving parity
games. In: LICS, pp. 1–9 (2017)

[Jur00] Jurdziński, M.: Small progress measures for solving parity games. In:
Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46541-3 24

[Leh18] Lehtinen, K.: A modal-μ perspective on solving parity games in quasi-
polynomial time. In: LICS, pp. 639–648 (2018)

[Mar75] Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)
[McN93] McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl.

Logic 65(2), 149–184 (1993)

https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://doi.org/10.1007/11874683_26
https://doi.org/10.1007/3-540-46541-3_24

26 T. Colcombet and N. Fijalkow

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Resource-Tracking Concurrent Games

Aurore Alcolei(B), Pierre Clairambault, and Olivier Laurent

Université de Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, Lyon, France
{Aurore.Alcolei,Pierre.Clairambault,Olivier.Laurent}@ens-lyon.fr

Abstract. We present a framework for game semantics based on con-
current games, that keeps track of resources as data modified throughout
execution but not affecting its control flow. Our leading example is time,
yet the construction is in fact parametrized by a resource bimonoid R,
an algebraic structure expressing resources and the effect of their con-
sumption either sequentially or in parallel. Relying on our construction,
we give a sound resource-sensitive denotation to R-IPA, an affine higher-
order concurrent programming language with shared state and a primi-
tive for resource consumption in R. Compared with general operational
semantics parametrized by R, our resource analysis turns out to be finer,
leading to non-adequacy. Yet, our model is not degenerate as adequacy
holds for an operational semantics specialized to time.

In regard to earlier semantic frameworks for tracking resources, the
main novelty of our work is that it is based on a non-interleaving seman-
tics, and as such accounts for parallel use of resources accurately.

1 Introduction

Since its inception, denotational semantics has grown into a very wide subject.
Its developments now cover numerous programming languages or paradigms,
using approaches that range from the extensionality of domain semantics [24]
(recording the input-output behaviour) to the intensionality of game seman-
tics [1,17] (recording execution traces, formalized as plays in a 2-players game
between the program (“Player”) and its execution environment (“Opponent”)).
Denotational semantics has had significant influence on the theory of program-
ming languages, with contributions ranging from program logics or reasoning
principles to new language constructs and verification algorithms.

Most denotational models are qualitative in nature, meaning that they ignore
efficiency of programs in terms of time, or other resources such as power or
bandwith. To our knowledge, the first denotational model to cover time was
Ghica’s slot games [13], an extension of Ghica and Murawski’s fully abstract
model for a higher-order language with concurrency and shared state [14]. Slot
games exploit the intensionality of game semantics and represent time via special

Supported by project Elica (ANR-14-CE25-0005) and Labex MiLyon (ANR-10-LABX-
0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-
IDEX-0007), operated by the French National Research Agency (ANR).

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 27–44, 2019.
https://doi.org/10.1007/978-3-030-17127-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_2&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_2

28 A. Alcolei et al.

moves called tokens matching the ticks of a clock. They are fully abstract w.r.t.
the notion of observation in Sands’ operational theory of improvement [26].

More recently, there has been a growing interest in capturing quantitative
aspects denotationally. Laird et al. constructed [18] an enrichment of the rela-
tional model of Linear Logic [11], using weights from a resource semiring given
as parameter. This way, they capture in a single framework several notions of
resources for extensions of PCF, ranging from time to probabilistic weights. Two
type systems with similar parametrizations were introduced simultaneously by,
on the one hand, Ghica and Smith [15] and, on the other hand, Brunel, Gaboardi
et al. [4]; the latter with a quantitative realizability denotational model.

In this paper, we give a resource-sensitive denotational model for R-IPA,
an affine higher-order programming language with concurrency, shared state,
and with a primitive for resource consumption. With respect to slot games our
model differs in that our resource analysis accounts for the fact that resource
consumption may combine differently in parallel and sequentially – simply put,
we mean to express that wait(1) ‖ wait(1) may terminate in 1 s, rather than
2. We also take inspiration from weighted relational models [18] in that our
construction is parametrized by an algebraic structure representing resources and
their usage. Our resource bimonoids 〈R, 0, ; , ‖,≤〉 differ however significantly
from their resource semiring 〈R, 0, 1,+, ·〉: while ; matches ·, ‖ is a new operation
expressing the consumption of resources in parallel. We have no counterpart for
the +, which agglomerates distinct non-deterministically co-existing executions
leading to the same value: instead our model keeps them separate.

Capturing parallel resource usage is technically challenging, as it can only be
attempted relying on a representation of execution where parallelism is explicit.
Accordingly, our model belongs to the family of concurrent or asynchronous
game semantics pioneered by Abramsky and Melliès [2], pushed by Melliès [20]
and later with Mimram [22], and by Faggian and Piccolo [12]; actively developed
in the past 10 years prompted by the introduction of a more general framework
by Rideau and Winskel [7,25]. In particular, our model is a refinement of the
(qualitative) truly concurrent interpretation of affine IPA described in [5]. Our
methodology to record resource usage is inspired by game semantics for first-
order logic [3,19] where moves carry first-order terms from a signature – instead
here they carry explicit functions, i.e. terms up to a congruence (it is also remi-
niscent of Melliès’ construction of the free dialogue category over a category [21]).

As in [5] we chose to interpret an affine language: this lets us focus on the key
phenomena which are already at play, avoiding the technical hindrance caused by
replication. As suggested by recent experience with concurrent games [6,10], we
expect the developments presented here to extend transparently in the presence
of symmetry [8,9]; this would allow us to move to the general (non-affine) setting.

Outline. We start Sect. 2 by introducing the language R-IPA. We equip it first
with an interleaving semantics and sketch its interpretation in slot games. We
then present resource bimonoids, give a new parallel operational semantics, and
hint at our truly concurrent games model. In Sect. 3, we construct this model
and prove its soundness. Finally in Sect. 4, we show adequacy for an operational

Resource-Tracking Concurrent Games 29

semantics specialized to time, noting first that the general parallel operational
semantics is too coarse w.r.t. our model.

2 From R-IPA to R-Strategies

2.1 Affine IPA

Terms and Types. We start by introducing the basic language under study, affine
Idealized Parallel Algol (IPA). It is an affine variant of the language studied
in [14], a call-by-name concurrent higher-order language with shared state. Its
types are given by the following grammar:

A,B ::= com | bool | memW | memR | A � B

Here, memW is the type of writeable references and memR is the type
of readable references; the distinction is necessary in this affine setting as it
allows to share accesses to a given state over subprocesses; this should make
more sense in the next paragraph with the typing rules. In the sequel, non-
functional types are called ground types (for which we use notation X). We
define terms directly along with their typing rules in Fig. 1. Contexts are simply
lists x1 : A1, . . . , xn : An of variable declarations (in which each variable occurs
at most once), and the exchange rule is kept implicit. Weakening is not a rule
but is admissible. We comment on a few aspects of these rules.

Γ � skip : com Γ � tt : bool Γ � ff : bool Γ � ⊥ : X
(x : A) ∈ Γ

Γ � x : A

Γ, x : A � M : B

Γ � λx. M : A � B

Γ � M : A � B Δ � N : A

Γ, Δ � M N : B

Γ � M : memR

Γ � !M : bool

Γ � M : com Δ � N : X
Γ, Δ � M ; N : X

Γ � M : com Δ � N : X
Γ, Δ � M ‖ N : X

Γ � M : memW

Γ � M := tt : com

Γ � M : bool Δ � N1 : X Δ � N2 : X
Γ, Δ � if M N1 N2 : X

Γ, x : memW , y : memR � M : X
Γ � new x, y inM : X

Fig. 1. Typing rules for affine IPA

Firstly, observe that the reference constructor new x, y inM binds two vari-
ables x and y, one with a write permission and the other with a read permission.
In this way, the permissions of a shared state can be distributed in different com-
ponents of e.g. an application or a parallel composition, causing interferences
despite the affine aspect of the language. Secondly, the assignment command,
M := tt, seems quite restrictive. Yet, the language is affine, so a variable can

30 A. Alcolei et al.

only be written to once, and, as we choose to initialize it to ff , the only useful
thing to write is tt. Finally, many rules seem restrictive in that they apply only at
ground type X. More general rules can be defined as syntactic sugar; for instance
we give (all other constructs extend similarly): M ;A�B N = λxA. (M ;B (N x)).

Operational Semantics. We fix a countable set L of memory locations. Each
location � comes with two associated variable names �W and �R distinct from

ε

Rα Wα

RαW β WαRβ

Fig. 2. State diagram

other variable names. Usually, stores are partial maps
from L to {tt, ff}. Instead, we find it more convenient to
introduce the notion of state of a memory location. A
state corresponds to a history of memory actions (reads
or writes) and follows the state diagram of Fig. 2 (ignor-
ing for now the annotations with α, β). We write (M,≤M)
for the induced set of states and accessibility relation on it. For each m ∈ M, its
set of available actions is act(m) = {W,R} \ m (the letters not occurring in
m, annotations being ignored); and its value (in {tt, ff}) is val(m) = tt iff W
occurs in m.

Finally, a store is a partial map s : L → M with finite domain, mapping each
memory location to its current state. To each store corresponds a typing context

Ω(s) = {�X : memX | � ∈ dom(s) & X ∈ act(s(�))}.

The operational semantics operates on configurations defined as pairs 〈M, s〉
with s a store and Γ � M : A a term whose free variables are all memory
locations with Γ ⊆ Ω(s). This property will be preserved by our rather standard
small-step, call-by-name operational semantics. We refrain for now from giving
the details, they will appear in Sect. 2.2 in the presence of resources.

2.2 Interleaving Cost Semantics, and R-IPA

Ghica and Murawski [14] have constructed a fully abstract(for may-equivalence)
model for (non-affine) IPA, relying on an extension of Hyland-Ong games [17].

Their model takes an interleaving view of the execution of concurrent

x : com, y : bool � bool
q−

run+

q+

tt−
done−

tt+

Fig. 3. A non-alternating play

programs: a program is represented by the set
of all its possible executions, as decided non-
deterministically by the scheduler. In game
semantics, this is captured by lifting the stan-
dard requirement that the two players alter-
nate. For instance, Fig. 3 shows a play in the
interpretation of the program x : com, y :
bool � x ‖ y : bool. The diagram is read
from top to bottom, chronologically. Each line

comprises one computational event (“move”), annotated with “−” if due to
the execution environment (“Opponent”) and with “+” if due to the program
(“Player”); each move corresponds to a certain type component, under which it
is placed. With the first move q−, the environment initiates the computation.

Resource-Tracking Concurrent Games 31

Player then plays run+, triggering the evaluation of x. In standard game seman-
tics, the control would then go back to the execution environment – Player would
be stuck until Opponent plays. Here instead, due to parallelism Player can play
a second move q+ immediately. At this point of execution, x and y are both
running in parallel. Only when they have both returned (moves done− and tt−)
is Player able to respond tt+, terminating the computation. The full interpreta-
tion of x : com, y : bool � x ‖ y : bool, its strategy, comprises numerous plays
like that, one for each interleaving.

As often in denotational semantics, Ghica and Murawski’s model is invari-
ant under reduction: if 〈M, s〉 → 〈M ′, s′〉, both have the same denotation. The
model adequately describes the result of computation, but not its cost in terms,
for instance, of time. Of course this cost is not yet specified: one must, for
instance, define a cost model assigning a cost to all basic operations (e.g. mem-
ory operations, function calls, etc). In this paper we instead enrich the language
with a primitive for resource consumption – cost models can then be captured
by inserting this primitive concomitantly with the costly operations (see for
example [18]).

(α ∈ R)
Γ � consume(α) : com

Fig. 4. Typing consume

R-IPA. Consider a set R of resources. The lan-
guage R-IPA is obtained by adding to affine IPA a
new construction, consume(α), typed as in Fig. 4.
When evaluated, consume(α) triggers the consump-
tion of resource R. Time consumption will be a run-
ning example throughout the paper. In that case, we will consider the non-
negative reals R+ as set R, and for t ∈ R+ we will use wait(t) as a synonym for
consume(t).

〈skip; M, s, α〉 → 〈M, s, α〉
〈skip ‖ M, s, α〉 → 〈M, s, α〉
〈M ‖ skip, s, α〉 → 〈M, s, α〉

〈if ttN1 N2, s, α〉 → 〈N1, s, α〉
〈if ff N1 N2, s, α〉 → 〈N2, s, α〉

〈(λx. M)N, s, α〉 → 〈M [N/x], s, α〉
〈!�R, s, α〉 → 〈val(s(�)), s[� 	→ s(�).Rα], α〉

〈�W := tt, s, α〉 → 〈skip, s[� 	→ s(�).W α], α〉
〈new x, y inM, s, α〉 → 〈M [�W /x, �R/y], s
 {� 	→ ε}, α〉
〈consume(β), s, α〉 → 〈skip, s, α;β〉

Fig. 5. Operational semantics: basic rules

To equip R-IPA with an operational semantics we need operations on R, they
are introduced throughout this section. First we have 0 ∈ R, the null resource; if
α, β ∈ R, we have some α; β ∈ R, the resource taken by consuming α, then β –
for R = R+, this is simply addition. To evaluate R-IPA, the configurations are
now triples 〈M, s, α〉 with α ∈ R tracking resources already spent. With that, we
give in Fig. 5 the basic operational rules. The only rule affecting current resources
is that for consume(β), the others leave it unchanged. However note that we store
the current state of resources when performing memory operations, explaining the
annotations in Fig. 2. These annotations do not impact the operational behaviour,
but will be helpful in relating with the game semantics in Sect. 3. As usual, these
rules apply within call-by-name evaluation contexts – we omit the details here but
they will appear for our final operational semantics.

32 A. Alcolei et al.

Slot Games. In [13], Ghica extends Ghica and Murawski’s model to slot games
in order to capture resource consumption. Slot games introduce a new action
called a token, representing an atomic resource consumption, and written $ –
writing n for n successive occurrences of $. A model of N+-IPA using slot
games would have for instance the play in Fig. 6 in the interpretation of

H = (wait(1); x; wait(2)) ‖ (wait(2); y; wait(1))

in context x : com, y : bool, among with many others. Note, in examples, we
use a more liberal typing rule for ‘;’ allowing ybool; zcom : bool to avoid clut-
ter: it can be encoded as if y (z; tt) (z; ff). Following the methodology of game
semantics, the interpretation of (λxy.H) skip tt would yield, by composition, the

x : com, y : bool � bool
q−
$

run+

2
q+

tt−
$

done−
2
tt+

Fig. 6. A play with tokens

strategy with only maximal play q− 6 tt+, where 6
reflects the overall 6 time units (say “seconds”) that
have to pass in total before we see the result (3 in
each thread). This seems wasteful, but it is indeed
an adequate computational analysis, because both
slot games and the operational semantics given so far
implicitly assume a sequential operational model, i.e.
that both threads compete to be scheduled on a single
processor. Let us now question that assumption.

Parallel Resource Consumption. With a truly concurrent evaluation in mind, we
should be able to prove that the program above may terminate in 3 s, rather than
6; as nothing prevents the threads from evaluating in parallel. Before we update
the operational semantics to express that, we enrich our resource structure to
allow it to express the effect of consuming resources in parallel.

We now introduce the full algebraic structure we require for resources.

Definition 1. A resource bimonoid is 〈R, 0, ; , ‖,≤〉 where 〈R, 0, ; ,≤〉 is an
ordered monoid, 〈R, 0, ‖,≤〉 is an ordered commutative monoid, 0 is bottom for
≤, and ‖ is idempotent, i.e. it satisfies α ‖ α = α.

A resource bimonoid is in particular a concurrent monoid in the sense of
e.g. [16] (though we take ≤ in the opposite direction: we read α ≤R α′ as “α
is better/more efficient than α′”). Our Idempotence assumption is rather strong
as it entails that α ‖ β is the supremum of α, β ∈ R. This allows to recover
a number of simple laws, e.g. α ‖ β ≤ α; β, or the exchange rule (α; β) ‖
(α′; β′) ≤ (α ‖ α′); (β ‖ β′). Idempotence, which would not be needed for a
purely functional language, is used crucially in our interpretation of state.

Our leading examples are 〈N+, 0,+,max,≤〉 and 〈R+, 0,+,max,≤〉 – we call
the latter the time bimonoid. Others are the permission bimonoid 〈P(P), ∅,∪,∪,
⊆〉 for some set P of permissions: if reaching a state requires certain permissions,
it does not matter whether these have been requested sequentially or in parallel;
the bimonoid of parametrized time 〈M, 0, ; , ‖,≤〉 with M the monotone func-
tions from positive reals to positive reals, 0 the constant function, ‖ the pointwise

Resource-Tracking Concurrent Games 33

maximum, and (f ; g)(x) = f(x) + g(x + f(x)): it tracks time consumption in a
context where the time taken by consume(α) might grow over time.

Besides time-based bimonoids, it would be appealing to cover resources such
as power, bandwith or heapspace. Those, however, clearly fail idempotence of ‖,
and are therefore not covered. It is not clear how to extend our model to those.

〈M, s, α〉 ⇒ 〈M, s, α〉
〈M, s, α〉 → 〈M ′, s′, α′〉
〈M, s, α〉 ⇒ 〈M ′, s′, α′〉

〈M, s, α〉 ⇒ 〈M ′, s′, α′〉
〈C[M], s, α〉 ⇒ 〈C[M ′], s′, α′〉

〈M, s, α〉 ⇒ 〈M ′, s′, α′〉 〈M ′, s′, α′〉 ⇒ 〈M ′′, s′′, α′′〉
〈M, s, α〉 ⇒ 〈M ′′, s′′, α′′〉

〈M, s, α〉 ⇒ 〈M ′, s′, α′〉 〈N, s, α〉 ⇒ 〈N ′, s′′, α′′〉
〈M ‖ N, s, α〉 ⇒ 〈M ′ ‖ N ′, s′ ↑ s′′, α′ ‖ α′′〉

Fig. 7. Rules for parallel reduction

Parallel Operational Semantics. Let us fix a resource bimonoid R. To express
parallel resource consumption, we use the many-step parallel reductions defined
in Fig. 7, with call-by-name evaluation contexts given by

C[] ::= [] | []N | []; N | if []N1 N2 | [] := tt | ![] | ([] ‖ N) | (M ‖ [])

The rule for parallel composition carries some restrictions regarding memory:
M and N can only reduce concurrently if they do not access the same memory
cells. This is achieved by requiring that the partial operation s ↑ s′ – that
intuitively corresponds to “merging” two memory stores s and s′ whenever there
are no conflicts – is defined. More formally, the partial order ≤M on memory
states induces a partial order (also written ≤M) on stores, defined by s ≤M s′

iff dom(s) ⊆ dom(s′) and for all � ∈ dom(s) we have s(�) ≤M s′(�). This order
is a cpo in which s′ and s′′ are compatible (i.e. have an upper bound) iff for
all � ∈ dom(s′) ∩ dom(s′′), s′(�) ≤M s′′(�) or s′′(�) ≤M s′(�) – so there has
been no interference going to s′ and s′′ from their last common ancestor. When
compatible, s′ ↑ s′′ maps s′ and s′′ to their lub, and is undefined otherwise.

For � M : com, we set M ⇓α if 〈M, ∅, 0〉 ⇒ 〈skip, s, α〉. For instance,
instantiating the rules with the time bimonoid, we have

(wait(1); wait(2)) ‖ (wait(2); wait(1)) ⇓3

34 A. Alcolei et al.

2.3 Non-interleaving Semantics

To capture this parallel resource usage semantically, we build on the games model
for affine IPA presented in [5]. Rather than presenting programs as collections of
sequences of moves expressing all observable sequences of computational actions,
this model adopts a truly concurrent view using collections of partially ordered
plays. For each Player move, the order specifies its causal dependencies, i.e. the
Opponent moves that need to have happened before. For instance, ignoring the
x : com, y : bool � bool

q−
x

run+
x; 1 q+

x; 2

done−
y tt−

z

tt+(y; 2)‖(z; 1)

Fig. 8. A parallel R-play

subscripts, Fig. 8 displays a typical partially ordered
play in the strategy for the term H of Sect. 2.2.
One partially ordered play does not fully specify a
sequential execution: that in Fig. 8 stands for many
sequential executions, one of which is in Fig. 3.
Behaviours expressed by partially ordered plays are
deterministic up to choices of the scheduler irrele-
vant for the eventual result. Because R-IPA is non-
deterministic (via concurrency and shared state),
our strategies will be sets of such partial orders.

To express resources, we leverage the causal information and indicate, in each
partially ordered play and for each positive move, an R-expression representing
its additional cost in function of the cost of its negative dependencies. Figure 8
displays such a R-play : each Opponent move introduces a fresh variable, which
can be used in annotations for Player moves. As we will see further on, once
applied to strategies for values skip and tt (with no additional cost), this R-
play will answer to the initial Opponent move q−

x with tt+x;α where α = (1; 2) ‖
(2; 1) =R+ 3, as prescribed by the more efficient parallel operational semantics.

We now go on to define formally our semantics.

3 Concurrent Game Semantics of IPA

3.1 Arenas and R-Strategies

Arenas. We first introduce arenas, the semantic representation of types in our
model. As in [5], an arena will be a certain kind of event structure [27].

Definition 2. An event structure comprises (E,≤E ,#E) where E is a set of
events, ≤E is a partial order called causal dependency, and #E is an irreflexive
symmetric binary relation called conflict, subject to the two axioms:

∀e ∈ E, [e]E = {e′ ∈ E | e′ ≤E e} is finite
∀e1 #E e2,∀e1 ≤E e′

1, e
′
1 #E e2

We will use some vocabulary and notations from event structures. A configu-
ration x ⊆ E is a down-closed, consistent (i.e. for all e, e′ ∈ x, ¬(e #E e′)) finite
set of events. We write C (E) for the set of configurations of E. We write �E for
immediate causality, i.e. e �E e′ iff e <E e′ with nothing in between – this is

Resource-Tracking Concurrent Games 35

the relation represented in diagrams such as Fig. 8. A conflict e1 #E e2 is min-
imal if for all e′

1 <E e1, ¬(e′
1 #E e2) and symmetrically. We write e1 ∼E e2 to

indicate that e1 and e2 are in minimal conflict.
With this, we now define arenas.

Definition 3. An arena is (A,≤A,#A,polA), an event structure along with a
polarity function polA : A −→ {−,+} subject to: (1) ≤A is forest-shaped,
(2) �A is alternating: if a1 �A a2, then polA(a1) �= polA(a2), and (3) it is
race-free, i.e. if a1 ∼A a2, then polA(a1) = polA(a2).

Arenas present the computational actions available on a type, following a
call-by-name evaluation strategy. For instance, the observable actions of a closed

x : com, y : bool � bool

run+ q+ q−

done− tt− ff− tt+ ff+

Fig. 9. An arena for a sequent

term on com are that it can be ran, and it may
terminate, leading to the arena com = run−

�

done+. Likewise, a boolean can be evaluated,
and can terminate on tt or ff , yielding the arena
on the right of Fig. 9 (when drawing arenas,
immediate causality is written with a dotted line,
from top to bottom). We present some simple
arena constructions. The empty arena, writ-
ten 1, has no events. If A is an arena, then its

dual A⊥ has the same components, but polarity reversed. The parallel com-
position of A and B, written A ‖ B, has as events the tagged disjoint union
{1} × A ∪ {2} × B, and all other components inherited. For xA ∈ C (A) and
xB ∈ C (B), we also write xA ‖ xB ∈ C (A ‖ B). Figure 9 displays the arena
com⊥ ‖ bool⊥ ‖ bool.

R-Augmentations. As hinted before, R-strategies will be collections of partially
ordered plays with resource annotations in R, called R-augmentations.

Definition 4. An augmentation [5] on arena A is a finite partial order q =
(|q|,≤q) such that C (q) ⊆ C (A) (concerning configurations, augmentations are
considered as event structures with empty conflict), which is courteous, in the
sense that for all a1 �q a2, if polA(a1) = + or polA(a2) = −, then a1 �A a2.

A R-augmentation also has (with [a]−q = {a′ ≤q a | polA(a′) = −})

λq : (a ∈ |q|) −→
(
R[a]−q → R

)

such that if polA(a) = −, then λq(a)(ρ) = ρa, the projection on a of ρ ∈ R[a]−q ,
and for all a ∈ |q|, λq(a) is monotone w.r.t. all of its variables.

We write R-Aug(A) for the set of R-augmentations on A.

If q,q′ ∈ R-Aug(A), q is rigidly embedded in q′, or a prefix of q′,
written q ↪→ q′, if |q| ∈ C (q′), for all a, a′ ∈ |q|, a ≤q a′ iff a ≤q′ a′, and
for all a ∈ |q|, λq(a) = λq′(a). The R-plays of Sect. 2.3 are formalized as R-
augmentations: Fig. 8 presents an R-augmentation on the arena of Fig. 9. The
functional dependency in the annotation of positive events is represented by

36 A. Alcolei et al.

using the free variables introduced alongside negative events, however this is
only a symbolic representation: the formal annotation is a function for each
positive event. In the model of R-IPA, we will only use the particular case
where the annotations of positive events only depend on the annotations of their
immediate predecessors.

R-Strategies. We start by defining R-strategies on arenas.

Definition 5. A R-strategy on A is a non-empty prefix-closed set of R-aug-
mentations σ ⊆ R-Aug(A) which is receptive [5]: for q ∈ σ such that |q|
extends with a− ∈ A (i.e. pol(a) = −, a �∈ |q|, and |q| ∪ {a} ∈ C (A)), there is
q ↪→ q′ ∈ σ such that |q′| = |q| ∪ {a}.

If σ is a R-strategy on arena A, we write σ : A.

Observe that R-strategies are fully described by their maximal augmenta-
tions, i.e. augmentations that are the prefix of no other augmentations in the
strategy. Our interpretation of new will use the R-strategy cell : �memW � ‖
�memR� (with arenas presented in Fig. 10), comprising all the R-augmenta-
tions rigidly included in either of the two from Fig. 11. These two match the
race when reading and writing simultaneously: if both wtt− and r− are played
the read may return tt+ or ff+, but it can only return tt+ in the presence of
wtt−.

memW

wtt−

ok+

memR

r−

tt+ ff+

Fig. 10. �memW � and �memR�

memW memR

wtt−
x r−

y

ok+
x tt+x‖y

memW memR

wtt−
x r−

y

ok+
x‖y ff+y

Fig. 11. Maximal R-augmentations of
cell

3.2 Interpretation of R-IPA

Categorical Structure. In order to define the interpretation of terms of R-IPA
as R-strategies, a key step is to show how to form a category of R-strategies. To
do that we follow the standard idea of considering R-strategies from A to B
to be simply R-strategies on the compound arena A⊥ ‖ B. As usual, our first
example of a R-strategy between arenas is the copycat R-strategy.

Definition 6. Let A be an arena. We define a partial order ≤CCA
on A⊥ ‖ A:

≤CCA
= ({((1, a), (1, a′)) | a ≤A a′} ∪ {((2, a), (2, a′)) | a ≤A a′}∪

{((1, a), (2, a)) | polA(a) = +} ∪ {((2, a), (1, a)) | polA(a) = −})+

where (−)+ denotes the transitive closure of a relation. Note that if a ∈ A⊥ ‖ A
is positive, it has a unique immediate predecessor pred(a) ∈ A⊥ ‖ A for ≤CCA

.

Resource-Tracking Concurrent Games 37

If x ‖ y ∈ C (A⊥ ‖ A) is down-closed for ≤CCA
(write ≤x,y for the restriction

of ≤CCA
to x ‖ y), we define an R-augmentation qx,y = (x ‖ y,≤x,y, λx,y) where

λx,y : (a ∈ x ‖ y) −→
(
R[a]−

x‖y → R
)

with λx,y(a−)(ρ) = ρa, and λx,y(a+)(ρ) = ρpred(a). Then, cc A is the R-strategy
comprising all qx,y for x ‖ y ∈ C (A⊥ ‖ A) down-closed in A.

We first define interactions of R-augmentations, extending [5].

Definition 7. We say that q ∈ R-Aug(A⊥ ‖ B), and p ∈ R-Aug(B⊥ ‖ C) are
causally compatible if |q| = xA ‖ xB, |p| = xB ‖ xC , and the preorder ≤p�q

on xA ‖ xB ‖ xC defined as (≤q ∪ ≤p)+ is a partial order.
Say e ∈ xA ‖ xB ‖ xC is negative if it is negative in A⊥ ‖ C. We define

λp�q : (e ∈ xA ‖ xB ‖ xC) −→
(
R[e]−p�q → R

)

as follows, by well-founded induction on <p�q, for ρ ∈ R[e]−p�q :

λp�q(e)(ρ) =

⎧
⎨
⎩

λp(e)
(〈λp�q(e′)(ρ) | e′ ∈ [e]−p 〉) if polB⊥‖C(e) = +,

λq(e)
(〈λp�q(e′)(ρ) | e′ ∈ [e]−q 〉) if polA⊥‖B(e) = +,

ρe otherwise, i.e. e negative

The interaction p � q of compatible q,p is (xA ‖ xB ‖ xC ,≤p�q, λp�q).

If σ : A⊥ ‖ B and τ : B⊥ ‖ C, we write τ � σ for the set comprising all
p � q such that p ∈ τ and q ∈ σ are causally compatible. For q ∈ σ and
p ∈ τ causally compatible with |p � q| = xA ‖ xB ‖ xC , their composition is
p � q = (xA ‖ xC ,≤p�q, λp�q) where ≤p�q and λp�q are the restrictions of
≤p�q and λp�q. Finally, the composition of σ : A⊥ ‖ B and τ : B⊥ ‖ C is the
set comprising all p � q for q ∈ σ and p ∈ τ causally compatible.

⎛
⎜⎜⎜⎜⎜⎝

xW : memW , xR : memR � bool

q−
x

wtt+x; 1 r+x; 2

ok−
y tt−

z

tt+(y; 2)‖(z; 1)

⎞
⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎝

memW memR

wtt−
x r−

y

ok+
x tt+x‖y

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

xW : memW , xR : memR � bool

q−
x

wttx; 1 rx; 2

okx; 1 tt(x; 1)‖(x; 2)

tt+x; 3

⎞
⎟⎟⎟⎟⎟⎠

Fig. 12. Example of interaction and composition between R+-augmentations

In Fig. 12, we display an example composition between R+-augmentations –
with also in gray the underlying interaction. The reader may check that the vari-
ant of the left R+-augmentation with tt replaced with ff is causally compatible
with the other augmentation in Fig. 11, with composition q−

x � ff+x; 4.

38 A. Alcolei et al.

We also have a tensor operation: on arenas, A ⊗ B is simply a synonym for
A ‖ B. If q1 ∈ R-Aug(A⊥

1 ‖ B1) and q2 ∈ R-Aug(A⊥
2 ‖ B2), their tensor

product q1 ⊗ q2 ∈ R-Aug((A1 ⊗ A2)⊥ ‖ (B1 ⊗ B2)) is defined in the obvious
way. This is lifted to R-strategies element-wise. As is common when constructing
basic categories of games and strategies, we have:

Proposition 1. There is a compact closed category R-Strat having arenas as
objects, and as morphisms, R-strategies between them.

Negative Arenas and R-Strategies. As a compact closed category, R-Strat is a
model of the linear λ-calculus. However, we will (as usual for call-by-name)
instead interpret R-IPA in a sub-category of negative arenas and strategies, in
which the empty arena 1 is terminal, providing the interpretation of weakening.
We will stay very brief here, as this proceeds exactly as in [5].

A partial order with polarities is negative if all its minimal events are. This
applies in particular to arenas, and R-augmentations. A R-strategy is negative
if all its R-augmentations are. A negative R-augmentation q ∈ R-Aug(A) is
well-threaded if for all a ∈ |q|, [a]q has exactly one minimal event; a R-
strategy is well-threaded iff all its R-augmentations are. We have:

Proposition 2. Negative arenas and negative well-threaded R-strategies form
a cartesian symmetric monoidal closed category R-Strat−, with 1 terminal.

We also write σ : A + ��B for morphisms in R-Strat−.

The closure of R-Strat does not transport to R-Strat− as A⊥ ‖ B is never
negative if A is non-empty, thus we replace it with a negative version. Here we
describe only a restricted case of the general construction in [5], which is however
sufficient for the types of R-IPA. If A,B are negative arenas and B is well-
opened, i.e. it has exactly one minimal event b, we form A � B as having all
components as in A⊥ ‖ B, with additional dependencies {((2, b), (1, a)) | a ∈ A}.

Fig. 13. Maximal R-augmentations of R-strategies used in the interpretation

Using the compact closed structure of R-Strat it is easy to build a copycat R-
strategy evA,B : (A � B)⊗A + ��B, and to associate to any σ : C⊗A + ��B some
Λ(σ) : C + ��A � B providing the monoidal closure. The cartesian product of A
and B is A & B with components the same as A ‖ B, except for (1, a) # (2, b)
for all a ∈ A, b ∈ B. We write πi : A1 & A2 + ��Ai for the projections, and
〈σ, τ〉 : A + ��B & C for the pairing of σ : A + ��B, and τ : A + ��C.

Resource-Tracking Concurrent Games 39

Interpretation of R-IPA. We set �com� = run−
� done+, �bool�

as in the right-hand side of Fig. 9, �memW � and �memR� as in Fig. 10,
and �A � B� = �A� � �B� as expected. Contexts Γ = x1 :
A1, . . . , xn : An are interpreted as �Γ � = ⊗1≤i≤n�Ai�. Terms Γ � M :
A are interpreted as �t� : �Γ � + ��

�A� as follows: �⊥� is the diverging R-
strategy (no player move), �consume(α)� has only maximal R-augmentation

�M ; N : X� = seq
X

� (�M� ⊗ �N�)

�M ‖ N : X� = par
X

� (�M� ⊗ �N�)

�if M N1 N2 : X� = ifX � (�M� ⊗ 〈�N1�, �N2�〉)
�!M : bool� = deref � �M�

�M := tt : com� = assign � �M�

�new x, y inM : X� = �M� � (�Γ � ⊗ cell)

run−
x � done+x;α, �skip�

is �consume(0)�, and tt
and ff are interpreted sim-
ilarly with the adequate
constant R-strategies. The
rest of the interpretation is
given on the left, using the
two obvious isos deref :
�memR� + ��

�bool� and
assign : �memW � + ��

�com�;
the R-strategy cell introduced in Fig. 11; and additional R-strategies with typical
R-augmentations in Fig. 13. We omit the (standard) clauses for the λ-calculus.

3.3 Soundness

Now that we have defined the game semantics of R-IPA, we set to prove that it
is sound with respect to the operational semantics given in Sect. 2.2.

We first introduce a useful notation. For any type A, �A� has a unique min-
imal event; write �A� for the arena without this minimal event. Likewise, if
Γ � M : A, then by construction, �M� : �Γ �

⊥ ‖ �A� is a negative R-strategy
whose augmentations all share the same minimal event q−

x where q− is minimal
in A. For α ∈ R, write �M�α for �M� without q−

x , with x replaced by α. Then we
have �M�α : �Γ �

⊥ ‖ �A� – one may think of �M�α as “M started with consumed
resource α”.

Naively, one may expect soundness to state that for all � M : com, if M ⇓α,
then �M�0 = done+α . However, whereas the resource annotations in the seman-
tics are always as good as permitted by the causal constraints, derivations in the
operational semantics may be sub-optimal. For instance, we may derive M ⇓α

not using the parallel rule at all. So our statement is:

Theorem 1. If � M : com with M ⇓α, there is β ≤R α s.t. �M�0 = done+β .

Our proof methodology is standard: we replay operational derivations as
augmentations in the denotational semantics. Stating the invariant successfully
proved by induction on operational derivations requires some technology.

If s is a store, then write cells : �Ω(s)� for the memory strategy for store s. It
is defined as ⊗�∈dom(s)cells(�) where cellε = cell, cellRα is the R-strategy with only
maximal R-augmentation wtt−

x � ok+
x‖α, cellW α has maximal R-augmentation

r−
y � tt+α‖y, and the empty R-strategy for the other cases. If s ≤M s′, then

40 A. Alcolei et al.

s′ can be obtained from s using memory operations and there is a matching
R-augmentation qs�s′ ∈ cells defined location-wise in the obvious way.

Now, if σ : �Ω(s)�⊥ ‖ �A� is a R-strategy and q ∈ σ with moves only in
�Ω(s)�⊥ is causally compatible with qs�s′ , we define the residual of σ after q:

σ/(q � qs�s′) : �Ω(s′)�⊥ ‖ �A�

If p ∈ σ with q ↪→ p, we write first p′ = p/(q�qs�s′) the R-augmentation with
|p′| = |p| \ |q|, and with causal order the restriction of that of p. For e ∈ |p′|,
we set λp′(e) to be λp(e) whose arguments corresponding to negative events e′

in q are instantiated with λq�qs�s′ (e′) ∈ R. With that, we set σ/(q� qs�s′) as
comprising all p/(q � qs�s′) for p ∈ σ with q ↪→ p.

Informally, this means that, considering some q which represents a scheduling
of the memory operations turning s into s′, we extract from σ its behavior
after the execution of these memory operations. Finally, we generalize ≤R to
R-augmentations by setting q ≤R q′ iff they have the same underlying partial
order and for all e ∈ |q|, λq(e) ≤R λq′(e). With that, we can finally state:

Lemma 1. Let Ω(s) � M : A, 〈M, s1, α〉 ⇒ 〈M ′, s′
1 � s′

2, α
′〉 with dom(s1) =

dom(s′
1), and all resource annotations in s1 lower than α. Then, there is q ∈

�M�α with events in �Ω(s)�, causally compatible with qs1�s′
1
, and a function

ϕ : �M ′
�α′ � cells′

2
−→ �M�α/(q � qs1�s′

1
)

preserving ↪→ and s.t. for all p� qs′
2

∈ �M ′
�α′ � cells′

2
, ϕ(p�qs′

2
) ≤R p�qs′

2
.

This is proved by induction on the operational semantics – the critical cases
are: assignment and dereferenciation exploiting that if α ≤R β, then α ‖ β = β
(which boils down to idempotence); and parallel composition where compatibility
of s′ and s′′ entails that the corresponding augmentations of cells are compatible.

Lemma 1, instantiated with 〈M, ∅, 0〉 ⇒ 〈skip, s, α〉, yields soundness.

Non-adequacy. Our model is not adequate. To see why, consider:

� new xW , xR in

⎛
⎝

wait(1); wait(2);
xW := tt; !xR;

wait(2) wait(1)

⎞
⎠ : bool

Our model predicts that this may evaluate to tt in 3 s (see Fig. 12) and to ff
in 4 s. However, the operational semantics can only evaluate it (both to tt and ff)
in 4 s. Intuitively, the reason is that the causal shapes implicit in the reduction
⇒ are all series-parallel (generated with sequential and parallel composition),
whereas the interaction in Fig. 12 is not.

Our causal semantic approach yields a finer resource analysis than achieved
by the parallel operational semantics. The operational semantics, rather than
our model, is to blame for non-adequacy: indeed, we now show that for R = R+

our model is adequate w.r.t. an operational semantics specialized for time.

Resource-Tracking Concurrent Games 41

4 Adequacy for Time

For time, we may refine the operational semantics by adding the following rule

〈wait(t1 + t2), s, t0〉 → 〈wait(t2), s, t0 + t1〉

using which the program above evaluates to tt in 3 s. It is clear that the soundness
theorem of the previous section is retained.

We first focus on adequacy for first-order programs without abstraction or
application, written Ω(s) �1 M : com. For any t0 ∈ R+ there is 〈M, s, t0〉 ⇒
〈M ′, s � s′, t0〉 where �M�t0 = �M ′

�t0 � cells′ and M ′ is in canonical form: it
cannot be decomposed as C[skip; N], C[skip ‖ N], C[N ‖ skip], C[if ttN1 N2],
C[if ff N1 N2], C[wait(0)] and C[new x, y inN] for C[] an evaluation context.

Consider Ω(s) �1 M : com, and q ∈ �M�t0 �cells with a top element done+tf
in �com�, the result – i.e. q describes an interaction between �M�t0 and the
memory leading to a successful evaluation to done at time tf . To prove adequacy,
we must extract from it a derivation from 〈M, s, t0〉, at time tf .

Apart from the top done+tf , q only records memory operations, which we
must replicate operationally in the adequate order. A minimal operation with
timing t is either the top done+t if it is the only event in q, or a prefix (mt �

nt) ↪→ q corresponding to a memory operation (for instance, in augmentations
of Fig. 14, the only minimal operation has timing 2). If t = t0, this operation
should be performed immediately. If t > t0 we need to spend time to trigger it
– it is then critical to spend time on all available waits in parallel:

Lemma 2. For Ω(s) �1 M : com in canonical form, t0 ∈ R+, q ∈ �M�t0 �cells
with result done+tf , if all minimal operations have timing strictly greater than t0,

〈M, s, t0〉 ⇒ 〈M ′, s, t0 + t〉

for some t > 0 and M ′ only differing from M by having smaller annotations in
wait commands and at least one wait changed to skip.

Furthermore, there is q ≤R q′ with q′ ∈ �M ′
�t0+t � cells with result done+tf .

Fig. 14. Spending time adequately (where testM = if M skip⊥)

42 A. Alcolei et al.

Proof. As M is in canonical form, all delays in minimal operations are impacted
by wait(t) commands in head position (i.e. such that M = C[wait(t)]). Let tmin

be the minimal time appearing in those wait(−) commands in head position.
Using our new rule and parallel composition, we remove tmin to all such instances
of wait(−); then transform the resulting occurrences of wait(0) to skip.

A representative example is displayed in Fig. 14. In the second step, though
!�R is available immediately, we must wait to get the right result.

With that we can prove the key lemma towards adequacy.

Lemma 3. Let Ω(s) �1 M : com, t0 ∈ R+, and q ∈ �M�t0 � cells with result
done+tf in �com�. Then, there is 〈M, s, t0〉 ⇒ 〈skip,−, tf〉.
Proof. By induction on the size of M . First, we convert M to canonical form.
If all minimal operations in q ∈ �M�t0 have timing strictly greater than t0, we
apply Lemma 2 and conclude by induction hypothesis.

Otherwise, at least one minimal operation has timing t0. If it is the result
done+t0 in �X�, then M is the constant skip. Otherwise, it is a memory operation,
say p ↪→ q with p = (rt0 � bt0) and write also s′ = s[� �→ s(�).Rt0]. It follows
then by an induction on M that M = C[!�R] for some C[], with

q/(p � qs�s′) ∈ �C[b]�t0 � cells

so 〈M, s, t0〉 ⇒ 〈C[b], s′, t0〉 ⇒ 〈skip,−, tf〉 by induction hypothesis.

Adequacy follows for higher-order programs: in general, any � M : com can
be β-reduced to first-order M ′, leaving the interpretation unchanged. By Church-
Rosser, M ′ behaves like M operationally, up to weak bisimulation. Hence:

Theorem 2. Let � M : com. For any t ∈ R+, if done+t ∈ �M�0 then M ⇓t.

5 Conclusion

It would be interesting to compare our model with structures used in timing
analysis, for instance [23] relies on a concurrent generalization of control flow
graphs that is reminiscent of event structures. In future work we also plan to
investigate whether our annotated model construction could be used for other
purposes, such as symbolic execution or abstract interpretation.

References

1. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Inf. Com-
put. 163(2), 409–470 (2000). https://doi.org/10.1006/inco.2000.2930

2. Abramsky, S., Melliès, P.: Concurrent games and full completeness. In: 14th Annual
IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July 1999, pp.
431–442 (1999). https://doi.org/10.1109/LICS.1999.782638

https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1109/LICS.1999.782638

Resource-Tracking Concurrent Games 43

3. Alcolei, A., Clairambault, P., Hyland, M., Winskel, G.: The true concurrency of
Herbrand’s theorem. In: 27th EACSL Annual Conference on Computer Science
Logic, CSL 2018, Birmingham, UK, 4–7 September 2018, pp. 5:1–5:22 (2018).
https://doi.org/10.4230/LIPIcs.CSL.2018.5

4. Brunel, A., Gaboardi, M., Mazza, D., Zdancewic, S.: A core quantitative coeffect
calculus. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 351–370. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 19

5. Castellan, S., Clairambault, P.: Causality vs. interleavings in concurrent game
semantics. In: Desharnais, J., Jagadeesan, R. (eds.) 27th International Conference
on Concurrency Theory, CONCUR 2016, Québec City, Canada, 23–26 August
2016. LIPIcs, vol. 59, pp. 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.32

6. Castellan, S., Clairambault, P., Paquet, H., Winskel, G.: The concurrent game
semantics of probabilistic PCF. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, 09–12 July
2018, pp. 215–224 (2018). https://doi.org/10.1145/3209108.3209187

7. Castellan, S., Clairambault, P., Rideau, S., Winskel, G.: Games and strategies as
event structures. Logical Methods Comput. Sci. 13(3) (2017). https://doi.org/10.
23638/LMCS-13(3:35)2017

8. Castellan, S., Clairambault, P., Winskel, G.: The parallel intensionally fully
abstract games model of PCF. In: 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 232–243 (2015).
https://doi.org/10.1109/LICS.2015.31

9. Castellan, S., Clairambault, P., Winskel, G.: Thin games with symmetry and con-
current hyland-ong games. Logical Methods Comput. Sci. (to appear, 2019)

10. Clairambault, P., de Visme, M., Winskel, G.: Game semantics for quantum
programming. PACMPL 3(POPL), 32:1–32:29 (2019). https://doi.org/10.1145/
3290345

11. Ehrhard, T.: The Scott model of linear logic is the extensional collapse of its
relational model. Theor. Comput. Sci. 424, 20–45 (2012). https://doi.org/10.1016/
j.tcs.2011.11.027

12. Faggian, C., Piccolo, M.: Partial orders, event structures and linear strategies. In:
Curien, P.-L. (ed.) TLCA 2009. LNCS, vol. 5608, pp. 95–111. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02273-9 9

13. Ghica, D.R.: Slot games: a quantitative model of computation. In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, 12–14 January 2005, pp.
85–97 (2005). https://doi.org/10.1145/1040305.1040313

14. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. Ann.
Pure Appl. Logic 151(2–3), 89–114 (2008). https://doi.org/10.1016/j.apal.2007.
10.005

15. Ghica, D.R., Smith, A.I.: Bounded linear types in a resource semiring. In: Shao,
Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 331–350. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54833-8 18

16. Hoare, T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program. 80(6), 266–296 (2011). https://doi.org/10.
1016/j.jlap.2011.04.005

17. Hyland, J.M.E., Ong, C.L.: On full abstraction for PCF: I, II, and III. Inf. Comput.
163(2), 285–408 (2000). https://doi.org/10.1006/inco.2000.2917

https://doi.org/10.4230/LIPIcs.CSL.2018.5
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.4230/LIPIcs.CONCUR.2016.32
https://doi.org/10.1145/3209108.3209187
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.23638/LMCS-13(3:35)2017
https://doi.org/10.1109/LICS.2015.31
https://doi.org/10.1145/3290345
https://doi.org/10.1145/3290345
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1016/j.tcs.2011.11.027
https://doi.org/10.1007/978-3-642-02273-9_9
https://doi.org/10.1145/1040305.1040313
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1016/j.apal.2007.10.005
https://doi.org/10.1007/978-3-642-54833-8_18
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1016/j.jlap.2011.04.005
https://doi.org/10.1006/inco.2000.2917

44 A. Alcolei et al.

18. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: 28th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), New Orleans, USA, Proceedings, pp. 301–310 (2013)

19. Laurent, O.: Game semantics for first-order logic. Logical Methods Comput. Sci.
6(4) (2010). https://doi.org/10.2168/LMCS-6(4:3)2010

20. Melliès, P.: Asynchronous games 4: a fully complete model of propositional lin-
ear logic. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
Chicago, IL, USA, 26–29 June 2005, Proceedings, pp. 386–395 (2005). https://doi.
org/10.1109/LICS.2005.6

21. Melliès, P.: Game semantics in string diagrams. In: Proceedings of the 27th Annual
IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia,
25–28 June 2012, pp. 481–490 (2012). https://doi.org/10.1109/LICS.2012.58

22. Melliès, P.-A., Mimram, S.: Asynchronous games: innocence without alternation.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395–
411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 27

23. Mittermayr, R., Blieberger, J.: Timing analysis of concurrent programs. In: Var-
danega, T. (ed.) 12th International Workshop on Worst-Case Execution Time
Analysis, WCET 2012, Pisa, Italy, 10 July 2012. OASICS, vol. 23, pp. 59–68.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012). https://doi.org/10.
4230/OASIcs.WCET.2012.59

24. Plotkin, G.D.: Post-graduate lecture notes in advanced domain theory (incorporat-
ing the “Pisa notes”). Department of Computer Science, University of Edinburgh
(1981)

25. Rideau, S., Winskel, G.: Concurrent strategies. In: Proceedings of the 26th
Annual IEEE Symposium on Logic in Computer Science, LICS 2011, Toronto,
Ontario, Canada, 21–24 June 2011, pp. 409–418 (2011). https://doi.org/10.1109/
LICS.2011.13

26. Sands, D.: Operational theories of improvement in functional languages (extended
abstract). In: Heldal, R., Holst, C.K., Wadler, P. (eds.) Functional Programming,
Glasgow 1991, pp. 298–311. Springer, London (1991). https://doi.org/10.1007/978-
1-4471-3196-0 24

27. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.2168/LMCS-6(4:3)2010
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1109/LICS.2005.6
https://doi.org/10.1109/LICS.2012.58
https://doi.org/10.1007/978-3-540-74407-8_27
https://doi.org/10.4230/OASIcs.WCET.2012.59
https://doi.org/10.4230/OASIcs.WCET.2012.59
https://doi.org/10.1109/LICS.2011.13
https://doi.org/10.1109/LICS.2011.13
https://doi.org/10.1007/978-1-4471-3196-0_24
https://doi.org/10.1007/978-1-4471-3196-0_24
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
http://creativecommons.org/licenses/by/4.0/

Change Actions: Models of Generalised
Differentiation

Mario Alvarez-Picallo(B) and C.-H. Luke Ong(B)

University of Oxford, Oxford, UK
{mario.alvarez-picallo,luke.ong}@cs.ox.ac.uk

Abstract. Change structures, introduced by Cai et al., have recently
been proposed as a semantic framework for incremental computation.
We generalise change actions, an alternative to change structures, to
arbitrary cartesian categories and propose the notion of change action
model as a categorical model for (higher-order) generalised differentia-
tion. Change action models naturally arise from many geometric and
computational settings, such as (generalised) cartesian differential cat-
egories, group models of discrete calculus, and Kleene algebra of reg-
ular expressions. We show how to build canonical change action mod-
els on arbitrary cartesian categories, reminiscent of the Fàa di Bruno
construction.

1 Introduction

Incremental computation is the process of incrementally updating the output
of some given function as the input is gradually changed, without recomputing
the entire function from scratch. Recently, Cai et al. [6] introduced the notion of
change structure to give a semantic account of incremental computation. Change
structures have subsequently been generalised to change actions [2], and pro-
posed as a model for automatic differentiation [16]. These developments raise a
number of questions about the structure of change actions themselves and how
they relate to more traditional notions of differentiation.

A change action A = (|A|,ΔA,⊕A,+A, 0) is a set |A| equipped with a monoid
(ΔA,+A, 0A) acting on it, via action ⊕A : |A| × ΔA → |A|. For example, every
monoid (S,+, 0) gives rise to a (so-called monoidal) change action (S, S,+,+, 0).
Given change actions A and B, consider functions f : |A| → |B|. A derivative of f
is a function ∂f : |A|×ΔA → ΔB such that for all a ∈ |A|, δa ∈ ΔA, f(a⊕Aδa) =
f(a) ⊕B ∂f(a, δa). Change actions and differentiable functions (i.e. functions
that have a regular derivative) organise themselves into categories (and indeed
2-categories) with finite (co)products, whereby morphisms are composed via the
chain rule.

The definition of change actions (and derivatives of functions) makes no use
of properties of Set beyond the existence of products. We develop the theory
of change actions on arbitrary cartesian categories and study their properties.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 45–61, 2019.
https://doi.org/10.1007/978-3-030-17127-8_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_3&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_3

46 M. Alvarez-Picallo and C.-H. L. Ong

A first contribution is the notion of a change action model, which is defined
to be a coalgebra for a certain (copointed) endofunctor CAct on the category
Cat× of (small) cartesian categories. The functor CAct sends a category C to
the category CAct(C) of (internal) change actions and differential maps on C.

There is a natural, extrinsic, notion of higher-order derivative in change
action models. In such a model α : C → CAct(C), a C-object A is associ-
ated (via α) with a change action, the carrier object of whose monoid is in
turn associated with a change action, and so on ad infinitum. We construct a
“canonical” change action model, CActω(C), that internalises such ω-sequences
that exhibit higher-order differentiation. Objects of CActω(C) are ω-sequences
of “contiguously compatible” change actions; and morphisms are corresponding
ω-sequences of differential maps, each map being the canonical (via α) derivative
of the preceding in the ω-sequence. We show that CActω(C) is the final CAct-
coalgebra (relativised to change action models on C). The category CActω(C)
may be viewed as a kind of Faà di Bruno construction [8,10] in the more general
setting of change action models.

Change action models capture many versions of differentiation that arise
in mathematics and computer science. We illustrate their generality via three
examples. The first, (generalised) cartesian differential categories (GCDC) [4,
10], are themselves an axiomatisation of the essential properties of the derivative.
We show that a GCDC C—which by definition associates every object A with a
monoid L(A) = (L0(A),+A, 0A)—gives rise to change action models in various
non-trivial ways.

Secondly we show how discrete differentiation in both the calculus of finite
differences [15] and Boolean differential calculus [22,23] can be modelled using
the full subcategory GrpSet of Set whose objects are groups. Our unifying
formulation generalises these discrete calculi to arbitrary groups, and gives an
account of the chain rule in these settings.

Our third example is differentiation of regular expressions. Recall that Kleene
algebra K is the algebra of regular expressions. We show that the algebra of
polynomials over a commutative Kleene algebra is a change action model.

Outline. In Sect. 2 we present the basic definitions of change actions and differ-
ential maps, and show how they can be organised into categories. The theory
of change action is extended to arbitrary cartesian categories C in Sect. 3: we
introduce the category CAct(C) of internal change actions on C. In Sect. 4 we
present change action models, and properties of the tangent bundle functors.
In Sect. 5 we illustrate the unifying power of change action models via three
examples. In Sect. 6, we study the category CActω(C) of ω-change actions and
ω-differential maps. Missing proofs are provided in an extended version of the
present paper [1].

Change Actions: Models of Generalised Differentiation 47

2 Change Actions

A change action is a tuple A = (|A|,ΔA,⊕A,+A, 0A) where |A| and ΔA are
sets, (ΔA,+A, 0A) is a monoid, and ⊕A : |A| × ΔA → |A| is an action of the
monoid on |A|.1 We omit the subscript from ⊕A,+A and 0A whenever we can.

Definition 1 (Derivative condition). Let A and B be change actions. A
function f : |A| → |B| is differentiable if there is a function ∂f : |A|×ΔA → ΔB
satisfying f(a ⊕A δa) = f(a) ⊕B ∂f(a, δa), for all a ∈ |A|, δa ∈ ΔA. We call ∂f
a derivative for f , and write f : A → B whenever f is differentiable.

Lemma 1 (Chain rule). Given f : A → B and g : B → C with derivatives
∂f and ∂g respectively, the function ∂(g ◦ f) : |A| × ΔA → ΔC defined by
∂(g ◦ f)(a, δa) := ∂g(f(a), ∂f(a, δa)) is a derivative for g ◦ f : |A| → |C|.
Proof. Unpacking the definition, we have (g ◦ f)(a) ⊕C ∂(g ◦ f)(a, δa) =
g(f(a)) ⊕C ∂g(f(a), ∂f(a, δa)) = g(f(a) ⊕B ∂f(a, δa)) = g(f(a ⊕A δa)), as
desired. ��
Example 1 (Some useful change actions).

1. If (A,+, 0) is a monoid, (A,A,+,+, 0) is a change action (called monoidal).
2. For any set A, A� := (A, {�}, π1, π1, �) is a (trivial) change action.
3. Let A ⇒ B be the set of functions from A from B, and evA,B : A × (A ⇒

B) → B be the usual evaluation map. Then (A,A ⇒ A, evA,A, ◦, IdA) is a
change action. If U ⊆ (A ⇒ A) contains the identity map and is closed under
composition, (A,U, evA,A �A×U , ◦ �U×U , IdU) is a change action.

Regular Derivatives. The preceding definitions neither assume nor guaran-
tee a derivative to be additive (i.e. they may not satisfy ∂f(x,Δa + Δb) =
∂f(x,Δa) + ∂f(x,Δb)), as they are in standard differential calculus. A strictly
weaker condition that we will now require is regularity : if a derivative is addi-
tive in its second argument then it is regular, but not vice versa. Under some
conditions, the converse is also true.

Definition 2. Given a differentiable map f : A → B, a derivative ∂f for f
is regular if, for all a ∈ |A| and δa, δb ∈ ΔA, we have f(a, 0A) = 0B and
∂f(a, δa +A δb) = ∂f(a, δa) +B ∂f(a ⊕A δa, δb).

Proposition 1. Whenever f : A → B is differentiable and has a unique deriva-
tive ∂f , this derivative is regular.

Proposition 2. Given f : A → B and g : B → C with regular derivatives ∂f
and ∂g respectively, the derivative ∂(g ◦ f) = ∂g ◦ 〈f ◦ π1, ∂f〉 is regular.
1 Change actions are closely related to the notion of change structures introduced in

[6] but differ from the latter in not being dependently typed or assuming the existence
of an � operator, and requiring ΔA to have a monoid structure compatible with the
map ⊕.

48 M. Alvarez-Picallo and C.-H. L. Ong

Two Categories of Change Actions. The study of change actions can be
undertaken in two ways: one can consider functions that are differentiable (with-
out choosing a derivative); alternatively, the derivative itself can be considered
part of the morphism. The former leads to the category CAct−, whose objects
are change actions and morphisms are the differentiable maps.

The category CAct− was the category we originally proposed [2]. It is well-
behaved, possessing limits, colimits, and exponentials, which is a trivial corollary
of the following result:

Theorem 1. The category CAct− of change actions and differentiable mor-
phisms is equivalent to PreOrd, the category of preorders and monotone maps.

The actual structure of the limits and colimits in CAct− is, however, not so
satisfactory. One can, for example, obtain the product of two change actions A
and B by taking their product in PreOrd and turning it into a change action,
but the corresponding monoid action map ⊕ is not, in general, easily expressible,
even if those for A and B are. Derivatives of morphisms in CAct− can also be
hard to obtain, as exhibiting f as a morphism in CAct− merely proves it is
differentiable but gives no clue as to how a derivative might be constructed.

A more constructive approach is to consider morphism as a function together
with a choice of a derivative for it.

Definition 3. Given change actions A and B, a differential map f : A → B is
a pair (|f |, ∂f) where |f | : |A| → |B| is a function, and ∂f : |A| × ΔA → ΔB is
a regular derivative for |f |.

The category CAct has change actions as objects and differential maps as
morphisms. The identity morphisms are (IdA, π1); given morphisms f : A → B
and g : B → C, define the composite g◦f := (|g|◦|f |, ∂g◦〈|f | ◦ π1, ∂f〉) : A → C.

Finite products and coproducts exist in CAct (see Theorems 2 and 4 for
a more general statement). Whether limits and colimits exist in CAct beyond
products and coproducts is open.

Remark 1. If one thinks of changes (i.e. elements of ΔA) as morphisms between
elements of |A|, then regularity resembles functoriality. This intuition is explored
in [1, Appendix F], where we show that categories of change actions organise
themselves into 2-categories.

3 Change Actions on Arbitrary Categories

The definition of change actions makes no use of any properties of Set beyond
the existence of products. Indeed, change actions can be characterised as just a
kind of multi-sorted algebra, which is definable in any category with products.

The Category CAct(C). Consider the category Cat× of (small) cartesian
categories (i.e. categories with chosen finite products) and product-preserving
functors. We can define an endofunctor CAct : Cat× → Cat× sending a category
C to the category of (internal) change actions on C.

Change Actions: Models of Generalised Differentiation 49

The objects of CAct(C) are tuples A = (|A|,ΔA,⊕A,+A, 0A) where |A| and
ΔA are (arbitrary) objects in C, (ΔA,+A, 0A) is a monoid object in C, and
⊕A : |A| × ΔA → |A| is a monoid action in C, i.e. a C-morphism satisfying, for
all a : C → |A|, δ1a, δ2a : C → ΔA:

⊕A ◦ 〈a, 0A◦!〉 = a

⊕A ◦ 〈a,+A ◦ 〈δ1a, δ2a〉〉 = ⊕A ◦ 〈⊕A ◦ 〈a, δ1a〉, δ2a〉
Given objects A,B in CAct(C), the morphisms of CAct(A,B) are pairs f =

(|f |, ∂f) where |f | : |A| → |B| and ∂f : |A| × ΔA → ΔB are morphisms in C,
satisfying a diagrammatic version of the derivative condition:

|A| × ΔA |B| × ΔB

A B

〈|f |◦π1,∂f〉

⊕A ⊕B

f

Additionally, we require our derivatives to be regular, as in Definition 2, i.e. for
all morphisms a : C → |A|, δ1a, δ2a : C → ΔA, the following equations hold:

∂f ◦ 〈a, 0A◦!〉 = 0B

∂f ◦ 〈a,+A ◦ 〈δ1a, δ2a〉〉 = +A ◦ 〈∂f ◦ 〈a, δ1a〉, ∂f ◦ 〈+A ◦ 〈a, δ1a〉, δ2a〉〉
The chain rule can then be expressed naturally by pasting two instances of

the previous diagram together:

|A| × ΔA |B| × ΔB |C| × ΔC

|A| |B| |C|
⊕A

〈|f |◦π1,∂f〉

〈(|g|◦|f |)◦π1,∂g◦〈|f |◦π1,∂f〉〉

⊕B

〈|g|◦π1,∂|g|〉

⊕C

|f |

g f

|g|

Hence f ◦ g = 〈(|g| ◦ |f |) ◦ π1, ∂g ◦ 〈|f | ◦ π1, ∂f〉〉.
Now, given a product-preserving functor F : C → D, there is a corresponding

functor CAct(F) : CAct(C) → CAct(D) given by:

CAct(F)(|A|,ΔA,⊕A,+A, 0A) := (F(|A|),F(ΔA),F(⊕A),F(+A),F(0A))
CAct(F)(|f |, ∂f) := (F(|f |),F(∂f))

We can embed C fully and faithfully into CAct(C) via the functor ηC which
sends an object A of C to the “trivial” change action A� = (A,�, π1, !, !) and
every morphism f : A → B of C to the morphism (f, !). As before, this functor
extends to a natural transformation from the identity functor to CAct.

Additionally, there is an obvious forgetful functor εC : CAct(C) → C, which
defines the components of a natural transformation ε from the functor CAct to
the identity endofunctor Id.

50 M. Alvarez-Picallo and C.-H. L. Ong

Given C, we write ξC for the functor CAct(εC) : CAct(CAct(C)) →
CAct(C).2 Explicitly, this functor maps an object (A,B,⊕,+, 0) in
CAct(CAct(C)) to the object (|A|, |B|, |⊕|, |+|, |0|). Intuitively, εCAct(C) prefers
the “original” structure on objects, whereas ξC prefers the “higher” structure.
The equaliser of these two functors is precisely the category of change actions
whose higher structure is the original structure.

Products and Coproducts in CAct(C). We have defined CAct as an
endofunctor on cartesian categories. This is well-defined: if C has all finite
(co)products, so does CAct(C). Let A = (|A|,ΔA,⊕A,+A, 0A) and B =
(|B|,ΔB,⊕B ,+B , 0B) be change actions on C. We present their product and
coproducts as follows.

Theorem 2. The following change action is the product of A and B in CAct(C)

A × B := (|A| × |B|,ΔA × ΔB,⊕A×B ,+A×B , 〈0A, 0B〉)
where ⊕A×B := 〈⊕A ◦ (π1 × π1),⊕B ◦ (π2 × π2)〉 and +A×B := 〈+A ◦ (π1 ×
π1),+B ◦ (π2 ×π2)〉. The projections are π1 = (π1, π1 ◦π2)and π2 = (π2, π2 ◦π2),
writing f for maps f in CAct to distinguish them from C-maps.

Theorem 3. The change action � = (�,�, π1, π1, Id�) is the terminal object
in CAct(C), where � is the terminal object of C. Furthermore, if A is a change
action every point |f | : � → |A| in C is differentiable, with (unique) derivative
0A.

Whenever we have a differential map f : A×B → C between change actions,
we can compute its derivative ∂f by adding together its “partial” derivatives:3.

Lemma 2. Let f : A × B → C be a differential map. Then

∂f((a, b), (δa, δb)) = +C ◦ 〈∂f((a, b), (δa, 0B)), ∂f((⊕A ◦ 〈a, δa〉, b), (0A, δb))〉
(The notational abuse is justified by the internal logic of a cartesian category.)

Theorem 4. If C is distributive, with law δA,B,C : (A � B) × C → (A × C) �
(B × C), the following change action is the coproduct of A and B in CAct(C)

A � B := (|A| � |B|,ΔA × ΔB,⊕A�B ,+A�B , 〈0A, 0B〉)
where ⊕A�B := [⊕A ◦ (IdA × π1),⊕B ◦ (IdB × π2)] ◦ δA,B,C , and +A�B :=
〈+A ◦ (π1 × π1),+B ◦ (π2 × π2)〉. The injections are ι1 = (ι1, 〈π2, 0B〉) and
ι2 = (ι2, 〈0A, π2〉).
2 One might expect CAct to be a comonad with ε as a counit. But if this were the

case, we would have ξC = εCAct(C), which is, in general, not true.
3 Alternatively, one can define the (first) partial derivative of a map f(x, y) as a map

δ1f such that f(x ⊕ δx, y) = f(x, y) ⊕ δ1(x, y, δx). It can be shown that a map is
differentiable iff its first and second derivatives exist.

Change Actions: Models of Generalised Differentiation 51

Stable Derivatives and Additivity. We do not require derivatives to be addi-
tive in their second argument; indeed in many cases they are not. Under some
simple conditions, however, (regular) derivatives can be shown to be additive.

Definition 4. Given a (internal) change
action A and objects |B|, |C| in a cartesian
category C, a morphism u : |A|×|B| → |C|
is stable whenever the diagram commutes:

(|A| × ΔA) × |B| |A| × |B|

A B C

π1×Id

⊕A×Id

u

u

If one thinks of ΔA as the object of “infinitesimal” transformations on |A|,
then the preceding definition says that a morphism u : |A| × |B| → |C| is stable
whenever infinitesimal changes on the input A do not affect its output.

Lemma 3. Let f = (|f |, ∂f) be a differential map in CAct(C). If ∂f is stable,
then it is additive in its second argument4, i.e. for all x, δ1x, δ2x we have:

∂f ◦ 〈x,+A ◦ 〈δ1x, δ2x〉〉 = + ◦ 〈∂f ◦ 〈x, δ1x〉, ∂f ◦ 〈x, δ2x〉〉
Lemma 4. Let f = (|f |, ∂f) and g = (|g|, ∂g) be differential maps, with ∂g
stable. Then ∂(g ◦ f) is stable.

It is straightforward to see that the category Stab(C) of change actions and
differential maps with stable derivatives is a subcategory of CAct(C).

4 Higher-Order Derivatives: The Extrinsic View

In this section we study categories in which every object is equipped with a
change action, and every morphism specifies a corresponding differential map.
This provides a simple way of characterising categories which are models of
higher-order differentiation purely in terms of change actions.

Change Action Models. Recall that a copointed endofunctor is a pair (F, σ)
where the endofunctor F : C → C is equipped with a natural transformation
σ : F .−→ Id. A coalgebra of a copointed endofunctor (F, σ) is an object A of C
together with a morphism α : A → FA such that σA ◦ α = IdA.

Definition 5. We call a coalgebra α : C → CAct(C) of the copointed endo-
functor (CAct, ε) a change action model (on C).

Assumption. Throughout Sect. 4, we fix a change action model α : C →
CAct(C).

Given an object A of C, the coalgebra α specifies a (internal) change action
α(A) = (A,ΔA,⊕A,+A, 0A) in CAct(C). (We abuse notation and write ΔA for
the carrier object of the monoid specified in α(A); similarly for +A,⊕A, and
0A.) Given a morphism f : A → B in C, there is an associated differential map
4 Note that the converse is not the case, i.e. a derivative can be additive but not

stable.

52 M. Alvarez-Picallo and C.-H. L. Ong

α(f) = (f, ∂f) : α(A) → α(B). Since ∂f : A×ΔA → ΔB is also a C-morphism,
there is a corresponding differential map α(∂f) = (∂f, ∂2f) in CAct(C), where
∂2f : (A×ΔA)×(ΔA×Δ2A) → Δ2B is a second derivative for f . Iterating this
process, we obtain an n-th derivative ∂nf for every C-morphism f . Thus change
action models offer a setting for reasoning about higher-order differentiation.

Tangent Bundles in Change Action Models. In differential geometry the
tangent bundle functor, which maps every manifold to its tangent bundle, is
an important construction. There is an endofunctor on change action models
reminiscent of the tangent bundle functor, with analogous properties.

Definition 6. The tangent bundle functor T : C → C is defined as TA :=
A × ΔA and Tf := 〈f ◦ π1, ∂f〉.
Notation. We use shorthand πij := πi ◦ πj .

The tangent bundle functor T preserves products up to isomorphism, i.e. for
all objects A,B of C, we have T(A × B) ∼= TA × TB and T1 ∼= 1. In particular,
φA,B := 〈〈π11, π12〉, 〈π21, π22〉〉 : TA × TB → T(A × B) is an isomorphism.
Consequently, given maps f : A → B and g : A → C, then, up to the previous
isomorphism, T〈f, g〉 = 〈Tf,Tg〉.

A consequence of the structure of products in CAct(C) is that the map ⊕A×B

inherits the pointwise structure in the following sense:

Lemma 5. Let φA,B : TA × TB → T(A × B) be the canonical isomorphism
described above. Then ⊕A×B ◦ φA,B = ⊕A × ⊕B.

It will often be convenient to operate directly on the functor T, rather than
on the underlying derivatives. For these, the following results are useful:

Lemma 6. The following families of morphisms are natural transformations:
π1,⊕A : T(A) → A, z := 〈Id, 0〉 : A → T(A) l := 〈〈π1, 0〉, 〈π2, 0〉〉 : T(A) →
T2(A). Additionally, the triple (T, z,T⊕) defines a monad on C.

A particularly interesting class of change action models are those that are
also cartesian closed. Surprisingly, this has as an immediate consequence that
differentiation is itself internal to the category.

Lemma 7 (Internalisation of derivatives). Whenever C is cartesian closed,
there is a morphism dA,B : (A ⇒ B) → (A × ΔA) ⇒ ΔB such that, for any
morphism f : 1 × A → B, dA,B ◦ Λf = Λ(∂f ◦ 〈〈π1, π12〉, 〈π1, π22〉〉).

Under some conditions, we can classify the structure of the exponentials in
(CAct, ε)-coalgebras. This requires the existence of an infinitesimal object.5

5 The concept of “infinitesimal object” is borrowed from synthetic differential geom-
etry [18]. However, there is nothing intrinsically “infinitesimal” about such objects
here.

Change Actions: Models of Generalised Differentiation 53

Definition 7. If C is cartesian closed, an infinitesimal object D is an object
of C such that the tangent bundle functor T is represented by the covariant
Hom-functor D ⇒ (·), i.e. there is a natural isomorphism φ : (D ⇒ (·)) .−→ T.

Lemma 8. Whenever there is an infinitesimal object in C, the tangent bundle
T(A ⇒ B) is naturally isomorphic to A ⇒ TB.

We would like the tangent bundle functor to preserve the exponential struc-
ture; in particular we would expect a result of the form ∂ (λy.t)

∂x = λy.∂ t
∂x , which

is true in differential λ-calculus [11]. Unfortunately it seems impossible to prove
in general that this equation holds, although weaker results are available. If the
tangent bundle functor is representable, however, additional structure is pre-
served.

Theorem 5. The isomorphism between
the functors T(A ⇒ (·)) and A ⇒ T(·)
respects the structure of T, in the sense
that the diagram commutes.

T(A ⇒ B) A ⇒ T(B)

A B

⊕A⇒B

∼=

IdA⇒⊕B

5 Examples of Change Action Models

Generalised Cartesian Differential Categories. Generalised cartesian dif-
ferential categories (GCDC) [10]—a recent generalisation of cartesian differen-
tial categories [4]—are models of differential calculi. We show that change action
models generalise GCDC in that GCDCs give rise to change action models in
three6 different (non-trivial) ways. In this subsection let C be a GCDC (we
assume familiarity with the definitions and notations in [10]).

1. The Flat Model. Define the functor α : C → CAct(C) as follows. Let f : A →
B be a C-morphism. Then α(A) := (A,L0(A), π1,+A, 0A) and α(f) := (f,D [f]).

Theorem 6. The functor α is a change action model.

2. The Kleisli Model. GCDCs admit a tangent bundle functor, defined analo-
gously to the standard notion in differential geometry. Let f : A → B be a C-
morphism. Define the tangent bundle functor T : C → C as: TA := A × L0(A),
and Tf := 〈f ◦ π1,D [f]〉. The functor T is in fact a monad, with unit η =
〈Id, 0A〉 : A → A × L0(A) and multiplication μ : (A × L0(A)) × L0(A)2 →
A × L0(A) defined by the composite:

(A × L0(A)) × L0(A)2
〈π1◦π1,〈π2◦π1,π1◦π2〉〉−−−−−−−−−−−−−−−→ A × L0(A)2 Id×+A−−−−→ A × L0(A)

Thus we can define the Kleisli category of this functor by CT which has geometric
significance as a category of generalised vector fields.
6 The third, the Eilenberg-Moore model, is presented in [1, Appendix D].

54 M. Alvarez-Picallo and C.-H. L. Ong

We define the functor αT : CT → CAct(CT): given a CT-morphism f : A →
B, set αT(A) := (A,L0(A), IdA × IdL0(A), η ◦+A, η ◦0A) and αT(f) := (f,D [f]).

Lemma 9. αT is a change action model.

Remark 2. The converse is not true: in general the existence of a change action
model on C does not imply that C satisfies the GCDC axioms. However, if
one requires, additionally, (ΔA,+A, 0A) to be commutative, with Δ(ΔA) = ΔA
and ⊕ΔA = +A for all objects A, and some technical conditions (stability and
uniqueness of derivatives), then it can be shown that C is indeed a GCDC.

Difference Calculus and Boolean Differential Calculus. Consider the full
subcategory GrpSet of Set whose objects are all the groups7. This is a cartesian
closed category which can be endowed with the structure of a (CAct, ε)-coalgebra
α in a straightforward way.

Given a group A = (A,+, 0,−), define change action α(A) := (A,A,+,+, 0)
Given a function f : A → B, define differential map α(f) := (f, ∂f) where
∂f(x, δx) := −f(x) + f(x ⊕ δx). Notice f(x) ⊕ ∂f(x, δx) = f(x) + (−f(x) +
f(x + δx)) = f(x + δx) = f(x ⊕ δx); hence ∂f is a derivative for f which is
regular (but not necessarily additive), and α(f) a map in CAct(GrpSet). The
following result is then immediate.

Lemma 10. α : GrpSet → CAct(GrpSet) defines a change action model.

This result is significant: in the calculus of finite differences [15], the discrete
derivative (or discrete difference operator) of a function f : Z → Z is defined as
δf(x) := f(x + 1) − f(x). In fact the discrete derivative δf is (an instance of)
the derivative of f qua morphism in GrpSet, i.e. δf(x) = ∂f(x, 1).

Finite difference calculus [13,15] has found applications in combinatorics and
numerical computation. Our formulation via change action model over GrpSet

has several advantages. First it justifies the chain rule, which seems new. Sec-
ondly, it generalises the calculus to arbitrary groups. To illustrate this, consider
Boolean differential calculus [22,23], a technique that applies methods from cal-
culus to the space B

n of vectors of elements of some Boolean algebra B.

Definition 8. Given a Boolean algebra B and function f : B
n → B

m, the i-th
Boolean derivative of f at (u1, . . . , un) ∈ B

n is the value ∂f
∂xi

(u1, . . . , un) :=
f(u1, . . . , un) � f(u1, . . . ,¬ui, . . . , un) writing u � v := (u ∧ ¬v) ∨ (¬u ∧ v) for
exclusive-or.

Now B
n is a GrpSet-object. Set �i := (⊥, i−1. . .,⊥,�,⊥, n−i. . . ,⊥) ∈ B

n.

Lemma 11. The Boolean derivative of f : B
n → B

m coincides with its deriva-
tive qua morphism in GrpSet:

∂f
∂xi

(u1, . . . , un) = ∂f((u1, . . . , un),�i).

7 We consider arbitrary functions, rather than group homomorphisms, since, accord-
ing to this change action structure, every function between groups is differentiable.

Change Actions: Models of Generalised Differentiation 55

Polynomials over Commutative Kleene Algebras. The algebra of polyno-
mials over a commutative Kleene algebra [14,17] (see [12,21] for work of a similar
vein) is a change action model. Recall that Kleene algebra is the algebra of reg-
ular expressions [5,9]. Formally a Kleene algebra K is a tuple (K,+, ·, �, 0, 1)
such that (K,+, ·, 0, 1) is an idempotent semiring under + satisfying, for all
a, b, c ∈ K:

1 + a a� = a� 1 + a�a = a� b + a c ≤ c → a� b ≤ c b + c a ≤ c → b a� ≤ c

where a ≤ b := a + b = b. A Kleene algebra is commutative whenever · is.
Henceforth fix a commutative Kleene algebra K. Define the algebra of polyno-

mials K[x] as the free extension of the algebra K with elements x = x1, . . . , xn.
We write p(a) for the value of p(x) evaluated at x �→ a. Polynomials, viewed
as functions, are closed under composition: when p ∈ K[x], q1, . . . , qn ∈ K[y] are
polynomials, so is the composite p(q1(y), . . . , qn(y)).

Given a polynomial p = p(x), we define its i-th derivative ∂ p
∂xi

(x) ∈ K[x]:

∂ a

∂xi
(x) = 0

∂ p�

∂xi
(x) = p�(x)

∂ p

∂xi
(x)

∂ xj

∂xi
(x) =

{
1 if i = j

0 otherwise

∂ (p + q)
∂xi

(x) =
∂ p

∂xi
(x) +

∂ q

∂xi
(x)

∂ (p q)
∂xi

(x) = p(x)
∂ q

∂xi
(x) + q(x)

∂ p

∂xi
(x)

Write ∂ p
∂xi

(e) to mean the result of evaluating the polynomial ∂ p
∂xi

(x) at x �→ e.

Theorem 7 (Taylor’s formula [14]). Let p(x) ∈ K[x]. For all a, b ∈ K[x], we
have p(a + b) = p(a) + b · ∂ p

∂x (a + b).

The category of finite powers of K, K×, has all natural numbers n as
objects. The morphisms K×[m,n] are n-tuples of polynomials (p1, . . . , pn) where
p1, . . . , pn ∈ K[x1, . . . , xm]. Composition of morphisms is the usual composition
of polynomials.

Lemma 12. The category K× is a cartesian category, endowed with a change
action model α : K× → CAct(K×) whereby α(K) := (K, K,+,+, 0), α(Ki) :=
α(K)i; for p = (p1(x), . . . , pn(x)) : K

m → K
n, α(p) := (p, (p′

1, . . . , p
′
n)), where

(p′
i = p′

i(x1, . . . , xm, y1, . . . , ym) :=
∑n

j=1 yj · ∂ pi

∂xj
(x1 + y1, . . . , xm + ym).

Remark 3. Interestingly derivatives are not additive in the second argument.
Take p(x) = x2. Then ∂p(a, b + c) > ∂p(a, b) + ∂p(a, c). It follows that K[x]
cannot be modelled by GCDC (because of axiom [CD.2]).

6 ω-Change Actions and ω-Differential Maps

A change action model α : C → CAct(C) is a category that supports higher-
order differentials: each C-object A is associated with an ω-sequence of change

56 M. Alvarez-Picallo and C.-H. L. Ong

actions—α(A), α(ΔA), α(Δ2A), . . .—in which every change action is compati-
ble with the neighbouring change actions. We introduce ω-change actions as a
means of constructing change action models “freely”: given a cartesian category
C, the objects of the category CActω(C) are all ω-sequences of “contiguously
compatible” change actions.

We work with ω-sequences [Ai]i∈ω and [fi]i∈ω of objects and morphisms in
C. We write pk([Ai]i∈ω) := Ak for the k-th element of the ω-sequence (similarly
for pk([fi]i∈ω)), and omit the subscript ‘i ∈ ω’ from [Ai]i∈ω to reduce clutter.
Given ω-sequences [Ai] and [Bi] of objects of a cartesian category C, define
ω-sequences, product [Ai] × [Bi], left shift Π[Ai] and derivative space D[Ai], by:

pj([Ai] × [Bi]) := Aj × Bj pj(Π[Ai]) := Aj+1

p0(D[Ai]) := A0 pj+1D[Ai] := pjD[Ai] × pjD(Π[Ai])

Example 2. Given an ω-sequence [Ai], the first few terms of D[Ai] are:

p0D[Ai] = A0 p1D[Ai] = A0 × A1 p2D[Ai] = (A0 × A1) × (A1 × A2)

p3D[Ai] =
(
(A0 × A1) × (A1 × A2)

) × (
(A1 × A2) × (A2 × A3)

)
Definition 9. Given ω-sequences [Ai] and [Bi], a pre-ω-differential map
between them, written [fi] : [Ai] → [Bi], is an ω-sequence [fi] such that for
each j, fj : pjD[Ai] → Bj is a C-morphism.

We explain the intuition behind the derivative space D[Ai]. Take a morphism
f : A → B, and set Ai = ΔiA (where Δ0 := A and Δn+1A := Δ(ΔnA)). Since
Δ distributes over product, the domain of the n-th derivative of f is pnD[Ai].
Notation. Define π

〈0〉
1 := π1 and π

〈j+1〉
1 := π

〈j〉
1 × π

〈j〉
1 ; and define π

(0)
2 := Id and

π
(j+1)
2 := π2 ◦ π

(j)
2 .

Definition 10. Let [fi] : [Ai] → [Bi] and [gi] : [Bi] → [Ci] be pre-ω-differential
maps. The derivative sequence D[fi] is the ω-sequence defined by:

pjD[fi] := 〈fj ◦ π
〈j〉
1 , fj+1〉 : pj+1D[Ai] → Bj × Bj+1

Using the shorthand Dn[fi] := D(. . . (D︸ ︷︷ ︸
n times

[fi])), the composite [gi] ◦ [fi] : [Ai] →

[Ci] is the pre-ω-differential map given by pj([gi] ◦ [fi]) = gj ◦ p0(Dj [fi]). The
identity pre-ω-differential map Id : [Ai] → [Ai] is defined as: pjId := π

(j)
2 :

pjD[Ai] → Aj .

Example 3. Consider ω-sequences [fi] and [gi] as above. Then:

p0D[fi] = 〈f0 ◦ π
〈0〉
1 , f1〉 p1D[fi] = 〈f1 ◦ π

〈1〉
1 , f2〉

p0D2[fi] = 〈〈f0 ◦ π
〈0〉
1 , f1〉 ◦ π1, 〈f1 ◦ π

〈1〉
1 , f2〉〉

p1D2[fi] = 〈〈f1 ◦ π
〈1〉
1 , f2〉 ◦ π

〈1〉
1 , 〈f2 ◦ π

〈2〉
1 , f3〉〉

p0D3[fi] = 〈p0D2[fi] ◦ π
〈0〉
1 , 〈〈f1 ◦ π

〈1〉
1 , f2〉 ◦ π

〈1〉
1 , 〈f2 ◦ π

〈2〉
1 , f3〉〉〉

Change Actions: Models of Generalised Differentiation 57

It follows that the first few terms of the composite [gi] ◦ [fi] are:

p0([gi] ◦ [fi]) = g0 ◦ f0 p1([gi] ◦ [fi]) = g1 ◦ 〈f0 ◦ π
〈0〉
1 , f1〉

p2([gi] ◦ [fi]) = g2 ◦ 〈〈f0 ◦ π1, f1〉 ◦ π
〈0〉
1 , 〈f1 ◦ π

〈1〉
1 , f2〉〉

Notice that these correspond to iterations of the chain rule, assuming fi+1 = ∂fi

and gi+1 = ∂gi.

Proposition 3. For any pre-ω-differential map [fi], Id ◦ [fi] = [fi] ◦ Id = [fi].

Proposition 4. Composition of pre-ω-differential maps is associative: given
pre-ω-differential maps [fi] : [Ai] → [Bi], [gi] : [Bi] → [Ci] and [hi] : [Ci] → [Di],
then for all n ≥ 0, hn ◦ p0Dn([gi] ◦ [fi]) = (hn ◦ p0Dn[gi]) ◦ p0Dn[fi].

Definition 11. Given pre-ω-differential maps [fi] : [Ai] → [Bi], [gi] : [Ai] →
[Ci], the pairing 〈[fi], [gi]〉 : [Ai] → [Bi] × [Ci] is the pre-ω-differential map
defined by: pj〈[fi], [gi]〉 = 〈fj , gj〉. Define pre-ω-differential maps π1 := [π1i] :
[Ai] × [Bi] → [Ai] by pj [π1i] := π1 ◦ π

(j)
2 , and π2 := [π2i] : [Ai] × [Bi] → [Bi] by

pj [π2i] := π2 ◦ π
(j)
2 .

Definition 12. A pre-ω-change action on a cartesian category C is a quadruple
Â = ([Ai], [⊕̂A

i], [+̂A
i], [0A

i]) where [Ai] is an ω-sequence of C-objects, and for
each j ≥ 0, ⊕̂A

j and +̂A
j are ω-sequences, satisfying

1. ⊕̂A
j : Πj [Ai] × Πj+1[Ai] → Πj [Ai] is a pre-ω-differential map.

2. +̂A
j : Πj+1[Ai] × Πj+1[Ai] → Πj+1[Ai] is a pre-ω-differential map.

3. 0A
j : � → Aj+1 is a C-morphism.

4. Δ(Â, j) := (Aj , Aj+1, p0⊕̂A
j , p0+̂A

j , 0A
j) is a change action in C.

We extend the left-shift operation to pre-ω-change actions by defining ΠÂ :=
(Π[Ai],Π[⊕̂A

i],Π[+̂A
i], [0A

i]). Then we define the change actions D(Â, j) induc-
tively by: D(Â, 0) := Δ(Â, 0) and D(Â, j + 1) := Δ(Â, j) × Δ(ΠÂ, j). Notice
that the carrier object of D(Â, j) is the j-th element of the ω-sequence D[Ai].

Definition 13. Given pre-ω-change actions Â and B̂ (using the preceding nota-
tion), a pre-ω-differential map [fi] : [Ai] → [Bi] is ω-differential if, for each j ≥ 0,
(fj , fj+1) is a differential map from the change action D(Â, j) to Δ(B̂, j). When-
ever [fi] is an ω-differential map, we write f̂ : Â → B̂.

We say that a pre-ω-change action Â is an ω-change action if, for each i ≥ 0,
⊕̂A

i and +̂A
i are ω-differential maps.8

8 It is important to sequence the definitions appropriately. Notice that we only define
ω-differential maps once there is a notion of pre-ω-change action, but pre-ω-change
actions need pre-ω-differential maps to make sense of the monoidal sum ̂+j and
action ̂⊕j .

58 M. Alvarez-Picallo and C.-H. L. Ong

Remark 4. The reason for requiring each ⊕̂A
i and +̂A

i in an ω-change object Â
to be ω-differential is so that Â is internally a change action in CActω(C) (see
Definition 15).

Lemma 13. Let f̂ : Â → B̂ and ĝ : B̂ → Ĉ be ω-differential maps. Qua pre-
ω-differential maps, their composite [gi] ◦ [fi] is ω-differential. Setting ĝ ◦ f̂ :=
[gi]◦[fi] : Â → Ĉ, it follows that composition of ω-differential maps is associative.

Lemma 14. For any ω-change action Â, the pre-ω-differential map Id : [Ai] →
[Ai] is ω-differential. Hence Îd := Id : Â → Â satisfies the identity laws.

Definition 14. Given ω-change actions Â and B̂, we define the product ω-
change action by: (Â × B̂ := ([Ai × Bi], [⊕̂′

i], [+̂′
i], [0′

i]) where

1. ⊕̂′
j := 〈⊕̂A

j , ⊕̂B
j〉 ◦ 〈〈π̂11, π̂12〉, 〈π̂21, π̂22〉〉

2. +̂′
j := 〈+̂A

j , +̂B
j〉 ◦ 〈〈π̂11, π̂12〉, 〈π̂21, π̂22〉〉

3. 0′
j := 〈0A

j , 0B
j 〉

Notice that Δ(Â × B̂, j) := (Aj × Bj , Aj+1 × Bj+1, p0⊕̂′
j , p0+̂′

j , 0′
j) is a change

action in C by construction.

Lemma 15. The pre-ω-differential maps π1, π2 are ω-differential. Moreover, for
any ω-differential maps f̂ : Â → B̂ and ĝ : Â → Ĉ, the map 〈f̂ , ĝ〉 := 〈[fi], [gi]〉
is ω-differential, satisfying π̂1 ◦ 〈f̂ , ĝ〉 = f̂ and π̂2 ◦ 〈f̂ , ĝ〉 = ĝ.

Definition 15. Define the functor CActω : Cat× → Cat× as follows.

– CActω(C) is the category whose objects are the ω-change actions over C and
whose morphisms are the ω-differential maps.

– If F : C → D is a (product-preserving) functor, then CActω(F) : CActω(C)
→ CActω(C) is the functor mapping the ω-change action ([Ai], [[⊕i]j],
[[+i]j], [0j]) to ([FAi], [[F⊕i]j], [[F+i]j], [F0j]); and the ω-differential map [fi]
to [Ff i].

Theorem 8. The category CActω(C) is cartesian, with product given in Defini-
tion 14. Moreover if C is closed and has countable limits, CActω(C) is cartesian
closed.

Theorem 9. The category CActω(C) is equipped with a canonical change action
model: γ : CActω(C) → CAct(CActω(C)).

Theorem 10 (Relativised final coalgebra). Let C be a change action model.
The canonical change action model γ : CActω(C) → CAct(CActω(C)) is a
relativised9 final coalgebra of (CAct, ε).
i.e. for all change action models on C, α :
C → CAct(C), there is a unique coalgebra
homomorphism αω : C → CActω(C), as
witnessed by the commuting diagram:

C CAct(C)

CActω(C) CAct(CActω(C))

∃ !αω

α

CAct(αω)

γ

9 Here CAct is restricted to the full subcategory of Cat× with C as the only object.

Change Actions: Models of Generalised Differentiation 59

Proof. We first exhibit the functor αω : C → CActω(C).
Take a C-morphism f : A → B. We define the ω-differential map αω(f) := f̂ :

Â → B̂, where Â :=
(
[Ai], [⊕̂i], [+̂i], [0i]

)
is the ω-change action determined by A

under iterative actions of α. I.e. for each i ≥ 0: Ai := ΔiA (by abuse of notation,
we write ΔA′ to mean the carrier object of the monoid of the internal change
action α(A′), for any C-object A′); ⊕̂j : Πj [Ai]×Πj+1[Ai] → Πj [Ai] is specified
by: pk⊕̂j is the monoid action morphism of α(Aj+k); +̂j : Πj+1[Ai]×Πj+1[Ai] →
Πj+1[Ai] is specified by: pk⊕̂j is the monoid sum morphism of α(Aj+k); 0i is
the zero object of α(Ai).

The ω-sequence f̂ := [fi] is defined by induction: f0 := f ; assume fn :
(DÂ)n → Bn is defined and suppose α(fn) = (fn, ∂fn) then define fn+1 := ∂fn.

To see that the diagram commutes, notice that γ(f̂) = (f̂ , Πf̂) and CAct(αω)
maps α(f) = (f, ∂f) to (f̂ , ∂̂f); then observe that Πf̂ = ∂̂f follows from the
construction of f̂ .

Finally to see that the functor αω is unique, consider the C-morphisms ∂nf
(n = 0, 1, 2, · · ·) where α(∂nf) = (∂nf, ∂n+1f). Suppose β : C → CActω(C)
is another homomorphism. Thanks to the commuting diagram, we must have
Πnβ(f) = β(∂nf), and so, in particular (β(f))n = (Πnβ(f))0 = (β(∂nf))0 =
∂nf , for each n ≥ 0. Thus f̂ = β(f) as desired. ��

Intuitively any change action model on C is always a “subset” of the change
action model on CActω(C).

Theorem 11. The category CActω(C) is the limit in Cat× of the diagram.
D

CAct(C) CAct(CAct(C)) CAct(CAct(CAct(C))) . . .
ξ

ε

ξ

ε

ξ

ε

7 Related Work, Future Directions and Conclusions

The present work directly expands upon work by the authors and others in [2],
where the notion of change action was developed in the context of the incremental
evaluation of Datalog programs. This work generalizes some results in [2] and
addresses two significant questions that had been left open, namely: how to
construct cartesian closed categories of change actions and how to formalize
higher-order derivatives.

Our work is also closely related to Cockett, Seely and Cruttwell’s work on
cartesian differential categories [3,4,7] and Cruttwell’s more recent work on gen-
eralised cartesian differential categories [10]. Both cartesian differential cate-
gories and change action models aim to provide a setting for differentiation, and
the construction of ω-change actions resembles the Faà di Bruno construction

60 M. Alvarez-Picallo and C.-H. L. Ong

[8,10] (especially its recent reformulation by Lemay [20]) which, given an arbi-
trary category C, builds a cofree cartesian differential category for it. The main
difference between these two settings lies in the specific axioms required (change
action models are significantly weaker: see Remark 2).

In this sense, the derivative condition is close to the Kock-Lawvere axiom
from synthetic differential geometry [18,19], which has provided much of the
driving intuition behind this work, and making this connection precise is the
subject of ongoing research.

In a different direction, the simplicity of products and exponentials in closed
change action models (see Theorem 5) suggests that there should be a reasonable
calculus for change action models. Exploring such a calculus and its connections
to the differential λ-calculus [11] could lead to practical applications to languages
for incremental computation or higher-order automatic differentiation [16].

In conclusion, change actions and change action models constitute a new
setting for reasoning about differentiation that is able to unify “discrete” and
“continuous” models, as well as higher-order functions. Change actions are
remarkably well-behaved and show tantalising connections with geometry and
2-categories. We believe that most ad hoc notions of derivatives found in dis-
parate subjects can be elegantly integrated into the framework of change action
models. We therefore expect any further work in this area to have the potential
of benefiting these notions of derivatives.

References

1. Alvarez-Picallo, M., Ong, C.H.L.: Change actions: models of generalised differen-
tiation. arXiv preprint arXiv:1902.05465 (2019)

2. Alvarez-Picallo, M., Peyton-Jones, M., Eyers-Taylor, A., Ong, C.H.L.: Fixing incre-
mental computation. In: European Symposium on Programming. Springer (2019,
in press)

3. Blute, R., Ehrhard, T., Tasson, C.: A convenient differential category. arXiv
preprint arXiv:1006.3140 (2010)

4. Blute, R.F., Cockett, J.R.B., Seely, R.A.: Cartesian differential categories. Theory
Appl. Categories 22(23), 622–672 (2009)

5. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494
(1964). https://doi.org/10.1145/321239.321249

6. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for
higher-order languages: incrementalizing λ-calculi by static differentiation. ACM
SIGPLAN Not. 49, 145–155 (2014)

7. Cockett, J.R.B., Cruttwell, G.S.H.: Differential structure, tangent structure, and
SDG. Appl. Categorical Struct. 22(2), 331–417 (2014)

8. Cockett, J.R.B., Seely, R.A.G.: The Faà di Bruno construction. Theory Appl. Cat-
egories 25, 393–425 (2011)

9. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

10. Cruttwell, G.S.: Cartesian differential categories revisited. Math. Struct. Comput.
Sci. 27(1), 70–91 (2017)

11. Ehrhard, T., Regnier, L.: The differential lambda-calculus. Theor. Comput. Sci.
309(1–3), 1–41 (2003). https://doi.org/10.1016/S0304-3975(03)00392-X

http://arxiv.org/abs/1902.05465
http://arxiv.org/abs/1006.3140
https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/S0304-3975(03)00392-X

Change Actions: Models of Generalised Differentiation 61

12. Esparza, J., Kiefer, S., Luttenberger, M.: Newtonian program analysis. J. ACM
57(6), 33:1–33:47 (2010). https://doi.org/10.1145/1857914.1857917

13. Gleich, D.: Finite calculus: a tutorial for solving nasty sums. Stanford University
(2005)

14. Hopkins, M.W., Kozen, D.: Parikh’s theorem in commutative Kleene algebra. In:
14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5
July 1999, pp. 394–401 (1999). https://doi.org/10.1109/LICS.1999.782634

15. Jordan, C.: Calculus of Finite Differences, vol. 33. American Mathematical Society,
New York (1965)

16. Kelly, R., Pearlmutter, B.A., Siskind, J.M.: Evolving the incremental lambda-
calculus into a model of forward automatic differentiation (ad). arXiv preprint
arXiv:1611.03429 (2016)

17. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University
Press, Princeton (1956)

18. Kock, A.: Synthetic Differential Geometry, 2nd edn. Cambridge University Press,
Cambridge (2006)

19. Lavendhomme, R.: Basic Concepts of Synthetic Differential Geometry, vol. 13.
Springer, Boston (2018). https://doi.org/10.1007/978-1-4757-4588-7

20. Lemay, J.S.: A tangent category alternative to the Faà di Bruno construction.
arXiv preprint arXiv:1805.01774v1 (2018)

21. Lombardy, S., Sakarovitch, J.: How expressions can code for automata. In: 6th
Latin American Symposium on Theoretical Informatics, LATIN 2004, Buenos
Aires, Argentina, 5–8 April 2004, Proceedings, pp. 242–251 (2004). https://doi.
org/10.1007/978-3-540-24698-5 28

22. Steinbach, B., Posthoff, C.: Boolean differential calculus. Synth. Lect. Digit. Circ.
Syst. 12(1), 1–215 (2017)

23. Thayse, A. (ed.): Boolean Calculus of Differences. LNCS, vol. 101. Springer, Hei-
delberg (1981). https://doi.org/10.1007/3-540-10286-8

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/1857914.1857917
https://doi.org/10.1109/LICS.1999.782634
http://arxiv.org/abs/1611.03429
https://doi.org/10.1007/978-1-4757-4588-7
http://arxiv.org/abs/1805.01774v1
https://doi.org/10.1007/978-3-540-24698-5_28
https://doi.org/10.1007/978-3-540-24698-5_28
https://doi.org/10.1007/3-540-10286-8
http://creativecommons.org/licenses/by/4.0/

Coalgebra Learning via Duality

Simone Barlocco1, Clemens Kupke1(B), and Jurriaan Rot2

1 University of Strathclyde, Glasgow, UK
{simone.barlocco,clemens.kupke}@strath.ac.uk

2 Radboud University, Nijmegen, Netherlands
j.rot@cs.ru.nl

Abstract. Automata learning is a popular technique for inferring min-
imal automata through membership and equivalence queries. In this
paper, we generalise learning to the theory of coalgebras. The approach
relies on the use of logical formulas as tests, based on a dual adjunction
between states and logical theories. This allows us to learn, e.g., labelled
transition systems, using Hennessy-Milner logic. Our main contribution
is an abstract learning algorithm, together with a proof of correctness
and termination.

1 Introduction

In recent years, automata learning is applied with considerable success to infer
models of systems and in order to analyse and verify them. Most current
approaches to active automata learning are ultimately based on the original algo-
rithm due to Angluin [4], although numerous improvements have been made, in
practical performance and in extending the techniques to different models [30].

Our aim is to move from automata to coalgebras [14,26], providing a gen-
eralisation of learning to a wide range of state-based systems. The key insight
underlying our work is that dual adjunctions connecting coalgebras and tailor-
made logical languages [12,19,21,22,26] allow us to devise a generic learning
algorithm for coalgebras that is parametric in the type of system under consid-
eration. Our approach gives rise to a fundamental distinction between states of
the learned system and tests, modelled as logical formulas. This distinction is
blurred in the classical DFA algorithm, where tests are also used to specify the
(reachable) states. It is precisely the distinction between tests and states which
allows us to move beyond classical automata, and use, for instance, Hennessy-
Milner logic to learn bisimilarity quotients of labelled transition systems.

To present learning via duality we need to introduce new notions and refine
existing ones. First, in the setting of coalgebraic modal logic, we introduce the
new notion of sub-formula closed collections of formulas, generalising suffix-
closed sets of words in Angluin’s algorithm (Sect. 4). Second, we import the
abstract notion of base of a functor from [8], which allows us to speak about

C. Kupke—Partially supported by EPSRC grant EP/N015843/1.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 62–79, 2019.
https://doi.org/10.1007/978-3-030-17127-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_4

Coalgebra Learning via Duality 63

‘successor states’ (Sect. 5). In particular, the base allows us to characterise reach-
ability of coalgebras in a clear and concise way. This yields a canonical procedure
for computing the reachable part from a given initial state in a coalgebra, thus
generalising the notion of a generated subframe from modal logic.

We then rephrase coalgebra learning as the problem of inferring a coalgebra
which is reachable, minimal and which cannot be distinguished from the original
coalgebra held by the teacher using tests. This requires suitably adapting the
computation of the reachable part to incorporate tests, and only learn ‘up to
logical equivalence’. We formulate the notion of closed table, and an associated
procedure to close tables. With all these notions in place, we can finally define our
abstract algorithm for coalgebra learning, together with a proof of correctness
and termination (Sect. 6). Overall, we consider this correctness and termination
proof as the main contribution of the paper; other contributions are the com-
putation of reachability via the base and the notion of sub-formula closedness.
At a more conceptual level, our paper shows how states and tests interact in
automata learning, by rephrasing it in the context of a dual adjunction connect-
ing coalgebra (systems) and algebra (logical theories). As such, we provide a new
foundation of learning state-based systems.

Related Work. The idea that tests in the learning algorithm should be formulas of
a distinct logical language was proposed first in [6]. However, the work in loc.cit.
is quite ad-hoc, confined to Boolean-valued modal logics, and did not explicitly
use duality. This paper is a significant improvement: the dual adjunction frame-
work and the definition of the base [8] enables us to present a description of
Angluin’s algorithm in purely categorical terms, including a proof of correctness
and, crucially, termination. Our abstract notion of logic also enables us to recover
exactly the standard DFA algorithm (where tests are words) and the algorithm
for learning Mealy machines (where test are many-valued), something that is
not possible in [6] where tests are modal formulas. Closely related to our work
is also the line of research initiated by [15] and followed up within the CALF
project [11–13] which applies ideas from category theory to automata learning.
Our approach is orthogonal to CALF: the latter focuses on learning a general
version of automata, whereas our work is geared towards learning bisimilarity
quotients of state-based transition systems. While CALF lends itself to studying
automata in a large variety of base categories, our work thus far is concerned
with varying the type of transition structures.

2 Learning by Example

The aim of this section is twofold: (i) to remind the reader of the key elements
of Angluin’s L∗ algorithm [4] and (ii) to motivate and outline our generalisation.

In the classical L∗ algorithm, the learner tries to learn a regular language L
over some alphabet A or, equivalently, a DFA A accepting that language. Learn-
ing proceeds by asking queries to a teacher who has access to this automaton.
Membership queries allow the learner to test whether a given word is in the lan-
guage, and equivalence queries to test whether the correct DFA has been learned

64 S. Barlocco et al.

already. The algorithm constructs so-called tables (S,E) where S,E ⊆ A∗ are
the rows and columns of the table, respectively. The value at position (s, e) of
the table is the answer to the membership query “se ∈ L?”.

Words play a double role: On the one hand, a word w ∈ S represents the
state which is reached when reading w at the initial state. On the other hand, the
set E represents the set of membership queries that the learner is asking about
the states in S. A table is closed if for all w ∈ S and all a ∈ A either wa ∈ S or
there is a state v ∈ S such that wa is equivalent to v w.r.t. membership queries
of words in E. If a table is not closed we extend S by adding words of the form
wa for w ∈ S and a ∈ A. Once it is closed, one can define a conjecture,1 i.e., a
DFA with states in S. The learner now asks the teacher whether the conjecture
is correct. If it is, the algorithm terminates. Otherwise the teacher provides a
counterexample: a word on which the conjecture is incorrect. The table is now
extended using the counterexample. As a result, the table is not closed anymore
and the algorithm continues again by closing the table.

Our version of L∗ introduces some key conceptual differences: tables are pairs
(S, Ψ) such that S (set of rows) is a selection of states of A and Ψ (set of
columns) is a collection of tests/formulas. Membership queries become checks
of tests in Ψ at states in S and equivalence queries verify whether or not the
learned structure is logically equivalent to the original one. A table (S, Ψ) is
closed if for all successors x′ of elements of S there exists an x ∈ S such that x
and x′ are equivalent w.r.t. formulas in Ψ . The clear distinction between states
and tests in our algorithm means that counterexamples are formulas that have
to be added to Ψ . Crucially, the move from words to formulas allows us to use
the rich theory of coalgebra and coalgebraic logic to devise a generic algorithm.

We consider two examples within our generic framework: classical DFAs,
yielding essentially the L∗ algorithm, and labelled transition systems, which is to
the best of our knowledge not covered by standard automata learning algorithms.

For the DFA case, let L = {u ∈ {a, b}∗ | number of a’s mod 3 = 0} and
assume that the teacher uses the following (infinite) automaton describing L:

q0 q1 q2 q3 q4 q5 q6 q7 · · ·a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

b

As outlined above, the learner starts to construct tables (S, Ψ) where S is a
selection of states of the automaton and Ψ are formulas. For DFAs we will see
(Example 1) that our formulas are just words in {a, b}∗. Our starting table is
({q0}, ∅), i.e., we select the initial state and do not check any logical proper-
ties. This table is trivially closed, as all states are equivalent w.r.t. ∅. The first
conjecture is the automaton consisting of one accepting state q0 with a- and
b-loops, whose language is {a, b}∗. This is incorrect and the teacher provides,
e.g., aa as counterexample. The resulting table is ({q0}, {ε, a, aa}) where the

1 The algorithm additionally requires consistency, but this is not needed if counterex-
amples are added to E. This idea goes back to [22].

Coalgebra Learning via Duality 65

second component was generated by closing {aa} under suffixes. Suffix closed-
ness features both in the original L∗ algorithm and in our framework (Sect. 4).
The table ({q0}, {ε, a, aa}) is not closed as q1, the a-successor of q0, does not
accept ε whereas q0 does. Therefore we extend the table to ({q0, q1}, {ε, a, aa}).
Note that, unlike in the classical setting, exploring successors of already selected
states cannot be achieved by appending letters to words, but we need to locally
employ the transition structure on the automaton A instead. A similar argument
shows that we need to extend the table further to ({q0, q1, q2}, {ε, a, aa}) which
is closed. This leads to the (correct) conjecture depicted on the right below. The
acceptance condition and transition structure has been read off from the original
automaton, where the transition from q2 to q0 is obtained by realising that q2’s
successor q3 is represented by the equivalent state q0 ∈ S.

q0 q1 q2

a

b b

a

a

bA key feature of our work is that the L∗ algo-
rithm can be systematically generalised to new set-
tings, in particular, to the learning of bisimulation
quotients of transition systems. Consider the follow-
ing labelled transition system (LTS). We would like
to learn its minimal representation, i.e., its quotient modulo bisimulation.

x0

x1 x2

x3 x4 x5 x6 x7 · · ·

a

aa

b a

a

b

a

b
b b

Our setting allows us
to choose a suitable log-
ical language. For LTSs,
the language consists of
the formulas of stan-
dard multi-modal logic
(cf. Example 3). The
semantics is as usual where 〈a〉 φ holds at a state if it has an a-successor that
makes φ true.

As above, the algorithm constructs tables, starting with (S = {x0}, Ψ = ∅).
The table is closed, so the first conjecture is a single state with an a-loop with no
proposition letter true (note that x0 has no b or c successor and no proposition
is true at x0). It is, however, easy for the teacher to find a counterexample. For
example, the formula 〈a〉 〈b〉 � is true at the root of the original LTS but false
in the conjecture. We add the counterexample and all its subformulas to Ψ and
obtain a new table ({x0}, Ψ ′} with Ψ ′ = {〈a〉 〈b〉 �, 〈b〉 �,�}. Now, the table
is not closed, as x0 has successor x1 that satisfies 〈b〉 � whereas x0 does not
satisfy 〈b〉 �. Therefore we add x1 to the table to obtain ({x0, x1}, Ψ ′). Similar
arguments will lead to the closed table ({x0, x1, x3, x4}, Ψ ′) which also yields the
correct conjecture. Note that the state x2 does not get added to the table as it is
equivalent to x1 and thus already represented. This demonstrates a remarkable
fact: we computed the bisimulation quotient of the LTS without inspecting the
(infinite) right-hand side of the LTS.

Another important example that fits smoothly into our framework is the well-
known variant of Angluin’s algorithm to learn Mealy machines (Example 2).
Thanks to our general notion of logic, our framework allows to use an intuitive
language, where a formula is simply an input word w whose truth value at a state

66 S. Barlocco et al.

x is the observed output after entering w at x. This is in contrast to [6] where for-
mulas had to be Boolean valued. Multi-valued logics fit naturally in our setting;
this is expected to be useful to deal with systems with quantitative information.

3 Preliminaries

The general learning algorithm in this paper is based on the theory of coalgebras,
which provides an abstract framework for representing state-based transition
systems. In what follows we assume that the reader is familiar with basic notions
of category theory and coalgebras [14,26]. We briefly recall the notion of pointed
coalgebra, modelling a coalgebra with an initial state. Let C be a category with
a terminal object 1 and let B : C → C be a functor. A pointed B-coalgebra is a
triple (X, γ, x0) where X ∈ C and γ : X → BX and x0 : 1 → X, specifying the
coalgebra structure and the point (“initial state”) of the coalgebra, respectively.

Coalgebraic Modal Logic. Modal logics are used to describe properties of state-
based systems, modelled here as coalgebras. The close relationship between coal-
gebras and their logics is described elegantly via dual adjunctions [18,20,21,24].

Our basic setting consists of two categories C,D connected by func-
tors P,Q forming a dual adjunction P 	 Q : C � Dop. In other
words, we have a natural bijection C(X,QΔ) ∼= D(Δ,PX) for X ∈
C,Δ ∈ D. Moreover, we assume two functors, B : C → C, L : D → D,

C
P

��
B

�� ⊥ Dop

Q

�� L�� (1)
see (1). The functor L represents the
syntax of the (modalities in the) logic:
assuming that L has an initial algebra
α : LΦ → Φ we think of Φ as the col-
lection of formulas, or tests. In this logical perspective, the functor P maps an
object X of C to the collection of predicates and the functor Q maps an object
Δ of D to the collection QΔ of Δ-theories.

The connection between coalgebras and their logics is specified via
a natural transformation δ : LP ⇒ PB, sometimes referred to as

LΦ
L� � �����

α ��

LPX
δX �� PBX

Pγ��
Φ

∃!� � ����������� PX

(2)

the one-step semantics of the logic. The
δ is used to define the semantics of
the logic on a B-coalgebra (X, γ) by
initiality, as in (2). Furthermore, using
the bijective correspondence of the dual
adjunction between P and Q, the map � � corresponds to a map thγ : X → QΦ
that we will refer to as the theory map of (X, γ).

BX
Bthγ

����� BQΦ
δ�

Φ �� QLΦ

X

γ

��

∃!thγ

����������� QΦ

Qα

�� (3)

The theory map can be expressed
directly via a universal property, by
making use of the so-called mate
δ� : BQ ⇒ QL of the one-step semantics
δ (cf. [18,24]). More precisely, we have
δ� = QLε ◦ QδQ ◦ ηBQ, where η, ε are the unit and counit of the adjunction.
Then thγ : X → QΦ is the unique morphism making (3) commute.

Coalgebra Learning via Duality 67

Example 1. Let C = D = Set, P = Q = 2− the contravariant power set functor,
B = 2 × −A and L = 1 + A × −. In this case B-coalgebras can be thought of as
deterministic automata with input alphabet A (e.g., [25]). It is well-known that
the initial L-algebra is Φ = A∗ with structure α = [ε, cons] : 1 + A × A∗ → A∗

where ε selects the empty word and cons maps a pair (a,w) ∈ A×A∗ to the word
aw ∈ A∗, i.e., in this example our tests are words with the intuitive meaning
that a test succeeds if the word is accepted by the given automaton. For X ∈ C,
the X-component of the (one-step) semantics δ : LP ⇒ PB is defined as follows:
δX(∗) = {(i, f) ∈ 2 × XA | i = 1}, and δX(a, U) = {(i, f) ∈ 2 × XA | f(a) ∈ U}.
It is matter of routine checking that the semantics of tests in Φ on a B-coalgebra
(X, γ) is as follows: we have �ε� = {x ∈ X | π1(γ(x)) = 1} and �aw� = {x ∈ X |
π2(γ(x))(a) ∈ �w�}, where π1 and π2 are the projection maps. The theory map
thγ sends a state to the language accepted by that state in the usual way.

Example 2. Again let C = D = Set and consider the functors P = Q = O−,
B = (O ×−)A and L = A× (1+−), where A and O are fixed sets, thought of as
input and output alphabet, respectively. Then B-coalgebras are Mealy machines
and the initial L-algebra is given by the set A+ of finite non-empty words over
A. For X ∈ C, the one-step semantics δX : A × (1 + OX) → OBX is defined
by δX(a, inl(∗)) = λf.π1(f(a)) and δX(a, inr(g)) = λf.g(π2(f(a))). Concretely,
formulas are words in A+; the (O-valued) semantics of w ∈ A+ at state x is the
output o ∈ O that is produced after processing the input w from state x.

Example 3. Let C = Set and D = BA, where the latter denotes the cate-
gory of Boolean algebras. Again P = 2−, but this time 2X is interpreted as
a Boolean algebra. The functor Q maps a Boolean algebra to the collection
of ultrafilters over it [7]. Furthermore B = (P−)A where P denotes covariant
power set and A a set of actions. Coalgebras for this functor correspond to
labelled transition systems, where a state has a set of successors that depends
on the action/input from A. The dual functor L : BA → BA is defined as
LY := FBA({〈a〉 y | a ∈ A, y ∈ Y })/ ≡ where FBA : Set → BA denotes the
free Boolean algebra functor and where, roughly speaking, ≡ is the congruence
generated from the axioms 〈a〉 ⊥ ≡ ⊥ and 〈a〉 (y1 ∨ y2) ≡ 〈a〉 (y1) ∨ 〈a〉 (y2)
for each a ∈ A. This is explained in more detail in [21]. The initial algebra for
this functor is the so-called Lindenbaum-Tarski algebra [7] of modal formulas
(φ ::=⊥| φ ∨ φ | ¬φ | 〈a〉 φ) quotiented by logical equivalence. The definition of
an appropriate δ can be found in, e.g., [21]—the semantics � � of a formula then
amounts to the standard one [7].

Different types of probabilistic transition systems also fit into the dual
adjunction framework, see, e.g, [17].

Subobjects and Intersection-Preserving Functors. We denote by Sub(X) the col-
lection of subobjects of an object X ∈ C. Let ≤ be the order on subobjects
s : S � X, s′ : S′ � X given by s ≤ s′ iff there is m : S → S′ s.t. s = s′ ◦m. The
intersection

∧
J � X of a family J = {si : Si → X}i∈I is defined as the greatest

68 S. Barlocco et al.

lower bound w.r.t. the order ≤. In a complete category, it can be computed by
(wide) pullback. We denote the maps in the limiting cone by xi :

∧
J � Si.

For a functor B : C → D, we say B preserves (wide) intersections if it
preserves these wide pullbacks, i.e., if (B(

∧
J), {Bxi}i∈I) is the pullback of

{Bsi : BSi → BX}i∈I . By [2, Lemma 3.53] (building on [29]), finitary func-
tors on Set ‘almost’ preserve wide intersections: for every such functor B there
is a functor B′ which preserves wide intersections and agrees with B on all
non-empty sets. Finally, if B preserves intersections, then it preserves monos.

Minimality Notions. The algorithm that we will describe in this paper learns
a minimal and reachable representation of an object. The intuitive notions of
minimality and reachability are formalised as follows.

Definition 4. We call a B-coalgebra (X, γ) minimal w.r.t. logical equivalence
if the theory map thγ : X → QΦ is a monomorphism.

Definition 5. We call a pointed B-coalgebra (X, γ, x0) reachable if for any sub-
object s : S → X and s0 : 1 → S with x0 = s ◦ s0: if S is a subcoalgebra of (X, γ)
then s is an isomorphism.

For expressive logics [27], behavioural equivalence coincides with logical equiv-
alence. Hence, in that case, our algorithm learns a “well-pointed coalgebra” in
the terminology of [2], i.e., a pointed coalgebra that is reachable and minimal
w.r.t. behavioural equivalence. All logics appearing in this paper are expressive.

Assumption on C and Factorisation System. Throughout the paper we will
assume that C is a complete and well-powered category. Well-powered means that
for each X ∈ C the collection Sub(X) of subobjects of a given object forms a set.
Our assumptions imply [10, Proposition 4.4.3] that every morphism f in C factors
uniquely (up to isomorphism) as f = m ◦ e with m a mono and e a strong epi.

X Y

U Z

h

e

g
d

m

(4)

Recall that an epimorphism e : X →
Y is strong if for every commutative
square in (4) where the bottom arrow is
a monomorphism, there exists a unique
diagonal morphism d such that the
entire diagram commutes.

4 Subformula Closed Collections of Formulas

Our learning algorithm will construct conjectures that are “partially” cor-
rect, i.e., correct with respect to a subobject of the collection of all formu-
las/tests. Recall this collection of all tests are formalised in our setting as
the initial L-algebra (Φ,α : LΦ → Φ). To define a notion of partial correct-
ness we need to consider subobjects of Φ to which we can restrict the theory
map. This is formalised via the notion of “subformula closed” subobject of Φ.

Coalgebra Learning via Duality 69

LX LY

X Y

Lg†

gf

g†
(5)

The definition of such subobjects is based on the
notion of recursive coalgebra. For L : D → D an
endofunctor, a coalgebra f : X → LX is called
recursive if for every L-algebra g : LY → Y there
is a unique ‘coalgebra-to-algebra’ map g† mak-
ing (5) commute.

Definition 6. A subobject j : Ψ → Φ is called a subformula closed collection (of
formulas) if there is a unique L-coalgebra structure σ : Ψ → LΨ such that (Ψ, σ)
is a recursive L-coalgebra and j is the (necessarily unique) coalgebra-to-algebra
map from (Ψ, σ) to the initial algebra (Φ,α).

Remark 7. The uniqueness of σ in Definition 6 is implied if L preserves
monomorphisms. This is the case in our examples. The notion of recursive coal-
gebra goes back to [23,28]. The paper [1] contains a claim that the first item
of our definition of subformula closed collection is implied by the second one
if L preserves preimages. In our examples both properties of (Ψ, σ) are verified
directly, rather than by relying on general categorical results.

Example 8. In the setting of Example 1, where the initial L-algebra is based on
the set A∗ of words over the set (of inputs) A, a subset Ψ ⊆ A∗ is subformula-
closed if it is suffix-closed, i.e., if for all aw ∈ Ψ we have w ∈ Ψ as well.

Example 9. In the setting that B = (P−)A for some set of actions A, C = Set
and D = BA, the logic is given as a functor L on Boolean algebras as discussed in
Example 3. As a subformula closed collection is an object in Ψ , we are not simply
dealing with a set of formulas, but with a Boolean algebra. The connection to
the standard notion of being closed under taking subformulas in modal logic [7]
can be sketched as follows: given a set Δ of modal formulas that is closed under
taking subformulas, we define a Boolean algebra ΨΔ ⊆ Φ as the smallest Boolean
subalgebra of Φ that is generated by the set Δ̂ = {[φ]Φ | φ ∈ Δ} where for a
formula φ we let [φ]Φ ∈ Φ denote its equivalence class in Φ.

It is then not difficult to define a suitable σ : ΨΔ → LΨΔ. As ΨΔ is generated
by closing Δ̂ under Boolean operations, any two states x1, x2 in a given coalgebra
(X, γ) satisfy (∀b ∈ ΨΔ.x1 ∈ �b� ⇔ x2 ∈ �b�) iff

(
∀b ∈ Δ̂.x1 ∈ �b� ⇔ x2 ∈ �b�

)
.

In other words, equivalence w.r.t. ΨΔ coincides with equivalence w.r.t. the set of
formulas Δ. This explains why in the concrete algorithm, we do not deal with
Boolean algebras explicitly, but with subformula closed sets of formulas instead.

X

γ

��

thγ
Ψ �� QΨ

BX
Bthγ

Ψ �� BQΨ
δ�

Ψ �� QLΨ

Qσ

��
(6)

The key property of subformula
closed collections Ψ is that we can
restrict our attention to the so-called
Ψ -theory map. Intuitively, subformula
closedness is what allows us to define
this theory map inductively.

70 S. Barlocco et al.

Lemma 10. Let Ψ
j

� Φ be a sub-formula closed collection, with coalgebra struc-
ture σ : Ψ → LΨ . Then thγ

Ψ = Qj ◦ thγ
Φ is the unique map making (6) commute.

We call thγ
Ψ the Ψ -theory map, and omit the Ψ if it is clear from the context.

5 Reachability and the Base

In this section, we define the notion of base of an endofunctor, taken from [8].
This allows us to speak about the (direct) successors of states in a coalgebra,
and about reachability, which are essential ingredients of the learning algorithm.

Definition 11. Let B : C → C be an endofunctor. We say B has a base if for
every arrow f : X → BY there exist g : X → BZ and m : Z � Y with m a
monomorphism such that f = Bm◦g, and for any pair g′ : X → BZ ′,m′ : Z ′ �
Y with Bm′◦g′ = f and m′ a monomorphism there is a unique arrow h : Z → Z ′

such that Bh ◦ g = g′ and m′ ◦ h = m, see Diagram (7). We call (Z, g,m) the
(B)-base of the morphism f .

X BZ BY

BZ ′

f

g

g′

Bh

Bm

Bm′

(7)

We sometimes refer to m : Z � Y as the
base of f , omitting the g when it is irrelevant,
or clear from the context. Note that the ter-
minology ‘the’ base is justified, as it is easily
seen to be unique up to isomorphism.

For example, let B : Set → Set, BX =
2 × XA. The base of a map f : X → BY is given by m : Z � Y , where Z =
{(π2 ◦ f)(x)(a) | x ∈ X, a ∈ A}, and m is the inclusion. The associated g : X →
BZ is the corestriction of f to BZ.

For B = (P−)A : Set → Set, the B-base of f : X → Y is given by the inclusion
m : Z � Y , where Z = {y ∈ Y | ∃x ∈ X,∃a ∈ A s.t. y ∈ f(x)(a)}.

Proposition 12. Suppose C is complete and well-powered, and B : C → C pre-
serves (wide) intersections. Then B has a base.

If C is a locally presentable category, then it is complete and well-powered [3,
Remark 1.56]. Hence, in that case, any functor B : C → C which preserves inter-
sections has a base. The following lemma will be useful in proofs.

Lemma 13. Let B : C → C be a functor that has a base and that preserves pre-
images. Let f : S → BX and h : X → Y be morphisms, let (Z, g,m) be the base
of f and let e : Z → W,m′ : W → Y be the (strong epi, mono)-factorisation of
h ◦ m. Then (W,Be ◦ g,m′) is the base of Bh ◦ f .

The B-base provides an elegant way to relate reachability within a coalgebra
to a monotone operator on the (complete) lattice of subobjects of the carrier of
the coalgebra. Moreover, we will see that the least subcoalgebra that contains
a given subobject of the carrier can be obtained via a standard least fixpoint
construction. Finally, we will introduce the notion of prefix closed subobject of a
coalgebra, generalising the prefix closedness condition from Angluin’s algorithm.

Coalgebra Learning via Duality 71

By our assumption on C at the end of Sect. 3, the collection of subobjects
(Sub(X),≤) ordered as usual (cf. Section 3) forms a complete lattice. Recall that
the meet on Sub(X) (intersection) is defined via pullbacks. In categories with
coproducts, the join s1 ∨s2 of subobjects s1, s2 ∈ Sub(X) is defined as the mono
part of the factorisation of the map [s1, s2] : S1+S2 → X, i.e., [s1, s2] = (s1∨s2)◦e
for a strong epi e. In Set, this amounts to taking the union of subsets.

S

g

��

s �� X

γ

��
BΓ (S)

BΓ B
γ (s)

�� BX

(8)

For a binary join s1 ∨ s2 we denote by
inl∨ : S1 → (S1∨S2) and inr∨ : S2 → (S1∨S2)
the embeddings that exist by si ≤ s1 ∨ s2 for
i = {1, 2}. Let us now define the key operator
of this section.

Definition 14. Let B be a functor that has a base, s : S � X a subobject of
some X ∈ C and let (X, γ) be a B-coalgebra. Let (Γ (S), g, ΓB

γ (s)) be the B-base
of γ ◦s, see Diagram (8). Whenever B and γ are clear from the context, we write
Γ (s) instead of ΓB

γ (s).

Lemma 15. Let B : C → C be a functor with a base and let (X, γ) be a B-
coalgebra. The operator Γ : Sub(X) → Sub(X) defined by s �→ Γ (s) is monotone.

Intuitively, Γ computes for a given set of states S the set of “immediate succes-
sors”, i.e., the set of states that can be reached by applying γ to an element of S.
We will see that pre-fixpoints of Γ correspond to subcoalgebras. Furthermore,
Γ is the key to formulate our notion of closed table in the learning algorithm.

Proposition 16. Let s : S � X be a subobject and (X, γ) ∈ Coalg(B) for X ∈ C
and B : C → C a functor that has a base. Then s is a subcoalgebra of (X, γ) if
and only if Γ (s) ≤ s. Consequently, the collection of subcoalgebras of a given
B-coalgebra forms a complete lattice.

Using this connection, reachability of a pointed coalgebra (Definition 5) can be
expressed in terms of the least fixpoint lfp of an operator defined in terms of Γ .

Theorem 17. Let B : C → C be a functor that has a base. A pointed B-coalgebra
(X, γ, x0) is reachable iff X ∼= lfp(Γ ∨ x0) (isomorphic as subobjects of X, i.e.,
equal).

This justifies defining the reachable part from an initial state x0 : 1 � X as the
least fixpoint of the monotone operator Γ ∨ x0. Standard means of computing
the least fixpoint by iterating this operator then give us a way to compute this
subcoalgebra. Further, Γ provides a way to generalise the notion of “prefixed
closedness” from Angluin’s L∗ algorithm to our categorical setting.

Definition 18. Let s0, s ∈ Sub(X) for some X ∈ C and let (X, γ) be a B-
coalgebra. We call s s0-prefix closed w.r.t. γ if s =

∨n
i=0 si for some n ≥ 0 and

a collection {si | i = 1, . . . , n} with sj+1 ≤ Γ (
∨j

i=0 si) for all j with 0 ≤ j < n.

72 S. Barlocco et al.

6 Learning Algorithm

We define a general learning algorithm for B-coalgebras. First, we describe
the setting, in general and slightly informal terms. The teacher has a pointed
B-coalgebra (X, γ, s0). Our task is to ‘learn’ a pointed B-coalgebra (S, γ̂, ŝ0) s.t.:

– (S, γ̂, ŝ0) is correct w.r.t. the collection Φ of all tests, i.e., the theory of (X, γ)
and (S, γ̂) coincide on the initial states s0 and ŝ0, (Definition 25);

– (S, γ̂, ŝ0) is minimal w.r.t. logical equivalence;
– (S, γ̂, ŝ0) is reachable.

The first point means that the learned coalgebra is ‘correct’, that is, it agrees
with the coalgebra of the teacher on all possible tests from the initial state. For
instance, in case of deterministic automata and their logic in Example 1, this
just means that the language of the learned automaton is the correct one.

In the learning game, we are only provided limited access to the coalgebra
γ : X → BX. Concretely, the teacher gives us:

– for any subobject S � X and sub-formula closed subobject Ψ of Φ, the

composite theory map S X QΨ ;
thγ

Ψ

– for (S, γ̂, ŝ0) a pointed coalgebra, whether or not it is correct w.r.t. the col-
lection Φ of all tests;

– in case of a negative answer to the previous question, a counterexample, which
essentially is a subobject Ψ ′ of Φ representing some tests on which the learned
coalgebra is wrong (defined more precisely below);

– for a given subobject S of X, the ‘next states’; formally, the computation of
the B-base of the composite arrow S X BX.

γ

The first three points correspond respectively to the standard notions of mem-
bership query (‘filling in’ the table with rows S and columns Ψ), equivalence
query and counterexample generation. The last point, about the base, is more
unusual: it does not occur in the standard algorithm, since there a canonical
choice of (X, γ) is used, which allows to represent next states in a fixed manner.
It is required in our setting of an arbitrary coalgebra (X, γ).

In the remainder of this section, we describe the abstract learning algorithm
and its correctness. First, we describe the basic ingredients needed for the algo-
rithm: tables, closedness, counterexamples and a procedure to close a given table
(Sect. 6.1). Based on these notions, the actual algorithm is presented (Sect. 6.2),
followed by proofs of correctness and termination (Sect. 6.3).

Assumption 19. Throughout this section, we assume

– that we deal with coalgebras over the base category C = Set;
– a functor B : C → C that preserves pre-images and wide intersections;
– a category D with an initial object 0 s.t. arrows with domain 0 are monic;
– a functor L : D → D with an initial algebra LΦ

∼=→ Φ;
– an adjunction P 	 Q : C � Dop, and a logic δ : LP ⇒ PB.

Coalgebra Learning via Duality 73

Moreover, we assume a pointed B-coalgebra (X, γ, s0).

Remark 20. We restrict to C = Set, but see it as a key contribution to state the
algorithm in categorical terms: the assumptions cover a wide class of functors
on Set, which is the main direction of generalisation. Further, the categorical
approach will enable future generalisations. The assumptions on the category C
are: it is complete, well-powered and satisfies that for all (strong) epis q : S →
S ∈ C and all monos i : S′ → S such that q ◦ i is mono there is a morphism
q−1 : S → S such that (i) q ◦ q−1 = id and q−1 ◦ q ◦ i = i.

6.1 Tables and Counterexamples

Definition 21. A table is a pair (S
s� X,Ψ

i� Φ) consisting of a subobject s
of X and a subformula-closed subobject i of Φ.

To make the notation a bit lighter, we sometimes refer to a table by (S, Ψ), using
s and i respectively to refer to the actual subobjects. The pair (S, Ψ) represents
‘rows’ and ‘columns’ respectively, in the table; the ‘elements’ of the table are
given abstractly by the map thγ

Ψ ◦ s. In particular, if C = D = Set and Q = 2−,
then this is a map S → 2Ψ , assigning a Boolean value to every pair of a row
(state) and a column (formula).

S X QΨ

Γ (S) X

s thγ

Γ (s)

k
thγ

(9)
For the definition of closedness,

we use the operator Γ (S) from Def-
inition 14, which characterises the
successors of a subobject S � X.

Definition 22. A table (S, Ψ) is closed if there exists a map k : Γ (S) → S
such that Diagram (9) commutes. A table (S, Ψ) is sharp if the composite map

S X QΨs thγ

is monic.

Thus, a table (S, Ψ) is closed if all the successors of states (elements of Γ (S))
are already represented in S, up to equivalence w.r.t. the tests in Ψ . In other
terms, the rows corresponding to successors of existing rows are already in the
table. Sharpness amounts to minimality w.r.t. logical equivalence: every row has
a unique value. The latter will be an invariant of the algorithm (Theorem 32).

S X BX

BS BX BQΨ

s

γ̂

γ

Bthγ

Bs Bthγ

(10)

A conjecture is a coalgebra on S,
which is not quite a subcoalgebra of
X: instead, it is a subcoalgebra ‘up to
equivalence w.r.t. Ψ ’, that is, the suc-
cessors agree up to logical equivalence.
Definition 23. Let (S, Ψ) be a table. A coalgebra structure γ̂ : S → BS is called
a conjecture (for (S, Ψ)) if Diagram (10) commutes.
It is essential to be able to construct a conjecture from a closed table. The
following, stronger result is a variation of Proposition 16.
Theorem 24. A sharp table is closed iff there exists a conjecture for it. More-
over, if the table is sharp and B preserves monos, then this conjecture is unique.

74 S. Barlocco et al.

X

1 S QΨ

thγ

ŝ0

s0

th γ̂

(11)

Our goal is to learn a pointed coalgebra
which is correct w.r.t. all formulas. To
this aim we ensure correctness w.r.t.
an increasing sequence of subformula
closed collections Ψ .

Definition 25. Let (S, Ψ) be a table, and let (S, γ̂, ŝ0) be a pointed B-coalgebra
on S. We say (S, γ̂, ŝ0) is correct w.r.t. Ψ if Diagram (11) commutes.

All conjectures constructed during the learning algorithm will be correct w.r.t.
the subformula closed collection Ψ of formulas under consideration.

Lemma 26. Suppose (S, Ψ) is closed, and γ̂ is a conjecture. Then thγ
Ψ ◦ s =

th γ̂
Ψ : S → QΨ . If ŝ0 : 1 → S satisfies s◦ ŝ0 = s0 then (S, γ̂, ŝ0) is correct w.r.t. Ψ .

We next define the crucial notion of counterexample to a pointed coalgebra: a
subobject Ψ ′ of Ψ on which it is ‘incorrect’.
Definition 27. Let (S, Ψ) be a table, and let (S, γ̂, ŝ0) be a pointed B-coalgebra
on S. Let Ψ ′ be a subformula closed subobject of Φ, such that Ψ is a subcoalgebra
of Ψ ′. We say Ψ ′ is a counterexample (for (S, γ̂, ŝ0), extending Ψ) if (S, γ̂, ŝ0)
is not correct w.r.t. Ψ ′.
The following elementary lemma states that if there are no more counterexamples
for a coalgebra, then it is correct w.r.t. the object Φ of all formulas.
Lemma 28. Let (S, Ψ) be a table, and let (S, γ̂, ŝ0) be a pointed B-coalgebra on
S. Suppose that there are no counterexamples for (S, γ̂, ŝ0) extending Ψ . Then
(S, γ̂, ŝ0) is correct w.r.t. Φ.

The following describes, for a given table, how to extend it with the successors
(in X) of all states in S. As we will see below, by repeatedly applying this
construction, one eventually obtains a closed table.
Definition 29. Let (S, Ψ) be a sharp table. Let (S, q, r) be the (strong epi,
mono)-factorisation of the map thγ ◦ (s ∨ Γ (s)), as in the diagram:

S ∨ Γ (S) X QΨ

S

s∨Γ (s)

q

thγ

r

We define close(S, Ψ) := {s : S � X | thγ ◦ s = r, s ≤ s ≤ s ∨ Γ (s)}. For each
s ∈ close(S, Ψ) we have s ≤ s and thus s = s ◦ κ for some κ : S → S.

Lemma 30. In Definition 29, for each s ∈ close(S, Ψ), we have κ = q ◦ inl∨.

We will refer to κ = q ◦ inl∨ as the connecting map from s to s.

Lemma 31. In Definition 29, if there exists q−1 : S → S ∨ Γ (S) such that
q ◦ q−1 = id and q−1 ◦ q ◦ inl∨ = inl∨, then close(S, Ψ) is non-empty.

By our assumptions, the hypothesis of Lemma 31 is satisfied (Remark 20), hence
close(S, Ψ) is non-empty. It is precisely (and only) at this point that we need the
strong condition about existence of right inverses to epimorphisms.

Coalgebra Learning via Duality 75

6.2 The Algorithm

Having defined closedness, counterexamples and a procedure for closing a table,
we are ready to define the abstract algorithm. In the algorithm, the teacher
has access to a function counter((S, γ̂, ŝ0), Ψ), which returns the set of all coun-
terexamples (extending Ψ) for the conjecture (S, γ̂, ŝ0). If this set is empty, the
coalgebra (S, γ̂, ŝ0) is correct (see Lemma 28), otherwise the teacher picks one
of its elements Ψ ′. We also make use of close(S, Ψ), as given in Definition 29.

Algorithm 1. Abstract learning algorithm

1: (S
s� X) ← (1

s0� X)
2: ŝ0 ← id1
3: Ψ ← 0
4: while true do
5: while (S

s� X, Ψ) is not closed do

6: let (S
s� X) ∈ close(S, Ψ), with connecting map κ : S � S

7: (S
s� X) ← (S

s� X)
8: ŝ0 ← κ ◦ ŝ0
9: end while

10: let (S, γ̂) be a conjecture for (S, Ψ)
11: if counter((S, γ̂, ŝ0), Ψ) = ∅ then
12: return (S, γ̂, ŝ0)
13: else
14: Ψ ← Ψ ′ for some Ψ ′ ∈ counter((S, γ̂, ŝ0), Ψ)
15: end if
16: end while

The algorithm takes as input the coalgebra (X, γ, s0) (which we fixed
throughout this section). In every iteration of the outside loop, the table is
first closed by repeatedly applying the procedure in Definition 29. Then, if the
conjecture corresponding to the closed table is correct, the algorithm returns it
(Line 12). Otherwise, a counterexample is chosen (Line 14), and the algorithm
continues.

6.3 Correctness and Termination

Correctness is stated in Theorem 33. It relies on establishing loop invariants:

Theorem 32. The following is an invariant of both loops in Algorithm1 in
Sect. 6.2: 1. (S, Ψ) is sharp, 2. s ◦ ŝ0 = s0, and 3. s is s0-prefix closed w.r.t. γ.

Theorem 33. If Algorithm1 in Sect. 6.2 terminates, then it returns a pointed
coalgebra (S, γ̂, ŝ0) which is minimal w.r.t. logical equivalence, reachable and cor-
rect w.r.t. Φ.

76 S. Barlocco et al.

In our termination arguments, we have to make an assumption about the
coalgebra which is to be learned. It does not need to be finite itself, but it
should be finite up to logical equivalence—in the case of deterministic automata,
for instance, this means the teacher has a (possibly infinite) automaton repre-
senting a regular language. To speak about this precisely, let Ψ be a subob-
ject of Φ. We take a (strong epi, mono)-factorisation of the theory map, i.e.,

thγ
Ψ =

(

X
eΨ �� �� |X|Ψ �� mΨ �� QΨ

)

for some strong epi e and mono m. We call

the object |X|Ψ in the middle the Ψ -logical quotient. For the termination result
(Theorem 37), |X|Φ is assumed to have finitely many quotients and subobjects,
which just amounts to finiteness, in Set.

We start with termination of the inner while loop (Corollary 36). This relies
on two results: first, that once the connecting map κ is an iso, the table is closed,
and second, that—under a suitable assumption on the coalgebra (X, γ)—during
execution of the inner while loop, the map κ will eventually be an iso.

Theorem 34. Let (S, Ψ) be a sharp table, let S ∈ close(S, Ψ) and let κ : S → S
be the connecting map. If κ is an isomorphism, then (S, Ψ) is closed.

Lemma 35. Consider a sequence of sharp tables (Si

si� X,Ψ)i∈N such that
si+1 ∈ close(Si, Ψ) for all i. Moreover, let (κi : Si → Si+1)i∈N be the connect-
ing maps (Definition 29). If the logical quotient |X|Φ of X has finitely many
subobjects, then κi is an isomorphism for some i ∈ N.

Corollary 36. If the Φ-logical quotient |X|Φ has finitely many subobjects, then
the inner while loop of Algorithm 1 terminates.

For the outer loop, we assume that |X|Φ has finitely many quotients, ensuring
that every sequence of counterexamples proposed by the teacher is finite.

Theorem 37. If the Φ-logical quotient |X|Φ has finitely many quotients and
finitely many subobjects, then Algorithm 1 terminates.

7 Future Work

We showed how duality plays a natural role in automata learning, through the
central connection between states and tests. Based on this foundation, we proved
correctness and termination of an abstract algorithm for coalgebra learning. The
generality is not so much in the base category (which, for the algorithm, we take
to be Set) but rather in the functor used; we only require a few mild conditions
on the functor, and make no assumptions about its shape. The approach is thus
considered coalgebra learning rather than automata learning.

Returning to automata, an interesting direction is to extend the present work
to cover learning of, e.g., non-deterministic or alternating automata [5,9] for a
regular language. This would require explicitly handling branching in the type of
coalgebra. One promising direction would be to incorporate the forgetful logics

Coalgebra Learning via Duality 77

of [19], which are defined within the same framework of coalgebraic logic as the
current work. It is not difficult to define in this setting what it means for a table
to be closed ‘up to the branching part’, stating, e.g., that even though the table
is not closed, all the successors of rows are present as combinations of other rows.

Another approach would be to integrate monads into our framework, which
are also used to handle branching within the theory of coalgebras [16]. It is an
intriguing question whether the current approach, which allows to move beyond
automata-like examples, can be combined with the CALF framework [13], which
is very far in handling branching occurring in various kinds of automata.

Acknowledgments. We are grateful to Joshua Moerman, Nick Bezhanishvili, Gerco
van Heerdt, Aleks Kissinger and Stefan Milius for valuable discussions and suggestions.

References

1. Adámek, J., Lücke, D., Milius, S.: Recursive coalgebras of finitary functors. ITA
41(4), 447–462 (2007)

2. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Logical
Methods Comput. Sci. 9(3) (2013)

3. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge
Tracts in Mathematics. Cambridge University Press, Cambridge (1994)

4. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

5. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating
automata. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp. 3308–3314. AAAI
Press (2015)

6. Barlocco, S., Kupke, C.: Angluin learning via logic. In: Artemov, S., Nerode, A.
(eds.) LFCS 2018. LNCS, vol. 10703, pp. 72–90. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72056-2 5

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

8. Blok, A.: Interaction, observation and denotation. Master’s thesis, ILLC Amster-
dam (2012)

9. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on
Artificial Intelligence, IJCAI 2009, pp. 1004–1009 (2009)

10. Borceux, F.: Handbook of Categorical Algebra. Encyclopedia of Mathematics and
its Applications, vol. 1. Cambridge University Press, Cambridge (1994)

11. van Heerdt, G.: An abstract automata learning framework. Master’s thesis, Rad-
boud Universiteit Nijmegen (2016)

12. van Heerdt, G., Sammartino, M., Silva, A.: CALF: categorical automata learning
framework. In: Goranko, V., Dam, M. (eds.) 26th EACSL Annual Conference on
Computer Science Logic, CSL 2017. LIPIcs, vol. 2, pp. 29:1–29:24. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2017)

13. van Heerdt, G., Sammartino, M., Silva, A.: Learning automata with side-effects.
CoRR, abs/1704.08055 (2017)

14. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-
vation. Cambridge Tracts in Theoretical Computer Science, vol. 59. Cambridge
University Press, Cambridge (2016)

https://doi.org/10.1007/978-3-319-72056-2_5
https://doi.org/10.1007/978-3-319-72056-2_5

78 S. Barlocco et al.

15. Jacobs, B., Silva, A.: Automata learning: a categorical perspective. In: van Breugel,
F., Kashefi, E., Palamidessi, C., Rutten, J. (eds.) Panangaden Festschrift. LNCS,
vol. 8464, pp. 384–406. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06880-0 20

16. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. J. Comput.
Syst. Sci. 81(5), 859–879 (2015)

17. Jacobs, B., Sokolova, A.: Exemplaric expressivity of modal logics. J. Logic Comput.
20(5), 1041–1068 (2009)

18. Klin, B.: Coalgebraic modal logic beyond sets. Electr. Notes Theor. Comput. Sci.
173, 177–201 (2007)

19. Klin, B., Rot, J.: Coalgebraic trace semantics via forgetful logics. Logical Methods
Comput. Sci. 12(4) (2016)

20. Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics.
Electr. Notes Theor. Comput. Sci. 106, 219–241 (2004)

21. Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview.
Theor. Comput. Sci. 412(38), 5070–5094 (2011)

22. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

23. Osius, G.: Categorical set theory: a characterization of the category of sets. J. Pure
Appl. Algebra 4(1), 79–119 (1974)

24. Pavlovic, D., Mislove, M., Worrell, J.B.: Testing semantics: connecting processes
and process logics. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019,
pp. 308–322. Springer, Heidelberg (2006). https://doi.org/10.1007/11784180 24

25. Rutten, J.J.M.M.: Automata and coinduction (an exercise in coalgebra). In: San-
giorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 194–218.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055624

26. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000)

27. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor.
Comput. Sci. 390(2–3), 230–247 (2008)

28. Taylor, P.: Practical Foundations of Mathematics. Cambridge University Press,
Cambridge (1999)

29. Trnková, V.: On descriptive classification of set-functors. I. Comment. Math. Univ.
Carolinae 12(1), 143–174 (1971)

30. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017)

https://doi.org/10.1007/978-3-319-06880-0_20
https://doi.org/10.1007/978-3-319-06880-0_20
https://doi.org/10.1007/11784180_24
https://doi.org/10.1007/BFb0055624

Coalgebra Learning via Duality 79

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Tight Worst-Case Bounds for Polynomial
Loop Programs

Amir M. Ben-Amram1 and Geoff W. Hamilton2(B)

1 School of Computer Science, Tel-Aviv Academic College, Tel Aviv, Israel
amirben@mta.ac.il

2 School of Computing, Dublin City University, Dublin 9, Ireland
hamilton@computing.dcu.ie

Abstract. In 2008, Ben-Amram, Jones and Kristiansen showed that for
a simple programming language—representing non-deterministic imper-
ative programs with bounded loops, and arithmetics limited to addition
and multiplication—it is possible to decide precisely whether a program
has certain growth-rate properties, in particular whether a computed
value, or the program’s running time, has a polynomial growth rate.

A natural and intriguing problem was to improve the precision of the
information obtained. This paper shows how to obtain asymptotically-
tight multivariate polynomial bounds for this class of programs. This is a
complete solution: whenever a polynomial bound exists it will be found.

1 Introduction

One of the most important properties we would like to know about programs is
their resource usage, i.e., the amount of resources (such as time, memory and
energy) required for their execution. This information is useful during devel-
opment, when performance bugs and security vulnerabilities exploiting perfor-
mance issues can be avoided. It is also particularly relevant for mobile applica-
tions, where resources are limited, and for cloud services, where resource usage
is a major cost factor.

In the literature, a lot of different “cost analysis” problems (also called
“resource bound analysis,” etc.) have been studied (e.g. [1,11,13,18,19,24,26,
27]); several of them may be grouped under the following general definition. The
countable resource problem asks about the maximum usage of a “resource” that
accumulates during execution, and which one can explicitly count, by instru-
menting the program with an accumulator variable and instructions to incre-
ment it where necessary. For example, we can estimate the execution time of
a program by counting certain “basic steps”. Another example is counting the
number of visits to designated program locations. Realistic problems of this type
include bounding the number of calls to specific functions, perhaps to system
services; the number of I/O operations; number of accesses to memory, etc. The
consumption of resources such as energy suits our problem formulation as long
as such explicit bookkeeping is possible (we have to assume that the increments,
if not constant, are given by a monotone polynomial expression).
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 80–97, 2019.
https://doi.org/10.1007/978-3-030-17127-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_5&domain=pdf
http://orcid.org/0000-0001-5954-6444
https://doi.org/10.1007/978-3-030-17127-8_5

Tight Worst-Case Bounds for Polynomial Loop Programs 81

In this paper we solve the bound analysis problem for a particular class of
programs, defined in [7]. The bound analysis problem is to find symbolic bounds
on the maximal possible value of an integer variable at the end of the program,
in terms of some integer-valued variables that appear in the initial state of a
computation. Thus, a solution to this problem might be used for any of the
resource-bound analyses above. In this work we focus on values that grow poly-
nomially (in the sense of being bounded by a polynomial), and our goal is to find
polynomial bounds that are tight, in the sense of being precise up to a constant
factor.

The programs we study are expressed by the so-called core language. It is
imperative, including bounded loops, non-deterministic branches and restricted
arithmetic expressions; the syntax is shown in Fig. 1. Semantics is explained and
motivated below, but is largely intuitive; see also the illustrative example in
Fig. 2. In 2008, it was proved [7] that for this language it is decidable whether
a computed result is polynomially bounded or not. This makes the language an
attractive target for work on the problem of computing tight bounds. However,
for the past ten years there has been no improvement on [7]. We now present an
algorithm to compute, for every program in the language, and every variable in
the program which has a polynomial upper bound (in terms of input values), a
tight polynomial bound on its largest attainable value (informally, “the worst-
case value”) as a function of the input values. The bound is guaranteed to be tight
up to a multiplicative constant factor but constants are left implicit (for example
a bound quadratic in n will always be represented as n2). The algorithm could
be extended to compute upper and lower bounds with explicit constant factors,
but choosing to ignore coefficients simplifies the algorithm considerably. In fact,
we have striven for a simple, comprehensible algorithm, and we believe that the
algorithm we present is sufficiently simple that, beyond being comprehensible,
offers insight into the structure of computations in this model.

1.1 The Core Language

Data. It is convenient to assume (without loss of generality) that the only type
of data is non-negative integers. Note that a realistic (not “core”) program may
include many statements that manipulate non-integer data that are not rele-
vant to loop control—so in a complexity analysis, we may be able to abstract
these parts away and still analyze the variables of interest. In other cases, it is

X ∈ Variable ::= X1 | X2 | X3 | . . . | Xn
E ∈ Expression ::= X | E + E | E * E

C ∈ Command ::= skip | X:=E | C1;C2 | loop E {C}
| choose C1 or C2

Fig. 1. Syntax of the core language.

82 A. M. Ben-Amram and G. W. Hamilton

possible to preprocess a program to replace complex data values with their size
(or “norm”), which is the quantity of importance for loop control. Methods for
this process have been widely studied in conjunction with termination and cost
analysis.

Command Semantics. The core language is inherently non-deterministic. The
choose command represents a non-deterministic choice, and can be used to
abstract any concrete conditional command by simply ignoring the condition;
this is necessary to ensure that our analysis problem is decidable. Note that what
we ignore is branches within a loop body and not branches that implement the
loop control, which we represent by a dedicated loop command. The command
loop E {C} repeats C a (non-deterministic) number of times bounded by the
value of E, which is evaluated just before the loop is entered. Thus, as a conser-
vative abstraction, it may be used to model different forms of loops (for-loops,
while-loops) as long as a bound on the number of iterations, as a function of
the program state on loop initiation, can be determined and expressed in the
language. There is an ample body of research on analysing programs to find such
bounds where they are not explicitly given by the programmer; in particular,
bounds can be obtained from a ranking function for the loop [2,3,5,6,23]. Note
that the arithmetic in our language is too restricted to allow for the maintenance
of counters and the creation of while loops, as there is no subtraction, no explicit
constants and no tests. Thus, for realistic “concrete” programs which use such
devices, loop-bound analysis is supposed to be performed on the concrete pro-
gram as part of the process of abstracting it to the core language. This process
is illustrated in [9, Sect. 2].

From a computability viewpoint, the use of bounded loops restricts the pro-
grams that can be represented to such that compute primitive recursive func-
tions; this is a rich enough class to cover a lot of useful algorithms and make the
analysis problem challenging. In fact, our language resembles a weakened version
of Meyer and Ritchie’s LOOP language [20], which computes all the primitive
recursive functions, and where behavioral questions like “is the result linearly
bounded” are undecidable.

loop X1 {

loop X2 + X3 { choose { X3:= X1; X2:= X4 } or { X3:= X4; X2:= X1 } };

X4:= X2 + X3
};

loop X4 { choose { X3:= X1 + X2 + X3 } or { X3:= X2; X2:= X1 } }

Fig. 2. A core-language program. loop n C means “do C at most n times.”

1.2 The Algorithm

Consider the program in Fig. 2. Suppose that it is started with the values of
the variables X1, X2, . . . being x1, x2, Our purpose is to bound the values of

Tight Worst-Case Bounds for Polynomial Loop Programs 83

all variables at the conclusion of the program in terms of those initial values.
Indeed, they are all polynomially bounded, and our algorithm provides tight
bounds. For instance, it establishes that the final value of X3 is tightly bounded
(up to a constant factor) by max(x4(x4 + x2

1), x4(x2 + x3 + x2
1)).

In fact, it produces information in a more precise form, as a disjunction
of simultaneous bounds. This means that it generates vectors, called multi-
polynomials, that give simultaneous bounds on all variables; for example, with
the program in Fig. 2, one such multi-polynomial is 〈x1, x2, x3, x4〉 (this is the
result of all loops taking a very early exit). This form is important in the con-
text of a compositional analysis. To see why, suppose that we provide, for a
command with variables X, Y, the bounds 〈x, y〉 and 〈y, x〉. Then we know that
the sum of their values is always bounded by x+y, a result that would have not
been deduced had we given the bound max(x, y) on each of the variables. The
difference may be critical for the success of analyzing an enclosing or subsequent
command.

Multivariate bounds are often of interest, and perhaps require no justification,
but let us point out that multivariate polynomials are necessary even if we’re
ultimately interested in a univariate bound, in terms of some single initial value,
say n. This is, again, due to the analysis being compositional. When we analyze
an internal command that uses variables X, Y, . . . we do not know in what possible
contexts the command will be executed and how the values of these variables
will be related to n.

Some highlights of our solution are as follows.

– We reduce the problem of analyzing any core-language program to the prob-
lem of analyzing a single loop, whose body is already processed, and therefore
presented as a collection of multi-polynomials. This is typical of algorithms
that analyze a structured imperative language and do so compositionally.

– Since we are computing bounds only up to a constant factor, we work with
abstract polynomials, that have no numeric coefficients.

– We further introduce τ -polynomials, to describe the evolution of values in a
loop. These have an additional parameter τ (for “time”; more precisely, num-
ber of iterations). Introducing τ -polynomials was a key step in the solution.

– The analysis of a loop is simply a closure computation under two operations:
ordinary composition, and generalization which is the operation that predicts
the evolution of values by judiciously adding τ ’s to idempotent abstract multi-
polynomials.

The remainder of this paper is structured as follows. In Sect. 2 we give some
definitions and state our main result. In Sects. 3, 4 and 5 we present our algo-
rithm. In Sect. 6, we outline the correctness proofs. Section 7 considers related
work, and Sect. 8 concludes and discusses ideas for further work.

2 Preliminaries

In this section, we give some basic definitions, complete the presentation of our
programming language and precisely state the main result.

84 A. M. Ben-Amram and G. W. Hamilton

2.1 Some Notation and Terminology

The Language. We remark that in our language syntax there is no special form
for a “program unit”; in the text we sometimes use “program” for the subject
of our analysis, yet syntactically it’s just a command.

Polynomials and Multi-polynomials. We work throughout this article with multi-
variate polynomials in x1, . . . , xn that have non-negative integer coefficients and
no variables other than x1, . . . , xn; when we speak of a polynomial we always
mean one of this kind. Note that over the non-negative integers, such polynomials
are monotonically (weakly) increasing in all variables.

The post-fix substitution operator [a/b] may be applied to any sort of expres-
sion containing a variable b, to substitute a instead; e.g., (x2 + yx + y)[2z/y] =
x2 + 2zx + 2z.

When discussing a command, state-transition, or program trace, with a vari-
able Xi, xi will denote, as a rule, the initial value of this variable, and x′

i its
final value. Thus we distinguish the syntactic entity by the typewriter font. We
write the polynomials manipulated by our algorithms using the variable names
xi. We presume that an implementation of the algorithm represents polynomials
concretely so that ordinary operations such as composition can be applied, but
otherwise we do not concern ourselves much with representation.

The parameter n always refers to the number of variables in the subject
program. The set [n] is {1, . . . , n}. For a set S an n-tuple over S is a mapping
from [n] to S. The set of these tuples is denoted by Sn. Throughout the paper,
various natural liftings of operators to collections of objects is tacitly assumed,
e.g., if S is a set of integers then S + 1 is the set {s + 1 | s ∈ S} and S + S is
{s + t | s, t ∈ S}. We use such lifting with sets as well as with tuples. If S is
ordered, we extend the ordering to Sn by comparing tuples element-wise (this
leads to a partial order, in general, e.g., with natural numbers, 〈1, 3〉 and 〈2, 2〉
are incomparable).

Definition 1. A polynomial transition (PT) represents a mapping of an “input”
state x = 〈x1, . . . , xn〉 to a “result” state x′ = 〈x′

1, . . . , x
′
n〉 = p(x) where

p = 〈p[1], . . . ,p[n]〉 is an n-tuple of polynomials. Such a p is called a a multi-
polynomial (MP); we denote by MPol the set of multi-polynomials, where the
number of variables n is fixed by context.

Multi-polynomials are used in this work to represent the effect of a command.
Various operations will be applied to MPs, mostly obvious—in particular, com-
position (which corresponds to sequential application of the transitions). Note
that composition of multi-polynomials, q◦p, is naturally defined since p supplies
n values for the n variables of q (in other words, they are composed as functions
in N

n → N
n). We define Id to be the identity transformation, x′ = x (in MP

notation: p[i] = xi for i = 1, . . . , n).

Tight Worst-Case Bounds for Polynomial Loop Programs 85

2.2 Formal Semantics of the Core Language

The semantics associates with every command C over variables X1, . . . , Xn a rela-
tion [[C]] ⊆ N

n × N
n. In the expression x[[C]]y, vector x (respectively y) is the

store before (after) the execution of C.
The semantics of skip is the identity. The semantics of an assignment Xi:=E

associates to each store x a new store y obtained by replacing the component xi

by the value of the expression E when evaluated over store x. This is defined in
the natural way (details omitted), and is denoted by [[E]]x. Composite commands
are described by the straight-forward equations:

[[C1; C2]] = [[C2]] ◦ [[C1]]
[[choose C1 or C2]] = [[C1]] ∪ [[C2]]

[[loop E {C}]] = {(x,y) | ∃i ≤ [[E]]x : x[[C]]iy}

where [[C]]i represents [[C]] ◦ · · · ◦ [[C]] (i occurrences of [[C]]); and [[C]]0 = Id .

Remarks. The following two changes may enhance the applicability of the core
language for simulating certain concrete programs; we include them as “options”
because they do not affect the validity of our proofs.

1. The semantics of an assignment operation may be non-deterministic: X:=E
assigns to X some non-negative value bounded by E. This is useful to abstract
expressions which are not in the core language, and also to use the results of
size analysis of subprograms. Such an analysis may determine invariants such
as “the value of f(X,Y) is at most the sum of X and Y.”

2. The domain of the integer variables may be extended to Z. In this case the
bounds that we seek are on the absolute value of the output in terms of
absolute values of the inputs. This change does not affect our conclusions
because of the facts |xy| = |x| · |y| and |x + y| ≤ |x| + |y|. The semantics of
the loop command may be defined either as doing nothing if the loop bound
is not positive, or using the absolute value as a bound.

2.3 Detailed Statement of the Main Result

The polynomial-bound analysis problem is to find, for any given command, which
output variables are bounded by a polynomial in the input values (which are
simply the values of all variables upon commencement of the program), and
to bound these output values tightly (up to constant factors). The problem of
identifying the polynomially-bounded variables is completely solved by [7]. We
rely on that algorithm, which is polynomial-time, to do this for us (as further
explained below).

Our main result is thus stated as follows.

Theorem 1. There is an algorithm which, for a command C, over variables X1
through Xn, outputs a set B of multi-polynomials, such that the following hold,
where PB is the set of indices i of variables Xi which are polynomially bounded
under [[C]].

86 A. M. Ben-Amram and G. W. Hamilton

1. (Bounding) There is a constant cp associated with each p ∈ B, such that

∀x,y . x[[C]]y =⇒ ∃p ∈ B .∀i ∈ PB . yi ≤ cpp[i](x)

2. (Tightness) For every p ∈ B there are constants dp > 0, x0 such that for all
x ≥ x0 there is a y such that

x[[C]]y and ∀i ∈ PB . yi ≥ dpp[i](x).

3 Analysis Algorithm: First Concepts

The following sections describe our analysis algorithm. Naturally, the most intri-
cate part of the analysis concerns loops. In fact we break the description into
stages: first we reduce the problem of analyzing any program to that of analyzing
simple disjunctive loops, defined next. Then, we approach the analysis of such
loops, which is the main effort in this work.

Definition 2. A simple disjunctive loop (SDL) is a finite set of PTs.

The loop is “disjunctive” because its meaning is that in every iteration, any
of the given transitions may be applied. The semantics is formalized by traces
(Definition 4). A SDL does not specify the number of iterations; our analysis
generates polynomials which depend on the number of iterations as well as the
initial state. For this purpose, we now introduce τ -polynomials where τ repre-
sents the number of iterations.

Definition 3. τ -polynomials are polynomials in x1, . . . , xn and τ .

τ has a special status and does not have a separate component in the polyno-
mial giving its value. If p is a τ -polynomial, then p(v1, . . . , vn) is the result of
substituting each vi for the respective xi; and we also write p(v1, . . . , vn, t) for
the result of substituting t for τ as well. The set of τ -polynomials in n variables
(n known from context) is denoted τPol.

Multi-polynomials and polynomial transitions are formed from τ -polynomials
just as previously defined and are used to represent the effect of a variable number
of iterations. For example, the τ -polynomial transition 〈x′

1, x
′
2〉 = 〈x1, x2 + τx1〉

represents the effect of repeating (τ times) the assignment X2:= X2 + X1. The
effect of iterating the composite command: X2:= X2 + X1; X3:= X3 + X2 has an
effect described by x′ = 〈x1, x2 + τx1, x3 + τx2 + τ2x1〉 (here we already have
an upper bound which is not reached precisely, but is correct up to a constant
factor). We denote the set of τ -polynomial transitions by τMPol. We should
note that composition q ◦ p over τMPol is performed by substituting p[i] for
each occurrence of xi in q. Occurrences of τ are unaffected (since τ is not part
of the state). We make a couple of preliminary definitions before reaching our
goal which is the definition of the simple disjunctive loop problem (Definition 6).

Definition 4. Let S be a set of polynomial transitions. An (abstract) trace over
S is a finite sequence p1; . . . ;p|σ| of elements of S. Thus |σ| denotes the length
of the trace. The set of all traces is denoted S∗. We write [[σ]] for the composed
relation p|σ| ◦ · · · ◦ p1 (for the empty trace, ε, we have [[ε]] = Id).

Tight Worst-Case Bounds for Polynomial Loop Programs 87

Definition 5. Let p(x) be a (concrete or abstract) τ -polynomial. We write ṗ for
the sum of linear monomials of p, namely any one of the form axi with constant
coefficient a. We write p̈ for the rest. Thus p = ṗ + p̈.

Definition 6 (Simple disjunctive loop problem). The simple disjunctive
loop problem is: given the set S, find (if possible) a finite set B of τ -polynomial
transitions which tightly bound all traces over S. More precisely, we require:

1. (Bounding) There is a constant cp > 0 associated with each p ∈ B, such that

∀x,y, σ . x[[σ]]y =⇒ ∃p ∈ B .y ≤ cpp(x, |σ|)

2. (Tightness) For every p ∈ B there are constants dp > 0, x0 such that for all
x ≥ x0 there are a trace σ and a state vector y such that

x[[σ]]y ∧ y ≥ ṗ(x, |σ|) + dpp̈(x, |σ|) .

Note that in the lower-bound clause (2), the linear monomials of p are not
multiplied, in the left-hand side, by the coefficient dp; this sets, in a sense, a
stricter requirement for them: if the trace maps x to x2 then the bound 2x2 is
acceptable, but if it maps x to x, the bound 2x is not accepted. The reader may
understand this technicality by considering the effect of iteration: it is important
to distinguish the transition x′

1 = x1, which can be iterated ad libitum, from
the transition x′

1 = 2x1, which produces exponential growth on iteration. Dis-
tinguishing x′

1 = x2
1 from x′

1 = 2x2
1 is not as important. The result set B above is

sometimes called a loop summary. We remark that Definition 6 implies that the
max of all these polynomials provides a “big Theta” bound for the worst-case
(namely biggest) results of the loop’s computation. We prefer, however, to work
with sets of polynomials. Another technical remark is that cp, dp range over real
numbers. However, our data and the coefficients of polynomials remain integers,
it is only such comparisons that are performed with real numbers (specifically,
to allow cp to be smaller than one).

4 Reduction to Simple Disjunctive Loops

We show how to reduce the problem of analysing core-language programs to the
analysis of polynomially-bounded simple disjunctive loops.

4.1 Symbolic Evaluation of Straight-Line Code

Straight-line code consists of atomic commands—namely assignments (or skip,
equivalent to X1:= X1), composed sequentially. It is obvious that symbolic eval-
uation of such code leads to polynomial transitions.

Example 1. X2:= X1; X4:= X2 + X3; X1:= X2 * X3 is precisely represented by
the transition 〈x1, x2, x3〉′ = 〈x1x3, x1, x3, x1 + x3〉.

88 A. M. Ben-Amram and G. W. Hamilton

4.2 Evaluation of Non-deterministic Choice

Evaluation of the command choose C1 or C2 yields a set of possible outcomes.
Hence, the result of analyzing a command will be a set of multi-polynomial
transitions. We express this in the common notation of abstract semantics:

[[C]]S ∈ ℘(MPol) .

For uniformity, we consider [[C]]S for an atomic command to be a singleton in
℘(MPol) (this means that we represent a transition x′ = p(x) by {p}). Compo-
sition is naturally extended to sets, and the semantics of a choice command is
now simply set union, so we have:

[[C1; C2]]
S = [[C2]]

S ◦ [[C1]]
S

[[choose C1 or C2]]
S = [[C1]]

S ∪ [[C2]]
S

Example 2. X2:= X1; choose { X4:= X2 + X3 } or { X1:= X2 * X3 } is represe-
nted by the set {〈x1, x1, x3, x1 + x3〉, 〈x1x3, x1, x3, x4〉}.

4.3 Handling Loops

The above shows that any loop-free command in our language can be precisely
represented by a finite set of PTs. Consequently, the problem of analyzing any
command is reduced to the analysis of simple disjunctive loops.

Suppose that we have an algorithm Solve that takes a simple disjunctive
loop and computes tight bounds for it (see Definition 6). We use it to complete
the analysis of any program by the following definition:

[[loop E {C}]]S = (Solve([[C]]S)[E/τ] .

Thus, the whole solution is constructed as an ordinary abstract interpre-
tation, following the semantics of the language, except for procedure Solve,
described below.

Example 3. X4:= X1; loop X4 { X2:= X1 + X2; X3:= X2 }.
The loop includes just one PT. Solving the loop yields a set L = {〈x1, x2, x3, x4〉,
〈x1, x2 + τx1, x2 + τx1, x4〉} (the first MP accounts for zero iterations, the sec-
ond covers any positive number of iterations). We can now compute the effect
of the given command as

L[x4/τ] ◦ [[X4 := X1]]
S = L[x4/τ] ◦ {〈x1, x2, x3, x1〉}

= {〈x1, x2, x3, x1〉, 〈x1, x2 + x2
1, x2 + x2

1, x1〉}.

Tight Worst-Case Bounds for Polynomial Loop Programs 89

The next section describes procedure Solve, and operates under the assump-
tion that all variables are polynomially bounded in the loop. However, a loop
can generate exponential growth. To cover this eventuality, we first apply the
algorithm of [7] which identifies which variables are polynomially bounded. If
some Xi is not polynomially bounded we replace the ith component of all the
loop transitions with xn (where we assume xn to be a dedicated, unmodified
variable). Clearly, after this change, all variables are polynomially bounded;
moreover, variables which are genuinely polynomial are unaffected, because they
cannot depend on a super-exponential quantity (given the restricted arithmetics
in our language). In reporting the results of the algorithm, we should display
“super-polynomial” instead of all bounds that depend on xn.

5 Simple Disjunctive Loop Analysis Algorithm

Intuitively, evaluating loop E {C} abstractly consists of simulating any finite
number of iterations, i.e., computing

Qi = {Id} ∪ P ∪ (P ◦ P) ∪ · · · ∪ P (i) (1)

where P = [[C]]S ∈ ℘(MPol). The question now is whether the sequence (1)
reaches a fixed point. In fact, it often doesn’t. However, it is quite easy to see
that in the multiplicative fragment of the language, that is, where the addition
operator is not used, such non-convergence is associated with exponential growth.
Indeed, since there is no addition, all our polynomials are monomials with a
leading coefficient of 1 (monic monomials)—this is easy to verify. It follows that
if the sequence (1) does not converge, higher and higher exponents must appear,
which indicates that some variable cannot be bounded polynomially. Taking the
contrapositive, we conclude that if all variables are known to be polynomially
bounded the sequence will converge. Thus we have the following easy (and not
so satisfying) result:

Observation 2. For a SDL that does not use addition, the sequence Qi as in
(1) reaches a fixed point, and the fixed point provides tight bounds for all the
polynomially-bounded variables.

When we have addition, we find that knowing that all variables are polyno-
mially bounded does not imply convergence of the sequence (1). An example is:
loop X3 { X1:= X1 + X2 } yielding the infinite sequence of MPs 〈x1, x2, x3〉,
〈x1 + x2, x2, x3〉, 〈x1 + 2x2, x2, x3〉, . . . Our solution employs two means. One
is the introduction of τ -polynomials, already presented. The other is a kind of
abstraction—intuitively, ignoring the concrete values of (non-zero) coefficients.
Let us first define this abstraction:

Definition 7. APol, the set of abstract polynomials, consists of formal sums
of distinct monomials over x1, . . . , xn, where the coefficient of every mono-
mial included is 1. We extend the definition to an abstraction of τ -polynomials,
denoted τAPol.

90 A. M. Ben-Amram and G. W. Hamilton

The meaning of abstract polynomials is given by the following rules:

1. The abstraction of a polynomial p, α(p), is obtained by modifying all (non-
zero) coefficients to 1.

2. Addition and multiplication in τAPol is defined in a natural way so that α(p)+
α(q) = α(p + q) and α(p) · α(q) = α(p · q) (to carry these operations out, you
just go through the motions of adding or multiplying ordinary polynomials,
ignoring the coefficient values).

3. The canonical concretization of an abstract polynomial, γ(p) is obtained by
simply regarding it as an ordinary polynomial.

4. These definitions extend naturally to tuples of (abstract) polynomials.
5. The set of abstract multi-polynomials AMPol and their extension with τ

(τAMPol) are defined as n-tuples over APol (respectively, τAPol). We use
AMP as an abbreviation for abstract multi-polynomial.

6. Composition p •q, for p,q ∈ AMPol (or τAMPol) is defined as α(γ(p) ◦ γ(q));
it is easy to see that one can perform the calculation without the detour
through polynomials with coefficients. The different operator symbol (“•”
versus “◦”) helps in disambiguating expressions.

Analysing a SDL. To analyse a SDL specified by a set of MPs S, we start
by computing α(S). The rest of the algorithm computes within τAMPol. We
define two operations that are combined in the analysis of loops. The first, which
we call closure, is simply the fixed point of accumulated iterations as in the
multiplicative case. It is introduced by the following two definitions.

Definition 8 (iterated composition). Let t be any abstract τ -MP. We define
t•(n), for n ≥ 0, by:

t•(0) = Id

t•(n+1) = t • t•(n).

For a set T of abstract τ -MPs, we define, for n ≥ 0:

T •(0) = {Id}
T •(n+1) = T •(n) ∪

⋃

q∈T , p∈T •(n)

q •p .

Note that t•(n) = α(γ(t)(n)), where p(n) is defined using ordinary composition.

Definition 9 (abstract closure). For finite P ⊂ τAMPol, we define:

Cl(P) =
∞⋃

i=0

P •(i) .

In the correctness proof, we argue that when all variables are polynomially
bounded in a loop S, the closure of α(S) can be computed in finite time; equiva-
lently, it equals

⋃k
i=0(α(S))•(i) for some k. The argument is essentially the same

as in the multiplicative case.

Tight Worst-Case Bounds for Polynomial Loop Programs 91

The second operation is called generalization and its role is to capture the
behaviour of accumulator variables, meaning variables that grow by accumulat-
ing increments in the loop, and make explicit the dependence on the number of
iterations. The identification of which additive terms in a MP should be consid-
ered as increments that accumulate is at the heart of our problem, and is greatly
simplified by concentrating on idempotent AMPs.

Definition 10. p ∈ τAMPol is called idempotent if p •p = p.

Note that this is composition in the abstract domain. So, for instance, 〈x1, x2〉
is idempotent, and so is 〈x1 + x2, x2〉, while 〈x1x2, x2〉 and 〈x1 + x2, x1〉 are not.

Definition 11. For p an (abstract) multi-polynomial, we say that xi is self-
dependent in p if p[i] depends on xi. We call a monomial self-dependent if all
the variables appearing in it are.

Definition 12. We define a notational convention for τ -MPs. Assuming that
p[i] depends on xi, we write

p[i] = xi + τp[i]′ + p[i]′′ + p[i]′′′ ,

where p[i]′′′ includes all the non-self-dependent monomials of p[i], while the self-
dependent monomials (other than xi) are grouped into two sums: τp[i]′, including
all monomials with a positive degree of τ , and p[i]′′ which includes all the τ -free
monomials.

Example 4. Let p = 〈x1 + τx2 + τx3 + x3x4, x3, x3, x4〉. The self-dependent
variables are all but x2. Since x1 is self-dependent, we will apply the above
definition to p[1], so that p[1]′ = x3, p[1]′′ = x3x4 and p[1]′′′ = τx2. Note that
a factor of τ is stripped in p[1]′. Had the monomial been τ2x3, we would have
p[1]′ = τx3.

Definition 13 (generalization). Let p be idempotent in τAMPol; define pτ by

pτ [i] =

{
xi + τp[i]′ + τp[i]′′ + p[i]′′′ if p[i] depends on xi

p[i] otherwise.

Note that the arithmetic here is abstract (see examples below). Note also that
in the term τp[i]′ the τ is already present in p, while in τp[i]′′ it is added to
existing monomials. In this definition, the monomials of p[i]′′′ are treated like
those of τp[i]′; however, in certain steps of the proofs we treat them differently,
which is why the notation separates them.

Example 5. Let p = 〈x1 + x3, x2 + x3 + x4, x3, x3〉.

Note that p •p = p. We have pτ = 〈x1 + τx3, x2 + τx3 + x4, x3, x3〉.

92 A. M. Ben-Amram and G. W. Hamilton

Example 6. Let p = 〈x1 + τx2 + τx3 + τx3x4, x3, x3, x4〉.

Note that p •p = p. The self-dependent variables are all but x2.

We have pτ = 〈x1 + τx2 + τx3 + τx3x4, x3, x3, x4〉 = p.

Finally we can present the analysis of the loop command.

Algorithm Solve(S)
Input: S, a polynomially-bounded disjunctive simple loop
Output: a set of τ -MPs which tightly approximates the effect of all S-traces.

1. Set T = α(S).
2. Repeat the following steps until T remains fixed:

(a) Closure: Set T to Cl(T).
(b) Generalization: For all p ∈ T such that p •p = p, add pτ to T .

Example 7. loop X3 { X1:= X1 + X2; X2:= X2 + X3; X4:= X3 }
The body of the loop is evaluated symbolically and yields the multi-polynomial:

p = 〈x1 + x2, x2 + x3, x3, x3〉

Now, computing within AMPol,

α(p)•(2) = α(p) • α(p) = 〈x1 + x2 + x3, x2 + x3, x3, x3〉;
α(p)•(3) = α(p)•(2)

.

Here the closure computation stops. Since α(p•(2)) is idempotent, we compute

q = (α(p)•(2))τ = 〈x1 + τx2 + τx3, x2 + τx3, x3, x3〉

and applying closure again, we obtain some additional results:

q • α(p) = 〈x1 + x2 + x3 + τx2 + τx3, x2 + x3 + τx3, x3, x3〉
(q)•(2) = 〈x1 + τx2 + τx3 + τ2x3, x2 + τx3, x3, x3〉
(q)•(2) • α(p) = 〈x1 + x2 + x3 + τx2 + τx3 + τ2x3, x2 + x3 + τx3, x3, x3〉

The last element is idempotent but applying generalization does not generate
anything new. Thus the algorithm ends. The reader may reconsider the source
code to verify that we have indeed obtained tight bounds for the loop.

6 Correctness

We claim that our algorithm obtains a description of the worst-case results of
the program that is precise up to constant factors. That is, we claim that the set
of MPs returned provides an upper bound (on all executions) which is also tight;
tightness means that every MP returned is also a lower bound (up to a constant

Tight Worst-Case Bounds for Polynomial Loop Programs 93

factor) on an infinite sequence of possible executions. Unfortunately, due to space
constraints, we are not able to give full details of the proofs here; however, we
give the main highlights. Intuitively, what we want to prove is that the multi-
polynomials we compute cover all “behaviors” of the loop. More precisely, in the
upper-bound part of the proof we want to cover all behaviors: upper-bounding
is a universal statement. To prove that bounds are tight, we show that each such
bound constitutes a lower bound on a certain “worst-case behavior”: tightness
is an existential statement. The main aspects of these proofs are as follows:

– A key notion in our proofs is that of realizability. Intuitively, when we come
up with a bound, we want to show that there are traces that achieve (realize)
this bound for arbitrarily large input values.

– In the lower-bound proof, we describe a “behavior” by a pattern. A pat-
tern is constructed like a regular expression with concatenation and Kleene-
star. However, they allow no nested iteration constructs, and the starred
sub-expressions have to be repeated the same number of times; for example,
the pattern p∗q∗ generates the traces {ptqt, t ≥ 0}. The proof constructs a
pattern for every multi-polynomial computed, showing it is realizable. It is
interesting that such simple patterns suffice to establish tight lower bounds
for all our programs.

– In the upper-bound proof, we describe all “behaviors” by a finite set of well-
typed regular expressions [10]. This elegant tool channels the power of the
Factorization Forest Theorem [25]; this brings out the role of idempotent
elements, which is key in our algorithm.

– Interestingly, the lower-bound proof not only justifies the tightness of our
upper bounds, it also justifies the termination of the algorithm and the appli-
cation of the Factorization Forest Theorem in the upper-bound proof, because
it shows that our abstract multi-polynomials generate a finite monoid.

7 Related Work

Bound analysis, in the sense of finding symbolic bounds for data values, iteration
bounds and related quantities, is a classic field of program analysis [18,24,27].
It is also an area of active research, with tools being currently (or recently)
developed including COSTA [1], AProVE [13], CiaoPP [19], C4B [11], Loo-
pus [26]—all for imperative programs. There is also work on functional and
logic programs, term rewriting systems, recurrence relations, etc. which we can-
not attempt to survey here. In the rest of this section we survey work which is
more directly related to ours, and has even inspired it.

The LOOP language is due to Meyer and Ritchie [20], who note that it com-
putes only primitive recursive functions, but complexity can rise very fast, even
for programs with nesting-depth 2. Subsequent work [15–17,22] concerning sim-
ilar languages attempted to analyze such programs more precisely; most of them
proposed syntactic criteria, or analysis algorithms, that are sufficient for ensuring
that the program lies in a desired class (often, polynomial-time programs), but
are not both necessary and sufficient: thus, they do not prove decidability (the

94 A. M. Ben-Amram and G. W. Hamilton

exception is [17] which has a decidability result for a weak “core” language). The
core language we use in this paper is from Ben-Amram et al. [7], who observed
that by introducing weak bounded loops instead of concrete loop commands
and non-deterministic branching instead of “if”, we have weakened the seman-
tics just enough to obtain decidability of polynomial growth-rate. Justifying the
necessity of these relaxations, [8] showed undecidability for a language that can
only do addition and definite loops (that cannot exit early).

In the vast literature on bound analysis in various forms, there are a few
other works that give a complete solution for a weak language. Size-change pro-
grams are considered by [12,28]. Size-change programs abstract away nearly
everything in the program, leaving a control-flow graph annotated with asser-
tions about variables which decrease (or do not increase) in a transition. Thus, it
does not assume structured and explicit loops, and it cannot express information
about values which increase. Both works yield tight bounds on the number of
transitions until termination.

Dealing with a somewhat different problem, [14,21] both check, or find,
invariants in the form of polynomial equations. We find it remarkable that
they give complete solutions for weak languages, where the weakness lies in
the non-deterministic control-flow, as in our language. If one could give a com-
plete solution for polynomial inequalities, this would have implied a solution to
our problem as well.

8 Conclusion and Further Work

We have solved an open problem in the area of analyzing programs in a simple
language with bounded loops. For our language, it has been previously shown
that it is possible to decide whether a variable’s value, number of steps in the
program, etc. are polynomially bounded or not. Now, we have an algorithm that
computes tight polynomial bounds on the final values of variables in terms of
initial values. The bounds are tight up to constant factors (suitable constants are
also computable). This result improves our understanding of what is computable
by, and about, programs of this form. An interesting corollary of our algorithm
is that as long as variables are polynomially bounded, their worst-case bounds are
described tightly by (multivariate) polynomials. This is, of course, not true for
common Turing-complete languages. Another interesting corollary of the proofs
is the definition of a simple class of patterns that suffice to realize the worst-case
behaviors. This will appear in a planned extended version of this paper.

There are a number of possible directions for further work. We would like to
look for decidability results for richer (yet, obviously, sub-recursive) languages.
Some possible language extensions include deterministic loops, variable resets
(cf. [4]), explicit constants, and procedures. The inclusion of explicit constants
is a particularly challenging open problem.

Rather than extending the language, we could extend the range of bounds
that we can compute. In light of the results in [17], it seems plausible that
the approach can be extended to classify the Grzegorczyk-degree of the growth

Tight Worst-Case Bounds for Polynomial Loop Programs 95

rate of variables when they are super-polynomial. There may also be room for
progress regarding precise bounds of the form 2poly.

In terms of time complexity, our algorithm is polynomial in the size of the
program times nnd, where d is the highest degree of any MP computed. Such
exponential behavior is to be expected, since a program can be easily written
to compute a multivariate polynomial that is exponentially long to write. But
there is still room for finer investigation of this issue.

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of
object-oriented bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012).
https://doi.org/10.1016/j.tcs.2011.07.009

2. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: Cousot, R.,
Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15769-1 8

3. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

4. Ben-Amram, A.M.: On decidable growth-rate properties of imperative programs.
In: Baillot, P. (ed.) International Workshop on Developments in Implicit Compu-
tational complExity (DICE 2010). EPTCS, vol. 23, pp. 1–14 (2010). https://doi.
org/10.4204/EPTCS.23.1

5. Ben-Amram, A.M., Genaim, S.: Ranking functions for linear-constraint loops. J.
ACM 61(4), 26:1–26:55 (2014). https://doi.org/10.1145/2629488

6. Ben-Amram, A.M., Genaim, S.: On multiphase-linear ranking functions. In:
Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 601–620.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 32

7. Ben-Amram, A.M., Jones, N.D., Kristiansen, L.: Linear, polynomial or exponen-
tial? Complexity inference in polynomial time. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 67–76. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-69407-6 7

8. Ben-Amram, A.M., Kristiansen, L.: On the edge of decidability in complexity
analysis of loop programs. Int. J. Found. Comput. Sci. 23(7), 1451–1464 (2012).
https://doi.org/10.1142/S0129054112400588

9. Ben-Amram, A.M., Pineles, A.: Flowchart programs, regular expressions, and
decidability of polynomial growth-rate. In: Hamilton, G., Lisitsa, A., Nemytykh,
A.P. (eds.) Proceedings of the Fourth International Workshop on Verification and
Program Transformation (VPT). EPTCS, vol. 216, pp. 24–49 (2016). https://doi.
org/10.4204/EPTCS.216.2

10. Bojańczyk, M.: Factorization forests. In: Diekert, V., Nowotka, D. (eds.) DLT 2009.
LNCS, vol. 5583, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02737-6 1

11. Carbonneaux, Q., Hoffmann, J., Shao, Z.: Compositional certified resource bounds.
In: Proceedings of the ACM SIGPLAN 2015 Conference on Programming Language
Design and Implementation (PLDI). ACM (2015)

https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1007/978-3-642-15769-1_8
https://doi.org/10.4204/EPTCS.23.1
https://doi.org/10.4204/EPTCS.23.1
https://doi.org/10.1145/2629488
https://doi.org/10.1007/978-3-319-63390-9_32
https://doi.org/10.1007/978-3-540-69407-6_7
https://doi.org/10.1142/S0129054112400588
https://doi.org/10.4204/EPTCS.216.2
https://doi.org/10.4204/EPTCS.216.2
https://doi.org/10.1007/978-3-642-02737-6_1
https://doi.org/10.1007/978-3-642-02737-6_1

96 A. M. Ben-Amram and G. W. Hamilton

12. Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus
automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014.
LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44522-8 18

13. Giesl, J., et al.: Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reasoning 58(1), 3–31 (2017). https://doi.org/10.1007/
s10817-016-9388-y

14. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial invariants for affine
programs. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2018, pp. 530–539. ACM, New York (2018). https://
doi.org/10.1145/3209108.3209142

15. Jones, N.D., Kristiansen, L.: A flow calculus of mwp-bounds for complexity anal-
ysis. ACM Trans. Comput. Logic 10(4), 1–41 (2009). https://doi.org/10.1145/
1555746.1555752

16. Kasai, T., Adachi, A.: A characterization of time complexity by simple loop pro-
grams. J. Comput. Syst. Sci. 20(1), 1–17 (1980). https://doi.org/10.1016/0022-
0000(80)90001-X

17. Kristiansen, L., Niggl, K.H.: On the computational complexity of imperative pro-
gramming languages. Theor. Comput. Sci. 318(1–2), 139–161 (2004). https://doi.
org/10.1016/j.tcs.2003.10.016

18. Le Métayer, D.: ACE: an automatic complexity evaluator. ACM Trans. Program.
Lang. Syst. 10(2), 248–266 (1988). https://doi.org/10.1145/42190.42347

19. López-Garćıa, P., Darmawan, L., Klemen, M., Liqat, U., Bueno, F., Hermengildo,
M.V.: Interval-based resource usage verification by translation into Horn clauses
and an application to energy consumption. Theory Pract. Logic Program. 18(2),
167–223 (2018)

20. Meyer, A.R., Ritchie, D.M.: The complexity of loop programs. In: Proceedings of
the 22nd ACM National Conference, Washington, DC, pp. 465–469 (1967)

21. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004). https://doi.org/10.1016/j.ipl.2004.05.004

22. Niggl, K.H., Wunderlich, H.: Certifying polynomial time and linear/polynomial
space for imperative programs. SIAM J. Comput. 35(5), 1122–1147 (2006).
https://doi.org/10.1137/S0097539704445597

23. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-
0 20

24. Rosendahl, M.: Automatic complexity analysis. In: Proceedings of the Conference
on Functional Programming Languages and Computer Architecture, FPCA 1989,
pp. 144–156. ACM (1989). https://doi.org/10.1145/99370.99381

25. Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94
(1990). https://doi.org/10.1016/0304-3975(90)90047-L

26. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of impera-
tive programs using difference constraints. J. Autom. Reasoning 59(1), 3–45 (2017).
https://doi.org/10.1007/s10817-016-9402-4

27. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9), 528–539 (1975).
https://doi.org/10.1145/361002.361016

28. Zuleger, F.: Asymptotically precise ranking functions for deterministic size-change
systems. In:Beklemishev, L.D.,Musatov,D.V. (eds.)CSR2015. LNCS, vol. 9139, pp.
426–442. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20297-6 27

https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/3209108.3209142
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1016/0022-0000(80)90001-X
https://doi.org/10.1016/0022-0000(80)90001-X
https://doi.org/10.1016/j.tcs.2003.10.016
https://doi.org/10.1016/j.tcs.2003.10.016
https://doi.org/10.1145/42190.42347
https://doi.org/10.1016/j.ipl.2004.05.004
https://doi.org/10.1137/S0097539704445597
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1007/978-3-540-24622-0_20
https://doi.org/10.1145/99370.99381
https://doi.org/10.1016/0304-3975(90)90047-L
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1145/361002.361016
https://doi.org/10.1007/978-3-319-20297-6_27

Tight Worst-Case Bounds for Polynomial Loop Programs 97

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

A Complete Normal-Form Bisimilarity
for State

Dariusz Biernacki1, Serguëı Lenglet2(B), and Piotr Polesiuk1

1 University of Wroc�law, Wroc�law, Poland
{dabi,ppolesiuk}@cs.uni.wroc.pl

2 Université de Lorraine, Nancy, France
serguei.lenglet@univ-lorraine.fr

Abstract. We present a sound and complete bisimilarity for an untyped
λ-calculus with higher-order local references. Our relation compares val-
ues by applying them to a fresh variable, like normal-form bisimilarity, and
it uses environments to account for the evolving store. We achieve com-
pleteness by a careful treatment of evaluation contexts comprising open
stuck terms. This work improves over Støvring and Lassen’s incomplete
environment-based normal-form bisimilarity for the λρ-calculus, and con-
firms, in relatively elementary terms, Jaber and Tabareau’s result, that
the state construct is discriminative enough to be characterized with a
bisimilarity without any quantification over testing arguments.

1 Introduction

Two terms are contextually equivalent if replacing one by the other in a big-
ger program does not change the behavior of the program. The quantification
over program contexts makes contextual equivalence hard to use in practice and
it is therefore common to look for more effective characterizations of this rela-
tion. In a calculus with local state, such a characterization has been achieved
either through logical relations [1,5,15], which rely on types, denotational models
[6,10,13], or coinductively defined bisimilarities [9,12,17–19].

Koutavas et al. [8] argue that to be sound w.r.t. contextual equivalence, a
bisimilarity for state should accumulate the tested terms in an environment to
be able to try them again as the store evolves. Such environmental bisimilarities
usually compare terms by applying them to arguments built from the environ-
ment [12,17,19], and therefore still rely on some universal quantification over
testing arguments. An exception is Støvring and Lassen’s bisimilarity [18], which
compares terms by applying them to a fresh variable, like one would do with a
normal-form (or open) bisimilarity [11,16]. Their bisimilarity characterizes con-
textual equivalence in a calculus with control and state, but is not complete in a
calculus with state only: there exist equivalent terms that are not related by the
bisimilarity. Jaber and Tabareau [6] go further and propose a sound and complete
Kripke Open Bisimilarity for a calculus with local state, which also compares
terms by applying them to a fresh variable, but uses notions from Kripke logical
relations, namely transition systems of invariants, to reason about heaps.
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 98–114, 2019.
https://doi.org/10.1007/978-3-030-17127-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_6&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_6

A Complete Normal-Form Bisimilarity for State 99

In this paper, we propose a sound and complete normal-form bisimilarity
for a call-by-value λ-calculus with local references which relies on environments
to handle heaps. We therefore improve over Støvring and Lassen’s work, since
our relation is complete, by following a different, potentially simpler, path than
Jaber and Tabareau, since we use environments to represent possible worlds and
do not rely on any external structures such as transition systems of invariants.
Moreover, we do not need types and define our relation in an untyped calculus.

We obtain completeness by treating carefully normal forms that are not val-
ues, i.e., open stuck terms of the form E[x v]. First, we distinguish in the envi-
ronment the terms which should be tested multiple times from the ones that
should be run only once, namely the evaluation contexts like E in the above
term. The latter are kept in a separate environment that takes the form of a
stack, according to the idea presented by Laird [10] and by Jagadeesan et al. [7].
Second, we relate the so-called deferred diverging terms [5,6], i.e., open stuck
terms which hide a diverging behavior in the evaluation context E, with the
regular diverging terms.

It may be worth stressing that our congruence proof is based on the machin-
ery we have developed before [3] and is simpler than Støvring and Lassen’s one,
in particular in how it accounts for the extensionality of functions.

We believe that this work makes a contribution to the understanding of how
one should adjust the normal-form bisimulation proof principle when the calculus
under consideration becomes less discriminative, assuming that one wishes to
preserve completeness of the theory. In particular, it is quite straightforward
to define a complete normal-form bisimilarity for the λ-calculus with first-class
continuations and global store, with no need to refer to other notions than the
ones already present in the reduction semantics. Similarly, in the λμρ-calculus
(continuations and local references), one only needs to introduce environments to
ensure soundness of the theory, but essentially nothing more is required to obtain
completeness [18]. In this article we show which new ingredients are needed
when moving from these two highly expressive calculi to the corresponding,
less discriminative ones—with global or local references only—that do not offer
access to the current continuation.

The rest of this paper is as follows. In Sect. 2, we study a simple calculus with
global store to see how to reach completeness in that case. In particular, we show
in Sect. 2.2 how we deal with deferred diverging terms. We remind in Sect. 2.3
the notion of diacritical progress [3] and the framework our bisimilarity and its
proof of soundness are based upon. We sketch the completeness proof in Sect. 2.4.
Section 2 paves the way for the main result of the paper, described in Sect. 3,
where we turn to the calculus with local store. We define the bisimilarity in
Sect. 3.2, prove its soundness and completeness in Sect. 3.3, and use it in Sect. 3.4
on examples taken from the literature. We conclude in Sect. 4, where we discuss
related work and in particular compare our work to Jaber and Tabareau’s. A
companion report expands on the proofs [4].

100 D. Biernacki et al.

2 Global Store

We first consider a calculus where terms share a global store and present how
we deal with deferred diverging terms to get a complete bisimilarity.

2.1 Syntax, Semantics, and Contextual Equivalence

We extend the call-by-value λ-calculus with the ability to read and write a global
memory. We let x, y, . . . range over term variables and l range over references. A
store, denoted by h, g, is a finite map from references to values; we write dom(h)
for the domain of h, i.e., the set of references on which h is defined. We write ∅ for
the empty store, h� g for the union of two stores, assuming dom(h)∩dom(g) = ∅.
The syntax of terms and contexts is defined as follows.

Terms: t, s ::= v | t t | l := t; t | !l
Values: v, w ::=x | λx.t

Evaluation contexts: E,F ::=� | E t | v E | l := E; t

The term l := t; s evaluates t (if possible) and stores the resulting value in l
before continuing as s, while !l reads the value kept in l. When writing examples
and in the completeness proofs, we use natural numbers, booleans, the condi-
tional if . . . then . . . else . . ., local definitions let . . . in . . ., sequence ;, and unit ()
assuming the usual call-by-value encodings for these constructs.

A λ-abstraction λx.t binds x in t; we write fv(t) (respectively fv(E)) for the
set of free variables of t (respectively E). We identify terms up to α-conversion
of their bound variables. A variable or reference is fresh if it does not occur in
any other entities under consideration, and a store is fresh if it maps references
to pairwise distinct fresh variables. A term or context is closed if it has no free
variables. We write fr(t) for the set of references that occur in t.

The call-by-value semantics of the calculus is defined on configurations 〈h | t〉
such that fr(t) ⊆ dom(h) and for all l ∈ dom(h), fr(h(l)) ⊆ dom(h). We let c
and d range over configurations. We write t{v/x} for the usual capture-avoiding
substitution of x by v in t, and we let ∫ range over simultaneous substitutions
.{v1/x1} . . . {vn/xn}. We write h[l := v] for the operation updating the value of
l to v. The reduction semantics → is defined by the following rules.

〈h | (λx.t) v〉 → 〈h | t{v/x}〉 〈h | !l〉 → 〈h | h(l)〉
〈h | l := v; t〉 → 〈h[l := v] | t〉 〈h | E[t]〉 → 〈g | E[s]〉 if 〈h | t〉 → 〈g | s〉

The well-formedness condition on configurations ensures that a read operation
!l cannot fail. We write →∗ for the reflexive and transitive closure of →.

A term t of a configuration 〈h | t〉 which cannot reduce further is called a
normal form. Normal forms are either values or open-stuck terms of the form
E[x v]; closed normal forms can only be λ-abstractions. A configuration ter-
minates, written c ⇓ if it reduces to a normal-form configuration; otherwise it
diverges, written c ⇑, like configurations running Ω

def= (λx.x x) (λx.x x).

A Complete Normal-Form Bisimilarity for State 101

Contextual equivalence equates terms behaving the same in all contexts. A
substitution ∫ closes a term t if t∫ is closed; it closes a configuration 〈h | t〉 if it
closes t and the values in h.

Definition 1. t and s are contextually equivalent, written t ≡ s, if for all con-
texts E, fresh stores h, and closing substitutions ∫ , 〈h | E[t]〉∫ ⇓ iff 〈h | E[s]〉∫ ⇓.

Testing only evaluation contexts is not a restriction, as it implies the equivalence
w.r.t. all contexts ≡C : one can show that t ≡C s iff λx.t ≡C λx.s iff λx.t ≡ λx.s.

2.2 Normal-Form Bisimulation

Informal Presentation. Two open terms are normal-form bisimilar if their normal
forms can be decomposed into bisimilar subterms. For example in the plain
λ-calculus, a stuck term E[x v] is bisimilar to t if t reduces to a stuck term
F [xw] so that respectively E, F and v, w are bisimilar when they are respectively
plugged with and applied to a fresh variable.

Such a requirement is too discriminating for many languages, as it distin-
guishes terms that should be equivalent. For instance in plain λ-calculus, given
a closed value v, t

def= x v is not normal form bisimilar to s
def= (λy.x v) (x v).

Indeed, � is not bisimilar to (λy.x v) � when plugged with a fresh z: the for-
mer produces a value z while the latter reduces to a stuck term x v. However, t
and s are contextually equivalent, as for all closed value w, t{w/x} and s{w/x}
behave like w v: if w v diverges, then they both diverges, and if w v evaluates
to some value w′, then they also evaluates to w′. Similarly, x v Ω and Ω are
not normal-form bisimilar (one is a stuck term while the other is diverging), but
they are contextually equivalent by the same reasoning.

The terms t and s are no longer contextually equivalent in a λ-calculus with
store, since a function can count how many times it is applied and change its
behavior accordingly. More precisely, t and s are distinguished by the context
l := 0; (λx.�) λz.l :=!l + 1; if !l = 1 then 0 else Ω. But this counting trick is not
enough to discriminate x v Ω and Ω, as they are still equivalent in a λ-calculus
with store. Although x v Ω is a normal form, it is in fact always diverging when
we replace x by an arbitrary closed value w, either because w v itself diverges,
or it evaluates to some w′ and then w′ Ω diverges. A stuck term which hides a
diverging behavior has been called deferred diverging in the literature [5,6].

It turns out that being able to relate a diverging term to a deferred diverging
term is all we need to change from the plain λ-calculus normal-form bisimilarity
to get a complete equivalence when we add global store. We do so by distinguish-
ing two cases in the clause for open-stuck terms: a configuration 〈h | E[x v]〉 is
related to c either if c can reduce to a stuck configuration with related subterms,
or if E is a diverging context, and we do not require anything of c. The result-
ing simulation is not symmetric as it relates a deferred diverging configuration
with any configuration c (even converging one), but the corresponding notion
of bisimulation equates such configuration only to either a configuration of the
same kind or a diverging configuration such as 〈h | Ω〉.

102 D. Biernacki et al.

Progress. We define simulation using the notion of diacritical progress we devel-
oped in a previous work [2,3], which distinguishes between active and passive
clauses. Roughly, passive clauses are between simulation states which should be
considered equal, while active clauses are between states where actual progress
is taking place. This distinction does not change the notions of bisimulation or
bisimilarity, but it simplifies the soundness proof of the bisimilarity. It also allows
for the definition of powerful up-to techniques, relations that are easier to use
than bisimulations but still imply bisimilarity. For normal-form bisimilarity, our
framework enables up-to techniques which respects η-expansion [3].

Progress is defined between objects called candidate relations, denoted by
R, S, T . A candidate relation R contains pairs of configurations, and a set
of configurations written R↑, which we expect to be composed of diverging or
deferred diverging configurations (for such relations we take R−1↑ to be R↑). We
extend R to stores, terms, values, and contexts with the following definitions.

dom(h) = dom(g) ∀l, h(l) Rv g(l)

h Rh g

〈h | t〉 R 〈h | s〉 h fresh
t Rt s

v x Rt w x x fresh
v Rv w

E[x] Rt F [x] x fresh
E Rc F

〈h | E[x]〉 ∈ R↑ x, h fresh
E ∈R↑c

We use these extensions to define progress as follows.

Definition 2. A candidate relation R progresses to S, T written R � S, T , if
R ⊆ S, S ⊆ T , and

1. c R d implies
– if c → c′, then d →∗ d′ and c′ T d′;
– if c = 〈h | v〉, then d →∗ 〈g | w〉, h Sh g, and v Sv w;
– if c = 〈h | E[x v]〉, then either

• d →∗ 〈g | F [x w]〉, h T h g, E T c F , and v T v w, or
• E ∈ T ↑c.

2. c∈ R↑ implies c �= 〈h | v〉 for all h and v and
– if c → c′, then c′ ∈ T ↑;
– if c = 〈h | E[x v]〉, then E ∈T ↑c.

A normal-form simulation is a candidate relation R such that R � R,R, and
a bisimulation is a candidate relation R such that R and R−1 are simulations.
Normal-form bisimilarity ≈ is the union of all normal-form bisimulations.

We test values and contexts by applying or plugging them with a fresh variable x,
and running them in a fresh store; with a global memory, the value represented
by x may access any reference and assign it an arbitrary value, hence the need
for a fresh store. The stores of two bisimilar value configurations must have the
same domain, as it would be easy to distinguish them otherwise by testing the
content of the references that would be in one store but not in the other.

The main novelty compared to usual definitions of normal-form bisimilar-
ity [3,11] is the set of (deferred) diverging configurations used in the stuck terms

A Complete Normal-Form Bisimilarity for State 103

clause. We detect that E in a configuration 〈h | E[xv]〉 is (deferred) diverging by
running 〈h′ | E[y]〉 where y and h′ are fresh; this configuration may then diverge
or evaluate to an other deferred diverging configuration 〈h | E′[x v]〉.

Like in the plain λ-calculus [3], R progresses towards S in the value clause
and T in the others; the former is passive while the others are active. Our
framework prevents some up-to techniques from being applied after a passive
transition. In particular, we want to forbid the application of bisimulation up to
context as it would be unsound: we could deduce that v x and wx are equivalent
for all v and w just by building a candidate relation containing v and w.

Example 1. To prove that 〈h | x v Ω〉 ≈ 〈h | Ω〉 holds for all v and h, we prove
that R def={(〈h | x v Ω〉, 〈h | Ω〉), {〈g | y Ω〉 | y, g fresh}} is a bisimulation.
Indeed, 〈h | x v Ω〉 is stuck with 〈g | y Ω〉 ∈ R↑ for fresh y and g, and we have
〈g | y Ω〉 → 〈g | y Ω〉. Conversely, the transition 〈h | Ω〉 → 〈h | Ω〉 is matched
by 〈h | x v Ω〉 →∗ 〈h | x v Ω〉 and the resulting terms are in R.

2.3 Soundness

In this framework, proving that ≈ is sound is a consequence that a form of
bisimulation up to context is valid, a result which itself may require to prove
that other up-to techniques are valid. We distinguish the techniques which can
be used in passive clauses (called strong up-to techniques), from the ones which
cannot. An up-to technique (resp. strong up-to technique) is a function f such
that R � R, f(R) (resp. R � f(R), f(R)) implies R ⊆ ≈. To show that a
given f is an up-to technique, we rely on a notion of respectfulness, which is
simpler to prove and gives sufficient conditions for f to be an up-to technique.

We briefly recall the notions we need from our previous work [2]. We extend ⊆
and ∪ to functions argument-wise (e.g., (f ∪ g)(R) = f(R) ∪ g(R)), and given
a set F of functions, we also write F for the function defined as

⋃
f∈F f . We

define fω as
⋃

n∈N
fn. We write id for the identity function on relations, and f̂

for f ∪ id. A function f is monotone if R ⊆ S implies f(R)⊆ f(S). We write
Pfin(R) for the set of finite subsets of R, and we say f is continuous if it can be
defined by its image on these finite subsets, i.e., if f(R)⊆

⋃
S∈Pfin(R) f(S). The

up-to techniques we use are defined by inference rules with a finite number of
premises, so they are trivially continuous.

Definition 3. A function f evolves to g, h, written f � g, h, if for all R and
T , R � R, T implies f(R)� g(R), h(T). A function f strongly evolves to g, h,
written f �s g, h, if for all R, S, and T , R � S, T implies f(R)� g(S), h(T).

Evolution can be seen as progress for functions on relations. Evolution is more
restrictive than strong evolution, as it requires R such that R � R, T .

Definition 4. A set F of continuous functions is respectful if there exists S
such that S ⊆ F and

– for all f ∈ S, we have f �s Ŝ
ω, F̂ω;

– for all f ∈ F, we have f � Ŝω ◦ F̂ ◦ Ŝω, F̂ω.

104 D. Biernacki et al.

c R d v Rv w

c{v/x} subst(R) d{w/x}
c ∈ R↑

c{v/x} ∈ subst(R)↑
〈h | t〉 R 〈g | s〉 E Rc F

〈h | E[t]〉 plugc(R) 〈g | F [s]〉

〈h | t〉 ∈ R↑
〈h | E[t]〉 ∈ plug↑(R)↑

c →∗ c′ d →∗ d′ c′ R d′

c red(R) d

c ∈ R↑
c div(R) d

E ∈ R↑c

〈h | E[t]〉 ∈ plugdiv(R)↑

Fig. 1. Up-to techniques for the calculus with global store

In words, a function is in a respectful set F if it evolves towards a combination of
functions in F after active clauses, and in S after passive ones. When checking
that f is regular (second case), we can use a regular function at most once after
a passive clause. The (possibly empty) subset S intuitively represents the strong
up-to techniques of F. If S1 and S2 are subsets of F which verify the conditions
of the definition, then S1 ∪ S2 also does, so there exists the largest subset of F
which satisfies the conditions, written strong(F).

Lemma 1. Let F be a respectful set.

– If f ∈ F, then f is an up-to technique. If f ∈ strong(F), then f is a strong
up-to technique.

– For all f ∈ F, we have f(≈)⊆ ≈.

Showing that f is in a respectful set F is easier than proving it is an up-to
technique. Besides, proving that a bisimulation up to context is respectful implies
that ≈ is preserved by contexts thanks to the last property of Lemma 1.

The up-to techniques for the calculus with global store are given in Fig. 1.
The techniques subst and plug allow to prove that ≈ is preserved by substitution
and by evaluation contexts. The remaining ones are auxiliary techniques which
are used in the respectfulness proof: red relies on the fact that the calculus is
deterministic to relate terms up to reduction steps. The technique div allows to
relate a diverging configuration to any other configuration, while plugdiv states
that if E is a diverging context, then 〈h | E[t]〉 is a diverging configuration
for all h and t. We distinguish the technique plugc from plug↑ to get a more
fine-grained classification, as plugc is the only one which is not strong.

Lemma 2. The set F def= {subst, plugm, red, div, plugdiv | m ∈ {c, ↑}} is respect-
ful, with strong(F) = F \ {plugc}.

We omit the proof, as it is similar but much simpler than for the calculus with
local store of Sect. 3. We deduce that ≈ is sound using Lemma 1.

Theorem 1. For all t, s, and fresh store h, if 〈h | t〉 ≈ 〈h | s〉, then t ≡ s.

A Complete Normal-Form Bisimilarity for State 105

2.4 Completeness

We prove the reverse implication by building a bisimulation which contains ≡.

Theorem 2. For all t, s, if t ≡ s, then for all fresh stores h, 〈h | t〉 ≈ 〈h | s〉.

Proof (Sketch). It suffices to show that the candidate R defined as

{(〈h | t〉, 〈g | s〉) | ∀E, hE , closing ∫ , 〈h� hE | E[t]〉∫ ⇓ ⇒ 〈g � hE | E[s]〉∫ ⇓}
∪ {〈h | t〉 | ∀E, hE , closing ∫ , 〈h� hE | E[t]〉∫ ⇑}

is a simulation. We proceed by case analysis on the behavior of 〈h | t〉. The
details are in the report [4]; we sketch the proof in the case when 〈h | t〉 R 〈g | s〉,
t = E[x v], and E is not deferred diverging.

A first step is to show that 〈g | s〉 also evaluates to an open-stuck configura-
tion with x in function position. To do so, we consider a fresh l and we define ∫
such that ∫(y) sets l at 1 when it is first applied if y = x, and at 2 if y �= x. Then
〈h � l := 0 | t〉∫ sets l at 1, which should also be the case of 〈g � l := 0 | s〉∫ , and
it is possible only if 〈g | s〉 →∗ 〈g′ | F [x w]〉 for some g′, F , and w.

We then have to show that E Rc F , v Rv w, and h Rh g′. We sketch the
proof for the contexts, as the proofs for the values and the stores are similar.
Given hf a fresh store, y a fresh variable, E′ a context, hE′ a store, ∫ a closing
substitution, we want 〈hf �hE′ | E′[E[y]]〉∫ ⇓ iff 〈hf �hE′ | E′[F [y]]〉∫ ⇓.

Let l be a fresh reference. Assuming dom(h) = {l1 . . . ln}, given a term t, we
write

⋃
i li := h; t for l1 := h(l1); . . . ln := h(ln); t. We define

∫x
def=

⎧
⎨

⎩

x �→ λa.if !l = 0 then l := 1;
⋃

i

li := hf �hE′ ; ∫(y) else ∫(x) a

z �→ ∫ ′(z) if z �= x

The substitution ∫x behaves like ∫ except that when ∫x(x) is applied for the first
time, it replaces its argument by ∫(y) and sets the store to hf �hE′ . Therefore
〈h � l := 0 | E′[t]〉∫x →∗ 〈hf �hE′ � l := 1 | E′[E[y]]〉∫x, but this configura-
tion then behaves like 〈hf �hE′ | E′[E[y]]〉∫ . Similarly, 〈g � l := 0 | E′[s]〉∫x

evaluates to a configuration equivalent to 〈hf �hE′ | E′[F [y]]〉∫ , and since
〈h � l := 0 | E′[t]〉∫x ⇓ implies 〈g � l := 0 | E′[s]〉∫x ⇓, we can conclude from
there.

3 Local Store

We adapt the ideas of the previous section to a calculus where terms create their
own local store. To be able to deal with local resources, the relation we define
mixes principles from normal-form and environmental bisimilarities.

106 D. Biernacki et al.

3.1 Syntax, Semantics, and Contextual Equivalence

In this section, the terms no longer share a global store, but instead must create
local references before storing values. We extend the syntax of Sect. 2 with a
construct to create a new reference.

Terms: t, s ::= . . . | new l := v in t

Reference creation new l := v in t binds l in t; we identify terms up to α-
conversion of their references. We write fr(t) and fr(E) for the set of free refer-
ences of t or E, and a term or context is reference-closed if its set of free references
is empty. Following [18] and in contrast with [5,6], references are not values, but
we can still give access to a reference l by passing λx.!l and λx.l := x;λy.y.

As before, the semantics is defined on configurations 〈h | t〉 verifying fr(t) ⊆
dom(h) and for all l ∈ dom(h), fr(h(l)) ⊆ dom(h). We add to the rules of Sect. 2
the following one for reference creation.

〈h | new l := v in t〉 → 〈h� l := v | t〉

We remind that � is defined for disjoint stores only, so the above rule assumes
that l /∈ dom(h), which is always possible using α-conversion.

We define contextual equivalence on reference-closed terms as we expect pro-
grams to allocate their own store.

Definition 5. Two reference-closed terms t and s are contextually equivalent,
written t ≡ s, if for all reference-closed evaluation contexts E and closing sub-
stitutions ∫ , 〈∅ | E[t]〉∫ ⇓ iff 〈∅ | E[s]〉∫ ⇓.

3.2 Bisimilarity

With local stores, an external observer no longer has direct access to the stored
values. In presence of such information hiding, a sound bisimilarity relies on an
environment to accumulate terms which should be tested in different stores [8].

Example 2. Let f1
def= λx.if !l = true then l := false; true else false and f2

def=
λx.true. If we compare new l := true in f1 and f2 only once in the empty store,
they would be seen as equivalent as they both return true, however f1 modify
its store, so running f1 and f2 a second time distinguishes them.

Environments generally contain only values [17], except in λμρ [18], where
plugged evaluation contexts are kept in the environment when comparing open-
stuck configurations. In contrast with λμρ, our environment collects values, and
we use a stack for registering contexts [7,10]. Unlike values, contexts are therefore
tested only once, following a last-in first-out ordering. The next example shows
that considering contexts repeatedly would lead to an overly-discriminating
bisimilarity. For the stack discipline of testing contexts in action see Example 8
in Sect. 3.4.

A Complete Normal-Form Bisimilarity for State 107

Example 3. With the same f1 and f2 as in Example 2, the terms t
def= new l :=

true in f1 (x λy.y) and s
def= f2 (x λy.y) are contextually equivalent. Roughly, for

all closing substitution ∫ , t and s either both diverge (if ∫(x) λy.y diverges), or
evaluate to true, since ∫(x) cannot modify the value in l. Testing f1 � and f2 �
twice would discriminate them and wrongfully distinguish t and s.

Remark 1. The bisimilarity for λμρ runs evaluation contexts several times and is
still complete because of the μ operator, which, like call/cc, captures evaluation
contexts, and may then execute them several times.

We let E range over sets of pairs of values, and ε over sets of values. Similarly,
we write Σ for a stack of pairs of evaluation contexts and σ for a stack of
evaluation contexts. We write � for the empty stack, :: for the operator putting
an element on top of a stack, and ++ for the concatenation of two stacks. The
projection operator π1 transforms a set or stack of pairs into respectively a set
or stack of single elements by taking the first element of each pair. A candidate
relation R can be composed of:

– quadruples (E , Σ, c, d), written E , Σ � c R d, meaning that c and d are related
under E and Σ;

– quadruples (E , Σ, h, g), written E , Σ � h R g, meaning that the elements of E
and the top of Σ should be related when run with the stores h and g;

– triples (ε, σ, c), written ε, σ � c∈ R↑, meaning that either c is (deferred)
diverging, or σ is non-empty and contains a (deferred) diverging context;

– triples (ε, σ, h), written ε, σ � h ∈ R↑, meaning that σ is non-empty and con-
tains a (deferred) diverging context.

Definition 6. A candidate relation R progresses to S, T written R � S, T , if
R ⊆ S, S ⊆ T , and

1. E , Σ � c R d implies
– if c → c′, then d →∗ d′ and E , Σ � c′ T d′;
– if c = 〈h | v〉, then either

• d →∗ 〈g | w〉, and E ∪ {(v, w)}, Σ � h S g, or
• Σ �= � and π1(E) ∪ {v}, π1(Σ) � h ∈S↑;

– if c = 〈h | E[x v]〉, then either
• d →∗ 〈g | F [x w]〉, and E ∪ {(v, w)}, (E,F) ::Σ � h S g, or
• π1(E) ∪ {v}, E ::π1(Σ) � h ∈ S↑.

2. E , Σ � h R g implies
– if v E w, then E , Σ � 〈h | v x〉 S 〈g | w x〉 for a fresh x;
– if Σ = (E,F) ::Σ′, then E , Σ′ � 〈h | E[x]〉 S 〈g | F [x]〉 for a fresh x.

3. ε, σ � c∈ R↑ implies
– if c → c′, then ε, σ � c′ ∈T ↑;
– if c = 〈h | v〉, then σ �= � and ε ∪ {v}, σ � h ∈ S↑;
– if c = 〈h | E[x v]〉, then ε ∪ {v}, E ::σ � h ∈ S↑.

4. ε, σ � h ∈ R↑ implies that σ �= � and
– if v ∈ ε, then ε, σ � 〈h | v x〉 ∈ S↑ for a fresh x;
– if σ = E ::σ′, then ε, σ′ � 〈h | E[x]〉 ∈ S↑ for a fresh x.

108 D. Biernacki et al.

A normal-form simulation is a candidate relation R such that R � R,R, and
a bisimulation is a candidate relation R such that R and R−1 are simulations.
Normal-form bisimilarity ≈ is the union of all normal-form bisimulations.

When E , Σ � c R d, we reduce c until we get a value v or a stuck term E[xv].
At that point, either d also reduces to a normal form of the same kind, or we test
(the first projection of) the stack Σ for divergence, assuming it is not empty.
In the former case, we add the values to E and the evaluation contexts at the
top of Σ, getting a judgment of the form E ′, Σ′ � h R g, which then tests the
environment and the stack by running either terms in E ′ or at the top of Σ′.

Example 4. We sketch the bisimulation proof for the terms t and s of Example 3.
Because 〈∅ | t〉 →∗ 〈l := true | f1 (x λy.y)〉 and 〈∅ | s〉 = 〈∅ | f2 (x λy.y)〉, we need
to define R such that {(λy.y, λy.y)}, (f1 �, f2 �) ::� � l := true R ∅. Testing the
equal values in the environment is easy with up-to techniques. For the contexts
on the stack, we need {(λy.y, λy.y)},� � 〈l := true | f1 z〉 R 〈∅ | f2 z〉 for a
fresh z. Since 〈l := true | f1 z〉 →∗ 〈l := false | true〉 and 〈∅ | f2 z〉 →∗ 〈∅ | true〉,
we need {(λy.y, λy.y), (true, true)},� � l := false R ∅, which is simple to check.

Example 5. In contrast, we show that t′ def= new l := true in f1 (x λy.l := y; y)
and s′ def= f2 (x λy.y) are not bisimilar. We would need to build R such that
{(λy.l := y; y, λy.y)}, (f1 �, f2 �) ::� � l := true R ∅. Testing the values in the
environment, we want {(λy.l := y; y, λy.y), (z, z)}, (f1 �, f2 �) ::� � l := z R ∅
for a fresh z. Executing the contexts on the stack, we get a stuck term of the
form if z then l := false; true else false and a value true, which cannot be related,
because the former is not deferred diverging.

The terms t′ and s′ are therefore not bisimilar, and they are indeed not
contextually equivalent, since t′ gives access to its private reference by passing
λy.l := y; y to x. The function represented by x can then change the value of l
to false and break the equivalence.

The last two cases of the bisimulation definition aim at detecting a deferred
diverging context. The judgment ε, σ � h ∈ R↑ roughly means that if σ =
En :: . . . E1 ::�, then the configuration 〈h′ | E1[. . . En[x]]〉 diverges for all fresh x
and all h′ obtained by running a term from E with the store h. As a result, when
ε, σ � h ∈R↑, we have two possibilities: either we run a term from E in h to
potentially change h, or we run the context at the top of σ (which cannot be
empty in that case) to check if it is diverging. In both cases, we get a judgment
of the form ε, σ′ � c∈ R↑. In that case, either c diverges and we are done, or it
terminates, meaning that we have to look for divergence in σ′.

Example 6. We prove that 〈∅ | x v Ω〉 and 〈∅ | Ω〉 are bisimilar. We define R
such that ∅,� � 〈∅ | x v Ω〉 R 〈∅ | Ω〉, for which we need {v},� Ω ::� � ∅∈ R↑,
which itself holds if {v},� � 〈∅ | y Ω〉 ∈ R↑.

Finally, only the two clauses where a reduction step takes place are active; all
the others are passive, because they are simply switching from one judgment to

A Complete Normal-Form Bisimilarity for State 109

E , Σ � c R d v E w x /∈ fv(v) ∪ fv(w)
E{(v, w)/x}, Σ{(v, w)/x} � c{v/x} substc(R) d{w/x}

E , Σ1 ++(E1, F1) ::(E2, F2) ::Σ2 � 〈h | t〉 R 〈g | s〉
E , Σ1 ++(E2[E1], F2[F1]) ::Σ2 � 〈h | t〉 ccomp(R) 〈g | s〉

E , (E, F) ::Σ � 〈h | t〉 R 〈g | s〉
E , Σ � 〈h | E[t]〉 plug(R) 〈g | F [s]〉

c →∗ c′ d →∗ d′ E , Σ � c′ R d′

E , Σ � c red(R) d

ε, σ � 〈h | t〉 ∈ R↑ π1(E) = ε π1(Σ) = σ

E , Σ � 〈h | t〉 div(R) 〈g | s〉
E , Σ � c R d E ′ ⊆ E

E ′, Σ � c weak(R) d

E , Σ1 ++Σ2 � 〈h | t〉 R 〈g | s〉 fr(E) ⊆ dom(h′)
E , Σ1 ++(E, E) ::Σ2 � 〈h
 h′ | t〉 refl(R) 〈g
 h′ | s〉

Fig. 2. Selected up-to techniques for the calculus with local store

the other without any real progress taking place. For example, when comparing
value configurations, we go from a configuration judgment E , Σ � c R d to a
store judgment E , Σ � h R g or a diverging store judgment E , Σ � h ∈ R↑. In
a (diverging) store judgment, we simply decide whether we reduce a term from
the store of from the stack, going back to a (diverging) configuration judgment.
Actual progress is made only when we start reducing the chosen configuration.

3.3 Soundness and Completeness

We briefly discuss the up-to techniques we need to prove soundness. We write
E{(v, w)/x} for the environment {(v′{v/x}, w′{w/x}) | v′ E w′}, and we also
define Σ{(x,w)/x}, ε{v/x}, and σ{v/x} as expected. To save space, Fig. 2
presents the up-to techniques for the configuration judgment only; see the
report [4] for the other judgments.

As in Sect. 2.3, the techniques subst and plug allow to reason up to substitu-
tion and plugging into an evaluation context, except that the substituted values
and plugged contexts must be taken from respectively the environment and the
top of the stack. The technique div relates a diverging configuration to any con-
figuration, like in the calculus with global store. The technique ccomp allows to
merge successive contexts in the stack into one. The weakening technique weak,
originally known as bisimulation up to environment [17], is an usual technique for
environmental bisimulations. Making the environment smaller creates a weaker
judgment, as having less testing terms means a less discriminating candidate
relation. Bisimulation up to reduction red is also standard and allows for a big-
step reasoning by ignoring reduction steps. Finally, the technique refl allows to
introduce identical contexts in the stack, but also values in the environment or
terms in configurations (see the report [4]).

110 D. Biernacki et al.

We denote by substc the up to substitution technique restricted to the con-
figuration and diverging configuration judgments, and by substs the restriction
to the store and diverging store judgments.

Lemma 3. The set F def= {substm, plug, ccomp, div,weak, red, refl | m ∈ {c, s}} is
respectful, with strong(F) = {substs, ccomp, div,weak, red, refl}.

In contrast with Sect. 2.3 and our previous work [3], substc is not strong,
because values are taken from the environment. Indeed, with substc strong, from
{(v, w)},� � ∅ R ∅, we could derive {(v, w)},� � 〈∅ | x y〉 refl(R) 〈∅ | x y〉 and
then {(v, w)},� � 〈∅ | vx〉 substc(refl(R)) 〈∅ | wx〉 for any v and w, which would
be unsound.

The respectfulness proofs are in the report [4]. Using refl, plug, substc, and
Lemma 1 we prove that ≈ is preserved by evaluation contexts and substitution,
from which we deduce it is sound w.r.t. contextual equivalence.

Theorem 3. For all t and s, if ∅,� � 〈∅ | t〉 ≈ 〈∅ | s〉, then t ≡ s.

To establish completeness, we follow the proof of Theorem 2, i.e., we construct
a candidate relation R that contains ≡ and prove it is a simulation by case
analysis on the behavior of the related terms.

Theorem 4. For all t and s, if t ≡ s, then ∅,� � 〈∅ | t〉 ≈ 〈∅ | s〉.

The main difference is that the contexts and closing substitutions are built from
the environment using compatible closures [17], to take into account the private
resources of the related terms. We discuss the proof in the report [4].

3.4 Examples

Example 7. We start by the so-called awkward example [5,6,15]. Let

v
def= λf.l := 0; f (); l := 1; f (); !l w

def= λf.f (); f (); 1.

We equate new l := 0 in v and w, building the candidate R incrementally, start-
ing from {(v, w)},� � l := 0 R ∅.

Running v and w with a fresh variable f , we obtain 〈l := 0 | E1[f ()]〉 and
〈∅ | E2[f ()]〉 with E1

def= �; l := 1; f (); !l and F1
def= �; f (); 1. Ignoring the

identical unit arguments (using refl), we need {(v, w)}, (E1, F1) ::� � l := 0 R ∅;
from that point, we can either test v and w again, resulting into an extra pair
(E1, F1) on the stack, or run 〈l := 0 | E1[g]〉 and 〈∅ | F1[g]〉 for a fresh g instead.

In the latter case, we get 〈l := 1 | E2[g ()]〉 and 〈∅ | F2[g ()]〉, with E2
def= �; !l

and F2
def= �; 1, so we want {(v, w)}, (E2, F2) ::� � l := 1 R ∅ (ignoring again the

units). From there, testing v and w produces {(v, w)}, (E1, F1) :: (E2, F2) ::� �
l := 0 R ∅, while executing 〈l := 1 | E2[x]〉 and 〈∅ | F2[x]〉 for a fresh x gives us
〈l := 1 | 1〉 and 〈∅ | 1〉. This analysis suggests that R should be composed only
of judgments of the form {(v, w)}, Σ � l := n R ∅ such that n ∈ {0, 1} and

A Complete Normal-Form Bisimilarity for State 111

– Σ is an arbitrary stack composed only of pairs (E1, F1) or (E2, F2);
– if Σ = (E2, F2) ::Σ′, then n = 1.

We can check that such a candidate is a bisimulation, and it ensures that when l
is read (when E2 is executed), it contains the value 1.

Example 8. As a variation on the awkward example, let

v
def= λf.l :=!l + 1; f (); l :=!l − 1; !l > 0 w

def= λf.f (); true.

We show that 〈∅ | new l := 1 in v〉 and 〈∅ | w〉 are bisimilar. Let E
def=

�; l :=!l − 1; !l > 0 and F
def= �; true. We write (E,F)n for the stack �

if n = 0 and (E,F) :: (E,F)n−1 otherwise. Then the candidate R verifying
{(v, w)}, (E,F)n � l := n + 1 R ∅ for any n is a bisimulation. Indeed, running
v and w increases the value stored in l and adds a pair (E,F) on the stack. If
n > 0, we can run a copy of E and F , thus decreasing the value in l by 1, and
then returning true in both cases.

Example 9. This deferred divergence example comes from Dreyer et al. [5]. Let

v1
def= λx.if !l then Ω else k := true;λy.y w1

def= λx.Ω

v2
def= λf.f v1; if !k then Ω else l := true;λy.y w2

def= λf.f w1;λy.y

We prove that new l := false in new k := false in v2 is equivalent to w2. Infor-
mally, if f in w2 applies its argument w1, the term diverges. Divergence also
happens in v2 but in a delayed fashion, as v1 first sets k to true, and the continu-
ation t

def= if !k then Ω else l := true;λy.y then diverges. Similarly, if f stores w1

or v1 to later apply it, then divergence also occurs in both cases: in that case t
sets l to true, and when v1 is later applied, it diverges.

To build a candidate R, we execute 〈l := false; k := false | v2 f〉 and 〈∅ | w2 f〉
for a fresh f , which gives us 〈l := false; k := false | E[f v1]〉 and 〈∅ | F [f w1]〉 with
E

def= �; t and F
def= �;λy.y. We consider {(v2, w2), (v1, w1)}, (E,F) :: ∅ � l :=

false; k := false R ∅, for which we have several checks to do. The interesting one
is running 〈l := false; k := false | v1 x〉 and 〈∅ | w1 x〉, as we get 〈l := false; k :=
true | λy.y〉 and 〈∅ | Ω〉. In that case, we are showing that the stack contains
divergence, by establishing that {v2, v1, λy.y}, E :: ∅ � l := false; k := true∈ R↑,
and indeed, we have 〈l := false; k := true | E[x]〉 →∗ 〈l := false; k := true | Ω〉 for
a fresh x. In the end, the relation R verifying

{(v2, w2), (v1, w1)}, (E,F)n � l := false; k := false R ∅
{(v2, w2), (v1, w1)}, (E,F)n � 〈l := false; k := true | λy.y〉 R 〈∅ | Ω〉

{v2, v1, λy.y}, En � l := false; k := true∈R↑
{v2, v1, λy.y}, En � 〈l := false; k := true | Ω〉 ∈R↑

{(v2, w2), (v1, w1)}, (E,F)n � l := true; k := false R ∅
{(v2, w2), (v1, w1)}, (E,F)n � 〈l := true; k := false | Ω〉 R 〈∅ | Ω〉

for all n is a bisimulation up to refl and red.

112 D. Biernacki et al.

4 Related Work and Conclusion

Related Work. As pointed out in Sect. 1, the other bisimilarities defined for state
either feature universal quantification over testing arguments [9,12,17,19], or are
complete only for a more expressive language [18]. Kripke logical relations [1,5]
also involve quantification over arguments when testing terms of a functional
type. Finally, denotational models [10,13] can also be used to prove program
equivalence, by showing that the denotations of two terms are equal. However,
computing such denotations is difficult in general, and the automation of this
task is so far restricted to a language with first-order references [14].

The work most closely related to ours is Jaber and Tabareau’s Kripke Open
Bisimulation (KOB) [6]. A KOB tests functional terms with fresh variables and
not with related values like a regular logical relation would do. To relate two
given configurations, one has to provide a World Transition System (WTS) which
states the invariants the heaps of the configurations should satisfy and how to go
from one invariant to the other during the evaluation. Similarly, the bisimulations
for the examples of Sect. 3.4 state properties which could be seen as invariants
about the stores at different points of the evaluation.

The difficulty for KOB as well as with our bisimilarity is to come up with the
right invariants about the heaps, expressed either as a WTS or as a bisimulation.
We believe that choosing a technique over the other is just a matter of preference,
depending on whether one is more comfortable with game semantics or with
coinduction. It would be interesting to see if there is a formal correspondence
between KOB and our bisimilarity; we leave this question as a future work.

Conclusion. We define a sound and complete normal-form bisimilarity for higher-
order local state, with an environment to be able to run terms in different stores.
We distinguish in the environment values which should be tested several times
from the contexts which should be executed only once. The other difficulty is
to relate deferred and regular diverging terms, which is taken care of by the
specific judgments about divergence. The lack of quantification over arguments
make the bisimulation proofs quite simple.

A future work would be to make these proofs even simpler by defining appro-
priate up-to techniques. The techniques we use in Sect. 3.3 to prove soundness
turn out to be not that useful when establishing the equivalences of Sect. 3.4,
except for trivial ones such as up to reduction or reflexivity. The difficulty in
defining the candidate relations for the examples of Sect. 3.4 is in finding the
right property relating the stack Σ to the store, so maybe an up-to technique
could make this task easier.

As pointed out in Sect. 1, our results can be seen as an indication of what kind
of additional infrastructure in a complete normal-form bisimilarity is required
when the considered syntactic theory becomes less discriminative—in our case,
when control operators vanish from the picture, and mutable state is the only
extension of the λ-calculus. A question one could then ask is whether we can
find a less expressive calculus—maybe the plain λ-calculus itself—for which a
suitably enhanced normal-form bisimilarity is still complete.

A Complete Normal-Form Bisimilarity for State 113

Acknowledgements. We thank Guilhem Jaber and the anonymous reviewers for
their comments. This work was supported by the National Science Centre, Poland,
grant no. 2014/15/B/ST6/00619 and by COST Action EUTypes CA15123.

References

1. Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation indepen-
dence. In: Pierce, B.C. (ed.) Proceedings of the Thirty-Fifth Annual ACM Sympo-
sium on Principles of Programming Languages, pp. 340–353. ACM Press, January
2009

2. Aristizábal, A., Biernacki, D., Lenglet, S., Polesiuk, P.: Environmental bisimu-
lations for delimited-control operators with dynamic prompt generation. Logical
Methods Comput. Sci. 13(3) 2017

3. Biernacki, D., Lenglet, S., Polesiuk, P.: Proving soundness of extensional normal-
form bisimilarities. In: Silva, A. (ed.) Proceedings of the 33rd Annual Conference
on Mathematical Foundations of Programming Semantics (MFPS XXXIII), Ljubl-
jana, Slovenia. Electronic Notes in Theoretical Computer Science, vol. 336, pp.
41–56, June 2017

4. Biernacki, D., Lenglet, S., Polesiuk, P.: A complete normal-form bisimilarity for
state. Research report RR-9251, Inria, Nancy, France, January 2019

5. Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control
effects on local relational reasoning. J. Funct. Program. 22(4–5), 477–528 (2012)

6. Jaber, G., Tabareau, N.: Kripke open bisimulation – a marriage of game semantics
and operational techniques. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol.
9458, pp. 271–291. Springer, Cham (2015)

7. Jagadeesan, R., Pitcher, C., Riely, J.: Open bisimulation for aspects. Trans. Aspect-
Oriented Softw. Dev. 5, 72–132 (2009)

8. Koutavas, V., Levy, P.B., Sumii, E.: From applicative to environmental bisimula-
tion. In: Mislove, M., Ouaknine, J. (eds.) Proceedings of the 27th Annual Confer-
ence on Mathematical Foundations of Programming Semantics (MFPS XXVII),
Pittsburgh, PA, USA. ENTCS, vol. 276, pp. 215–235, May 2011

9. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order
imperative programs. In: Morrisett, J.G., Jones, S.L.P. (eds.) POPL 2006,
Charleston, SC, USA, pp. 141–152. ACM Press (2006)

10. Laird, J.: A fully abstract trace semantics for general references. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
667–679. Springer, Heidelberg (2007)

11. Lassen, S.B.: Eager normal form bisimulation. In: Panangaden, P. (ed.) LICS 2005,
Chicago, IL, pp. 345–354. IEEE Computer Society Press (2005)

12. Madiot, J.-M., Pous, D., Sangiorgi, D.: Bisimulations up-to: beyond first-order
transition systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol.
8704, pp. 93–108. Springer, Heidelberg (2014)

13. Murawski, A.S., Tzevelekos, N.: Game semantics for good general references. In:
Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, pp. 75–84. IEEE Computer Society, June 2011

14. Murawski, A.S., Tzevelekos, N.: Algorithmic games for full ground references. For-
mal Methods Syst. Des. 52(3), 277–314 (2018)

15. Pitts, A., Stark, I.: Operational reasoning for functions with local state. In: Gordon,
A., Pitts, A. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–
273. Publications of the Newton Institute, Cambridge University Press (1998)

114 D. Biernacki et al.

16. Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. In: Scedrov,
A. (ed.) LICS 1992, Santa Cruz, California, pp. 102–109. IEEE Computer Society
(1992)

17. Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-
order languages. ACM Trans. Program. Lang. Syst. 33(1), 1–69 (2011)

18. Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential
control and state. In: Felleisen, M. (ed.) SIGPLAN Notices, POPL 2007, Nice,
France, vol. 42, no. 1, pp. 161–172. ACM Press (2007)

19. Sumii, E.: A complete characterization of observational equivalence in polymorphic
λ-calculus with general references. In: Grädel, E., Kahle, R. (eds.) CSL 2009. LNCS,
vol. 5771, pp. 455–469. Springer, Heidelberg (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Identifiers in Registers

Describing Network Algorithms with Logic

Benedikt Bollig, Patricia Bouyer, and Fabian Reiter(B)

LSV, CNRS, ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
{bollig,bouyer}@lsv.fr, fabian.reiter@gmail.com

Abstract. We propose a formal model of distributed computing based
on register automata that captures a broad class of synchronous network
algorithms. The local memory of each process is represented by a finite-
state controller and a fixed number of registers, each of which can store
the unique identifier of some process in the network. To underline the nat-
uralness of our model, we show that it has the same expressive power as a
certain extension of first-order logic on graphs whose nodes are equipped
with a total order. Said extension lets us define new functions on the set
of nodes by means of a so-called partial fixpoint operator. In spirit, our
result bears close resemblance to a classical theorem of descriptive com-
plexity theory that characterizes the complexity class pspace in terms of
partial fixpoint logic (a proper superclass of the logic we consider here).

1 Introduction

This paper is part of an ongoing research project aiming to develop a descriptive
complexity theory for distributed computing.

In classical sequential computing, descriptive complexity is a well-established
field that connects computational complexity classes to equi-expressive classes
of logical formulas. It began in the 1970s, when Fagin showed in [6] that the
graph properties decidable by nondeterministic Turing machines in polynomial
time are exactly those definable in existential second-order logic. This provided
a logical—and thus machine-independent—characterization of the complexity
class np. Subsequently, many other popular classes, such as p, pspace, and
exptime were characterized in a similar manner (see for instance the text-
books [8,12,15]).

Of particular interest to us is a result due to Abiteboul, Vianu [1], and
Vardi [19], which states that on structures equipped with a total order rela-
tion, the properties decidable in pspace coincide with those definable in partial
fixpoint logic. The latter is an extension of first-order logic with an operator that
allows us to inductively define new relations of arbitrary arity. Basically, this
means that new relations can occur as free (second-order) variables in the logi-
cal formulas that define them. Those variables are initially interpreted as empty
relations and then iteratively updated, using the defining formulas as update

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 115–132, 2019.
https://doi.org/10.1007/978-3-030-17127-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_7

116 B. Bollig et al.

rules. If the sequence of updates converges to a fixpoint, then the ultimate inter-
pretations are the relations reached in the limit. Otherwise, the variables are
simply interpreted as empty relations. Hence the term “partial fixpoint”.

While well-developed in the classical case, descriptive complexity has so far
not received much attention in the setting of distributed network computing.
As far as the authors are aware, the first step in this direction was taken by
Hella et al. in [10,11], where they showed that basic modal logic evaluated on
finite graphs has the same expressive power as a particular class of distributed
automata operating in constant time. Those automata constitute a weak model
of distributed computing in arbitrary network topologies, where all nodes syn-
chronously execute the same finite-state machine and communicate with each
other by broadcasting messages to their neighbors. Motivated by this result, sev-
eral variants of distributed automata were investigated by Kuusisto and Reiter
in [14,18] and [17] to establish similar connections with standard logics such as
the modal μ-calculus and monadic second-order logic. However, since the models
of computation investigated in those works are based on anonymous finite-state
machines, they are much too weak to solve many of the problems typically
considered in distributed computing, such as leader election or constructing a
spanning tree. It would thus be desirable to also characterize stronger models.

A common assumption underlying many distributed algorithms is that each
node of the considered network is given a unique identifier. This allows us, for
instance, to elect a leader by making the nodes broadcast their identifiers and
then choose the one with the smallest identifier as the leader. To formalize such
algorithms, we need to go beyond finite-state machines because the number of
bits required to encode a unique identifier grows logarithmically with the num-
ber of nodes in the network. Recently, in [2,3], Aiswarya, Bollig and Gastin
introduced a synchronous model where, in addition to a finite-state controller,
nodes also have a fixed number of registers in which they can store the identi-
fiers of other nodes. Access to those registers is rather limited in the sense that
their contents can be compared with respect to a total order, but their numeric
values are unknown to the nodes. (This restriction corresponds precisely to the
notion of order-invariant distributed algorithms, which was introduced by Naor
and Stockmeyer in [16].) Similarly, register contents can be copied, but no new
values can be generated. Since the original motivation for the model was to
automatically verify certain distributed algorithms running on ring networks,
its formal definition is tailored to that particular setting. However, the underly-
ing principle can be generalized to arbitrary networks of unbounded maximum
degree, which was the starting point for the present work.

Contributions. While on an intuitive level, the idea of finite-state machines
equipped with additional registers might seem very natural, it does not imme-
diately yield a formal model for distributed algorithms in arbitrary networks. In
particular, it is not clear what would be the canonical way for nodes to commu-
nicate with a non-constant number of peers, if we require that they all follow
the same, finitely representable set of rules.

Identifiers in Registers – Describing Network Algorithms with Logic 117

The model we propose here, dubbed distributed register automata, is an
attempt at a solution. As in [2,3], nodes proceed in synchronous rounds and
have a fixed number of registers, which they can compare and update without
having access to numeric values. The new key ingredient that allows us to for-
malize communication between nodes of unbounded degree is a local computing
device we call transition maker. This is a special kind of register machine that the
nodes can use to scan the states and register values of their entire neighborhood
in a sequential manner. In every round, each node runs the transition maker to
update its own local configuration (i.e., its state and register valuation) based
on a snapshot of the local configurations of its neighbors in the previous round.
A way of interpreting this is that the nodes communicate by broadcasting their
local configurations as messages to their neighbors. Although the resulting model
of computation is by no means universal, it allows formalizing algorithms for a
wide range of problems, such as constructing a spanning tree (see Example 5) or
testing whether a graph is Hamiltonian (see Example 6).

Nevertheless, our model is somewhat arbitrary, since it could be just one par-
ticular choice among many other similar definitions capturing different classes
of distributed algorithms. What justifies our choice? This is where descriptive
complexity comes into play. By identifying a logical formalism that has the same
expressive power as distributed register automata, we provide substantial evi-
dence for the naturalness of that model. Our formalism, referred to as functional
fixpoint logic, is a fragment of the above-mentioned partial fixpoint logic. Like
the latter, it also extends first-order logic with a partial fixpoint operator, but a
weaker one that can only define unary functions instead of arbitrary relations.
We show that on totally ordered graphs, this logic allows one to express precisely
the properties that can be decided by distributed register automata. The con-
nection is strongly reminiscent of Abiteboul, Vianu and Vardi’s characterization
of pspace, and thus contributes to the broader objective of extending classical
descriptive complexity to the setting of distributed computing. Moreover, given
that logical formulas are often more compact and easier to understand than
abstract machines (compare Examples 6 and 8), logic could also become a useful
tool in the formal specification of distributed algorithms.

The remainder of this paper is structured around our main result:

Theorem 1. When restricted to finite graphs whose nodes are equipped with a
total order, distributed register automata are effectively equivalent to functional
fixpoint logic.

After giving some preliminary definitions in Sect. 2, we formally introduce
distributed register automata in Sect. 3 and functional fixpoint logic in Sect. 4.
We then sketch the proof of Theorem 1 in Sect. 5, and conclude in Sect. 6.

2 Preliminaries

We denote the empty set by ∅, the set of nonnegative integers by N =
{0, 1, 2, . . . }, and the set of integers by Z = {. . . ,−1, 0, 1, . . . }. The cardinal-
ity of any set S is written as |S| and the power set as 2S .

118 B. Bollig et al.

In analogy to the commonly used notation for real intervals, we define the
notation [m : n] := {i ∈ Z | m ≤ i ≤ n} for any m,n ∈ Z such that m ≤ n.
To indicate that an endpoint is excluded, we replace the corresponding square
bracket with a parenthesis, e.g., (m : n] := [m : n] \ {m}. Furthermore, if we omit
the first endpoint, it defaults to 0. This gives us shorthand notations such as
[n] := [0 : n] and [n) := [0 : n) = [0 : n − 1].

All graphs we consider are finite, simple, undirected, and connected. For
notational convenience, we identify their nodes with nonnegative integers, which
also serve as unique identifiers. That is, when we talk about the identifier of a
node, we mean its numerical representation. A graph is formally represented as a
pair G = (V,E), where the set V of nodes is equal to [n), for some integer n ≥ 2,
and the set E consists of undirected edges of the form e = {u, v} ⊆ V such that
u �= v. Additionally, E must satisfy that every pair of nodes is connected by a
sequence of edges. The restriction to graphs of size at least two is for technical
reasons; it ensures that we can always encode Boolean values as nodes.

We refer the reader to [5] for standard graph theoretic terms such as neighbor,
degree, maximum degree, distance, and spanning tree.

Graphs are used to model computer networks, where nodes correspond to pro-
cesses and edges to communication links. To represent the current configuration
of a system as a graph, we equip each node with some additional information:
the current state of the corresponding process, taken from a nonempty finite set
Q, and some pointers to other processes, modeled by a finite set R of registers.

We call Σ = (Q,R) a signature and define a Σ-configuration as a tuple
C = (G, q, r), where G = (V,E) is a graph, called the underlying graph of C,
q : V → Q is a state function that assigns to each node a state q ∈ Q, and
r : V → V R is a register valuation function that associates with each node a
register valuation ρ ∈ V R. The set of all Σ-configurations is denoted by C(Σ).
Figure 1 on page 6 illustrates part of a ({q1, q2, q3}, {r1, r2, r3})-configuration.

If R = ∅, then we are actually dealing with a tuple (G, q), which we call a
Q-labeled graph. Accordingly, the elements of Q may also be called labels. A set
P of labeled graphs will be referred to as a graph property. Moreover, if the labels
are irrelevant, we set Q equal to the singleton 1 := {ε}, where ε is our dummy
label. In this case, we identify (G, q) with G and call it an unlabeled graph.

3 Distributed Register Automata

Many distributed algorithms can be seen as transducers. A leader-election algo-
rithm, for instance, takes as input a network and outputs the same network,
but with every process storing the identifier of the unique leader in some ded-
icated register r. Thus, the algorithm transforms a (1, ∅)-configuration into
a (1, {r})-configuration. We say that it defines a (1, ∅)-(1, {r})-transduction.
By the same token, if we consider distributed algorithms that decide graph
properties (e.g., whether a graph is Hamiltonian), then we are dealing with a
(I, ∅)-({yes,no}, ∅)-transduction, where I is some set of labels. The idea is that
a graph will be accepted if and only if every process eventually outputs yes.

Identifiers in Registers – Describing Network Algorithms with Logic 119

Let us now formalize the notion of transduction. For any two signatures
Σin = (I,Rin) and Σout = (O,Rout), a Σin -Σout -transduction is a partial
mapping T : C(Σin) → C(Σout) such that, if defined, T (G, q, r) = (G, q′, r′)
for some q′ and r′. That is, a transduction does not modify the underlying
graph but only the states and register valuations. We denote the set of all
Σin -Σout -transductions by T(Σin , Σout) and refer to Σin and Σout as the input
and output signatures of T . By extension, I and O are called the sets of input and
output labels, and Rin and Rout the sets of input and output registers. Similarly,
any Σin -configuration C can be referred to as an input configuration of T and
T (C) as an output configuration.

Next, we introduce our formal model of distributed algorithms.

Definition 2 (Distributed register automaton). Let Σin = (I,Rin) and
Σout = (O,Rout) be two signatures. A distributed register automaton (or sim-
ply automaton) with input signature Σin and output signature Σout is a tuple
A = (Q,R, ι,Δ,H, o) consisting of a nonempty finite set Q of states, a finite set
R of registers that includes both Rin and Rout , an input function ι : I → Q, a
transition maker Δ whose specification will be given in Definition 3 below, a set
H ⊆ Q of halting states, and an output function o : H → O. The registers in
R \ (Rin ∪ Rout) are called auxiliary registers.

Automaton A computes a transduction TA ∈ T(Σin , Σout). To do so, it runs
in a sequence of synchronous rounds on the input configuration’s underlying
graph G = (V,E). After each round, the automaton’s global configuration is a
(Q,R)-configuration C = (G, q, r), i.e., the underlying graph is always G. As
mentioned before, for a node v ∈ V , we interpret q(v) ∈ Q as the current state
of v and r(v) ∈ V R as the current register valuation of v. Abusing notation, we
let C(v) := (q(v), r(v)) and say that C(v) is the local configuration of v. In Fig. 1,
the local configuration node 17 is (q1, {r1, r2, r3
→ 17, 34, 98}).

For a given input configuration C = (G, q, r) ∈ C(Σin), the automaton’s
initial configuration is C ′ = (G, ι ◦ q, r′), where for all v ∈ V , we have r′(v)(r) =
r(v)(r) if r ∈ Rin , and r′(v)(r) = v if r ∈ R \ Rin . This means that every node
v is initialized to state ι(q(v)), and v’s initial register valuation r′(v) assigns v’s
own identifier (provided by G) to all non-input registers while keeping the given
values assigned by r(v) to the input registers.

Each subsequent configuration is obtained by running the transition maker Δ
synchronously on all nodes. As we will see, Δ computes a function

�Δ� : (Q × V R)+ → Q × V R

that maps from nonempty sequences of local configurations to local configura-
tions. This allows the automaton A to transition from a given configuration C
to the next configuration C ′ as follows. For every node u ∈ V of degree d, we
consider the list v1, . . . vd of u’s neighbors sorted in ascending (identifier) order,
i.e., vi < vi+1 for i ∈ [1 : d). (See Fig. 1 for an example, where u corresponds
to node 17.) If u is already in a halting state, i.e., if C(u) = (q, ρ) ∈ H × V R,

120 B. Bollig et al.

q1

r1 r2 r3
17 34 98

q2

r1 r2 r3
2 66 14

q3

r1 r2 r3
34 5 83

q1

r1 r2 r3
98 7 7

Fig. 1. Part of a configuration, as seen by a single node. Assuming the identifiers of
the nodes are the values represented in black boxes (i.e., those stored in register r1),
the automaton at node 17 will update its own local configuration (q1, {r1, r2, r3 �→
17, 34, 98}) by running the transition maker on the sequence consisting of the local
configurations of nodes 17, 2, 34, and 98 (in that exact order).

then its local configuration does not change anymore, i.e., C ′(u) = C(u). Other-
wise, we define C ′(u) = �Δ�

(
C(u), C(v1), . . . , C(vd)

)
, which we may write more

suggestively as

�Δ� : C(u)
C(v1),...,C(vd)
−−−−−−−−−→ C ′(u).

Intuitively, node u updates its own local configuration by using Δ to scan a
snapshot of its neighbors’ local configurations. As the system is synchronous,
this update procedure is performed simultaneously by all nodes.

A configuration C = (G, q, r) is called a halting configuration if all nodes are
in a halting state, i.e., if q(v) ∈ H for all v ∈ V . We say that Ahalts if it reaches
a halting configuration.

The output configuration produced by a halting configuration C = (G, q, r)
is the Σout -configuration C ′ = (G, o ◦ q, r′), where for all v ∈ V and r ∈ Rout ,
we have r′(v)(r) = r(v)(r). In other words, each node v outputs the state o(q(v))
and keeps in its output registers the values assigned by r(v).

It is now obvious that A defines a transduction TA : C(Σin) → C(Σout). If A
receives the input configuration C ∈ C(Σin) and eventually halts and produces
the output configuration C ′ ∈ C(Σout), then TA(C) = C ′. Otherwise (if A does
not halt), TA(C) is undefined.

Deciding graph properties. Our primary objective is to use distributed register
automata as decision procedures for graph properties. Therefore, we will focus
on automata A that halt in a finite number of rounds on every input configura-
tion, and we often restrict to input signatures of the form (I, ∅) and the output

Identifiers in Registers – Describing Network Algorithms with Logic 121

signature ({yes,no}, ∅). For example, for I = {a, b}, we may be interested in the
set of I-labeled graphs that have exactly one a-labeled node v (the “leader”).
We stipulate that A accepts an input configuration C with underlying graph
G = (V,E) if TA(C) = (G, q, r) such that q(v) = yes for all v ∈ V . Conversely,
A rejects C if TA(C) = (G, q, r) such that q(v) = no for some v ∈ V . This
corresponds to the usual definition chosen in the emerging field of distributed
decision [7]. Accordingly, a graph property P is decided by A if the automaton
accepts all input configurations that satisfy P and rejects all the others.

It remains to explain how the transition maker Δ works internally.

Definition 3 (Transition maker). Suppose that A = (Q,R, ι,Δ,H, o) is a
distributed register automaton. Then its transition maker Δ = (Q̃, R̃, ι̃, δ̃, õ) con-
sists of a nonempty finite set Q̃ of inner states, a finite set R̃ of inner registers
that is disjoint from R, an inner initial state ι̃ ∈ Q̃, an inner transition function
δ̃ : Q̃ × Q × 2(R̃∪R)2 → Q̃ × (R̃ ∪ R)R̃, and an inner output function õ : Q̃ →
Q × R̃R.

Basically, a transition maker Δ = (Q̃, R̃, ι̃, δ̃, õ) is a sequential reg-
ister automaton (in the spirit of [13]) that reads a nonempty sequence
(q0, ρ0), . . . , (qd, ρd) ∈ (Q×V R)+ of local configurations of A in order to produce
a new local configuration (q′, ρ′). While reading this sequence, it traverses itself
a sequence (q̃0, ρ̃0), . . . , (q̃d+1, ρ̃d+1) of inner configurations, which each consist
of an inner state q̃i ∈ Q̃ and an inner register valuation ρ̃i ∈ (V ∪ {⊥})R̃, where
the symbol ⊥ represents an undefined value. For the initial inner configuration,
we set q̃0 = ι̃ and ρ̃0(r̃) = ⊥ for all r̃ ∈ R̃. Now for i ∈ [d], when Δ is in the
inner configuration (q̃i, ρ̃i) and reads the local configuration (qi, ρi), it can com-
pare all values assigned to the inner registers and registers by ρ̃i and ρi (with
respect to the order relation on V). In other words, it has access to the binary
relation ≺i ⊆ (R̃ ∪ R)2 such that for r̃, s̃ ∈ R̃ and r, s ∈ R, we have r̃ ≺i r if
and only if ρ̃i(r̃) < ρi(r), and analogously for r ≺i r̃, r̃ ≺i s̃, and r ≺i s. In par-
ticular, if ρ̃i(r̃) = ⊥, then r̃ is incomparable with respect to ≺i. Equipped with
this relation, Δ transitions to (q̃i+1, ρ̃i+1) by evaluating δ̃(q̃i, qi,≺i) = (q̃i+1, α̃)
and computing ρ̃i+1 such that ρ̃i+1(r̃) = ρ̃i(s̃) if α̃(r̃) = s̃, and ρ̃i+1(r̃) = ρi(s)
if α̃(r̃) = s, where r̃, s̃ ∈ R̃ and s ∈ R. Finally, after having read the entire
input sequence and reached the inner configuration (q̃d+1, ρ̃d+1), the transition
maker outputs the local configuration (q′, ρ′) such that õ(q̃d+1) = (q′, β̃) and
β̃(r) = r̃ implies ρ′(r) = ρ̃d+1(r̃). Here we assume without loss of generality that
Δ guarantees that ρ′(r) �= ⊥ for all r ∈ R.

Remark 4. Recall that V = [n) for any graph G = (V,E) with n nodes. How-
ever, as registers cannot be compared with constants, this actually represents
an arbitrary assignment of unique, totally ordered identifiers. To determine the
smallest identifier (i.e., 0), the nodes can run an algorithm such as the following.

Example 5 (Spanning tree). We present a simple automaton A = (Q,R, ι,Δ,
H, o) with input signature Σin = (1, ∅) and output signature Σout =
(1, {parent , root}) that computes a (breadth-first) spanning tree of its input

122 B. Bollig et al.

Algorithm 1. Transition maker of the automaton from Example 5
if ∃ neighbor nb (nb.root < my .root) :

my .state ← 1; my .parent ← nb.self ; my .root ← nb.root

}
Rule 1

else if my .state = 1

∧ ∀ neighbor nb

[
nb.root = my .root ∧
(nb.parent �= my .self ∨ nb.state = 2)

]
:

my .state ← 2

⎫⎪⎬
⎪⎭ Rule 2

else if (my .state = 2 ∧ my .root = my .self) ∨ (my .parent .state = 3):

my .state ← 3

}
Rule 3

else do nothing

graph G = (V,E), rooted at the node with the smallest identifier. More pre-
cisely, in the computed output configuration C = (G, q, r), every node will store
the identifier of its tree parent in register parent and the identifier of the root
(i.e., the smallest identifier) in register root . Thus, as a side effect, A also solves
the leader election problem by electing the root as the leader.

The automaton operates in three phases, which are represented by the set
of states Q = {1, 2, 3}. A node terminates as soon as it reaches the third phase,
i.e., we set H = {3}. Accordingly, the (trivial) input and output functions are
ι : ε
→ 1 and o : 3
→ ε. In addition to the output registers, each node has an
auxiliary register self that will always store its own identifier. Thus, we choose
R = {self , parent , root}. For the sake of simplicity, we describe the transition
maker Δ in Algorithm 1 using pseudocode rules. However, it should be clear
that these rules could be relatively easily implemented according to Definition 3.

All nodes start in state 1, which represents the tree-construction phase. By
Rule 1, whenever an active node (i.e., a node in state 1 or 2) sees a neighbor
whose root register contains a smaller identifier than the node’s own root register,
it updates its parent and root registers accordingly and switches to state 1. To
resolve the nondeterminism in Rule 1, we stipulate that nb is chosen to be the
neighbor with the smallest identifier among those whose root register contains
the smallest value seen so far.

As can be easily shown by induction on the number of communication rounds,
the nodes have to apply Rule 1 no more than diameter(G) times in order for
the pointers in register parent to represent a valid spanning tree (where the
root points to itself). However, since the nodes do not know when diameter(G)
rounds have elapsed, they must also check that the current configuration does
indeed represent a single tree, as opposed to a forest. They do so by propagating
a signal, in form of state 2, from the leaves up to the root.

By Rule 2, if an active node whose neighbors all agree on the same root
realizes that it is a leaf or that all of its children are in state 2, then it switches to
state 2 itself. Assuming the parent pointers in the current configuration already
represent a single tree, Rule 2 ensures that the root will eventually be notified of
this fact (when all of its children are in state 2). Otherwise, the parent pointers

Identifiers in Registers – Describing Network Algorithms with Logic 123

represent a forest, and every tree contains at least one node that has a neighbor
outside of the tree (as we assume the underlying graph is connected).

Depending on the input graph, a node can switch arbitrarily often between
states 1 and 2. Once the spanning tree has been constructed and every node is in
state 2, the only node that knows this is the root. In order for the algorithm to
terminate, Rule 3 then makes the root broadcast an acknowledgment message
down the tree, which causes all nodes to switch to the halting state 3. ��

Building on the automaton from Example 5, we now give an example of a
graph property that can be decided in our model of distributed computing. The
following automaton should be compared to the logical formula presented later
in Example 8, which is much more compact and much easier to specify.

Example 6 (Hamiltonian cycle). We describe an automaton with input signa-
ture Σin = (1, {parent , root}) and output signature Σout = ({yes,no}, ∅) that
decides if the underlying graph G = (V,E) of its input configuration C = (G, q, r)
is Hamiltonian, i.e., whether G contains a cycle that goes through each node
exactly once. The automaton works under the assumption that r encodes a valid
spanning tree of G in the registers parent and root , as constructed by the automa-
ton from Example 5. Hence, by combining the two automata, we could easily
construct a third one that decides the graph property of Hamiltonicity.

The automaton A = (Q,R, ι,Δ,H, o) presented here implements a simple
backtracking algorithm that tries to traverse G along a Hamiltonian cycle. Its set
of states is Q =

({unvisited , visited , backtrack}×{idle, request , good , bad}) ∪ H,
with the set of halting states H = {yes,no}. Each non-halting state consists
of two components, the first one serving for the backtracking procedure and the
second one for communicating in the spanning tree. The input function ι initial-
izes every node to the state (unvisited , idle), while the output function simply
returns the answers chosen by the nodes, i.e., o : yes
→ yes, no
→ no. In addi-
tion to the input registers, each node has a register self storing its own identifier
and a register successor to point to its successor in a (partially constructed)
Hamiltonian path. That is, R = {self , parent , root , successor}. We now describe
the algorithm in an informal way. It is, in principle, easy to implement in the
transition maker Δ, but a thorough formalization would be rather cumbersome.

In the first round, the root marks itself as visited and updates its successor reg-
ister to point towards its smallest neighbor (the one with the smallest identifier).
Similarly, in each subsequent round, any unvisited node that is pointed to by one
of its neighbors marks itself as visited and points towards its smallest unvisited
neighbor. However, if all neighbors are already visited , the node instead sends the
backtrack signal to its predecessor and switches back to unvisited (in the following
round). Whenever a visited node receives the backtrack signal from its successor ,
it tries to update its successor to the next-smallest unvisited neighbor. If no such
neighbor exists, it resets its successor pointer to itself, propagates the backtrack
signal to its predecessor, and becomes unvisited in the following round.

There is only one exception to the above rules: if a node that is adjacent to
the root cannot find any unvisited neighbor, it chooses the root as its successor .

124 B. Bollig et al.

This way, the constructed path becomes a cycle. In order to check whether
that cycle is Hamiltonian, the root now broadcast a request down the spanning
tree. If the request reaches an unvisited node, that node replies by sending the
message bad towards the root. On the other hand, every visited leaf replies with
the message good . While bad is always forwarded up to the root, good is only
forwarded by nodes that receive this message from all of their children. If the
root receives only good , then it knows that the current cycle is Hamiltonian
and it switches to the halting state yes. The information is then broadcast
through the entire graph, so that all nodes eventually accept. Otherwise, the root
sends the backtrack signal to its predecessor, and the search for a Hamiltonian
cycle continues. In case there is none (in particular, if there is not even an
arbitrary cycle), the root will eventually receive the backtrack signal from its
greatest neighbor, which indicates that all possibilities have been exhausted. If
this happens, the root switches to the halting state no, and all other nodes
eventually do the same. ��

4 Functional Fixpoint Logic

In order to introduce functional fixpoint logic, we first give a definition of first-
order logic that suits our needs. Formulas will always be evaluated on ordered,
undirected, connected, I-labeled graphs, where I is a fixed finite set of labels.

Throughout this paper, let N be an infinite supply of node variables and F be
an infinite supply of function variables; we refer to them collectively as variables.
The corresponding set of terms is generated by the grammar t ::= x | f(t), where
x ∈ N and f ∈ F . With this, the set of formulas of first-order logic over I is
given by the grammar

ϕ ::= 〈a〉 t | s < t | s � t | ¬ϕ | ϕ ∨ ϕ | ∃xϕ,

where s and t are terms, a ∈ I, and x ∈ N . As usual, we may also use the
additional operators ∧, ⇒, ⇔, ∀ to make our formulas more readable, and we
define the notations s ≤ t, s = t, and s �= t as abbreviations for ¬(t < s),
(s ≤ t) ∧ (t ≤ s), and ¬(s = t), respectively.

The sets of free variables of a term t and a formula ϕ are denoted by free(t)
and free(ϕ), respectively. While node variables can be bound by the usual quan-
tifiers ∃ and ∀, function variables can be bound by a partial fixpoint operator
that we will introduce below.

To interpret a formula ϕ on an I-labeled graph (G, q) with G = (V,E), we
are given a variable assignmentσ for the variables that occur freely in ϕ. This
is a partial function σ : N ∪ F → V ∪ V V such that σ(x) ∈ V if x is a free node
variable and σ(f) ∈ V V if f is a free function variable. We call σ(x) and σ(f) the
interpretations of x and f under σ, and denote them by xσ and fσ, respectively.
For a composite term t, the corresponding interpretation tσ under σ is defined
in the obvious way.

We write (G, q), σ |= ϕ to denote that (G, q) satisfies ϕ under assignment σ.
If ϕ does not contain any free variables, we simply write (G, q) |= ϕ and refer

Identifiers in Registers – Describing Network Algorithms with Logic 125

to the set P of I-labeled graphs that satisfy ϕ as the graph property defined
by ϕ. Naturally enough, we say that two devices (i.e., automata or formulas) are
equivalent if they specify (i.e., decide or define) the same graph property and
that two classes of devices are equivalent if their members specify the same class
of graph properties.

As we assume that the reader is familiar with first-order logic, we only define
the semantics of the atomic formulas (whose syntax is not completely standard):

(G, q), σ |= 〈a〉 t iff q(tσ) = a (“t has label a”),
(G, q), σ |= s < t iff sσ < tσ (“s is smaller than t”),
(G, q), σ |= s � t iff {sσ, tσ} ∈ E (“s and t are adjacent”).

We now turn to functional fixpoint logic. Syntactically, it is defined as the
extension of first-order logic that allows us to write formulas of the form

pfp

⎡

⎢
⎣

f1 : ϕ1(f1, . . . , f�, in,out)
...

f� : ϕ�(f1, . . . , f�, in,out)

⎤

⎥
⎦ψ , (∗)

where f1, . . . , f� ∈ F , in,out ∈ N , and ϕ1, . . . , ϕ�, ψ are formulas. We
use the notation “ϕi(f1, . . . , f�, in,out)” to emphasize that f1, . . . , f�, in,out
may occur freely in ϕi (possibly among other variables). The free variables
of formula (∗) are given by

⋃
i∈(�]

[
free(ϕi) \ {f1, . . . , f�, in,out}] ∪ [

free(ψ) \
{f1, . . . , f�}

]
.

The idea is that the partial fixpoint operator pfp binds the function variables
f1, . . . , f�. The
 lines in square brackets constitute a system of function defini-
tions that provide an interpretation of f1, . . . , f�, using the special node variables
in and out as helpers to represent input and output values. This is why pfp also
binds any free occurrences of in and out in ϕ1, . . . , ϕ�, but not in ψ.

To specify the semantics of (∗), we first need to make some preliminary obser-
vations. As before, we consider a fixed I-labeled graph (G, q) with G = (V,E)
and assume that we are given a variable assignment σ for the free variables
of (∗). With respect to (G, q) and σ, each formula ϕi induces an operator
Fϕi

: (V V)� → V V that takes some interpretation of the function variables
f1, . . . , f� and outputs a new interpretation of fi, corresponding to the func-
tion graph defined by ϕi via the node variables in and out. For inputs on which
ϕi does not define a functional relationship, the new interpretation of fi behaves
like the identity function. More formally, given a variable assignment σ̂ that
extends σ with interpretations of f1, . . . , f�, the operator Fϕi

maps f σ̂
1 , . . . , f σ̂

�

to the function f new
i such that for all u ∈ V ,

f new
i (u) =

{
v if v is the unique node inV s.t. (G, q), σ̂[in,out
→ u, v] |= ϕi,

u otherwise.

126 B. Bollig et al.

Here, σ̂[in,out
→ u, v] is the extension of σ̂ interpreting in as u and out as v.
In this way, the operators Fϕ1 , . . . , Fϕ�

give rise to an infinite sequence
(fk

1 , . . . , fk
�)k≥0 of tuples of functions, called stages, where the initial stage con-

tains solely the identity function idV and each subsequent stage is obtained from
its predecessor by componentwise application of the operators. More formally,

f0
i = idV = {u
→ u | u ∈ V } and fk+1

i = Fϕi
(fk

1 , . . . , fk
�),

for i ∈ (
] and k ≥ 0. Now, since we have not imposed any restrictions on
the formulas ϕi, this sequence might never stabilize, i.e, it is possible that
(fk

1 , . . . , fk
�) �= (fk+1

1 , . . . , fk+1
�) for all k ≥ 0. Otherwise, the sequence reaches a

(simultaneous) fixpoint at some position k no greater than |V ||V |·� (the number
of
-tuples of functions on V).

We define the partial fixpoint (f∞
1 , . . . , f∞

�) of the operators Fϕ1 , . . . , Fϕ�
to

be the reached fixpoint if it exists, and the tuple of identity functions otherwise.
That is, for i ∈ (
],

f∞
i =

{
fk

i if there exists k ≥ 0 such that fk
j = fk+1

j for all j ∈ (
],
idV otherwise.

Having introduced the necessary background, we can finally provide the
semantics of the formula pfp[fi : ϕi]i∈(�] ψ presented in (∗):

(G, q), σ |= pfp[fi : ϕi]i∈(�] ψ iff (G, q), σ[fi
→ f∞
i]i∈(�] |= ψ,

where σ[fi
→ f∞
i]i∈(�] is the extension of σ that interprets fi as f∞

i , for i ∈ (
].
In other words, the formula pfp[fi : ϕi]i∈(�] ψ can intuitively be read as

“if f1, . . . , f� are interpreted as the partial fixpoint of ϕ1, . . . , ϕ�, then ψ holds”.

Syntactic Sugar

Before we consider a concrete formula (in Example 8), we first introduce some
“syntactic sugar” to make using functional fixpoint logic more pleasant.

Set variables. According to our definition of functional fixpoint logic, the oper-
ator pfp can bind only function variables. However, functions can be used to
encode sets of nodes in a straightforward manner: any set U may be represented
by a function that maps nodes outside of U to themselves and nodes inside U
to nodes distinct from themselves. Therefore, we may fix an infinite supply S of
set variables, and extend the syntax of first-order logic to allow atomic formulas
of the form t ∈ X, where t is a term and X is a set variable in S. Naturally, the
semantics is that “t is an element of X”. To bind set variables, we can then write
partial fixpoint formulas of the form pfp

[
(fi : ϕi)i∈(�], (Xi : ϑi)i∈(m]

]
ψ, where

f1, . . . , f� ∈ F , X1, . . . , Xm ∈ S, and ϕ1, . . . , ϕ�, ϑ1, . . . , ϑm, ψ are formulas. The
stages of the partial fixpoint induction are computed as before, but each set
variable Xi is initialized to ∅, and falls back to ∅ in case the sequence of stages
does not converge to a fixpoint.

Identifiers in Registers – Describing Network Algorithms with Logic 127

Quantifiers over functions and sets. Partial fixpoint inductions allow us to iter-
ate over various interpretations of function and set variables and thus provide
a way of expressing (second-order) quantification over functions and sets. Since
we restrict ourselves to graphs whose nodes are totally ordered, we can easily
define a suitable order of iteration and a corresponding partial fixpoint induction
that traverses all possible interpretations of a given function or set variable. To
make this more convenient, we enrich the language of functional fixpoint logic
with second-order quantifiers, allowing us to write formulas of the form ∃f ϕ and
∃X ϕ, where f ∈ F , X ∈ S, and ϕ is a formula. Obviously, the semantics is that
“there exists a function f , or a set X, respectively, such that ϕ holds”.

As a consequence, it is possible to express any graph property definable in
monadic second-order logic, the extension of first-order logic with set quantifiers.

Corollary 7. When restricted to finite graphs equipped with a total order, func-
tional fixpoint logic is strictly more expressive than monadic second-order logic.

The strictness of the inclusion in the above corollary follows from the fact
that even on totally ordered graphs, Hamiltonicity cannot be defined in monadic
second-order logic (see, e.g., the proof in [4, Prp. 5.13]). As the following example
shows, this property is easy to express in functional fixpoint logic.

Example 8 (Hamiltonian cycle). The following formula of functional fixpoint
logic defines the graph property of Hamiltonicity. That is, an unlabeled graph G
satisfies this formula if and only if there exists a cycle in G that goes through
each node exactly once.

∃f

⎡

⎣
∀x

(
f(x) � x

) ∧ ∀x∃y
[
f(y) = x ∧ ∀z

(
f(z) = x ⇒ z = y

)] ∧
∀X

([∃x(x ∈ X) ∧ ∀y
(
y ∈ X ⇒ f(y) ∈ X

)] ⇒ ∀y(y ∈ X)
)

⎤

⎦

Here, x, y, z ∈ N , X ∈ S, and f ∈ F . Intuitively, we represent a given Hamilto-
nian cycle by a function f that tells us for each node x, which of x’s neighbors we
should visit next in order to traverse the entire cycle. Thus, f actually represents
a directed version of the cycle.

To ensure the existence of a Hamiltonian cycle, our formula states that there
is a function f satisfying the following two conditions. By the first line, each
node x must have exactly one f -predecessor and one f -successor, both of which
must be neighbors of x. By the second line, if we start at any node x and collect
into a set X all the nodes reachable from x (by following the path specified by
f), then X must contain all nodes. ��

5 Translating Between Automata and Logic

Having introduced both automata and logic, we can proceed to explain the first
part of Theorem 1 (stated in Sect. 1), i.e., how distributed register automata can
be translated into functional fixpoint logic.

128 B. Bollig et al.

Proposition 9. For every distributed register automaton that decides a graph
property, we can construct an equivalent formula of functional fixpoint logic.

Proof (sketch). Given a distributed register automaton A = (Q,R, ι,Δ,H, o)
deciding a graph property P over label set I, we can construct a formula ϕA of
functional fixpoint logic that defines P . For each state q ∈ Q, our formula uses
a set variable Xq to represent the set of nodes of the input graph that are in
state q. Also, for each register r ∈ R, it uses a function variable fr to represent
the function that maps each node u to the node v whose identifier is stored
in u’s register r. By means of a partial fixpoint operator, we enforce that on any
I-labeled graph (G, q), the final interpretations of (Xq)q∈Q and (fr)r∈R represent
the halting configuration reached by A on (G, q). The main formula is simply

ϕA := pfp
[
(Xq : ϕq)q∈Q

(fr : ϕr)r∈R

]
∀x

(∨

p∈H: o(p)=yes

x ∈ Xp

)
,

which states that all nodes end up in a halting state that outputs yes.
Basically, the subformulas (ϕq)q∈Q and (ϕr)r∈R can be constructed in such

a way that for all i ∈ N, the (i + 1)-th stage of the partial fixpoint induction
represents the configuration reached by A in the i-th round. To achieve this,
each of the subformulas contains a nested partial fixpoint formula describing
the result computed by the transition maker Δ between two consecutive syn-
chronous rounds, using additional set and function variables to encode the inner
configurations of Δ at each node. Thus, each stage of the nested partial fix-
point induction corresponds to a single step in the transition maker’s sequential
scanning process. ��

Let us now consider the opposite direction and sketch how to go from func-
tional fixpoint logic to distributed register automata.

Proposition 10. For every formula of functional fixpoint logic that defines a
graph property, we can construct an equivalent distributed register automaton.

Proof (sketch). We proceed by structural induction: each subformula ϕ will be
evaluated by a dedicated automaton Aϕ, and several such automata can then be
combined to build an automaton for a composite formula. For this purpose, it
is convenient to design centralized automata, which operate on a givenspanning
tree (as computed in Example 5) and are coordinated by the root in a fairly
sequential manner. In Aϕ, each free node variable x of ϕ is represented by a
corresponding input register x whose value at the root is the current interpre-
tation xσ of x. Similarly, to represent a function variable f , every node v has a
register f storing fσ(v). The nodes also possess some auxiliary registers whose
purpose will be explained below. In the end, for any formula ϕ (potentially
with free variables), we will have an automaton Aϕ computing a transduction
TAϕ

: C(I, {parent , root} ∪ free(ϕ)) → C({yes,no}, ∅), where parent and root
are supposed to constitute a spanning tree. The computation is triggered by the
root, which means that the other nodes are waiting for a signal to wake up.

Identifiers in Registers – Describing Network Algorithms with Logic 129

Algorithm 2. Aϕ for ϕ = pfp[fi : ϕi]i∈[1 : �] ψ, as controlled by the root

1 init(Ainc)

2 repeat

3 @every node do for i ∈ [1 : �] do fi ← f new
i

4 for i ∈ [1 : �] do update(f new
i)

5 if @every node (∀i ∈ [1 : �] : f new
i = fi) then goto 8

6 until execute(Ainc) returns no /∗ until global counter at maximum ∗/
7 @every node do for i ∈ [1 : �] do fi ← self

8 execute(Aψ)

Essentially, the nodes involved in the evaluation of ϕ collect some information,
send it towards the root, and go back to sleep. The root then returns yes or no,
depending on whether or not ϕ holds in the input graph under the variable
assignment provided by the input registers. Centralizing Aϕ in that way makes
it very convenient (albeit not efficient) to evaluate composite formulas. For exam-
ple, in Aϕ∨ψ, the root will first run Aϕ, and then Aψ in case Aϕ returns no.

The evaluation of atomic formulas is straightforward. So let us focus on the
most interesting case, namely when ϕ = pfp[fi : ϕi]i∈(�] ψ. The root’s program is
outlined in Algorithm 2. Line 1 initializes a counter that ranges from 0 to n�n−1,
where n is the number of nodes in the input graph. This counter is distributed
in the sense that every node has some dedicated registers that together store the
current counter value. Every execution of Ainc will increment the counter by 1, or
return no if its maximum value has been exceeded. Now, in each iteration of the
loop starting at Line 2, all registers fi and f new

i are updated in such a way that
they represent the current and next stage, respectively, of the partial fixpoint
induction. For the former, it suffices that every node copies, for all i, the contents
of f new

i to fi (Line 3). To update f new
i , Line 4 calls a subroutine update(f new

i)
whose effect is that f new

i = Fϕi
((fi)i∈(�]) for all i, where Fϕi

: (V V)� → V V is
the operator defined in Sect. 4. Line 5 checks whether we have reached a fixpoint:
The root asks every node to compare, for all i, its registers f new

i and fi. The
corresponding truth value is propagated back to the root, where false is given
preference over true. If the result is true, we exit the loop and proceed with
calling Aψ to evaluate ψ (Line 8). Otherwise, we try to increment the global
counter by executing Ainc (Line 6). If the latter returns no, the fixpoint com-
putation is aborted because we know that it has reached a cycle. In accordance
with the partial fixpoint semantics, all nodes then write their own identifier to
every register fi (Line 7) before ψ is evaluated (Line 8). ��

6 Conclusion

This paper makes some progress in the development of a descriptive distributed
complexity theory by establishing a logical characterization of a wide class of
network algorithms, modeled as distributed register automata.

130 B. Bollig et al.

In our translation from logic to automata, we did not pay much attention to
algorithmic efficiency. In particular, we made extensive use of centralized subrou-
tines that are triggered and controlled by a leader process. A natural question for
future research is to identify cases where we can understand a distributed archi-
tecture as an opportunity that allows us to evaluate formulas faster. In other
words, is there an expressive fragment of functional fixpoint logic that gives
rise to efficient distributed algorithms in terms of running time? What about
the required number of messages? We are then entering the field of automatic
synthesis of practical distributed algorithms from logical specifications. This is a
worthwhile task, as it is often much easier to declare what should be done than
how it should be done (cf. Examples 6 and 8).

As far as the authors are aware, this area is still relatively unexplored. How-
ever, one noteworthy advance was made by Grumbach and Wu in [9], where they
investigated distributed evaluation of first-order formulas on bounded-degree
graphs and planar graphs. We hope to follow up on this in future work.

Acknowledgments. We thank Matthias Függer for helpful discussions. Work sup-
ported by ERC EQualIS (FP7-308087) (http://www.lsv.fr/∼bouyer/equalis) and ANR
FREDDA (17-CE40-0013) (https://www.irif.fr/anr/fredda/index).

References

1. Abiteboul, S., Vianu, V.: Fixpoint extensions of first-order logic and datalog-like
languages. In: Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS 1989), Pacific Grove, California, USA, 5–8 June 1989, pp. 71–79.
IEEE Computer Society (1989). https://doi.org/10.1109/LICS.1989.39160

2. Aiswarya, C., Bollig, B., Gastin, P.: An automata-theoretic approach to the ver-
ification of distributed algorithms. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th
International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain,
14 September 2015. LIPIcs, vol. 42, pp. 340–353. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.CONCUR.2015.
340

3. Aiswarya, C., Bollig, B., Gastin, P.: An automata-theoretic approach to the ver-
ification of distributed algorithms. Inf. Comput. 259(Part 3), 305–327 (2018).
https://doi.org/10.1016/j.ic.2017.05.006

4. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic: A
Language-Theoretic Approach. Encyclopedia of Mathematics and Its Applications,
vol. 138. Cambridge University Press, Cambridge (2012). https://hal.archives-
ouvertes.fr/hal-00646514. https://doi.org/10.1017/CBO9780511977619

5. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: Karp, R.M. (ed.) Complexity of Computation. SIAM-AMS Proceedings, vol. 7,
pp. 43–73 (1974). http://www.almaden.ibm.com/cs/people/fagin/genspec.pdf

7. Feuilloley, L., Fraigniaud, P.: Survey of distributed decision. Bull. EATCS 119
(2016). http://eatcs.org/beatcs/index.php/beatcs/article/view/411

8. Grädel, E., et al.: Finite Model Theory and Its Applications. Texts in Theoret-
ical Computer Science. An EATCS Series, 1st edn. Springer, Heidelberg (2007).
https://doi.org/10.1007/3-540-68804-8

http://www.lsv.fr/~bouyer/equalis
https://www.irif.fr/anr/fredda/index
https://doi.org/10.1109/LICS.1989.39160
https://doi.org/10.4230/LIPIcs.CONCUR.2015.340
https://doi.org/10.4230/LIPIcs.CONCUR.2015.340
https://doi.org/10.1016/j.ic.2017.05.006
https://hal.archives-ouvertes.fr/hal-00646514
https://hal.archives-ouvertes.fr/hal-00646514
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
http://www.almaden.ibm.com/cs/people/fagin/genspec.pdf
http://eatcs.org/beatcs/index.php/beatcs/article/view/411
https://doi.org/10.1007/3-540-68804-8

Identifiers in Registers – Describing Network Algorithms with Logic 131

9. Grumbach, S., Wu, Z.: Logical locality entails frugal distributed computation over
graphs (extended abstract). In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol.
5911, pp. 154–165. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-11409-0 14

10. Hella, L., et al.: Weak models of distributed computing, with connections to modal
logic. In: Kowalski, D., Panconesi, A. (eds.) ACM Symposium on Principles of
Distributed Computing, PODC 2012, Funchal, Madeira, Portugal, 16–18 July 2012,
pp. 185–194. ACM (2012). https://doi.org/10.1145/2332432.2332466

11. Hella, L., et al.: Weak models of distributed computing, with connections to
modallogic. Distrib. Comput. 28(1), 31–53 (2015). https://arxiv.org/abs/1205.
2051. http://dx.doi.org/10.1007/s00446-013-0202-3

12. Immerman, N.: Descriptive Complexity. Texts in Computer Science. Springer, New
York (1999). https://doi.org/10.1007/978-1-4612-0539-5

13. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

14. Kuusisto, A.: Modal logic and distributed message passing automata. In: Rocca,
S.R.D. (eds.) Computer Science Logic 2013 (CSL 2013), Torino, Italy, 2–5 Septem-
ber 2013, LIPIcs, vol. 23, pp. 452–468. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.452

15. Libkin, L., et al.: Elements of Finite Model Theory. Texts in Theoretical Computer
Science. An EATCS Series, 1st edn. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-662-07003-1

16. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput.
24(6), 1259–1277 (1995). https://doi.org/10.1137/S0097539793254571

17. Reiter, F.: Distributed graph automata. In: 30th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 192–
201. IEEE Computer Society (2015). https://arxiv.org/abs/1408.3030. https://doi.
org/10.1109/LICS.2015.27

18. Reiter, F.: Asynchronous distributed automata: a characterization of the modal
MU-fragment. In: Chatzigiannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th
International Colloquium on Automata, Languages, and Programming, ICALP
2017, Warsaw, Poland, 10–14 July 2017. LIPIcs, vol. 80, pp. 100:1–100:14. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). http://arxiv.org/abs/1611.
08554. https://doi.org/10.4230/LIPIcs.ICALP.2017.100

19. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In:
Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H. (eds.) Proceedings
of the 14th Annual ACM Symposium on Theory of Computing, San Francisco,
California, USA, 5–7 May 1982, pp. 137–146. ACM (1982). https://doi.org/10.
1145/800070.802186

https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1007/978-3-642-11409-0_14
https://doi.org/10.1145/2332432.2332466
https://arxiv.org/abs/1205.2051
https://arxiv.org/abs/1205.2051
http://dx.doi.org/10.1007/s00446-013-0202-3
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4230/LIPIcs.CSL.2013.452
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1137/S0097539793254571
https://arxiv.org/abs/1408.3030
https://doi.org/10.1109/LICS.2015.27
https://doi.org/10.1109/LICS.2015.27
http://arxiv.org/abs/1611.08554
http://arxiv.org/abs/1611.08554
https://doi.org/10.4230/LIPIcs.ICALP.2017.100
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186

132 B. Bollig et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Impatient May Use Limited
Optimism to Minimize Regret

Michaël Cadilhac1, Guillermo A. Pérez2(B), and Marie van den Bogaard3

1 University of Oxford, Oxford, UK
michael@cadilhac.name

2 University of Antwerp, Antwerp, Belgium
guillermoalberto.perez@uantwerpen.be

3 Université libre de Bruxelles, Brussels, Belgium
marie.van.den.bogaard@ulb.ac.be

Abstract. Discounted-sum games provide a formal model for the study
of reinforcement learning, where the agent is enticed to get rewards
early since later rewards are discounted. When the agent interacts with
the environment, she may realize that, with hindsight, she could have
increased her reward by playing differently: this difference in outcomes
constitutes her regret value. The agent may thus elect to follow a regret-
minimal strategy. In this paper, it is shown that (1) there always exist
regret-minimal strategies that are admissible—a strategy being inad-
missible if there is another strategy that always performs better; (2)
computing the minimum possible regret or checking that a strategy is
regret-minimal can be done in coNPNP, disregarding the computational
cost of numerical analysis (otherwise, this bound becomes PSpace).

Keywords: Admissibility · Discounted-sum games ·
Regret minimization

1 Introduction

A pervasive model used to study the strategies of an agent in an unknown envi-
ronment is two-player infinite horizon games played on finite weighted graphs.
Therein, the set of vertices of a graph is split between two players, Adam and
Eve, playing the roles of the environment and the agent, respectively. The play
starts in a given vertex, and each player decides where to go next when the play
reaches one of their vertices. Questions asked about these games are usually of
the form: Does there exist a strategy of Eve such that. . . ? For such a question
to be well-formed, one should provide:

1. A valuation function: given an infinite play, what is Eve’s reward?
2. Assumptions about the environment: is Adam trying to help or hinder Eve?

The valuation function can be Boolean, in which case one says that Eve
wins or loses (one very classical example has Eve winning if the maximum value
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 133–149, 2019.
https://doi.org/10.1007/978-3-030-17127-8_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_8

134 M. Cadilhac et al.

appearing infinitely often along the edges is even). In this setting, it is often
assumed that Adam is adversarial, and the question then becomes: Can Eve
always win? (The names of the players stem from this view: is there a strategy
of ∃ve that always beats ∀dam?) The literature on that subject spans more than
35 years, with newly found applications to this day (see [4] for comprehensive
lecture notes, and [7] for an example of recent use in the analysis of attacks in
cryptocurrencies).

The valuation function can also aggregate the numerical values along the
edges into a reward value. We focus in this paper on discounted sum: if w is
the weight of the edge taken at the n-th step, Eve’s reward grows by λn · w,
where λ ∈ (0, 1) is a prescribed discount factor. Discounting future rewards is a
classical notion used in economics [18], Markov decision processes [9,16], systems
theory [1], and is at the heart of Q-learning, a reinforcement learning technique
widely used in machine learning [19]. In this setting, we consider three attitudes
towards the environment:

– The adversarial environment hypothesis translates to Adam trying to min-
imize Eve’s reward, and the question becomes: Can Eve always achieve a
reward of x? This problem is in NP ∩ coNP [20] and showing a P upper-bound
would constitute a major breakthrough (namely, it would imply the same for
so-called parity games [15]). A strategy of Eve that maximizes her rewards
against an adversarial environment is called worst-case optimal. Conversely,
a strategy that maximizes her rewards assuming a collaborative environment
is called best-case optimal.

– Assuming that the environment is adversarial is drastic, if not pessimistic. Eve
could rather be interested in settling for a strategy σ which is not consistently
bad: if another strategy σ′ gives a better reward in one environment, there
should be another environment for which σ is better than σ′. Such strategies,
called admissible [5], can be seen as an a priori rational choice.

– Finally, Eve could put no assumption on the environment, but regret not
having done so. Formally, the regret value of Eve’s strategy is defined as the
maximal difference, for all environments, between the best value Eve could
have obtained and the value she actually obtained. Eve can thus be inter-
ested in following a strategy that achieves the minimal regret value, aptly
called a regret-minimal strategy [10]. This constitutes an a posteriori ratio-
nal choice [12]. Regret-minimal strategies were explored in several contexts,
with applications including competitive online algorithm synthesis [3,11] and
robot-motion planning [13,14].

In this paper, we single out a class of strategies for Eve that first follow a
best-case optimal strategy, then switch to a worst-case optimal strategy after
some precise time; we call these strategies optipess. Our main contributions are
then:

1. Optipess strategies are not only regret-minimal (a fact established in [13])
but also admissible—note that there are regret-minimal strategies that are
not admissible and vice versa. On the way, we show that for any strategy of

The Impatient May Use Limited Optimism to Minimize Regret 135

Eve there is an admissible strategy that performs at least as well; this is a
peculiarity of discounted-sum games.

2. The regret value of a given time-switching strategy can be computed with
an NP algorithm (disregarding the cost of numerical analysis). The main
technical hurdle is showing that exponentially long paths can be represented
succinctly, a result of independent interest.

3. The question Can Eve’s regret be bounded by x? is decidable in NPcoNP (again
disregarding the cost of numerical analysis, PSpace otherwise), improving on
the implicit NExp algorithm of [13]. The algorithm consists in guessing a
time-switching strategy and computing its regret value; since optipess strate-
gies are time-switching strategies that are regret-minimal, the algorithm will
eventually find the minimal regret value of the input game.

Structure of the Paper. Notations and definitions are introduced in Sect. 2. The
study of admissibility appears in Sect. 3, and is independent from the complexity
analysis of regret. The main algorithm devised in this paper (point 2 above) is
presented in Theorem 5, Sect. 6; it relies on technical lemmas that are the focus
of Sects. 4 and 5. We encourage the reader to go through the statements of the
lemma sections, then through the proof of Theorem 5, to get a good sense of the
role each lemma plays.

In more details, in Sect. 4 we provide a crucial lemma that allows to represent
long paths succinctly, and in Sect. 5, we argue that the important values of a
game (regret, best-case, worst-case) have short witnesses. In Sect. 6, we use these
lemmas to devise our algorithms.

2 Preliminaries

We assume familiarity with basic graph and complexity theory. Some more spe-
cific definitions and known results are recalled here.

Game, Play, History. A (discounted-sum) game G is a tuple (V, v0, V∃, E,w, λ)
where V is a finite set of vertices, v0 is the starting vertex, V∃ ⊆ V is the subset
of vertices that belong to Eve, E ⊆ V × V is a set of directed edges, w : E → Z

is an (edge-)weight function, and 0 < λ < 1 is a rational discount factor. The
vertices in V \ V∃ are said to belong to Adam. Since we consider games played
for an infinite number of turns, we will always assume that every vertex has at
least one outgoing edge.

A play is an infinite path v1v2 · · · ∈ V ω in the digraph (V,E). A history
h = v1 · · · vn is a finite path. The length of h, written |h|, is the number of edges
it contains: |h| def= n − 1. The set Hist consists of all histories that start in v0
and end in a vertex from V∃.

Strategies. A strategy of Eve in G is a function σ that maps histories ending in
some vertex v ∈ V∃ to a neighbouring vertex v′ (i.e., (v, v′) ∈ E). The strategy

136 M. Cadilhac et al.

σ is positional if for all histories h, h′ ending in the same vertex, σ(h) = σ(h′).
Strategies of Adam are defined similarly.

A history h = v1 · · · vn is said to be consistent with a strategy σ of Eve if for
all i ≥ 2 such that vi ∈ V∃, we have that σ(v1 · · · vi−1) = vi. Consistency with
strategies of Adam is defined similarly. We write Hist(σ) for the set of histories
in Hist that are consistent with σ. A play is consistent with a strategy (of either
player) if all its prefixes are consistent with it.

Given a vertex v and both Adam and Eve’s strategies, τ and σ respectively,
there is a unique play starting in v that is consistent with both, called the
outcome of τ and σ on v. This play is denoted outv(σ, τ).

For a strategy σ of Eve and a history h ∈ Hist(σ), we let σh be the strategy
of Eve that assumes h has already been played. Formally, σh(h′) = σ(h · h′) for
any history h′ (we will use this notation only on histories h′ that start with the
ending vertex of h).

Values. The value of a history h = v1 · · · vn is the discounted sum of the weights
on the edges:

Val(h) def=
|h|−1∑

i=0

λiw(vi, vi+1) .

The value of a play is simply the limit of the values of its prefixes.
The antagonistic value of a strategy σ of Eve with history h = v1 · · · vn is

the value Eve achieves when Adam tries to hinder her, after h:

aValh(σ) def= Val(h) + λ|h| · inf
τ
Val(outvn(σh, τ)) ,

where τ ranges over all strategies of Adam. The collaborative value cValh(σ)
is defined in a similar way, by substituting “sup” for “inf.” We write aValh

(resp. cValh) for the best antagonistic (resp. collaborative) value achievable by
Eve with any strategy.

Types of Strategies. A strategy σ of Eve is strongly worst-case optimal (SWO)
if for every history h we have aValh(σ) = aValh; it is strongly best-case opti-
mal (SBO) if for every history h we have cValh(σ) = cValh.

We single out a class of SWO strategies that perform well if Adam turns out to
be helping. A SWO strategy σ of Eve is strongly best worst-case optimal (SBWO)
if for every history h we have cValh(σ) = acValh, where:

acValh def= sup{cValh(σ′) | σ′ is a SWO strategy of Eve} .

In the context of discounted-sum games, strategies that are positional and
strongly optimal always exist. Furthermore, the set of all such strategies can be
characterized by local conditions.

The Impatient May Use Limited Optimism to Minimize Regret 137

Lemma 1 (Follows from [20, Theorem 5.1]). There exist positional SWO,
SBO, and SBWO strategies in every game. For any positional strategy σ of Eve:

– (∀v ∈ V) [aValv(σ) = aValv] iff σ is SWO;
– (∀v ∈ V) [cValv(σ) = cValv] iff σ is SBO;
– (∀v ∈ V) [aValv(σ) = aValv ∧ cValv(σ) = acValv] iff σ is SBWO.

Regret. The regret of a strategy σ of Eve is the maximal difference between
the value obtained by using σ and the value obtained by using an alternative
strategy:

Reg (σ) def= sup
τ

((
sup
σ′

Val(outv0(σ′, τ))
)

− Val(outv0(σ, τ))
)

,

where τ and σ′ range over all strategies of Adam and Eve, respectively. The
(minimal) regret of G is then Reg def= infσ Reg (σ).

Regret can also be characterized by considering the point in history when
Eve should have done things differently. Formally, for any vertices u and v let
cValu¬v be the maximal cValu(σ) for strategies σ verifying σ(u)
= v. Then:

Lemma 2 ([13, Lemma 13]). For all strategies σ of Eve:

Reg (σ) = sup
{

λn
(
cValvn

¬σ(h) − aValvn(σh)
) ∣∣∣ h = v0 · · · vn ∈ Hist(σ)

}
.

Switching and Optipess Strategies. Given strategies σ1, σ2 of Eve and a threshold
function t : V∃ → N∪{∞}, we define the switching strategy σ1

t→σ2 for any history
h = v1 · · · vn ending in V∃ as:

σ1
t→σ2(h) =

{
σ2(h) if (∃i)[i ≥ t(vi)],
σ1(h) otherwise.

We refer to histories for which the first condition above holds as switched his-
tories, to all others as unswitched histories. The strategy σ = σ1

t→σ2 is said to
be bipositional if both σ1 and σ2 are positional. Note that in that case, for all
histories h, if h is switched then σh = σ2, and otherwise σh is the same as σ
but with t(v) changed to max{0, t(v) − |h|} for all v ∈ V∃. In particular, if |h| is
greater than max{t(v) < ∞}, then σh is nearly positional: it switches to σ2 as
soon as it sees a vertex with t(v)
= ∞.

A strategy σ is perfectly optimistic-then-pessimistic (optipess, for short) if
there are positional SBO and SBWO strategies σsbo and σsbwo such that σ =
σsbo t→σsbwo where t(v) = inf

{
i ∈ N

∣∣ λi (cValv − aValv) ≤ Reg
}

.

138 M. Cadilhac et al.

Theorem 1 ([13]). For all optipess strategies σ of Eve, Reg (σ) = Reg.

Conventions. As we have done so far, we will assume throughout the paper
that a game G is fixed—with the notable exception of the results on complexity,
in which we assume that the game is given with all numbers in binary. Regard-
ing strategies, we assume that bipositional strategies are given as two positional
strategies and a threshold function encoded as a table with binary-encoded entries.

�
� �

Example 1. Consider the following game, where round vertices are owned by
Eve, and square ones by Adam. The double edges represent Eve’s positional
strategy σ:

v0 v1v2 v′
1

v′′
1

v′
2 x y

0 0 0

0

2

2

0

0

0
2

0

0

1

Eve’s strategy has a regret value of 2λ2/(1−λ). This is realized when Adam
plays from v0 to v1, from v′′

1 to x, and from v′
1 to y. Against that strategy, Eve

ensures a discounted-sum value of 0 by playing according to σ while regretting
not having played to v′′

1 to obtain 2λ2/(1 − λ). �

3 Admissible Strategies and Regret

There is no reason for Eve to choose a strategy that is consistently worse than
another one. This classical idea is formalized using the notions of strategy dom-
ination and admissible strategies. In this section, which is independent from the
rest of the paper, we study the relation between admissible and regret-minimal
strategies. Let us start by formally introducing the relevant notions:

Definition 1. Let σ1, σ2 be two strategies of Eve. We say that σ1 is weakly
dominated by σ2 if Val(outv0(σ1, τ)) ≤ Val(outv0(σ2, τ)) for every strategy τ
of Adam. We say that σ1 is dominated by σ2 if σ1 is weakly dominated by σ2

but not conversely. A strategy σ of Eve is admissible if it is not dominated by
any other strategy.

In other words, admissible strategies are maximal elements for the weak-
domination pre-order.

The Impatient May Use Limited Optimism to Minimize Regret 139

Example 2. Consider the following game, where the strategy σ of Eve is shown
by the double edges:

v0 v1v2

v′
1

v′′
1

v′
2

0 0

0

0
0

10

5

6

This strategy guarantees a discounted-sum value of 6λ2(1−λ) against any strat-
egy of Adam. Furthermore, it is worst-case optimal since playing to v1 instead
of v2 would allow Adam the opportunity to ensure a strictly smaller value by
playing to v′′

1 . The latter also implies that σ is admissible. Interestingly, playing
to v1 is also an admissible behavior of Eve since, against a strategy of Adam
that plays from v1 to v′

1, it obtains 10λ2(1 − λ) > 6λ2(1 − λ). �

The two examples above can be used to argue that the sets of strategies that
are regret minimal and admissible, respectively, are in fact incomparable.

Proposition 1. There are regret-optimal strategies that are not admissible and
admissible strategies that have suboptimal regret.

Proof (Sketch). Consider once more the game depicted in Example 1 and recall
that the strategy σ of Eve corresponding to the double edges has minimal regret.
This strategy is not admissible: it is dominated by the alternative strategy σ′ of
Eve that behaves like σ from v1 but plays to v′

2 from v2. Indeed, if Adam plays
to v1 from v0 then the outcomes of σ and σ′ are the same. However, if Adam
plays to v2 then the value of the outcome of σ is 0 while the value of the outcome
of σ′ is strictly greater than 0.

Similarly, the strategy σ depicted by double edges in the game from
Example 2 is admissible but not regret-minimizing. In fact, her strategy σ′ that
consists in playing v1 from v0 has a smaller regret. ��

In the rest of this section, we show that (1) any strategy is weakly dominated
by an admissible strategy; (2) being dominated entails more regret; (3) optipess
strategies are both regret-minimal and admissible. We will need the following:

Lemma 3 ([6]). A strategy σ of Eve is admissible if and only if for every his-
tory h ∈ Hist(σ) the following holds: either cValh(σ) > aValh or aValh(σ) =
cValh(σ) = aValh = acValh.

The above characterization of admissible strategies in so-called well-formed
games was proved in [6, Theorem 11]. Lemma 3 follows from the fact that
discounted-sum games are well-formed.

3.1 Any Strategy Is Weakly Dominated by an Admissible Strategy

We show that discounted-sum games have the distinctive property that every
strategy is weakly dominated by an admissible strategy. This is in stark contrast
with most cases where admissibility has been studied previously [6].

140 M. Cadilhac et al.

Theorem 2. Any strategy of Eve is weakly dominated by an admissible strategy.

Proof (Sketch). The main idea is to construct, based on σ, a strategy σ′ that will
switch to a SBWO strategy as soon as σ does not satisfy the characterization of
Lemma 3. The first part of the argument consists in showing that σ is indeed
weakly dominated by σ′. This is easily done by comparing, against each strategy
τ of Adam, the values of σ and σ′. The second part consists in verifying that
σ′ is indeed admissible. This is done by checking that each history h consistent
with σ′ satisfies the characterization of Lemma 3, that is cValh(σ′) > aValh or
aValh(σ′) = cValh(σ′) = aValh = acValh. ��

3.2 Being Dominated Is Regretful

Theorem 3. For all strategies σ, σ′ of Eve such that σ is weakly dominated
by σ′, it holds that Reg (σ′) ≤ Reg (σ).

Proof. Let σ, σ′ be such that σ is weakly dominated by σ′. This means that for
every strategy τ of Adam, we have that Val(π) ≤ Val(π′) where π = outv0(σ, τ)
and π′ = outv0(σ′, τ). Consequently: we obtain

(
sup
σ′′

Val(outv0(σ′′, τ))
)

− Val(π′) ≤
(

sup
σ′′

Val(outv0(σ′′, τ))
)

− Val(π) .

As this holds for any τ , we can conclude that supτ supσ′′(Val(outv0(σ′′, τ)) −
Val(outv0(σ′, τ))) ≤ supτ supσ′′(Val(outv0(σ′′, τ)) − Val(outv0(σ, τ))), that is
Reg (σ′) ≤ Reg (σ). ��
It follows from Proposition 1, however, that the converse of the theorem is false.

3.3 Optipess Strategies Are both Regret-Minimal and Admissible

Recall that there are admissible strategies that are not regret-minimal and vice
versa (Proposition 1). However, as a direct consequence of Theorems 2 and 3,
there always exist regret-minimal admissible strategies. It turns out that optipess
strategies, which are regret-minimal (Theorem 1), are also admissible:

Theorem 4. All optipess strategies of Eve are admissible.

Proof. Let σ = σsbo t→σsbwo be an optipess strategy; we show it is admissible.
To this end, let h = v0 . . . vn ∈ Hist(σ); we show that one of the properties of
Lemma 3 holds. There are two cases:

(h is switched.) In that case, σh = σsbwo. Since σsbwo is an SBWO strategy,
cValh(σsbwo) = acValh. Now if acValh > aValh, then:

cValh(σ) = cValh(σsbwo) = acValh > aValh ,

and σ satisfies the first property of Lemma 3. Otherwise acValh = aValh and
the second property holds: we have that cValh(σ) = acValh, and as σsbwo is an
SWO and aValh(σ) = aValh(σsbwo), we also have that aValh(σ) = aValh.

The Impatient May Use Limited Optimism to Minimize Regret 141

(h is unswitched.) We show that cValh(σ) > aValh. Since h is unswitched,
we have in particular that:

Reg (σ) = Reg < λn (cValvn − aValvn) . (1)

Furthermore:

λn (cValvn − aValvn) = (Val(h) + λncValvn) − (Val(h) + λnaValvn)

= cValh − aValh ,

and combining the previous equation with Eq. 1, we obtain:

cValh − Reg (σ) > aValh .

To conclude, we show that Reg (σ) ≥ cValh − cValh(σ). Consider a strat-
egy τ of Adam such that h is consistent with both σsbo and τ and satisfying
Val(outv0(σsbo, τ)) = cValh. (That such a τ exists is intuitively clear since σ
has been following the SBO strategy σsbo along h.) It holds immediately that
cValh(σ) ≥ Val(outv0(σ, τ)). Now by definition of the regret:

Reg (σ) ≥ Val(outv0(σsbo, τ)) − Val(outv0(σ, τ))

≥ cValh − cValh(σ) . ��

4 Minimal Values Are Witnessed by a Single Iterated
Cycle

We start our technical work towards a better algorithm to compute the regret
value of a game. Here, we show that there are succinctly presentable histories
that witness small values in the game. Our intention is to later use this result
to apply a modified version of Lemma 2 to bipositional strategies to argue there
are small witnesses of a strategy having too much regret.

More specifically, we show that for any history h, there is another history h′

of the same length that has smaller value and such that h′ = α · βk · γ where
|αβγ| is small. This will allow us to find the smallest possible value among
exponentially long histories by guessing α, β, γ, and k, which will all be small.
This property holds for a wealth of different valuation functions, hinting at
possible further applications. For discounted-sum games, the following suffices
to prove the desired property holds.

Lemma 4. For any history h = α · β · γ with α and γ same-length cycles:

min{Val(α2 · β),Val(β · γ2)} ≤ Val(h) .

142 M. Cadilhac et al.

Within the proof of the key lemma of this section, and later on when we use
it (Lemma 9), we will rely on the following notion of cycle decomposition:

Definition 2. A simple-cycle decomposition (SCD) is a pair consisting of paths
and iterated simple cycles. Formally, an SCD is a pair D = 〈(αi)n

i=0, (βj , kj)n
j=1〉,

where each αi is a path, each βj is a simple cycle, and each kj is a positive
integer. We write D(j) = β

kj

j · αj and D() = α0 · D(1)D(2) · · · D(n).

By carefully iterating Lemma 4, we have:

Lemma 5. For any history h there exists an history h′ = α · βk · γ with:

– h and h′ have the same starting and ending vertices, and the same length;
– Val(h′) ≤ Val(h);
– |αβγ| ≤ 4|V |3 and β is a simple cycle.

Proof. In this proof, we focus on SCDs for which each path αi is simple;
we call them ßCDs. We define a wellfounded partial order on ßCDs. Let
D = 〈(αi)n

i=0, (βj , kj)n
j=1〉 and D′ = 〈(α′

i)
n′
i=0, (β

′
j , k

′
j)

n′
j=1〉 be two ßCDs; we write

D′ < D iff all the following holds:

– D() and D′() have the same starting and ending vertices, the same length,
and satisfy Val(D′()) ≤ Val(D()) and n′ ≤ n;

– Either n′ < n, or |α′
0 · · · α′

n′ | < |α0 · · · αn|, or |{k′
i ≥ |V |}| < |{ki ≥ |V |}|.

That this order has no infinite descending chain is clear. We show two claims:

1. Any ßCD with n greater than |V | has a smaller ßCD;
2. Any ßCD with two kj , kj′ > |V | has a smaller ßCD.

Together they imply that for a smallest ßCD D, D() is of the required form.
Indeed let j be the unique value for which kj > |V |, then the statement of the
Lemma is satisfied by letting α = α0 · D(1) · · · D(j − 1), β = βj , k = kj , and
γ = αj · D(j + 1) · · · D(n).

Claim 1. Suppose D has n > |V |. Since all cycles are simple, there are
two cycles βj , βj′ , j < j′, of same length. We can apply Lemma 4 on the path
βj · (αjD(j + 1) · · · D(j′ − 1)) · βj′ , and remove one of the two cycles while
duplicating the other; we thus obtain a similar path of smaller value. This can
be done repeatedly until we obtain a path with only one of the two cycles, say
βj′ , the other case being similar. Substituting this path in D() results in:

α0 ·D(1) · · · D(j) ·
(
αj · D(j + 1) · · · D(j′ − 1) · β

kj+kj′
j′

)
·αj′ ·D(j′ +1) · · · D(n) .

This gives rise to a smaller ßCD as follows. If αj−1αj is still a simple path,
then the above history is expressible as an ßCD with a smaller number of cycles.
Otherwise, we rewrite αj−1αj = α′

j−1β
′
jα

′
j where α′

j−1 and α′
j are simple paths

and β′
j is a simple cycle; since |α′

j−1α
′
j | < |αj−1αj |, the resulting ßCD is smaller.

The Impatient May Use Limited Optimism to Minimize Regret 143

Claim 2. Suppose D has two kj , kj′ > |V |, j < j′. Since each cycle in
the ßCD is simple, kj and kj′ are greater than both |βj | and |βj′ |; let us write
kj = b|βj′ | + r with 0 ≤ r < |βj′ |, and similarly, kj′ = b′|βj | + r′. We have:

D(j) · · · D(j′) = βr
j ·

(
(β

|βj′ |
j)b · αj · D(j + 1) · · · D(j′ − 1) · (β|βj |

j′)b′) · βr′
j′ · αj′ .

Noting that β
|βj |
j′ and β

|βj′ |
j are cycles of the same length, we can transfer all the

occurrences of one to the other, as in Claim 1. Similarly, if two simple paths get
merged and give rise to a cycle, a smaller ßCD can be constructed; if not, then
there are now at most r < |V | occurrences of βj′ (or conversely, r′ of βj), again
resulting in a smaller ßCD. ��

5 Short Witnesses for Regret, Antagonistic,
and Collaborative Values

We continue our technical work towards our algorithm for computing the regret
value. In this section, the overarching theme is that of short witnesses. We show
that (1) the regret value of a strategy is witnessed by histories of bounded
length; (2) the collaborative value of a game is witnessed by a simple path and
an iterated cycle; (3) the antagonistic value of a strategy is witnessed by an SCD
and an iterated cycle.

5.1 Regret Is Witnessed by Histories of Bounded Length

Lemma 6. Let σ = σ1
t→σ2 be an arbitrary bipositional switching strategy of

Eve and let C = 2|V | + max{t(v) < ∞}. We have that:

Reg (σ) = max
{

λn
(
cValvn

¬σ(h) − aValvn(σh)
) ∣∣∣

h = v0 . . . vn ∈ Hist(σ), n ≤ C
}

.

Proof. Consider a history h of length greater than C, and write h = h1 ·h2 with
|h1| = max{t(v) < ∞}. Let h2 = p · p′ where p is the maximal prefix of h2 such
that h1 · p is unswitched—we set p = ε if h is switched. Note that one of p or p′

is longer than |V |—say p, the other case being similar. This implies that there
is a cycle in p, i.e., p = α · β · γ with β a cycle. Let h′ = h1 · α · γ · p′; this history
has the same starting and ending vertex as h. Moreover, since |h1| is larger than
any value of the threshold function, σh = σh′ . Lastly, h′ is still in Hist(σ), since
the removed cycle did not play a role in switching strategy. This shows:

cValvn

¬σ(h) − aValvn(σh) = cValvn

¬σ(h′) − aValvn(σh′) .

Since the length of h is greater than the length of h′, the discounted value
for h′ will be greater than that of h, resulting in a higher regret value. There is
thus no need to consider histories of size greater than C. ��

144 M. Cadilhac et al.

It may seem from this lemma and the fact that t(v) may be very large
that we will need to guess histories of important length. However, since we
will be considering bipositional switching strategies, we will only be interested
in guessing some properties of the histories that are not hard to verify:

Lemma 7. The following problem is decidable in NP:
Given: A game, a bipositional switching strategy σ,

a number n in binary, a Boolean b, and two vertices v, v′

Question: Is there a h ∈ Hist(σ) of length n, switched if b,
ending in v, with σ(h) = v′?

Proof. This is done by guessing multiple flows within the graph (V,E). Here,
we call flow a valuation of the edges E by integers, that describes the number
of times a path crosses each edge. Given a vector in N

E , it is not hard to check
whether there is a path that it represents, and to extract the initial and final
vertices of that path [17].

We first order the different thresholds from the strategy σ = σ1
t→σ2: let

V∃ = {v1, v2, . . . , vk} with t(vi) ≤ t(vi+1) for all i. We analyze the structure of
histories consistent with σ. Let h ∈ Hist(σ), and write h = h′ · h′′ where h′ is
the maximal unswitched prefix of h. Naturally, h′ is consistent with σ1 and h′′

is consistent with σ2. Then h′ = h0h1 · · · hi, for some i < |V∃|, with:

– |h0| = t(v1) and for all 1 ≤ j < i, |hj | = t(vj+1) − t(vj);
– For all 0 ≤ j ≤ i, hj does not contain a vertex vk with k ≤ j.

To confirm the existence of a history with the given parameters, it is thus
sufficient to guess the value i ≤ |V∃|, and to guess i connected flows (rather than
paths) with the above properties that are consistent with σ1. Finally, we guess
a flow for h′′ consistent with σ2 if we need a switched history, and verify that
it is starting at a switching vertex. The flows must sum to n + 1, with the last
vertex being v′, and the previous v. ��

5.2 Short Witnesses for the Collaborative and Antagonistic Values

Lemma 8. There is a set P of pairs (α, β) with α a simple path and β a simple
cycle such that:

– cValv0 = max{Val(α · βω) | (α, β) ∈ P} and
– membership in P is decidable in polynomial time w.r.t. the game.

Proof. We argue that the set P of all pairs (α, β) with α a simple path, β a
simple cycle, and such that α · β is a path, gives us the result.

The first part of the claim is a consequence of Lemma 1: Consider positional
SBO strategies τ and σ of Adam and Eve, respectively. Since they are positional,
the path outv0(σ, τ) is of the form α · βω, as required, and its value is cValv0 .
We can thus let P be the set of all pairs obtained from such SBO strategies.

The Impatient May Use Limited Optimism to Minimize Regret 145

Moreover, it can be easily checked that for all pairs (α, β) such that α ·β is a
path in the game there exists a pair of strategies with outcome α ·βω. (Note that
verifying whether α · β is a path can indeed be done in polynomial time given α
and β.) Finally, the value Val(α · βω) will, by definition, be at most cValv0 . ��
Lemma 9. Let σ be a bipositional switching strategy of Eve. There is a set K
of pairs (D,β) with D an SCD and β a simple cycle such that:

– aValv0(σ) = min{Val(D() · βω) | (D,β) ∈ K} and
– the size of each pair is polynomially bounded, and membership in K is decid-

able in polynomial time w.r.t. σ and the game.

Proof. We will prove that the set K of all pairs (D,β) with D an SCD of poly-
nomial length (which will be specified below), β a simple cycle, and such that
D() · β is a path, satisfies our claims.

Let C = max{t(v) < ∞}, and consider a play π consistent with σ that
achieves the value aValv0(σ). Write π = h · π′ with |h| = C, and let v be the
final vertex of h. Naturally:

aValv0(σ) = Val(π) = Val(h) + λ|h|Val(π′) .

We first show how to replace π′ by some α · βω, with α a simple path and
β a simple cycle. First, since π witnesses aValv0(σ), we have that Val(π′) =
aValv(σh). Now σh is positional, because |h| ≥ C.1 It is known that there
are optimal positional antagonistic strategies τ for Adam, that is, that sat-
isfy aValv(σh) = outv(σh, τ). As in the proof of Lemma8, this implies that
aValv(σh) = Val(α · βω) = Val(π′) for some α and β; additionally, any (α, β)
that are consistent with σh and a potential strategy for Adam will give rise to a
larger value.

We now argue that Val(h) is witnessed by an SCD of polynomial size. This
bears similarity to the proof of Lemma7. Specifically, we will reuse the fact that
histories consistent with σ can be split into histories played “between thresholds.”

Let us write σ = σ1
t→σ2. Again, we let V∃ = {v1, v2, . . . , vk} with t(vi) ≤

t(vi+1) for all i and write h = h′ · h′′ where h′ is the maximal unswitched prefix
of h. We note that h′ is consistent with σ1 and h′′ is consistent with σ2. Then
h′ = h0h1 · · · hi, for some i < |V∃|, with:

– |h0| = t(v1) and for all 1 ≤ j < i, |hj | = t(vj+1) − t(vj);
– For all 0 ≤ j ≤ i, hj does not contain a vertex vk with k ≤ j.

We now diverge from the proof of Lemma 7. We apply Lemma 5 on each hj

in the game where the strategy σ1 is hardcoded (that is, we first remove every
edge (u, v) ∈ V∃ × V that does not satisfy σ1(u) = v). We obtain a history
h′
0h

′
1 · · · h′

i that is still in Hist(σ), thanks to the previous splitting of h. We also
apply Lemma 5 to h′, this time in the game where σ2 is hardcoded, obtaining h′′.
Since each h′

j and h′′ are expressed as α ·βk ·γ, there is an SCD D with no more

1 Technically, σh is positional in the game that records whether the switch was made.

146 M. Cadilhac et al.

than |V∃| elements that satisfies Val(D()) ≤ Val(h)—naturally, since Val(h)
is minimal and D() ∈ Hist(σ), this means that the two values are equal. Note
that it is not hard, given an SCD D, to check whether D() ∈ Hist(σ), and that
SCDs that are not valued Val(h) have a larger value. ��

6 The Complexity of Regret

We are finally equipped to present our algorithms. To account for the cost of
numerical analysis, we rely on the problem PosSLP [2]. This problem consists
in determining whether an arithmetic circuit with addition, subtraction, and
multiplication gates, together with input values, evaluates to a positive inte-
ger. PosSLP is known to be decidable in the so-called counting hierarchy, itself
contained in the set of problems decidable using polynomial space.

Theorem 5. The following problem is decidable in NPPosSLP:
Given: A game, a bipositional switching strategy σ,

a value r ∈ Q in binary
Question: Is Reg (σ) > r?

Proof. Let us write σ = σ1
t→σ2. Lemma 6 indicates that Reg (σ) > r holds if

there is a history h of some length n ≤ C = 2|V | + max{t(v) < ∞}, ending in
some vn such that:

λn
(
cValvn

¬σ(h) − aValvn(σh)
)

> r . (2)

Note that since σ is bipositional, we do not need to know everything about h.
Indeed, the following properties suffice: its length n, final vertex vn, v′ = σ(h),
and whether it is switched. Rather than guessing h, we can thus rely on Lemma 7
to get the required information. We start by simulating the NP machine that
this lemma provides, and verify that n, vn, and v are consistent with a potential
history.

Let us now concentrate on the collaborative value that we need to evaluate
in Eq. 2. To compute cVal, we rely on Lemma 8, which we apply in the game
where vn is set initial, and its successor forced not to be v. We guess a pair
(αc, βc) ∈ P ; we thus have Val(αc · βω

c) ≤ cValvn

¬σ(h), with at least one guessed
pair (αc, βc) reaching that latter value.

Let us now focus on computing aValvn(σh). Since σ is a bipositional switch-
ing strategy, σh is simply σ where t(v) is changed to max{0, t(v) − n}. Lemma 9
can thus be used to compute our value. To do so, we guess a pair (D,βa) ∈ K;
we thus have Val(D() ·βω

a) ≥ aValvn(σh), and at least one pair (D,βa) reaches
that latter value.

Our guesses satisfy:

cValvn

¬σ(h) − aValvn(σh) ≥ Val(αc · βω
c) − Val(D() · βω

a) ,

The Impatient May Use Limited Optimism to Minimize Regret 147

and there is a choice of our guessed paths and SCD that gives exactly the left-
hand side. Comparing the left-hand side with r can be done using an oracle to
PosSLP, concluding the proof. ��

Theorem 6. The following problem is decidable in coNPNPPosSLP

:
Given: A game, a value r ∈ Q in binary
Question: Is Reg > r?

Proof. To decide the problem at hand, we ought to check that every strategy has
a regret value greater than r. However, optipess strategies being regret-minimal,
we need only check this for a class of strategies that contains optipess strategies:
bipositional switching strategies form one such class.

What is left to show is that optipess strategies can be encoded in polynomial
space. Naturally, the two positional strategies contained in an optipess strategy
can be encoded succinctly. We thus only need to show that, with t as in the
definition of optipess strategies (page 5), t(v) is at most exponential for every
v ∈ V∃ with t(v) ∈ N. This is shown in the long version of this paper. ��

Theorem 7. The following problem is decidable in coNPNPPosSLP

:
Given: A game, a bipositional switching strategy σ

Question: Is σ regret optimal?

Proof. A consequence of the proof of Theorem 5 and the existence of optipess
strategies is that the value Reg of a game can be computed by a polynomial
size arithmetic circuit. Moreover, our reliance on PosSLP allows the input r in
Theorem 5 to be represented as an arithmetic circuit without impacting the com-
plexity. We can thus verify that for all bipositional switching strategies σ′ (with
sufficiently large threshold functions) and all possible polynomial size arithmetic
circuits, Reg(σ) > r implies that Reg(σ′) > r. The latter holds if and only
if σ is regret optimal since, as we have argued in the proof of Theorem6, such
strategies σ′ include optipess strategies and thus regret-minimal strategies. ��

7 Conclusion

We studied regret, a notion of interest for an agent that does not want to assume
that the environment she plays in is simply adversarial. We showed that there
are strategies that both minimize regret, and are not consistently worse than
any other strategies. The problem of computing the minimum regret value of a
game was then explored, and a better algorithm was provided for it.

The exact complexity of this problem remains however open. The only known
lower bound, a straightforward adaptation of [14, Lemma 3] for discounted-sum
games, shows that it is at least as hard as solving parity games [15].

148 M. Cadilhac et al.

Our upper bound could be significantly improved if we could efficiently solve
the following problem:

PosRatBase
Given: (ai)n

i=1 ∈ Z
n, (bi)n

i=1 ∈ N
n, and r ∈ Q all in binary,

Question: Is
∑n

i=1 ai · rbi > 0?

This can be seen as the problem of comparing succinctly represented numbers
in a rational base. The PosSLP oracle in Theorem 5 can be replaced by an oracle
for this seemingly simpler arithmetic problem. The variant of PosRatBase in
which r is an integer was shown to be in P by Cucker, Koiran, and Smale [8],
and they mention that the complexity is open for rational values. To the best of
our knowledge, the exact complexity of PosRatBase is open even for n = 3.

Acknowledgements. We thank Raphaël Berthon and Ismaël Jecker for helpful con-
versations on the length of maximal (and minimal) histories in discounted-sum games,
James Worrell and Joël Ouaknine for pointers on the complexity of comparing suc-
cinctly represented integers, and George Kenison for his writing help.

References

1. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the future in sys-
tems theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J.
(eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-45061-0 79

2. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009). https://
doi.org/10.1137/070697926

3. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with
weighted automata. ACM Trans. Algorithms 6(2), 28:1–28:36 (2010). https://doi.
org/10.1145/1721837.1721844

4. Apt, K.R., Grädel, E.: Lectures in Game Theory for Computer Scientists. Cam-
bridge University Press, New York (2011)

5. Brenguier, R., et al.: Non-zero sum games for reactive synthesis. In: Dediu, A.-H.,
Janoušek, J., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp.
3–23. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9 1

6. Brenguier, R., Pérez, G.A., Raskin, J.F., Sankur, O.: Admissibility in quantita-
tive graph games. In: Lal, A., Akshay, S., Saurabh, S., Sen, S. (eds.) 36th IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2016. LIPIcs, Chennai, India, 13–15 December 2016, vol.
65, pp. 42:1–42:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.42

7. Chatterjee, K., Goharshady, A.K., Ibsen-Jensen, R., Velner, Y.: Ergodic mean-
payoff games for the analysis of attacks in crypto-currencies. In: Schewe, S.,
Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CON-
CUR 2018. LIPIcs, Beijing, China, 4–7 September 2018, vol. 118, pp. 11:1–11:17.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.
4230/LIPIcs.CONCUR.2018.11

https://doi.org/10.1007/3-540-45061-0_79
https://doi.org/10.1137/070697926
https://doi.org/10.1137/070697926
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1145/1721837.1721844
https://doi.org/10.1007/978-3-319-30000-9_1
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.42
https://doi.org/10.4230/LIPIcs.CONCUR.2018.11
https://doi.org/10.4230/LIPIcs.CONCUR.2018.11

The Impatient May Use Limited Optimism to Minimize Regret 149

8. Cucker, F., Koiran, P., Smale, S.: A polynomial time algorithm for diophantine
equations in one variable. J. Symb. Comput. 27(1), 21–29 (1999). https://doi.org/
10.1006/jsco.1998.0242

9. Filar, J., Vrieze, K.: Competitive Markov Decision Processes. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-1-4612-4054-9

10. Filiot, E., Le Gall, T., Raskin, J.-F.: Iterated regret minimization in game graphs.
In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 342–354.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2 31

11. Filiot, E., Jecker, I., Lhote, N., Pérez, G.A., Raskin, J.F.: On delay and regret
determinization of max-plus automata. In: 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp.
1–12. IEEE Computer Society (2017). https://doi.org/10.1109/LICS.2017.8005096

12. Halpern, J.Y., Pass, R.: Iterated regret minimization: a new solution concept.
Games Econ. Behav. 74(1), 184–207 (2012). https://doi.org/10.1016/j.geb.2011.
05.012

13. Hunter, P., Pérez, G.A., Raskin, J.F.: Minimizing regret in discounted-sum games.
In: Talbot, J.M., Regnier, L. (eds.) 25th EACSL Annual Conference on Computer
Science Logic, CSL 2016. LIPIcs, Marseille, France, 29 August–1 September 2016,
vol. 62, pp. 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.30

14. Hunter, P., Pérez, G.A., Raskin, J.F.: Reactive synthesis without regret. Acta Inf.
54(1), 3–39 (2017). https://doi.org/10.1007/s00236-016-0268-z

15. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process.
Lett. 68(3), 119–124 (1998). https://doi.org/10.1016/S0020-0190(98)00150-1

16. Puterman, M.L.: Markov Decision Processes. Wiley-Interscience, New York (2005)
17. Reutenauer, C.: The Mathematics of Petri Nets. Prentice-Hall Inc., Upper Saddle

River (1990)
18. Shapley, L.S.: Stochastic games. Proc. Natl. Acad. Sci. 39(10), 1095–1100 (1953)
19. Watkins, C.J.C.H., Dayan, P.: Technical note Q-learning. Mach. Learn. 8, 279–292

(1992). https://doi.org/10.1007/BF00992698
20. Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs.

Theor. Comput. Sci. 158(1&2), 343–359 (1996). https://doi.org/10.1016/0304-
3975(95)00188-3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1006/jsco.1998.0242
https://doi.org/10.1006/jsco.1998.0242
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1007/978-3-642-15155-2_31
https://doi.org/10.1109/LICS.2017.8005096
https://doi.org/10.1016/j.geb.2011.05.012
https://doi.org/10.1016/j.geb.2011.05.012
https://doi.org/10.4230/LIPIcs.CSL.2016.30
https://doi.org/10.1007/s00236-016-0268-z
https://doi.org/10.1016/S0020-0190(98)00150-1
https://doi.org/10.1007/BF00992698
https://doi.org/10.1016/0304-3975(95)00188-3
https://doi.org/10.1016/0304-3975(95)00188-3
http://creativecommons.org/licenses/by/4.0/

Causality in Linear Logic

Full Completeness and Injectivity
(Unit-Free Multiplicative-Additive Fragment)

Simon Castellan(B) and Nobuko Yoshida

Imperial College London, London, UK
simon@phis.me

Abstract. Commuting conversions of Linear Logic induce a notion of
dependency between rules inside a proof derivation: a rule depends on
a previous rule when they cannot be permuted using the conversions.
We propose a new interpretation of proofs of Linear Logic as causal
invariants which captures exactly this dependency. We represent causal
invariants using game semantics based on general event structures, carv-
ing out, inside the model of [6], a submodel of causal invariants. This
submodel supports an interpretation of unit-free Multiplicative Additive
Linear Logic with MIX (MALL−) which is (1) fully complete: every ele-
ment of the model is the denotation of a proof and (2) injective: equality
in the model characterises exactly commuting conversions of MALL−.
This improves over the standard fully complete game semantics model
of MALL−.

Keywords: Event structures · Linear Logic · Proof nets ·
Game semantics

1 Introduction

Proofs up to commuting conversions. In the sequent calculus of Linear Logic, the
order between rules need not always matter: allowed reorderings are expressed
by commuting conversions. These conversions are necessary for confluence of
cut-elimination by mitigating the sequentiality of the sequent calculus. The real
proof object is often seen as an equivalence class of proofs modulo commuting
conversions. The problem of providing a canonical representation of proofs up to
those commuting conversions is as old as Linear Logic itself, and proves to be a
challenging problem. The traditional solution interprets a proof by a graphical
representation called proof net and dates back to Girard [17]. Girard’s solution
is only satisfactory in the multiplicative-exponential fragment of Linear Logic.
For additives, a well-known solution is due to Hughes and van Glabbeck [22],
where proofs are reduced to their set of axiom linkings. However, the correctness
criterion relies on the difficult toggling condition.

Proof nets tend to be based on specific representations such as graphs or
sets of linkings. Denotational semantics has not managed to provide a seman-
tic counterpart to proof nets, which would be a model where every element is
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 150–168, 2019.
https://doi.org/10.1007/978-3-030-17127-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_9

Causality in Linear Logic 151

Fig. 1. Examples of causal invariants

the interpretation of a proof (full completeness) and whose equational theory
coincides with commuting conversions (injectivity). We believe this is because
denotational semantics views conversions as extensional principles, hence models
proofs with extensional objects (relations, functions) too far from the syntax.

Conversions essentially state that the order between rules applied to different
premises does not matter, as evidenced in the two equivalent proofs of the sequent
� X⊥⊕X⊥,X⊕X depicted on the right. These two proofs are equal in exten-
sional models of Linear Logic because they have the same extensional behaviour.
Unfortunately, characterising the
image of the interpretation proved
to be a difficult task in extensional
models. The first fully complete
models used game semantics, and
are due to Abramsky and Melliès (MALL) [1] and Melliès (Full LL) [24]. How-
ever, their models use an extensional quotient on strategies to satisfy the con-
versions, blurring the concrete nature of strategies.

The true concurrency of conversions. Recent work [5] highlights an interpreta-
tion of Linear Logic as communicating processes. Rules become actions whose
polarity (input or output) is tied to the polarity of the connective (negative or
positive), and cut-elimination becomes communication. In this interpretation,
each assumption in the context is assigned a channel on which the proof com-
municates. Interestingly, commuting conversions can be read as asynchronous
permutations. For instance, the conversion mentioned above becomes the equa-
tion in the syntax of Wadler [27]:

(1) u[inl]. v[inl]. [u ↔ v] ≡ v[inl]. u[inl]. [u ↔ v] � u : X⊥ ⊕ X⊥, v : X ⊕ X,

where u[inl] corresponds to a ⊕1-introduction rule on (the assumption cor-
responding to) u, and [u ↔ v] is the counterpart to an axiom between the
hypothesis corresponding to u and v. It becomes then natural to consider that
the canonical object representing these two proofs should be a concurrent pro-
cess issuing the two outputs in parallel. A notion of causality emerges from
this interpretation, where a rule depends on a previous rule below in the tree
when these two rules cannot be permuted using the commuting conversions. This
leads us to causal models to make this dependency explicit. For instance, the two

152 S. Castellan and N. Yoshida

processes in (1) can be represented as the partial order depicted in Fig. 1a, where
dependency between rules is marked with �.

In presence of &, a derivation stands for several execution (slices), given by
different premises of a &-rule (whose process equivalent is u.case (P,Q) and
represents pattern matching on an incoming message). The identity on X ⊕ Y ,
corresponding to the proof

u.case (v[inl]. [u ↔ v], v[inr]. [u ↔ v]) � u : X⊥ & Y ⊥, v : X ⊕ Y,

is interpreted by the event structure depicted in Fig. 1b. Event structures [28]
combine a partial order, representing causality, with a conflict relation repre-
senting when two events cannot belong to the same execution (here, same slice).
Conflict here is indicating with and separates the slices. The &-introduction
becomes two conflicting events.

Fig. 2. Representations of or

Conjunctive and disjunctive causalities. Consider the process on the context
u : (X ⊕ X)⊥, v : (Y ⊕ Y)⊥, w : (X ⊗ Y) ⊕ (X ⊗ Y) implementing disjunction:

or = u.case

(
v.case (w[inl]. P, w[inl]. P),

v.case (w[inl]. P, w[inr]. P)

)
where P = w[x]. ([u ↔ w] | [v ↔ x]).

Cuts of or against a proof starting with u[inl] or v[inl] answer on w after
reduction:

(νu)(or | u[inl]) →∗ w[inl].v.case (P, P) (νv)(or | v[inl]) →∗ w[inl].u.case (P, P)

where (νu)(P | Q) is the process counterpart to logical cuts. This operational
behaviour is related to parallel or, evaluating its arguments in parallel and
returning true as soon as one returns true. Due to this intentional behaviour, the
interpretation of or in prime event structures is nondeterministic (Fig. 2a), as
causality in event structures is conjunctive (an event may only occur after all its
predecessors have occurred). By moving to general event structures, however, we
can make the disjunctive causality explicit and recover determinism (Fig. 2b).

Contributions and outline. Drawing inspiration from the interpretation of proofs
in terms of processes, we build a fully complete and injective model of unit-free
Multiplicative Additive Linear Logic with MIX (MALL−), interpreting proofs
as general event structures living in a submodel of the model introduced by
[6]. Moreover, our model captures the dependency between rules, which makes

Causality in Linear Logic 153

sequentialisation a local operation, unlike in proof nets, and has a more uniform
acyclicity condition than [22].

We first recall the syntax of MALL− and its reading in terms of processes in
Sect. 2. Then, in Sect. 3, we present a slight variation on the model of [6], where
we call the (pre)strategies causal structures, by analogy with proof structures.
Each proof tree can be seen as a (sequential) causal structure. However, the space
of causal structures is too broad and there are many causal structures which
do not correspond to any proofs. A major obstacle to sequentialisation is the
presence of deadlocks. In Sect. 4, we introduce a condition on causal structures,
ensuring deadlock-free composition, inspired by the interaction between ` and
⊗ in Linear Logic. Acyclic causal structures are still allowed to only explore
partially the game, contrary to proofs which must explore it exhaustively, hence
in Sect. 5, we introduce further conditions on causal structures, ensuring a strong
sequentialisation theorem (Theorem 2): we call them causal nets. In Sect. 6, we
define causal invariants as maximal causal nets. Every causal net embeds in a
unique causal invariant; and a particular proof P embeds inside a unique causal
invariant which forms its denotation �P �. Moreover, two proofs embed in the
same causal invariant if and only if they are convertible (Theorem 4). Finally,
we show how to equip causal invariants with the structure of ∗-autonomous
category with products and deduce that they form a fully complete model of
MALL− (Theorem 6) for which the interpretation is injective.

The proofs are available in the technical report [7].

2 MALL− and Its Commuting Conversions

In this section, we introduce MALL− formulas and proofs as well as the standard
commuting conversions and cut elimination for this logic. As mentioned in the
introduction, we use a process-like presentation of proofs following [27]. This
highlights the communicating aspect of proofs which is an essential intuition for
the model; and it offers a concise visualisation of proofs and conversions.

Formulas. We define the formulas of MALL−: T, S ::= X | X⊥ | T ⊗ S | T ` S |
T ⊕S | T &S, where X and X⊥ are atomic formulas (or ltterals) belonging to a
set A. Formulas come with the standard notion of duality (·)⊥ given by the De
Morgan rules: ⊗ is dual to `, and ⊕ to &. An environment is a partial mapping
of names to formulas, instead of a multiset of formulas – names disambiguate
which assumption a rule acts on.

154 S. Castellan and N. Yoshida

Proofs as processes. We see proofs of MALL− (with MIX) as typing derivations
for a variant of the π-calculus [27]. The (untyped) syntax for the processes is as
follows:

P,Q ::= u(v). P | u[v]. (P | Q) (multiplicatives)
| u.case (P,Q) | u[inl]. P | u[inr]. P (additives)
| [u ↔ v] | (νu)(P | Q) | (P | Q) (logical and mix)

u(v).P denotes an input of v on channel u (used in `-introduction) while
u[v].(P | Q) denotes output of a fresh channel v along channel u (used in ⊗-
introduction); The term [u ↔ v] is a link, forwarding messages received on u to v,
corresponds to axioms, and conversely; and (νu)(P | Q) represents a restriction
of u in P and Q and corresponds to cuts; u.case (P,Q) is an input branching
representing &-introductions, which interacts with selection, either u[inl]. R or
u[inr]. R; in (νu)(P | Q), u is bound in both P and Q, in u(v). P , v is bound in
P , and in u[v]. (P | Q), v is only bound in Q.

We now define MALL− proofs as typing derivations for processes. The infer-
ence rules, recalled in Fig. 3, are from [27]. The links (axioms) are restricted to
literals – for composite types, one can use the usual η-expansion laws. There is a
straightforward bijection between standard (η-expanded) proofs of MALL− and
typing derivations.

Fig. 3. Typing rules for MALL− (above) and contexts (below)

Commutation rules and cut elimination. We now explain the valid commuta-
tions rules in our calculus. We consider contexts C [[]1, . . . , []n] with several holes
to accomodate & which has two branches. Contexts are defined in Fig. 3, and

Causality in Linear Logic 155

are assigned a type . It intuitively means that if we plug proofs
of Γi in the holes, we get back a proof of . We use the notation C[Pi]i for
C[P1, . . . , Pn] when (Pi) is a family of processes. Commuting conversion is the
smallest congruence ≡ satisfying all well-typed instances of the rule C[D[Pi,j]j]i ≡
D[C[Pi,j]i]j for C and D two contexts. For instance a[inl]. b.case (P,Q) ≡
b.case (a[inl]. P, a[inl]. Q). Figure 4 gives reduction rules P → Q. The first four
rules are the principal cut rules and describe the interaction of two dual terms,
while the last one allows cuts to move inside contexts.

3 Concurrent Games Based on General Event Structures

This section introduces a slight variation on the model of [6]. In Sect. 3.1, we
define games as prime event structures with polarities, which are used to inter-
pret formulas. We then introduce general event structures in Sect. 3.2, which are
used to define causal structures.

Fig. 4. Cut elimination in MALL−

3.1 Games as Prime Event Structures with Polarities

Definition of games. Prime event structures [28] (simply event structures in
the rest of the paper) are a causal model of nondeterministic and concurrent
computation. We use here prime event structures with binary conflict. An event
structure is a triple (E,≤E ,#E) where (E,≤E) is a partial order and #E is
an irreflexive symmetric relation (representing conflict) satisfying: (1) if e ∈ E,
then [e] := {e′ ∈ E | e′ ≤E e} is finite; and (2) if e#E e′ and e ≤E e′′ then
e′′ #E e′. We often omit the E subscripts when clear from the context.

A configuration of E is a downclosed subset of E which does not contain
two conflicting events. We write C (E) for the set of finite configurations of E.
For any e ∈ E, [e] is a configuration, and so is [e) := [e] \ {e}. We write e � e′

for the immediate causal relation of E defined as e < e′ with no event between.
Similarly, a conflict e#e′ is minimal, denoted , when the [e] ∪ [e′) and
[e) ∪ [e′] are configurations. When drawing event structures, only � and are
represented. We write max(E) for the set of maximal events of E for ≤E . An
event e is maximal in x when it has no successor for ≤E in x. We write maxE x
for the maximal events of a configuration x ∈ C (E).

An event structure E is confusion-free when (1) for all then [e) =
[e′) and (2) if and then e = e′′ or . As a result, the
relation is an equivalence relation whose equivalent classes a
are called cells.

156 S. Castellan and N. Yoshida

Definition 1. A game is a confusion-free event structure A along with an
assignment pol : A → {−,+} such that cells contain events of the same polarity,
and a function atom:max(A) → A mapping every maximal event of A to an
atom. Events with polarity − (resp. +) are negative (resp. positive).

Events of a game are usually called moves. The restriction imposes branching to
be polarised (i.e. belonging to a player). A game is rooted when two minimal
events are in conflict. Single types are interpreted by rooted games, while con-
texts are interpreted by arbitrary games. When introducing moves of a game, we
will indicate their polarity in exponent, e.g. “let a+ ∈ A” stands for assuming a
positive move of A.

Interpretation of formulas. To interpret formulas, we make use of standard con-
structions on prime event structures. The event structure a ·E is E prefixed with
a, i.e. E ∪ {a} where all events of E depends on a. The parallel composition of
E and E′ represents parallel executions of E and E′ without interference:

Definition 2. The parallel composition of event structures A0 and A1 is the
event structure A0 ‖ A1 = ({0} × A0 ∪ {1} × A1,≤A0‖A1 ,#A0‖A1) with
(i, a) ≤A0‖A1 (j, a′) iff i = j and a ≤Ai

a′; and (i, a)#A0‖A1 (j, a′) when i = j
and a#Aj

a′.

The sum of event structure E + F is the nondeterministic analogue of parallel
composition.

Definition 3. The sum A0 + A1 of the two event structures A0 and A1 has the
same partial order as A0 ‖ A1, and conflict relation (i, a)#A0+A1 (j, a′) iff i
= j
or i = j and a#Aj

a′.

Prefixing, parallel composition and sum of event structures extend to games. The
dual of a game A, obtained by reversing the polarity labelling, is written A⊥.
Given x ∈ C (A), we define A/x (“A after x”) as the subgame of A comprising
the events a ∈ A \ x not in conflict with events in x.

Interpretation of formulas. The interpretation of the atom X is the game with
a single positive event simply written X with atom(X) = X, and the interpre-
tation of X⊥ is �X�

⊥, written simply X⊥ in diagrams. For composite formulas,
we let (where send, inl and inr are simply labels):

�S ⊗ T � = send+ · (�S� ‖ �T �) �S ` T � = send− · (�S� ‖ �T �)
�S ⊕ T � = (inl+ · �S�) + (inr+ · �T �) �S & T � = (inl− · �S�) + (inr− · �T �)

Parallel composition is used to interpret contexts: �u1 : T1, . . . , un : Tn� = �T1� ‖
. . . ‖ �Tn�. The interpretation commutes with duality: �T �

⊥ = �T⊥
�.

In diagrams, we write moves of a context following the syntactic convention:
for instance u[inl] denotes the minimal inl move of the u component. For
tensors and pars, we use the notation u[v] and u(v) to make explicit the variables
we use in the rest of the diagram, instead of send+ and send− respectively. For
atoms, we use u : X and u : X⊥.

Causality in Linear Logic 157

3.2 Causal Structures as Deterministic General Event Structures

As we discussed in Sect. 1, prime event structures cannot express disjunctive
causalities deterministically, hence fail to account for the determinism of LL.
Our notion of causal structure is based on general event structures, which allow
more complex causal patterns. We use a slight variation on the definition of
deterministic general event structures given by [6], to ensure that composition
is well-defined without further assumptions.

Instead of using the more concrete representation of general event struc-
tures in terms of a set of events and an enabling relation, we use the following
formulation in terms of set of configurations, more adequate for mathematical
reasoning. Being only sets of configurations, they can be reasoned on with very
simple set-theoretic arguments.

Definition 4. A causal structure (abbreviated as causal struct) on a game A
is a subset σ ⊆ C (A) containing ∅ and satisfying the following conditions:

Coincidence-freeness If e, e′ ∈ x ∈ σ then there exists y ∈ σ with y ⊆ x and
y ∩ {e, e′} is a singleton.

Determinism for x, y ∈ σ such that x ∪ y does not contain any minimal negative
conflict, then x ∪ y ∈ σ.

Configurations of prime event structures satisfy a further axiom, stability, which
ensures the absence of disjunctive causalities. When σ is a causal struct on A, we
write σ : A. We draw as regular event structures, using � and . To indicate
disjunctive causalities, we annotate joins with or. This convention is not powerful
enough to draw all causal structs, but enough for the examples in this paper.
As an example, on A = a ‖ b ‖ c the diagram on the right denotes the following
causal struct σ = {x ∈ C (A) | c ∈ x ⇒ x ∩ {a, b}
= ∅}.

A minimal event of σ : A is an event a ∈ A with {a} ∈ σ.
An event a ∈ x ∈ σ is maximal in x when x\{a} ∈ σ. A prime
configuration of a ∈ A is a configuration x ∈ σ such that a
is its unique maximal event. Because of disjunctive causalities,
an event a ∈ A can have several distinct prime configurations in
σ (unlike in event structures). In the previous example, since c can be caused
by either a or b, it has two prime configurations: {a, c} and {b, c}. We write
max σ for the set of maximal configurations of σ, ie. those configurations
that cannot be further extended.

Even though causality is less clear in general event structures than in prime
event structures, we give here a notion of immediate causal dependence that
will be central to define acyclic causal structs. Given a causal struct σ : A and
x ∈ σ, we define a relation �x,σ on x as follows: a �x,σ a′ when there exists
a prime configuration y of a′ such that x ∪ y ∈ σ, and that a is maximal in
y \ {a′}. This notion is compatible with the drawing above: we have a �∅ c
and b �∅ c as c has two prime configurations: {a, c} and {b, c}. Causality needs
to be contextual, since different slices can implement different causal patterns.
Parallel composition and prefixing structures extend to causal structs:

σ ‖ τ = {x ‖ y ∈ C (A ‖ B) | (x, y) ∈ σ × τ} a · σ = {x ∈ C (a · A) | x ∩ A ∈ σ}.

158 S. Castellan and N. Yoshida

Categorical setting. Causal structs can be composed using the definitions of [6].
Consider σ : A⊥ ‖ B and τ : B⊥ ‖ C. A synchronised configuration is a
configuration x ∈ C (A ‖ B ‖ C) such that x ∩ (A ‖ B) ∈ σ and x ∩ (B ‖ C) ∈
τ . A synchronised configuration x is reachable when there exists a sequence
(covering chain) of synchronised configurations x0 = ∅ ⊆ x1 ⊆ . . . ⊆ xn = x
such that xi+1 \xi is a singleton. The reachable configurations are used to define
the interaction τ � σ, and then after hiding, the composition τ � σ:

τ �σ = {x is a reachable synchronised configuration} τ �σ = {x ∩ (A ‖ C) | x ∈ τ � σ}.

Unlike in [6], our determinism is strong enough for τ �σ to be a causal struct.

Lemma 1. If σ : A⊥ ‖ B and τ : B⊥ ‖ C are causal structs then τ � σ is a
causal struct.

Composition of causal structs will be used to interpret cuts between proofs of
Linear Logic. In concurrent game semantics, composition has a natural identity,
asynchronous copycat [25], playing on the game A⊥ ‖ A, forwarding negative
moves on one side to the positive occurrence on the other side. Following [6], we
define cc A = {x ‖ y ∈ C (A⊥ ‖ A) | y ⊇−

A x ∩ y ⊆+
A x} where x ⊆p y means x ⊆ y

and pol(y \ x) ⊆ {p}.
However, in general copycat is not an identity on all causal structs, only

σ ⊆ cc A � σ holds. Indeed, copycat represents an asynchronous buffer, and
causal structs which expects messages to be transmitted synchronously may be
affected by composition with copycat. We call causal structs that satisfy the
equality asynchronous. From [6], we know that asynchronous causal structs
form a compact-closed category.

The syntactic tree. The syntactic tree of a derivation can be read as a causal
struct Tr(P) on , which will be the basis for our interpretation. It is defined by
induction:

We use the convention in the diagram, for instance u[v] means the initial send
move of the u component. An example of this construction is given in Fig. 5a.
Note that it is not asynchronous.

4 Acyclicity of Causal Structures

The space of causal structs is unfortunately too broad to provide a notion of
causal nets, due in particular to the presence of deadlocks during composition.

Causality in Linear Logic 159

As a first step towards defining causal nets, we introduce in this section a con-
dition on causal structs inspired by the tensor rule in Linear Logic. In Sect. 4.1,
we propose a notion of communication between actions, based on causality. In
Sect. 4.2, we introduce a notion of acyclicity which is shown to be stable under
composition and ensure deadlock-free composition.

4.1 Communication in Causal Structures

The tensor rule of Linear Logic says that after a tensor u[v], the proof splits
into two independent subproofs, one handling u and the other v. This syntactic
condition is there to ensure that there are no communications between u and v.
More precisely, we want to prevent any dependence between subsequent actions
on u and an action v. Indeed such a causal dependence could create a dead-
lock when facing a par rule u(v), which is allowed to put arbitrary dependence
between such subsequent actions.

Communication in MLL. Let us start by the case of MLL, which corresponds to
the case where games do not have conflicts. Consider the following three causal
structs:

The causal structs σ1 and σ2 play on the game �u : X⊥ ⊗ Y ⊥, v : X ` Y �, while
σ3 plays on the game �u : X⊥ ⊗ Y ⊥, v : X ⊗ Y �. The causal structs σ2 and σ3 are
very close to proof nets, and it is easy to see that σ2 represents a correct proof net
while σ3 does not. In particular, there exists a proof P such that Tr(P) ⊆ σ2 but
there are no such proof Q for σ3. Clearly, σ3 should not be acyclic. But should
σ2? After all it is sequentialisable. But, in all sequentialisations of σ2, the par
rule v(z) is applied before the tensor u[w], and this dependency is not reflected
by σ2. Since our goal is exactly to compute these implicit dependencies, we will
only consider σ1 to be acyclic, by using a stronger sequentialisation criterion:

Definition 5. A causal struct σ : �Γ � is strongly sequentialisable when for
all x ∈ σ, there exists with x ∈ Tr(P) and Tr(P) ⊆ σ.

To understand the difference between σ1 and σ2, we need to look at causal
chains. In both σ1 and σ2, we can go from u : X⊥ to w : Y ⊥ by following
immediate causal links � in any direction, but observe that in σ1 they must all
cross an event below u[w] (namely v(z) or u[w]). This prompts us to define a
notion of communication outside a configuration x:

Definition 6. Given σ : A and x ∈ σ we say that a, a′ ∈ A \ x communicate
outside x (written a ↭x,σ a′) when there exists a chain a �x,σ a0 �σ · · · �x,σ

an �σ a′ where all the ai ∈ A \ x, and �x,σ denotes the symmetric closure of
�x,σ.

160 S. Castellan and N. Yoshida

Communication in MALL. In presence of additives, immediate causality is not
the only vector of communication. Consider the following causal struct σ4, play-
ing on the context u : (A & A) ⊗ (A & A), v : (A ⊕ A) & (A ⊕ A) where A is
irrelevant:

This pattern is not strongly sequentialisable: the tensor u[w] must always go after
the &-introduction on v, since we need this information to know how whether
v should go with u or w when splitting the context. Yet, it is not possible to
find a communication path from one side to the other by following purely causal
links without crossing u[w]. There is however a path that uses both immediate
causality and minimal conflict. This means that we should identify events in
minimal conflict, since they represent the same (&-introduction rule). Concretely,
this means lifting the previous definition at the level of cells. Given an causal
struct σ : A and x ∈ σ, along with two cells a, a′ of A/x, we define the relation
a �x,σ a′ when there exists a ∈ a and a′ ∈ a′ such that a �x,σ a′; and a ↭x,σ a′

when there exists a �x,σ a0 �x,σ · · · �σ an �σ a′ where all the ai do not
intersect x. For instance, the two cells which are successors of the tensor u[w]
in σ4 communicate outside the configuration {u[w]} by going through the cell
{v(inl), v(inr)}.

4.2 Definition of Acyclicity on Casual Structures

Since games are trees, two events a, a′ are either incomparable or have a meet
a ∧ a′. If a ∧ a′ is defined and positive, we say that a and a′ have positive
meet, and means that they are on two distinct branches of a tensor. If a ∧ a′

is undefined, or defined and negative, we say that a ∧ a′ has a negative meet.
When the meet is undefined, it means that a and a′ are events of different
components of the context. We consider the meet to be negative in this case,
since components of a context are related by an implicit par.

These definitions are easily extended to cells. The meet a ∧ a′ of two cells
a and a′ of A is the meet a ∧ a′ for a ∈ a and a′ ∈ a′: by confusion-freeness,
it does not matter which ones are chosen. Similarly, we say that a and a′ have
positive meet if a∧ a′ is defined and positive; and have negative meet otherwise.
These definitions formalise the idea of “the two sides of a tensor”, and allow us
to define acyclicity.

Definition 7. A causal struct σ : A is acyclic when for all x ∈ σ, for any cells
a, a′ not intersecting x and with positive meet, if a ↭x,σ a′ then a ∧ a′
∈ x.

This captures the desired intuition: if a and a′ are on two sides of a tensor a (ie.
have positive meet), and there is a communication path outside x relating them,

Causality in Linear Logic 161

then a must also be outside x (and implicitly, the communication path must be
going through a).

Reasoning on the interaction of acyclic strategies proved to be challenging.
We prove that acyclic strategies compose, and their interaction are deadlock-
free, when composition is on a rooted game B. This crucial assumption arises
from the fact that in linear logic, cuts are on formulas. It entails that for any
b, b′ ∈ B, b ∧ b′ is defined, hence must be positive either from the point of view
of σ or of τ .

Theorem 1. For acyclic causal structs σ : A⊥ ‖ B and τ : B⊥ ‖ C, (1) their
interaction is deadlock-free: τ �σ = (σ ‖ C)∩ (A ‖ τ); and (2) the causal struct
τ � σ is acyclic.

As a result, acyclic and asynchronous causal structs form a category. We
believe this intermediate category is interesting in its own right since it gener-
alises the deadlock-freeness argument of Linear Logic without having to assume
other constraints coming from Linear Logic, such as linearity. In the next section,
we study further restriction on acyclic causal structs which guarantee strong
sequentialisability.

5 Causal Nets and Sequentialisation

We now ready to introduce causal nets. In Sect. 5.1, we give their definition by
restricting acyclic causal structs and in Sect. 5.2 we prove that causal nets are
strongly sequentialisable.

5.1 Causal Nets: Totality and Well-Linking Casual Structs

To ensure that our causal structs are strongly sequentialisable, acyclicity is not
enough. First, we need to require causal structs to respect the linearity discipline
of Linear Logic:

Definition 8. A causal struct σ : A is total when (1) for x ∈ σ, if x is maximal
in σ, then it is maximal in C (A); and (2) for x ∈ σ and a− ∈ A \ x such that
x ∪ {a} ∈ σ, then whenever , we also have x ∪ {a′} ∈ σ as well.

The first condition forces a causal struct to play until there are no moves to play,
and the second forces an causal struct to be receptive to all Opponent choices,
not a subset.

Our last condition constrains axiom links. A linking of a game A is a pair
(x,) of a x ∈ maxC (A), and a bijection 	 : (maxA x)− � (maxA x)+ preserving
the atom labelling.

Definition 9. A total causal struct σ : A is well-linking when for each x ∈
max(σ), there exists a linking 	x of x, such that if y is a prime configuration of
	x(e) in x, then max(y \ {	x(e)}) = {e}.

162 S. Castellan and N. Yoshida

This ensures that every positive atom has a unique predecessor which is a neg-
ative atom.

Definition 10. A causal net is an acyclic, total and well-linking causal struct.

A causal net σ : A induces a set of linkings A, link(σ) := {	x | x ∈ max σ}. The
mapping link(·) maps causal nets to the proof nets of [22].

5.2 Strong Sequentialisation of Causal Nets

Our proof of sequentialisation relies on an induction on causal nets. To this
end, we provide an inductive deconstruction of parallel proofs. Consider σ : A
a causal net and a minimal event a ∈ σ not an atom. We write A/a for A/{a}.
Observe that if , it is easy to see that there exists a context such
that . Given a causal struct σ : A, we define the causal struct σ/a =
{x ∈ C (A/a) | x ∪ {a} ∈ σ} : A/a.

Lemma 2. σ/a is a causal net on A/a.

When a is positive, we can further decompose σ/a in disjoint parts thanks to
acyclicity. Write a1, . . . , an for the minimal cells of A/a and consider for n ≥ k >
0, Ak = {a′ ∈ A/a | cell(a′) ↭{a},σ ak}. Ak contains the events of A/a which σ
connects to the k-th successor of a. We also define the set A0 = A/a\⋃

1≤k≤n Ak,
of events not connected to any successor of a (this can happen with MIX). It
inherits a game structure from A.

Each subset inherits a game structure from A/a. By acyclicity of σ, the
Ak are pairwise disjoint, so A/a ∼= A0 ‖ . . . ‖ An. For 0 ≤ k ≤ n, define
σk = C (Ak) ∩ σ/a.

Lemma 3. σk is a causal net on Ak and we have σ/a = σ0 ‖ . . . ‖ σn.

This formalises the intuition that after a tensor, an acyclic causal net must be
a parallel composition of proofs (following the syntactic shape of the tensor rule
of Linear Logic). From this result, we show by induction that any causal net is
strongly sequentialisable.

Theorem 2. If σ : A is a causal net, then σ is strongly sequentialisable.

We believe sequentialisation without MIX requires causal nets to be connected :
two cells with negative meets always communicate outside any configuration
they are absent from. We leave this lead for future work.

6 Causal Invariants and Completeness

Causal nets are naturally ordered by inclusion. When σ ⊆ τ , we can regard τ as
a less sequential implementation of σ. Two causal nets which are upper bounded
by a causal net should represent the same proof, but with varying degrees of
sequentiality. Causal nets which are maximal for inclusion (among causal nets)
are hence most parallel implementations of a certain behaviour and capture our
intuition of causal invariants.

Definition 11. A causal invariant is a causal net σ : A maximal for
inclusion.

Causality in Linear Logic 163

6.1 Causal Invariants as Maximal Causal Nets

We start by characterising when two causal nets are upper-bounded for inclusion:

Proposition 1. Given two causal nets σ, τ : A, the following are equivalent:

1. there exists a causal net υ : A such that σ ⊆ υ and τ ⊆ υ,
2. the set σ ∨ τ = {x ∪ y | x ∈ σ, y ∈ τ, x ∪ y ∈ C (A)} is a causal net on A,
3. link(σ) = link(τ).

In this case we write σ ↑ τ and σ ∨ τ is the least upper bound of σ and τ for ⊆.

It is a direct consequence of Proposition 1 that any causal net σ is included
in a unique causal invariant σ↑ : A, defined as: σ↑ =

∨
σ⊆τ τ , where τ ranges

over causal nets.

Lemma 4. For σ, τ : A causal nets, σ ↑ τ iff σ↑ = τ↑. Moreover, if σ and τ are
causal invariants, σ ↑ τ if and only if σ = τ .

Fig. 5. Interpreting P = u(u′). v(v′). w[w′]. ([u ↔ w] | ([w′ ↔ v′] | [u′ ↔ v])) in the
context u : X ` Z⊥, v : Z ` Y, w : X⊥ ⊗ Y ⊥

The interpretation of a proof is simply defined as �P � = Tr(P)↑. Figure 5c
illustrates the construction on a proof of MLL+mix. The interpretation features
a disjunctive causality, as the tensor can be introduced as soon as one of the
two pars has been.

Defining link(P) = link(Tr(P)), we have from Lemma 4: link(P) = link(Q)
if and only if �P � = �Q�. This implies that our model has the same equational
theory than the proof nets of [22]. Such proof nets are already complete:

Theorem 3 ([22]). For P,Q two proofs of Γ , we have P ≡ Q iff link(P) =
link(Q).

As a corollary, we get:

Theorem 4. For cut-free proofs P,Q we have P ≡ Q iff �P � = �Q�.

164 S. Castellan and N. Yoshida

The technical report [7] also provides an inductive proof not using the result
of [22]. A consequence of this result, along with strong sequentialisation is: �P � =⋃

Q≡P Tr(Q). This equality justifies our terminology of “causal completeness”,
as for instance it implies that the minimal events of �P � correspond exactly
the possible rules in P that can be pushed to the front using the commuting
conversions.

6.2 The Category of Causal Invariants

So far we have focused on the static. Can we integrate the dynamic aspect of
proofs as well? In this section, we show that causal invariants organise themselves
in a category. First, we show that causal nets are stable under composition:

Lemma 5. If σ : A⊥ ‖ B and τ : B⊥ ‖ C are causal nets, then so is τ � σ.

Note that totality requires acyclicity (and deadlock-freedom) to be stable
under composition. However, causal invariants are not stable under composition:
τ �σ might not be maximal, even if τ and σ are. Indeed, during the interaction,
some branches of τ will not be explored by σ and vice-versa which can lead to
new allowed reorderings. However, we can always embed τ � σ into (τ � σ)↑:

Lemma 6. Rooted games and causal invariants form a category CInv, where
the composition of σ : A⊥ ‖ B and τ : B⊥ ‖ C is (τ � σ)↑ and the identity on A

is cc ↑
A.

Note that the empty game is an object of CInv, as we need a monoidal unit.

Monoidal-closed structure. Given two games A and B we define A⊗B as send+ ·
(A ‖ B), and 1 as the empty game. There is an obvious isomorphism A ⊗ 1 ∼= A
and A⊗ (B ⊗C) ∼= (A⊗B)⊗C in CInv. We now show how to compute directly
the functorial action of ⊗, without resorting to ↑. Consider σ ∈ CInv(A,B)
and τ ∈ CInv(C,D). Given x ∈ C ((A ⊗ C)⊥ ‖ (B ⊗ D)), we define x〈σ〉 =
x ∩ (A⊥ ‖ B) and x〈τ〉 = x ∩ (C⊥ ‖ D). If x〈σ〉 ∈ σ and x〈τ〉 ∈ τ , we say that
x is connected when there exists cells a, b, c and d of A,B,C and D respectively
such that a ↭x〈σ〉,σ c and b ↭x〈τ〉,τ d. We define:

σ ⊗ τ =

⎧
⎪⎨

⎪⎩

x ∈ C ((A ⊗ C)⊥ ‖ (B ⊗ D)) such that :
(1) x〈σ〉 ∈ σ and x〈τ〉 ∈ τ

(2) if x is connected and contains send+, then send− ∈ x

⎫
⎪⎬

⎪⎭

In (2), send− refers to the minimal move of (A ⊗ C)⊥ and send+ to the one of
B ⊗ D. (2) ensures that σ ⊗ τ is acyclic.

Lemma 7. The tensor product defines a symmetric monoidal structure on
CInv.

Define A ` B = (A⊥ ⊗ B⊥)⊥, ⊥ = 1 = ∅ and A � B = A⊥ ` B.

Causality in Linear Logic 165

Lemma 8. We have a bijection `B,C between causal invariants on A ‖ B ‖ C
and on A ‖ (B ` C). As a result, there is an adjunction A ⊗ � A � .

Lemma 8 implies that CInv((A � ⊥) � ⊥) � CInv(A), and CInv is
∗-autonomous.

Cartesian products. Given two games A,B in CInv, we define their product
A & B = inl− · A + inr− · B. We show how to construct the pairing of two
causal invariants concretely. Given σ ∈ CInv(A,B) and τ ∈ CInv(A,C), we
define the common behaviour of σ and τ on A to be those x ∈ C (A⊥) ∩ σ ∩ τ
such that for all a, a′ outside of x with positive meet, a ↭x,σ a′ iff a ↭x,τ a′.
We write σ ∩A τ for the set of common behaviours of σ and τ and define:
〈σ, τ〉 = (L− · σ) ∪ (R− · τ) ∪ σ ∩A τ . The projections are defined using copycat:
π1 = {x ∈ C ((A & B)⊥ ‖ A) | x ∩ (A⊥ ‖ A) ∈ cc ↑

A} (and similarly for π2).

Theorem 5. CInv has products. As it is also ∗-autonomous, it is a model of
MALL.

It is easy to see that the interpretation of MALL− in CInv following the
structure is the same as �·�, however it is computed compositionally without
resorting to the ↑ operator. We deduce that our interpretation is invariant by
cut-elimination: if P → Q, then �P � = �Q�. Putting the pieces together, we get
the final result.

Theorem 6. CInv is an injective and fully complete model of MALL−.

7 Extensions and Related Work

The model provides a representation of proofs which retains only the necessary
sequentiality. We study the phenomenon in Linear Logic, but commuting con-
versions of additives arise in other languages, eg. in functional languages with
sums and products, where proof nets do not necessarily exist. Having an abstract
representation of which reorderings are allowed could prove useful (reasoning on
the possible commuting conversions in a language with sum types is notoriously
difficult).

Extensions. Exponentials are difficult to add, as their conversions are not as
canonical as those of MALL. Cyclic proofs [2] could be accomodated via recursive
event structures.

Adding multiplicative units while keep determinism is difficult, as their com-
muting conversion is subtle (e.g. conversion for MLL is PSPACE-complete [18]),
and exhibit apparent nondeterminism. For instance the following proofs are con-
vertible in MLL:

a(). b[] | c[] ≡ a(). (b[] | c[]) ≡ b[] | a(). c[] � a : ⊥, b : 1, c : 1

where a(). P is the process counterpart to introduction of ⊥ and a[] of 1. Intu-
itively, b[] and c[] can be performed at the start, but as soon as one is performed,

166 S. Castellan and N. Yoshida

the other has to wait for the input on a. This cannot be modelled inside determin-
istic general event structures, as it is only deterministic against an environment
that will emit on b. In contrast, proofs of MALL− remain deterministic even if
their environment is not total.

We would also be interested in recast multifocusing [9] in our setting by defin-
ing a class of focussed causal nets, where there are no concurrency between pos-
itive and negative events, and show that sequentialisation always give a focused
proof.

Related work. The first fully complete model of MALL− is based on closure
operators [1], later extended to full Linear Logic [24]. True concurrency is used
to define innocence, on which the full completeness result rests. However their
model does not take advantage of concurrency to account for permutations, as
strategies are sequential. This investigation has been extended to concurrent
strategies by Mimram and Melliès [25,26]. De Carvalho showed that the rela-
tional model is injective for MELL [11]. In another direction, [4] provides a fully
complete model for MALL without game semantics, by using a glueing construc-
tion on the model of hypercoherences. [21] explores proof nets a weaker theory
of commuting conversions for MALL.

The idea of having intermediate representations between proof nets and
proofs has been studied by Faggian and coauthors using l-nets [10,13–16], lead-
ing to a similar analysis to ours: they define a space of causal nets as partial
orders and compare different versions of proofs with varying degree of paral-
lelism. Our work recasts this idea using event structures and adds the notion of
causal completeness: keeping jumps that cannot be undone by a permutation,
which leads naturally to step outside partial orders, as well as full completeness:
which causal nets can be strongly sequentialised?

The notion of dependency between logical rules has also been studied in [3]
in the case of MLL. From a proof net R, they build a partial order D`,⊗(R)
which we believe is very related to �P � where P is a sequentialisation of R.
Indeed, in the case of MLL without MIX a partial order is enough to capture the
dependency between rules. The work [12] shows that permutation rules of Linear
Logic, understood as asynchronous optimisations on processes, are included in
the observational equivalence. [19] studies mutual embedding between polarised
proof nets [23] and the control π-calculus [20]. In another direction, we have
recently built a fully-abstract, concurrent game semantics model of the syn-
chronous session π-calculus [8]. The difficulty there was to understand name
passing and the synchrony of the π-calculus, which is the dual of our objective
here: trying to understand the asynchrony behind the conversions of MALL−.

Acknowledgements. We would like to thank Willem Heijltjes, Domenico Ruop-
polo, and Olivier Laurent for helpful discussions, and the anonymous referees for
their insightful comments. This work has been partially sponsored by: EPSRC
EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1, and EP/N028201/1.

Causality in Linear Logic 167

References

1. Abramsky, S., Melliés, P.-A.: Concurrent games and full completeness. In: 14th
Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July
1999, pp. 431–442 (1999). http://dx.doi.org/10.1109/LICS.1999.782638

2. Baelde, D., Doumane, A., Saurin, A.: Infinitary proof theory: the multiplicative
additive case. In: CSL. Leibniz International Proceedings in Informatics (LIPIcs),
vol. 62, pp. 42:1–42:17. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

3. Bagnol, M., Doumane, A., Saurin, A.: On the dependencies of logical rules. In:
Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 436–450. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46678-0 28

4. Blute, R., Hamano, M., Scott, P.J.: Softness of hypercoherences and MALL full
completeness. Ann. Pure Appl. Logic 131(1–3), 1–63 (2005). https://doi.org/10.
1016/j.apal.2004.05.002

5. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

6. Castellan, S., Clairambault, P., Winskel, G.: Observably deterministic concurrent
strategies and intensional full abstraction for parallel-or. In: 2nd International Con-
ference on Formal Structures for Computation and Deduction, FSCD 2017, Oxford,
UK, 3–9 September 2017, pp. 12:1–12:16 (2017). https://doi.org/10.4230/LIPIcs.
FSCD.2017.12

7. Castellan, S., Yoshida, N.: Causality in linear logic: full completeness and injectivity
(unit-free multiplicative-additive fragment). Technical report (2019). http://iso.
mor.phis.me/publis/Causality in Linear Logic FOSSACS19.pdf

8. Castellan, S., Yoshida, N.: Two sides of the same coin: session types and game
semantics. Accepted for publication at POPL 2019 (2019)

9. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) TCS 2008. IIFIP, vol.
273, pp. 383–396. Springer, Boston, MA (2008). https://doi.org/10.1007/978-0-
387-09680-3 26

10. Curien, P.-L., Faggian, C.: L-nets, strategies and proof-nets. In: Ong, L. (ed.) CSL
2005. LNCS, vol. 3634, pp. 167–183. Springer, Heidelberg (2005). https://doi.org/
10.1007/11538363 13

11. de Carvalho, D.: The relational model is injective for multiplicative exponential
linear logic. In: 25th EACSL Annual Conference on Computer Science Logic,
CSL 2016, Marseille, France, 29 August–1 September 2016, pp. 41:1–41:19 (2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.41

12. DeYoung, H., Caires, L., Pfenning, F., Toninho, B.: Cut reduction in linear logic
as asynchronous session-typed communication. In: CSL, pp. 228–242 (2012)

13. Giamberardino, P.D.: Jump from parallel to sequential proofs: additives. Technical
report (2011). https://hal.archives-ouvertes.fr/hal-00616386

14. Faggian, C., Maurel, F.: Ludics nets, a game model of concurrent interaction. In:
20th IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, IL,
USA, 26–29 June 2005, Proceedings, pp. 376–385. IEEE Computer Society (2005).
http://dx.doi.org/10.1109/LICS.2005.25

15. Faggian, C., Piccolo, M.: A graph abstract machine describing event structure
composition. Electr. Notes Theor. Comput. Sci. 175(4), 21–36 (2007). https://doi.
org/10.1016/j.entcs.2007.04.014

http://dx.doi.org/10.1109/LICS.1999.782638
https://doi.org/10.1007/978-3-662-46678-0_28
https://doi.org/10.1016/j.apal.2004.05.002
https://doi.org/10.1016/j.apal.2004.05.002
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4230/LIPIcs.FSCD.2017.12
https://doi.org/10.4230/LIPIcs.FSCD.2017.12
http://iso.mor.phis.me/publis/Causality_in_Linear_Logic_FOSSACS19.pdf
http://iso.mor.phis.me/publis/Causality_in_Linear_Logic_FOSSACS19.pdf
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/11538363_13
https://doi.org/10.1007/11538363_13
https://doi.org/10.4230/LIPIcs.CSL.2016.41
https://hal.archives-ouvertes.fr/hal-00616386
http://dx.doi.org/10.1109/LICS.2005.25
https://doi.org/10.1016/j.entcs.2007.04.014
https://doi.org/10.1016/j.entcs.2007.04.014

168 S. Castellan and N. Yoshida

16. Di Giamberardino, P., Faggian, C.: Jump from parallel to sequential proofs: mul-
tiplicatives. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 319–333. Springer,
Heidelberg (2006). https://doi.org/10.1007/11874683 21

17. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987)
18. Heijltjes, W., Houston, R.: No proof nets for MLL with units: proof equivalence in

MLL is PSPACE-complete. In: CSL-LICS 2014, pp. 50:1–50:10. ACM (2014)
19. Honda, K., Laurent, O.: An exact correspondence between a typed pi-calculus and

polarised proof-nets. Theor. Comput. Sci. 411(22–24), 2223–2238 (2010). https://
doi.org/10.1016/j.tcs.2010.01.028

20. Honda, K., Yoshida, N., Berger, M.: Process types as a descriptive tool for inter-
action. In: Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 1–20. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08918-8 1

21. Hughes, D.J.D., Heijltjes, W.: Conflict nets: efficient locally canonical MALL proof
nets. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2016, New York, NY, USA, 5–8 July 2016, pp. 437–446 (2016).
http://doi.acm.org/10.1145/2933575.2934559

22. Hughes, D.J.D., van Glabbeek, R.J.: Proof nets for unit-free multiplicative-additive
linear logic. ACM Trans. Comput. Logic 6(4), 784–842 (2005)

23. Laurent, O.: Polarized proof-nets and λμ-calculus. Theor. Comput. Sci. 290(1),
161–188 (2003). https://doi.org/10.1016/S0304-3975(01)00297-3

24. Melliès, P.-A.: Asynchronous games 4: a fully complete model of propositional
linear logic. In: 20th IEEE Symposium on Logic in Computer Science (LICS 2005),
Chicago, IL, USA, 26–29 June 2005, Proceedings, pp. 386–395 (2005). http://dx.
doi.org/10.1109/LICS.2005.6

25. Melliès, P.-A., Mimram, S.: Asynchronous games: innocence without alternation.
In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 395–
411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 27

26. Mimram, S.: Sémantique des jeux asynchrones et réécriture 2-dimensionnelle (asyn-
chronous game semantics and 2-dimensional rewriting systems). Ph.D. thesis, Paris
Diderot University, France (2008). https://tel.archives-ouvertes.fr/tel-00338643

27. Wadler, P.: Propositions as sessions. J. Funct. Program. 24(2–3), 384–418 (2014)
28. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11874683_21
https://doi.org/10.1016/j.tcs.2010.01.028
https://doi.org/10.1016/j.tcs.2010.01.028
https://doi.org/10.1007/978-3-319-08918-8_1
http://doi.acm.org/10.1145/2933575.2934559
https://doi.org/10.1016/S0304-3975(01)00297-3
http://dx.doi.org/10.1109/LICS.2005.6
http://dx.doi.org/10.1109/LICS.2005.6
https://doi.org/10.1007/978-3-540-74407-8_27
https://tel.archives-ouvertes.fr/tel-00338643
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
http://creativecommons.org/licenses/by/4.0/

Rewriting Abstract Structures:
Materialization Explained Categorically

Andrea Corradini1, Tobias Heindel2, Barbara König3, Dennis Nolte3(B),
and Arend Rensink4

1 Università di Pisa, Pisa, Italy
andrea@di.unipi.it

2 University of Hawaii, Honolulu, USA
heindel@hawaii.edu

3 Universität Duisburg-Essen, Duisburg, Germany
{barbara koenig,dennis.nolte}@uni-due.de
4 University of Twente, Enschede, Netherlands

arend.rensink@utwente.nl

Abstract. The paper develops an abstract (over-approximating)
semantics for double-pushout rewriting of graphs and graph-like objects.
The focus is on the so-called materialization of left-hand sides from
abstract graphs, a central concept in previous work. The first contri-
bution is an accessible, general explanation of how materializations arise
from universal properties and categorical constructions, in particular par-
tial map classifiers, in a topos. Second, we introduce an extension by
enriching objects with annotations and give a precise characterization of
strongest post-conditions, which are effectively computable under certain
assumptions.

1 Introduction

Abstract interpretation [12] is a fundamental static analysis technique that
applies not only to conventional programs but also to general infinite-state sys-
tems. Shape analysis [30], a specific instance of abstract interpretation, pioneered
an approach for analyzing pointer structures that keeps track of information
about the “heap topology”, e.g., out-degrees or existence of certain paths. One
central idea of shape analysis is materialization, which arises as companion oper-
ation to summarizing distinct objects that share relevant properties. Materializa-
tion, a.k.a. partial concretization, is also fundamental in verification approaches
based on separation logic [5,6,24], where it is also known as rearrangement [26],
a special case of frame inference. Shape analysis—construed in a wide sense—has
been adapted to graph transformation [29], a general purpose modelling language
for systems with dynamically evolving topology, such as network protocols and
cyber-physical systems. Motivated by earlier work of shape analysis for graph

T. Heindel—Partially supported by AFOSR.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 169–188, 2019.
https://doi.org/10.1007/978-3-030-17127-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_10

170 A. Corradini et al.

transformation [1,2,4,27,28,31], we want to put the materialization operation
on a new footing, widening the scope of shape analysis.

A natural abstraction mechanism for transition systems with graphs as states
“summarizes” all graphs over a specific shape graph. Thus a single graph is used
as abstraction for all graphs that can be mapped homomorphically into it. Fur-
ther annotations on shape graphs, such as cardinalities of preimages of its nodes
and general first-order formulas, enable fine-tuning of the granularity of abstrac-
tions. While these natural abstraction principles have been successfully applied
in previous work [1,2,4,27,28,31], their companion materialization constructions
are notoriously difficult to develop, hard to understand, and are redrawn from
scratch for every single setting. Thus, we set out to explain materializations
based on mathematical principles, namely universal properties (in the sense of
category theory). In particular, partial map classifiers in the topos of graphs
(and its slice categories) cover the purely structural aspects of materializations;
this is related to final pullback complements [13], a fundamental construction
of graph rewriting [7,25]. Annotations of shape graphs are treated orthogonally
via op-fibrations.

The first milestones of a general framework for shape analysis of graph trans-
formation and more generally rewriting of objects in a topos are the following:
� A rewriting formalism for graph abstractions that lifts the rule-based rewriting
from single graphs to abstract graphs ; it is developed for (abstract) objects in a
topos.
� We characterize the materialization operation for abstract objects in a topos
in terms of partial map classifiers, giving a sound and complete description of
all occurrences of right-hand sides of rules obtained by rewriting an abstract
object. → Sect. 3
� We decorate abstract objects with annotations from an ordered monoid
and extend abstract rewriting to abstract objects with annotations. For the
specific case of graphs, we consider global annotations (counting the nodes
and edges in a graph), local annotations (constraining the degree of a node),
and path annotations (constraining the existence of paths between certain
nodes). → Sect. 4
� We show that abstract rewriting with annotations is sound and, with addi-
tional assumptions, complete. Finally, we derive strongest post-conditions for
the case of graph rewriting with annotations. → Sect. 5

Related work: The idea of shape graphs together with shape constraints was pio-
neered in [30] where the constraints are specified in a three-valued logic. A similar
approach was proposed in [31], using first-order formulas as constraints. In part-
ner abstraction [3,4], cluster abstraction [1,2], and neighbourhood abstraction
[28] nodes are clustered according to local criteria, such as their neighbourhood
and the resulting graph structures are enriched with counting constraints, sim-
ilar to our constraints. The idea of counting multiplicities of nodes and edges
is also found in canonical graph shapes [27]. The uniform treatment of monoid
annotations was introduced in previous work [9,10,20], in the context of type
systems and with the aim of studying decidability and closure properties, but
not for abstract rewriting.

Rewriting Abstract Structures 171

2 Preliminaries

This paper presupposes familiarity with category theory and the topos structure
of graphs. Some concepts (in particular elementary topoi, subobject and partial
map classifiers, and slice categories) are defined in the full version of this paper
[8], which also contains all the proofs.

The rewriting formalism for graphs and graph-like structures that we use
throughout the paper is the double-pushout (DPO) approach [11]. Although it
was originally introduced for graphs [16], it is well-defined in any category C.
However, certain standard results for graph rewriting require that the cate-
gory C has “good” properties. The category of graphs is an elementary topos—an
extremely rich categorical structure—but weaker conditions on C, for instance
adhesivity, have been studied [14,15,21].

Definition 1 (Double-pushout rewriting). A production in C is a span of
monos L � I � R in C; the objects L and R are called left- and right-hand
side, respectively. A match of a production p : L � I � R
to an object X of C is a mono mL : L � X in C. The
production p rewrites X to Y at mL (resp. the match
mL to the co-match mR : R → Y) if the production and
the match (and the co-match) extend to a diagram in C,
shown to the right, such that both squares are pushouts.

L I R

X C Y

mL mR(PO)(PO)

In this case, we write X
p,mL=⇒ Y (resp. (L

mL� X) p⇒ (R mR→ Y)). We also write
X

p,mL=⇒ if there exists an object Y such that X
p,mL=⇒ Y and X

p⇒ Y if the specific
match mL is not relevant.

Given a production p and a match mL, if there exist arrows X ← C and
C ← I that make the left-hand square of the diagram in Definition 1 a pushout
square, then the gluing condition is satisfied.

If C is an adhesive category (and thus also if it is a topos [22]) and the pro-
duction consists of monos, then all remaining arrows of double-pushout diagrams
of rewriting are monos [21] and the result of rewriting—be it the object Y or
the co-match mR—is unique (up to a canonical isomorphism).

2.1 Subobject Classifiers and Partial Map Classifiers of Graphs

A standard category for graph rewriting that is also a topos is the category of
edge-labelled, directed graphs that we shall use in examples, as recalled in the
next definition. Note that due to the generality of the categorical framework, our
results also hold for various other forms of graphs, such as node-labelled graphs,
hypergraphs, graphs with scopes or graphs with second-order edges.

Definition 2 (Category of graphs). Let Λ be a fixed set of edge labels.
A (Λ-labelled) graph is a tuple G = (VG, EG, srcG, tgtG, �G) where VG is a
finite set of nodes, EG is a finite set of edges, srcG, tgtG : EG → VG are
the source and target mappings and �G : EG → Λ is the labelling function.

172 A. Corradini et al.

Let G,H be two Λ-labelled graphs. A graph morphism ϕ : G → H con-
sists of two functions ϕV : VG → VH , ϕE : EG → EH , such that for each edge
e ∈ EG we have srcH(ϕE(e)) = ϕV (srcG(e)), tgtH(ϕE(e)) = ϕV (tgtG(e)) and
�H(ϕE(e)) = �G(e). If ϕV , ϕE are both bijective, ϕ is an isomorphism. The cat-
egory having (Λ-labelled) graphs as objects and graph morphisms as arrows is
denoted by Graph.

We shall often write ϕ instead of ϕV or ϕE to avoid clutter. The graph
morphisms in our diagrams will be indicated by black and white nodes and
thick edges. In the category Graph, where the objects are labelled graphs
over the label alphabet Λ, the subobject classi-
fier true is displayed to the right where every
Λ-labelled edge represents several edges, one for
each λ ∈ Λ.

The subobject classifier true : 1 � Ω from the terminal object 1 to Ω allows
us to single out a subgraph X of a graph Y , by mapping Y to Ω in such a way
that all elements of X are mapped to the image of true.

Given arrows α,m as in the diagram in Definition 3, we can construct the
most general pullback, called final pullback complement [7,13].

Definition 3 (Final pullback complement). A pair of arrows I
γ→ F

β→ G
is a final pullback complement (FPBC) of another pair I α→ L m→ G if

– they induce a pullback square
– for each pullback square G m← L α′

← I ′ γ′
→ F ′ β′

→
G and arrow f : I ′ → I such that α ◦ f = α′,
there exists a unique arrow f ′ : F ′ → F such
that β ◦f ′ = β′ and γ ◦f = f ′ ◦γ′ both hold (see
the diagram to the right).

L I I ′

G F F ′
m

α

γ(FPBC)

α′

f

γ′

β

β′

f ′

Final pullback complements and subobject classifiers are closely related to
partial map classifiers (see [13, Corollary 4.6]): a category has FPBCs (over
monos) and a subobject classifier if and only if it has a partial map classifier.
These exist in all elementary topoi.

Proposition 4 (Final pullback complements, subobject and partial
map classifiers). Let C be a category with finite limits. Then the following
are equivalent:

(1) C has a subobject classifier true : 1 � Ω and final pullback complements for
each pair of arrows I α→ L

m� G with m mono;
(2) C has a partial map classifier (F : C → C, η : Id .→ F).

2.2 Languages

The main theme of the paper is “simultaneous” rewriting of entire sets of objects
of a category by means of rewriting a single abstract object that represents

Rewriting Abstract Structures 173

a collection of structures—the language of the abstract object. The simplest
example of an abstract structure is a plain object of a category to which we
associate the language of objects that can be mapped to it; the formal definition
is as follows (see also [10]).

Definition 5 (Language of an object). Let A be an object of a category C.
Given another object X, we write X ��� A whenever there exists an arrow
from X to A. We define the language1 of A, denoted by L(A), as L(A) = {X ∈
C | X ��� A}.

Whenever X ∈ L(A) holds, we will say that X is abstracted by A, and A
is called the abstract object. In the following we will also need to characterize a
class of (co-)matches which are represented by a given (co-)match (which is a
mono).

Definition 6 (Language of a mono). Let ϕ : L � A be a mono in C. The
language of ϕ is the set of monos m with source L that factor ϕ such that the
square on the right is a pullback:

L(ϕ) = {m : L � X | ∃(ψ : X → A)
such that square (1) is a pullback}.

L X

L A

idL

m

ψ

ϕ

(PB) (1)

Intuitively, for any arrow (L m→ X) ∈ L(ϕ) we have X ∈ L(A) and X has a
distinguished subobject L which corresponds precisely to the subobject L � A.
In fact ψ restricts and co-restricts to an isomorphism between the images of L
in X and A. For graphs, no nodes or edges in X outside of L are mapped by ψ
into the image of L in A.

3 Materialization

Given a production p : L � I � R, an abstract object A, and a (possibly
non-monic) arrow ϕ : L → A, we want to transform the abstract object A in
order to characterize all successors of objects in L(A), i.e., those obtained by
rewriting via p at a match compatible with ϕ. (Note that ϕ is not required to
be monic, because a monic image of the left-hand side of p in an object of L(A)
could be mapped non-injectively to A.) Roughly, we want to lift DPO rewriting
to the level of abstract objects.

For this, it is necessary to use the materialization construction, defined cat-
egorically in Sect. 3.1, that enables us to concretize an instance of a left-hand
side in a given abstract object. This construction is refined in Sect. 3.2 where
we restrict to materializations that satisfy the gluing condition and can thus
be rewritten via p. Finally in Sect. 3.3 we present the main result about mate-
rializations showing that we can fully characterize the co-matches obtained by
rewriting.
1 Here we assume that C is essentially small, so that a language can be seen as a set

instead of a proper class of objects.

174 A. Corradini et al.

3.1 Materialization Category and Existence of Materialization

From now on we assume C to be an elementary topos. We will now define the
materialization, which, given an arrow ϕ : L → A, characterizes all objects X,
abstracted over A, which contain a (monic) occurrence of the left-hand side
compatible with ϕ.

Definition 7 (Materialization). Let ϕ : L → A be an arrow in C. The mate-
rialization category for ϕ, denoted Matϕ, has as

objects all factorizations L � X → A of ϕ
whose first factor L � X is a mono, and as

arrows from a factorization L � X → A
to another one L � Y → A, all arrows
f : X → Y in C such that the diagram to
the right is made of a commutative triangle
and a pullback square.

L X

A

L Y

idL

ϕ

f

ϕ

(PB)

If Matϕ has a terminal object it is denoted by L � 〈ϕ〉 → A and is called the
materialization of ϕ.

Sometimes we will also call the object 〈ϕ〉 the materialization of ϕ, omitting the
arrows.

Since we are working in a topos by assumption, the slice category over A
provides us with a convenient setting to construct materializations. Note in par-
ticular that in the diagram in Definition 7 above, the span X � L � L is a
partial map from X to L in the slice category over A. Hence the materialization
〈ϕ〉 corresponds to the partial map classifier for L in this slice category.

Proposition 8 (Existence of materialization). Let ϕ : L → A be an arrow
in C, and let ηϕ : ϕ → F (ϕ), with F (ϕ) : Ā → A, be the partial map classifier

of ϕ in the slice category C↓A (which also is a topos).2 Then L
ηϕ→ Ā

F (ϕ)→ A is
the materialization of ϕ, hence 〈ϕ〉 = Ā.

As a direct consequence of Propositions 4 and 8 (and the fact that final pull-
back complements in the slice category correspond to those in the base category
[25]), the terminal object of the materialization category can be constructed for
each arrow of a topos by taking final pullback complements.

Corollary 9 (Construction of the materialization). Let ϕ : L → A be an
arrow of C and let trueA : A � A × Ω be the subobject classifier (in the slice
category C ↓ A) from idA : A → A to the projection π1 : A × Ω → A.
Then the terminal object L

ηϕ� 〈ϕ〉 ψ→ A in the
materialization category consists of the arrows
ηϕ and ψ = π1 ◦ χηϕ

, where L
ηϕ� 〈ϕ〉 χηϕ→ A × Ω

is the final pullback complement of L
ϕ→ A

trueA�
A × Ω.

L

ϕ

��

��
ηϕ

�� 〈ϕ〉
χηϕ

��

ψ

��
A ��

trueA

�� A × Ω
π1

��

(FPBC)

A

2 This is by the Fundamental Theorem of topos theory [17, Theorem 2.31].

Rewriting Abstract Structures 175

Example 10. We construct the materialization L
ηϕ� 〈ϕ〉 ψ→ A for the following

morphism ϕ : L → A of graphs with a single (omitted) label:

ϕ:

In particular, the materialization is
obtained as a final pullback com-
plement as depicted to the right
(compare with the corresponding
diagram in Corollary 9). Note that
edges which are not in the image of
ηϕ resp. trueA are dashed.

ηϕ

ϕ χηϕ

trueA

ψ

π1

(FPBC)

This construction corresponds to the usual intuition behind materialization:
the left-hand side and the edges that are attached to it are “pulled out” of the
given abstract graph.

We can summarize the result of our constructions in the following proposition:

Proposition 11 (Language of the materialization). Let ϕ : L → A be an
arrow in C and let L

ηϕ� 〈ϕ〉 → A be the corresponding materialization. Then
we have

L(L
ηϕ� 〈ϕ〉) = {L

mL� X | ∃ψ : (X → A). (ϕ = ψ ◦ mL)}.

3.2 Characterizing the Language of Rewritable Objects

A match obtained through the materialization of the left-hand side of a produc-
tion from a given object may not allow a DPO rewriting step because of the
gluing condition. We illustrate this problem with an example.

Example 12. Consider the material-
ization L � 〈ϕ〉 → A from
Example 10 and the pro-
duction L � I � R shown in
the diagram to the right. It is easy
to see that the pushout complement
of morphisms I � L � 〈ϕ〉 does not
exist.

Nevertheless there exist factorizations L � X → A abstracted by 〈ϕ〉 that could
be rewritten using the production.

?

L
�

〈ϕ〉

L � I � R

In order to take the existence of pushout complements into account, we con-
sider a subcategory of the materialization category.

Definition 13 (Materialization subcategory of rewritable objects). Let
ϕ : L → A be an arrow of C and let ϕL : I � L be a mono (corresponding to the
left leg of a production). The materialization subcategory of rewritable objects

176 A. Corradini et al.

for ϕ and ϕL, denoted MatϕL
ϕ , is the full subcategory of Matϕ containing as

objects all factorizations L
m� X → A of ϕ, where m is a mono and I

ϕL� L
m� X

has a pushout complement.
Its terminal element, if it exists, is denoted by L

nL� 〈〈ϕ,ϕL〉〉 → A and is
called the rewritable materialization.

We show that this subcategory of the materialization category has a terminal
object.

Proposition 14 (Construction of the rewritable materialization). Let
ϕ : L → A be an arrow and let ϕL : I � L be a mono of C. Then the rewritable
materialization of ϕ w.r.t. ϕL exists and can be constructed as the following
factorization L

nL� 〈〈ϕ,ϕL〉〉 ψ◦α−→ A of ϕ. In the left diagram, F is obtained
as the final pullback complement of I

ϕL� L � 〈ϕ〉, where L � 〈ϕ〉 ψ→ A is the

materialization of ϕ (Definition 7). Next in the right diagram L
nL� 〈〈ϕ,ϕL〉〉 β

� F

is the pushout of the span L
ϕL� I � F and α is the resulting mediating arrow.

L
ϕ

����
��
��
��

��

��

I
��

��

��
ϕL��

A 〈ϕ〉ψ
�� F

(FPBC)

����

(2) L
ϕ

����
��
��
��

��

��

L
��

nL

��

��
idL�� I

��

��

��
ϕL��

A 〈ϕ〉ψ
�� 〈〈ϕ,ϕL〉〉��α�� F��

β
�� ����

(PO)

(3)

Example 15. We come back to the running example (Example 12) and, as in
Proposition 14, determine the final pullback complement I � F � 〈ϕ〉 of I

ϕL�
L � 〈ϕ〉 (see diagram below left) and obtain 〈〈ϕ,ϕL〉〉 by taking the pushout
over L � I � F (see diagram below right).

L
�

〈ϕ〉

L � I

(FPBC)

F

I
�

F

L � I

(PO)

〈〈ϕ, ϕL〉〉

It remains to be shown that L � 〈〈ϕ,ϕL〉〉 → A represents every factorization
which can be rewritten. As before we obtain a characterization of the rewritable
objects, including the match, as the language of an arrow.

Rewriting Abstract Structures 177

Proposition 16 (Language of the rewritable materialization). Assume
there is a production p : L

ϕL� I
ϕR� R and let L

nL� 〈〈ϕ,ϕL〉〉 be the match for the
rewritable materialization for ϕ and ϕL. Then we have

L(L
nL� 〈〈ϕ,ϕL〉〉) = {L

mL� X | ∃ψ : (X → A). (ϕ = ψ ◦ mL ∧ X
p,mL=⇒)}.

3.3 Rewriting Materializations

In the next step we will now rewrite the rewritable materialization 〈〈ϕ,ϕL〉〉 with
the match L

nL� 〈〈ϕ,ϕL〉〉, resulting in a co-match R � B. In particular, we
will show that this co-match represents all co-matches that can be obtained by
rewriting an object X of L(A) at a match compatible with ϕ. We first start with
an example.

Example 17. We can rewrite the materialization L � 〈〈ϕ,ϕL〉〉 → A as follows:

L
�

〈〈ϕ
,ϕ

L 〉〉

C B

(PO) (PO)

Proposition 18 (Rewriting abstract matches). Let a match nL : L � Ã
and a production p : L � I � R be given. Assume that Ã is rewritten along the
match nL, i.e., (L

nL� Ã) p⇒ (R
nR� B). Then

L(R
nR� B) = {R

mR� Y | ∃(L
mL� X) ∈ L(L

nL� Ã).
(
(L

mL� X) p⇒ (R
mR� Y)

)
}

If we combine Propositions 16 and 18, we obtain the following corollary that
characterizes the co-matches obtained from rewriting a match compatible with
ϕ : L → A.

Corollary 19 (Co-match language of the rewritable materialization).
Let ϕ : L → A and a production p : L

ϕL� I
ϕR� R be given. Assume that 〈〈ϕ,ϕL〉〉 is

obtained as the rewritable materialization of ϕ and ϕL with match L
nL� 〈〈ϕ,ϕL〉〉

(see Proposition 14). Furthermore let (L
nL� 〈〈ϕ,ϕL〉〉) p⇒ (R

nR� B). Then

L(R
nR� B) = {R

mR� Y | ∃(L
mL� X), (X ψ→ A).

(
ϕ = ψ ◦ mL ∧

(L
mL� X) p⇒ (R

mR� Y)
)
}

178 A. Corradini et al.

This result does not yet enable us to construct post-conditions for languages
of objects. The set of co-matches can be fully characterized as the language of
a mono, which can only be achieved by fixing the right-hand side R and thus
ensuring that exactly one occurrence of R is represented. However, as soon as
we forget about the co-match, this effect is gone and can only be retrieved by
adding annotations, which will be introduced next.

4 Annotated Objects

We now endow objects with annotations, thus making object languages more
expressive. In particular we will use ordered monoids in order to annotate
objects. Similar annotations have already been studied in [20] in the context
of type systems and in [10] with the aim of studying decidability and closure
properties, but not for abstract rewriting.

Definition 20 (Ordered monoid). An ordered monoid (M,+,≤) consists of
a set M, a partial order ≤ and a binary operation + such that (M,+) is a
monoid with unit 0 (which is the bottom element wrt. ≤) and the partial order is
compatible with the monoid operation. In particular a ≤ b implies a + c ≤ b + c
and c + a ≤ c + b for all a, b, c ∈ M. An ordered monoid is commutative if + is
commutative.

A tuple (M,+,−,≤), where (M,+,≤) is an ordered monoid and − is a
binary operation on M, is called an ordered monoid with subtraction.

We say that subtraction is well-behaved whenever for all a, b ∈ M it holds
that a − a = 0 and (a − b) + b = a whenever b ≤ a.

For now subtraction is just any operation, without specific requirements.
Later we will concentrate on specific subtraction operations and demand that
they are well-behaved.

In the following we will consider only commutative monoids.

Definition 21 (Monotone maps and homomorphisms). Let M1, M2 be
two ordered monoids. A map h : M1 → M2 is called monotone if a ≤ b implies
h(a) ≤ h(b) for all a, b ∈ M1. The category of ordered monoids with subtraction
and monotone maps is called Mon.

A monotone map h is called a homomorphism if h(0) = 0 and h(a + b) =
h(a) + h(b). If M1,M2 are ordered monoids with subtraction, we say that h
preserves subtraction if h(a − b) = h(a) − h(b).

Example 22. Let n ∈ N\{0} and take Mn = {0, 1, . . . , n, ∗} (zero, one, . . . ,
n, many) with 0 ≤ 1 ≤ · · · ≤ n ≤ ∗ and addition as (commutative) monoid
operation with the proviso that a+ b = ∗ if the sum is larger than n. In addition
a + ∗ = ∗ for all a ∈ Mn. Subtraction is truncated subtraction where a − b = 0
if a ≤ b. Furthermore ∗ − a = ∗ for all a ∈ N. It is easy to see that subtraction
is well-behaved.

Rewriting Abstract Structures 179

Given a set S and an ordered monoid (with subtraction) M, it is easy to
check that also MS is an ordered monoid (with subtraction), where the elements
are functions from S to M and the partial order, the monoidal operation and
the subtraction are taken pointwise.

The following path monoid is useful if we want to annotate a graph with
information over which paths are present. Note that due to the possible fusion
of nodes and edges caused by the abstraction, a path in the abstract graph does
not necessarily imply the existence of a corresponding path in a concrete graph.
Hence annotations based on such a monoid, which provide information about
the existence of paths, can yield useful additional information.

Example 23. Given a graph G, we denote by E+
G ⊆ VG×VG the transitive closure

of the edge relation E→
G = {(srcG(e), tgtG(e)) | e ∈ EG}. The path monoid PG

of G has the carrier set P(E+
G). The partial order is simply inclusion and the

monoid operation is defined as follows: given P0, P1 ∈ PG, we have

P0 + P1 = {(v0, vn) | ∃v1, . . . , vn−1 : (vi, vi+1) ∈ Pji
,

j0 ∈ {0, 1}, ji+1 = 1 − ji, i ∈ {0, . . . , n − 1} and n ∈ N}.

That is, new paths can be formed by concatenating alternating path fragments
from P0, P1. It is obvious to see that + is commutative and one can also show
associativity. P = ∅ is the unit. Subtraction simply returns the first parameter:
P0 − P1 = P0.

We will now formally define annotations for objects via a functor from a
given category to Mon.

Definition 24 (Annotations for objects). Given a category C and a functor
A : C → Mon, an annotation based on A for an object X ∈ C is an element
a ∈ A(X). We write Aϕ, instead of A(ϕ), for the action of functor A on a
C-arrow ϕ. We assume that for each object X there is a standard annotation
based on A that we denote by sX , thus sX ∈ A(X).

It can be shown quite straightforwardly that the forgetful functor mapping
an annotated object X[a], with a ∈ A(X), to X is an op-fibration (or co-fibration
[19]), arising via the Grothendieck construction.

Our first example is an annotation of graphs with global multiplicities, count-
ing nodes and edges, where the action of the functor is to sum up those multi-
plicities.

Example 25. Given n ∈ N\{0}, we define the functor Bn : Graph → Mon: For
every graph G, Bn(G) = MVG∪EG

n . For every graph morphism ϕ : G → H and
a ∈ Bn(G), we have Bn

ϕ(a) ∈ MVH∪EH
n with:

Bn
ϕ(a)(y) =

∑

ϕ(x)=y

a(x), where x ∈ (VG ∪ EG) and y ∈ (VH ∪ EH).

180 A. Corradini et al.

Therefore an annotation based on a functor Bn associates every item of a graph
with a number (or the top value ∗). We will call such annotations multiplicities.
Furthermore the action of the functor on a morphism transforms a multiplicity
by summing up (in Mn) the values of all items of the source graph that are
mapped to the same item of the target graph.

For a graph G, its standard multiplicity sG ∈ Bn(G) is defined as the function
which maps every node and edge of G to 1.

As another example we consider local annotations which record the out-
degree of a node and where the action of the functor is to take the supremum
instead of the sum.

Example 26. Given n ∈ N\{0}, we define the functor Sn : Graph → Mon as
follows: For every graph G, Sn(G) = MVG

n . For every graph morphism ϕ : G →
H and a ∈ Sn(G), we have Sn

ϕ(a) ∈ MVH
n with:

Sn
ϕ(a)(w) =

∨

ϕ(v)=w

a(v), where v ∈ VG and w ∈ VH .

For a graph G, its standard annotation sG ∈ Sn(G) is defined as the function
which maps every node of G to its out-degree (or ∗ if the out-degree is larger
than n).

Finally, we consider annotations based on the path monoid (see Example 23).

Example 27. We define the functor T : Graph → Mon as follows: For every
graph G, T (G) = PG. For every graph morphism ϕ : G → H and P ∈ T (G), we
have Tϕ(P) ∈ PH with:

Tϕ(P) = {(ϕ(v), ϕ(w)) | (v, w) ∈ P}.

For a graph G, its standard annotation sG ∈ T (G) is the transitive closure of
the edge relation, i.e., sG = E+

G .

In the following we will consider only annotations satisfying certain properties
in order to achieve soundness and completeness.

Definition 28 (Properties of annotations). Let A : C → Mon be an
annotation functor, together with standard annotations. In this setting we say
that

– the homomorphism property holds if whenever ϕ is a mono, then Aϕ is a
monoid homomorphism, preserving also subtraction.

– the adjunction property holds if whenever ϕ : A � B is a mono, then
• Aϕ : A(A) → A(B) has a right adjoint redϕ : A(B) → A(A), i.e., redϕ is
monotone and satisfies a ≤ redϕ(Aϕ(a)) for a ∈ A(A) and Aϕ(redϕ(b)) ≤
b for b ∈ A(B).3

3 This amounts to saying that the forgetful functor is a bifibration when we restrict
to monos, see [19, Lem. 9.1.2].

Rewriting Abstract Structures 181

• redϕ is a monoid homomorphism that preserves subtraction.
• it holds that redϕ(sB) = sA, where sA, sB are standard annotations.

Furthermore, assuming that Aϕ has a right adjoint redϕ, we say that
– the pushout property holds, whenever for each pushout as

shown in the diagram to the right, with all arrows monos
where η = ψ1 ◦ ϕ1 = ψ2 ◦ ϕ2, it holds that for every d ∈
A(D):

d = Aψ1(redψ1(d)) + (Aψ2(redψ2(d)) − Aη(redη(d))).

A ��
ϕ2 ��

		

η
		

��

ϕ1

��

C��

ψ2

��

B ��
ψ1

�� D

We say that the pushout property for standard annotations holds if we replace
d by sD, redη(d) by sA, redψ1(d) by sB and redψ2(d) by sC .

– the Beck-Chevalley property holds if whenever the square
shown to the right is a pullback with ϕ1, ψ2 mono, then it
holds for every b ∈ A(B) that

Aϕ2(redϕ1(b)) = redψ2(Aψ1(b)).

A
ϕ2 ��

��

ϕ1

��

C��

ψ2

��

B
ψ1

�� D

(PB)

Note that the annotation functor from Example 25 satisfies all properties
above, whereas the functors from Examples 26 and 27 satisfy both the homo-
morphism property and the pushout property for standard annotations, but do
not satisfy all the remaining requirements [8].

We will now introduce a more flexible notion of language, by equipping the
abstract objects with two annotations, establishing lower and upper bounds.

Definition 29 (Doubly annotated object). Given a topos C and a functor
A : C → Mon, a doubly annotated object A[a1, a2] is an object A of C with
two annotations a1, a2 ∈ A(A).An arrow ϕ : A[a1, a2] → B[b1, b2], also called a
legal arrow, is a C-arrow ϕ : A → B such that Aϕ(a1) ≥ b1 and Aϕ(a2) ≤ b2.

The language of a doubly annotated object A[a1, a2] (also called the language
of objects which are abstracted by A[a1, a2]) is defined as follows:

L(A[a1, a2]) = {X ∈ C | there exists a legal arrow ϕ : X[sX , sX] → A[a1, a2]}

Note that legal arrows are closed under composition [9]. Examples of dou-
bly annotated objects are given in Example 36 for global annotations from
Example 25 (providing upper and lower bounds for the number of nodes resp.
edges in the preimage of a given element). Graph elements without annotation
are annotated by [0, ∗] by default.

Definition 30 (Isomorphism property). An annotation functor A : C →
Mon, together with standard annotations, satisfies the isomorphism property if
the following holds: whenever ϕ : X[sX , sX] → Y [sY , sY] is legal, then ϕ is an
isomorphism, i.e., L(Y [sY , sY]) contains only Y itself (and objects isomorphic
to Y).

182 A. Corradini et al.

5 Abstract Rewriting of Annotated Objects

We will now show how to actually rewrite annotated objects. The challenge is
both to find suitable annotations for the materialization and to “rewrite” the
annotations.

5.1 Abstract Rewriting and Soundness

We first describe how the annotated rewritable materialization is constructed
and then we investigate its properties.

Definition 31 (Construction of annotated rewritable materialization).
Let p : L

ϕL� I
ϕR� R be a production and let A[a1, a2] be a doubly annotated object.

Furthermore let ϕ : L → A be an arrow.
We first construct the factorization L

nL� 〈〈ϕ,ϕL〉〉 ψ→ A, obtaining the
rewritable materialization 〈〈ϕ,ϕL〉〉 from Definition 13. Next, let M contain all
maximal4 elements of the set

{(a′
1, a

′
2) ∈ A(〈〈ϕ,ϕL〉〉)2 | AnL

(sL) ≤ a′
2, a1 ≤ Aψ(a′

1),Aψ(a′
2) ≤ a2}.

Then the doubly annotated objects 〈〈ϕ,ϕL〉〉[a′
1, a

′
2] with (a′

1, a
′
2) ∈ M are the

annotated rewritable materializations for A[a1, a2], ϕ and ϕL.

Note that in general there can be several such materializations, differing by the
annotations only, or possibly none. The definition of M ensures that the upper
bound a′

2 of the materialization covers the annotations arising from the left-hand
side. We cannot use a corresponding condition for the lower bound, since the
materialization might contain additional structures, hence the arrow nL is only
“semi-legal”. A more symmetric condition will be studied in Sect. 5.2.

Proposition 32 (Annotated rewritable materialization is terminal).
Given a production p : L

ϕL� I
ϕR� R, let L

mL� X be the match of L in an object
X such that X

p,mL=⇒ , i.e., X can be rewritten. Assume that X is abstracted by
A[a1, a2], witnessed by ψ. Let ϕ = ψ ◦ mL and let L

nL� 〈〈ϕ,ϕL〉〉 ψ′
→ A the the

corresponding rewritable materialization. Then there exists an arrow ζA and a
pair of annotations (a′

1, a
′
2) ∈ M for 〈〈ϕ,ϕL〉〉 (as described in Definition 31) such

that the diagram below commutes and the square is a pullback in the underly-
ing category. Furthermore the triangle consists of legal arrows. This means in
particular that ζA is legal.

L[sL, sL]
��

idL

��

��
mL �� X[sX , sX]

ζA

��

ψ
�� A[a1, a2]

L[sL, sL] ��
nL

�� 〈〈ϕ,ϕL〉〉[a′
1, a

′
2]

(PB)
ψ′

�����������

4 “Maximal” means maximality with respect to the interval order (a1, a2) �
(a′

1, a
′
2) ⇐⇒ a′

1 ≤ a1, a2 ≤ a′
2.

Rewriting Abstract Structures 183

Having performed the materialization, we will now show how to rewrite anno-
tated objects. Note that we cannot simply take pushouts in the category of anno-
tated objects and legal arrows, since this would result in taking the supremum
of annotations, when instead we need the sum (subtracting the annotation of
the interface I, analogous to the inclusion-exclusion principle).

Definition 33 (Abstract rewriting step�). Let p : L
ϕL� I

ϕR� R be a
production and let A[a1, a2] be an annotated abstract object. Furthermore let
ϕ : L → A be a match of a left-hand side, let nL : L � 〈〈ϕ,ϕL〉〉 be the match
obtained via materialization and let (a′

1, a
′
2) ∈ M (as in Definition 31).

Then A[a1, a2] can be transformed to B[b1, b2] via p if there are arrows such
that the two squares below are pushouts in the base category and b1, b2 are
defined as:

bi = AϕB
(ci) + (AnR

(sR) − AnR◦ϕR
(sI)) for i ∈ {1, 2}

where c1, c2 are maximal annotations such that:

a′
1 ≤ AϕA(c1) + (AnL(sL) − AnL◦ϕL(sI)) AϕA(c2) + (AnL(sL) − AnL◦ϕL(sI)) ≤ a′

2

L[sL, sL]
��

nL

��

I[sI , sI]��
ϕL�� ��

ϕR ��
��

nI

��

R[sR, sR]
��

nR

��

〈〈ϕ,ϕL〉〉[a′
1, a

′
2] C[c1, c2]��

ϕA�� ��
ϕB �� B[b1, b2]

In this case we write A[a1, a2]
p,ϕ� B[b1, b2] and say that A[a1, a2] makes an

abstract rewriting step to B[b1, b2].

We will now show soundness of abstract rewriting, i.e., whenever an object X
is abstracted by A[a1, a2] and X is rewritten to Y , then there exists an abstract
rewriting step from A[a1, a2] to B[b1, b2] such that Y is abstracted by B[b1, b2].

Assumption: In the following we will require that the homomorphism property
as well as the pushout property for standard annotations hold (cf. Definition 28).

Proposition 34 (Soundness for �). Relation � is sound in the follow-
ing sense: Let X ∈ L(A[a1, a2]) (witnessed via a legal arrow ψ : X[sX , sX] →
A[a1, a2]) where X

p,mL=⇒ Y . Then there exists an abstract rewriting step
A[a1, a2]

p,ψ◦mL� B[b1, b2] such that Y ∈ L(B[b1, b2]).

5.2 Completeness

The conditions on the annotations that we imposed so far are too weak to guar-
antee completeness, that is the fact that every object represented by B[b1, b2]
can be obtained by rewriting an object represented by A[a1, a2]. This can be
clearly seen by the fact that the requirements hold also for the singleton monoid

184 A. Corradini et al.

and, as discussed before, the graph structure of B is insufficient to characterize
the successor objects or graphs.

Hence we will now strengthen our requirements in order to obtain
completeness.

Assumption: In addition to the assumptions of Sect. 5.1, we will need that
subtraction is well-behaved and that the adjunction property, the pushout prop-
erty, the Beck-Chevalley property (Definition 28) and the isomorphism property
(Definition 30) hold.

The global annotations from Example 25 satisfy all these properties. In
particular, given an injective graph morphism ϕ : G � H the right adjoint
redϕ : MVH∪EH

n → MVG∪EG
n to Bn

ϕ is defined as follows: given an annotation
b ∈ MVH∪EH

n , redϕ(b)(x) = b(ϕ(x)), i.e., redϕ simply provides a form of rein-
dexing.

We will now modify the abstract rewriting relation and allow only those
abstract annotations for the materialization that reduce to the standard anno-
tation of the left-hand side.

Definition 35 (Abstract rewriting step ↪→). Given ϕ : L → A, assume that
B[b1, b2] is constructed from A[a1, a2] via the construction described in Defini-
tions 31 and 33, with the modification that the set of annotations from which
the set of maximal annotations M of the materialization 〈〈ϕ,ϕL〉〉 are taken, is
replaced by:

{(a′
1, a

′
2) ∈ A(〈〈ϕ,ϕL〉〉)2 | rednL

(a′
i) = sL, i ∈ {1, 2}, a1 ≤ Aψ(a′

1),Aψ(a′
2) ≤ a2}.

In this case we write A[a1, a2]
p,ϕ
↪→ B[b1, b2].

Due to the adjunction property we have AnL
(sL) = AnL

(rednL
(a′

2)) ≤ a′
2 and

hence the set M of annotations of Definition 35 is a subset of the corresponding
set of Definition 33.

Example 36. We give a small example of an abstract rewriting step (a more
extensive, worked example can be found in the full version [8]). Elements without
annotation are annotated by [0, ∗] by default and those with annotation [0, 0]
are omitted. Furthermore elements in the image of the match and co-match are
annotated by the standard annotation [1, 1] to specify the concrete occurrence
of the left-hand and right-hand side.

[1, 1]
C [1, 1]

[1, 1]
[1, 1]

[1, 1]

A [1, 1]

B [1, 1]

[1, 1]

D

D
D

D

C [1, 1]
[1, 1]

D

D
D

D

[1, 1]
[1, 1]

D

D
D

D
A [1, 1]

B [1, 1]

[1, ∗]
C [1, 1]D

ϕL ϕR

ϕA ϕB

nL nI nR

ϕ

A ← L � I � R

Rewriting Abstract Structures 185

The variant of abstract rewriting introduced in Definition 35 can still be
proven to be sound, assuming the extra requirements stated above.

Proposition 37 (Soundness for ↪→). Relation ↪→ is sound in the sense of
Proposition 34.

Using the assumptions we can now show completeness.

Proposition 38 (Completeness for ↪→). If A[a1, a2]
p,ϕ
↪→ B[b1, b2] and Y ∈

L(B[b1, b2]), then there exists X ∈ L(A[a1, a2]) (witnessed via a legal arrow
ψ : X[sX , sX] → A[a1, a2]) such that X

p,mL=⇒ Y and ϕ = ψ ◦ mL.

Finally, we can show that annotated graphs of this kind are expressive enough
to construct a strongest post-condition. If we would allow several annotations
for objects, as in [9], we could represent the language with a single (multiply)
annotated object.

Corollary 39 (Strongest post-condition). Let A[a1, a2] be an anno-
tated object and let ϕ : L → A. We obtain (several) abstract rewriting steps
A[a1, a2]

p,ϕ
↪→ B[b1, b2], where we always obtain the same object B. (B is dependent

on ϕ, but not on the annotation.) Now let N = {(b1, b2) | A[a1, a2]
p,ϕ
↪→ B[b1, b2]}.

Then
⋃

(b1,b2)∈N

L(B[b1, b2]) = {Y | ∃(X ∈ L(A[a1, a2]),witnessed by ψ), (L
mL� X).

(ϕ = ψ ◦ mL ∧ X
p,mL=⇒ Y)}

6 Conclusion

We have described a rewriting framework for abstract graphs that also applies
to objects in any topos, based on existing work for graphs [1,2,4,27,28,31]. In
particular, we have given a blueprint for materialization in terms of the universal
property of partial map classifiers. This is a first theoretical milestone towards
shape analysis as a general static analysis method for rule-based systems with
graph-like objects as states. Soundness and completeness results for the rewriting
of abstract objects with annotations in an ordered monoid provide an effective
verification method for the special case of graphs We plan to implement the
materialization construction and the computation of rewriting steps of abstract
graphs in a prototype tool.

The extension of annotations with logical formulas is the natural next
step, which will lead to a more flexible and versatile specification language,
as described in previous work [30,31]. The logic can possibly be developed in
full generality using the framework of nested application conditions [18,23] that
applies to objects in adhesive categories. This logical approach might even reduce
the proof obligations for annotation functors. Another topic for future work
is the integration of widening or similar approximation techniques, which col-
lapse abstract objects and ideally lead to finite abstract transition systems that
(over-)approximate the typically infinite transitions systems of graph transfor-
mation systems.

186 A. Corradini et al.

References

1. Backes, P.: Cluster abstraction of graph transformation systems. Ph.D. thesis, Saar-
land University (2015)

2. Backes, P., Reineke, J.: Analysis of infinite-state graph transformation systems by
cluster abstraction. In: D’Souza, D., Lal, A., Larsen, K.G. (eds.) VMCAI 2015.
LNCS, vol. 8931, pp. 135–152. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46081-8 8

3. Bauer, J.: Analysis of communication topologies by partner abstraction. Ph.D.
thesis, Saarland University (2006)

4. Bauer, J., Wilhelm, R.: Static analysis of dynamic communication systems by part-
ner abstraction. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp.
249–264. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74061-
2 16

5. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

6. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Proceedings of
POPL 2008, pp. 247–260. ACM (2008)

7. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

8. Corradini, A., Heindel, T., König, B., Nolte, D., Rensink, A.: Rewriting abstract
structures: materialization explained categorically (2019). arXiv:1902.04809

9. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.
In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 73–89. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 5

10. Corradini, A., König, B., Nolte, D.: Specifying graph languages with type graphs.
J. Log. Algebraic Methods Program. (to appear)

11. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation–part I: basic concepts and double pushout
approach, Chap. 3. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and
Computing by Graph Transformation: Foundations, vol. 1. World Scientific (1997)

12. Cousot, P.: Abstract interpretation. ACM Comput. Surv. 28(2), 324–328 (1996).
https://dl.acm.org/citation.cfm?id=234740

13. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback
complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)

14. Ehrig, H., Golas, U., Hermann, F., et al.: Categorical frameworks for graph trans-
formation and HLR systems based on the DPO approach. Bull. EATCS 3(102),
111–121 (2013)

15. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 12

16. Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: an algebraic approach.
In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa,
USA, 15–17 October 1973, pp. 167–180 (1973)

17. Freyd, P.: Aspects of topoi. Bull. Aust. Math. Soc. 7(1), 1–76 (1972)
18. Habel, A., Pennemann, K.-H.: Nested constraints and application conditions for

high-level structures. In: Kreowski, H.-J., Montanari, U., Orejas, F., Rozenberg,

https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/978-3-662-46081-8_8
https://doi.org/10.1007/978-3-540-74061-2_16
https://doi.org/10.1007/978-3-540-74061-2_16
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
http://arxiv.org/abs/1902.04809
https://doi.org/10.1007/978-3-319-61470-0_5
https://dl.acm.org/citation.cfm?id=234740
https://doi.org/10.1007/978-3-540-30203-2_12

Rewriting Abstract Structures 187

G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS,
vol. 3393, pp. 293–308. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-31847-7 17

19. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the Founda-
tion of Mathematics, vol. 141. Elsevier, Amsterdam (1999)

20. König, B.: Description and verification of mobile processes with graph rewriting
techniques. Ph.D. thesis, Technische Universität München (1999)

21. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theor.
Inform. Appl. 39(3), 511–545 (2005)

22. Lack, S., Sobociński, P.: Toposes are adhesive. In: Corradini, A., Ehrig, H., Mon-
tanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp.
184–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11841883 14

23. Lambers, L., Orejas, F.: Tableau-based reasoning for graph properties. In: Giese,
H., König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 17–32. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09108-2 2

24. Li, H., Rival, X., Chang, B.-Y.E.: Shape analysis for unstructured sharing. In:
Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 90–108. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 6

25. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2 15

26. O’Hearn, P.W.: A primer on separation logic (and automatic program verification
and analysis). In: Software Safety and Security: Tools for Analysis and Verification.
NATO Science for Peace and Security Series, vol. 33, pp. 286–318 (2012)

27. Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 401–415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-24725-8 28

28. Rensink, A., Zambon, E.: Neighbourhood abstraction in GROOVE. In: Proceed-
ings of GraBaTs 2010 (Workshop on Graph-Based Tools). Electronic Communica-
tions of the EASST, vol. 32 (2010)

29. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, vol. 1. World Scientific, Singapore (1997)

30. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS (ACM Trans. Program. Lang. Syst.) 24(3), 217–298 (2002)

31. Steenken, D., Wehrheim, H., Wonisch, D.: Sound and complete abstract graph
transformation. In: Simao, A., Morgan, C. (eds.) SBMF 2011. LNCS, vol. 7021, pp.
92–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25032-3 7

https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/11841883_14
https://doi.org/10.1007/978-3-319-09108-2_2
https://doi.org/10.1007/978-3-662-48288-9_6
https://doi.org/10.1007/978-3-642-15928-2_15
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-540-24725-8_28
https://doi.org/10.1007/978-3-642-25032-3_7

188 A. Corradini et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Two-Way Parikh Automata
with a Visibly Pushdown Stack

Luc Dartois1(B), Emmanuel Filiot2, and Jean-Marc Talbot3

1 LACL-Université Paris-Est Créteil, Créteil, France
ldartois@lacl.fr

2 Université Libre de Bruxelles, Brussels, Belgium
3 LIM-Aix-Marseille Université, Marseille, France

Abstract. In this paper, we investigate the complexity of the emptiness
problem for Parikh automata equipped with a pushdown stack. Push-
down Parikh automata extend pushdown automata with counters which
can only be incremented and an acceptance condition given as a semi-
linear set, which we represent as an existential Presburger formula over
the final values of the counters. We show that the non-emptiness prob-
lem both in the deterministic and non-deterministic cases is NP-c. If the
input head can move in a two-way fashion, emptiness gets undecidable,
even if the pushdown stack is visibly and the automaton deterministic.
We define a restriction, called the single-use restriction, to recover decid-
ability in the presence of two-wayness, when the stack is visibly. This syn-
tactic restriction enforces that any transition which increments at least
one dimension is triggered only a bounded number of times per input
position. Our main contribution is to show that non-emptiness of two-
way visibly Parikh automata which are single-use is NExpTime-c. We
finally give applications to decision problems for expressive transducer
models from nested words to words, including the equivalence problem.

1 Introduction

Parikh automata. Since the classical automata-based approach to model-
checking [28], finite automata have been extended in many ways to tackle
the automatic verification of more realistic and powerful systems against more
expressive specifications. For instance, they have been extended to pushdown
systems [3,26,30], concurrent systems [5], and systems with counters or spec-
ifications with arithmetic constraints have been the focus of many works in
verification [7,11,15–18,23].

Along this line of work, Parikh automata (or PA), introduced in [22], are
an important instance of automata extension with arithmetic constraints. They
are automata on finite words whose transitions are equipped with counter oper-
ations. The counters can only be incremented, and do not influence the run
(enabling a transition requires no test on counter values), but the acceptance
of a run is defined by the membership of the final counter valuations to some
semi-linear set S. Expressivity of PAs goes beyond regularity, as the language
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 189–206, 2019.
https://doi.org/10.1007/978-3-030-17127-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_11

190 L. Dartois et al.

L = {w | |w|a = |w|b} of words having the same numbers of as and bs is realised
by a simple automaton counting the numbers of as and bs in counters x1 and x2

respectively, and the accepting condition is given by the linear-set {(i, i) | i ∈ N}.
Semi-linear sets can be defined by formulas in existential Presburger arithmetic,
ie first-order formulas with equality and sum predicates over integers, whose free
variables are evaluated by the counter values calculated by the run.

A central problem in automata theory is the non-emptiness problem: does
the automaton accepts at least one input. Although PAs go beyond regular lan-
guages, they retain relatively good algorithmic properties. The emptiness prob-
lem is decidable, and it is NP-c [12]. The hardness holds even if the semi-linear
set is represented as a set of generator vectors. Motivated by applications in
transducer theory for well-nested words, we investigate in this article extensions
of Parikh automata with a pushdown stack.

First contribution: pushdown Parikh automata. As a first contribution, we study
the complexity of the emptiness problem for Parikh automata with a pushdown
store. Parikh automata extend finite automata with counter operations and
an acceptance condition given as a semi-linear set, pushdown Parikh automata
extend pushdown automata in the same way. We show that adding a stack can be
done for free with respect to the emptiness problem, which remains, as for stack-
free Parikh automata, NP-c. However in this case, we are able to strengthen the
lower bound: it remains NP-hard even if there are only two counters, the automa-
ton is deterministic, and the Presburger formula only tests for equality of these
two counters. In the stack-free setting, it is necessary to have an unfixed number
of counters to get such a lower bound.

Contribution 1. The emptiness problem for pushdown Parikh automata (PPA)
is NP-c. The lower bound holds even if the automaton is deterministic, has only
two counters whose operations are encoded in unary, and they are eventually
tested for equality.

Second contribution: adding two-wayness. We investigate the complexity of push-
down Parikh automata when the input head is allowed to move in two direc-
tions. It is not difficult to see that in that case emptiness gets undecidable, since,
already without counters, one can simulate the intersection of two determinis-
tic pushdown automata, by performing two passes over the input (visiting each
input position at most three times). We consider a first restriction on the stack
behaviour, which is required to be visibly.

A pushdown stack is called visibly if it is driven by the type of letters it reads,
which can be either call symbols, return symbols or internal symbols. Words
formed over such a structured alphabet are called nested words, and well-nested
words if additionally the call/return structure of the word is well-balanced, such
as in the following example:

c c r r c r

Two-Way Parikh Automata with a Visibly Pushdown Stack 191

Automata for nested words, called visibly pushdown automata (or VPA), have
been introduced in [2]. They are pushdown automata whose stack behaviour
is constrained by the input in the following way. Upon reading a call symbol,
exactly one symbol is pushed onto the stack. Upon reading a return symbol,
exactly one symbol is popped from it. Upon reading an internal symbol, the
stack is left unchanged. Hence, the symbol that is pushed while reading a given
call symbol is popped while reading its matching return symbol. Consequently,
visibly pushdown automata enjoy nice properties, such as closure under Boolean
operations and determinisation.

VPA have been extended to two-way VPA (2VPA) [8] with the following stack
constraints: in a backward reading mode, the role of the return and call symbols
regarding the stack are inverted: when reading a call, exactly one symbol is
popped from the stack and when reading a return, one symbol is pushed. It was
shown in [8] that adding this visibly condition to two-way pushdown automata
allows one to recover decidability for the emptiness problem. However, for Parikh
acceptance, this restriction is not sufficient. Indeed, by encoding diophantine
equations, we show the following undecidability result:

Contribution 2. The emptiness problem for two-way visibly pushdown Parikh
automata (2VPPA) is undecidable.

Single-use property. The problem is that by using the combination of two-
wayness and a pushdown stack, it is possible to encode polynomially, and even
exponentially large counter values, with respect to the length of the input word.
We consider therefore the single-use restriction, which appears in several trans-
ducer models [6,8,10], by which it is possible to keep a linear behaviour for
the counters. Informally, a single-use two-way machine bounds the size of the
production per input positions. It is syntactically enforced by asking that tran-
sitions which strictly increment at least one counter are triggered at most once
per input position. Our main result is the decidability of 2VPPA emptiness under
the single-use restriction, with tight complexity.

Contribution 3 (Main). The emptiness problem for two-way single-use visi-
bly pushdown Parikh automata (2VPPAsu) is NExpTime-c. The hardness holds
even if the automaton is deterministic, has only two counters whose operations
are encoded in unary, and they are eventually tested for equality.

To prove the upper-bound, we show that two-wayness can be removed from
single-use 2VPPA, at the price of one exponential. In other words, single-use
2VPPA and VPPA have the same expressive power, although it can be shown that
the former model is exponentially more succinct. The lower bound is obtained by
encoding the succinct variant of the subset sum problem, based on a reduction
which uses the fact that, by combining the pushdown and two-way features,
single-use 2VPPA can encode doubly-exponential values 22

n

with a polynomial
number of states (in n).

192 L. Dartois et al.

Visibly Pushdown Pushdown
one-way NP-complete NP-complete

2-way Single-use NExptime-complete Undecidable
2-way Undecidable Undecidable

Fig. 1. Complexity of the emptiness of different Pushdown Parikh Automata. All
results hold for deterministic and non-deterministic machines.

Contribution 4 (Applications). As an application, we give an elementary
upper-bound (NExpTime) for the equivalence problem of functional single-use
two-way visibly pushdown transducers [8], while an ExpTime lower bound was
known. This transducer model defines transductions from well-nested words to
words and, as shown in [8], they are well-suited to define XML transformations,
have the same expressive power as Courcelle’s MSO-transducers [6] (casted to
well-nested words), and admit a memory-efficient evaluation algorithm. We also
provide two other new results on single-use 2VPT (not necessarily functional).
First, we show that given a positive integer k, it is decidable whether a single-
use 2VPT produces at most k different output words per input (k-valuedness
problem). Then, we show the decidability of a typechecking problem: given a
single-use 2VPT T and a finite (stack-free) Parikh automaton P , it is decidable
whether the codomain of T has a non-empty intersection with P . This allows for
instance to decide whether a single-use 2VPT produces only well-nested words
and thus describes a well-nested words to well-nested words transformation, since
the property of a word to be non well-nested is definable, as we show, by a Parikh
automaton.

Finite-visit vs single-useness. The single-use property is more general than
the more classical finite-visit restriction, used for instance in [9,19]: it requires
to visit any input position a (machine-dependent) constant number of times,
while single-useness only bounds the number of visits by producing transitions.
Although, consequently to our results, 2VPPA single-use and finite-visit have
the same expressive power, this extra modelling feature is desirable, for instance
when using 2VPPA to test properties of 2VPT: single-use 2VPT are strictly more
expressive than finite-visit ones, and this relaxation is crucial to capture MSO
transductions [8]. Moreover, we somehow get it for free: we show that the NEx-
pTime lower bound also holds for finite-visit 2VPPA. Finally, we note that as
we deal with single-use machines rather than finite-visit ones, the usual ingredi-
ent for going from two-way to one-way consisting of memorizing simply crossing
sections of states, is not sufficient to get the result here, since we cannot bound
the size of these crossing sections.

Related work. Parikh automata are closely related to reversal-bounded counter
machines [18]. In fact, both models have equivalent expressiveness in the non-
deterministic case [22]. The difference of expressive power in the deterministic
case is due to the fact that counter machines can perform tests on its counters

Two-Way Parikh Automata with a Visibly Pushdown Stack 193

that can influence the run, while counters in Parikh automata only matter at the
end of the run. Several extensions of reversal-bounded counter machines were
studied, whether they are two-way or equipped with a (visibly) pushdown stack.
However, to the best of our knowledge, the combination of the two features has
never been studied (see [19] for a survey). It is possible to define a model of
single-use reversal-bounded two-way visibly pushdown counter machines, where
the single-useness is put on transitions that modify the counters. This model
is expressively equivalent to 2VPPAsu in the non-determinstic case, and thanks
to our result, has a decidable emptiness problem. The non-emptiness problem
for reversal-bounded (one-way) pushdown counter machines for fixed numbers
of counters and reversals is known to be in NP [13] and NP-hard [16]. Convert-
ing PPA into reversal-bounded counter machines would yield an unfixed number
of counters. Our NP lower-bound for PPA however follows ideas of [16] about
encoding, using the stack, integers n with O(log(n)) states and stack symbols.

Two-way (stack-free) reversal-bounded counter machines, even deterministic,
are known to have undecidable emptiness problem [19]. Decidability is recov-
ered by taking the finite-visit restriction [19]. Our result on 2VPPAsu entails the
decidability of emptiness of two-way reversal-bounded counter machines which
are single-use.

Finally, all the decidability results we prove on two-way visibly pushdown
transducers were already known in the one-way case [13]. Two-way visibly push-
down transducers, which are strictly more expressive, can also be seen as a
model of unranked tree-to-word transducers, modulo tree linearisation. To the
best of our knowledge, this is the first model of unranked tree-to-word transduc-
ers for which k-valuedness and codomain well-nestedness is shown to be decid-
able. Another model, introduced in [1], is known to be expressively equivalent
to 2VPTsu [8], and in the functional case, has decidable equivalence problem in
NExpTime. However, translating 2VPTsu to this model requires an exponential
blow-up, yielding a worst complexity for equivalence testing.

Structure. Section 2 introduces the computing models used, the proof of the lower
bound for 2VPPAsu is given in Sect. 3 and the upper bound in Sect. 4. Finally,
some applications to the main theorem to transducers are given in Sect. 5.

2 Two-Way Visibly Pushdown (Parikh) Automata

In this section, we first recall the definition of two-way visibly pushdown
automata and later on extend them to two-way visibly pushdown Parikh
automata.

We consider a structured alphabet Σ defined as the disjoint union of call
symbols Σc, return symbols Σr and internal symbols Σi. The set of words over
Σ is Σ∗. As usual, ε denotes the empty word. Amongst nested words, the set of
well-nested words Σ∗

wn is defined as the least set such that Σi ∪ {ε} is included
into Σ∗

wn and if w1, w2 ∈ Σ∗
wn then both w1w2 and cw1r (for all c ∈ Σc and

r ∈ Σr) belong to Σ∗
wn.

194 L. Dartois et al.

When dealing with two-way machines, we assume the structured alphabet Σ
to be extended to Σ by adding a left and right marker symbols �, � in Σc and
Σr respectively, and we consider words in the language �Σ∗�.

Definition 1. A two way visibly pushdown automaton (2VPA for short) A over
Σ is given by (Q, qI , F, Γ, δ) where Q is a finite set of states, qI ∈ Q is the initial
state, F ⊆ Q is a set of final states and Γ is a finite stack alphabet. Given the set
D = {←,→} of directions, the transition relation δ is defined by δpush∪δpop∪δint

where

– δpush ⊆ ((Q × {→} × Σc) ∪ (Q × {←} × Σr)) × ((Q × D) × Γ)
– δpop ⊆ ((Q × {←} × Σc × Γ) ∪ (Q × {→} × Σr × Γ)) × (Q × D)
– δint ⊆ ((Q × D × Σi) × (Q × D)

Additionally, we require that for any states q, q′ and any stack symbol γ, if
(q,←, �, γ, q′, d) ∈ δpop then d =→ and if (q,→, �, γ, q′, d) ∈ δpop then d =←
ensuring that the reading head stays within the bounds of the input word.

Informally, a 2VPA has a reading head pointing between symbols (and pos-
sibly on the left of � or the right of �). A configuration of the machine is given
by a state, a direction d and a stack content. The next symbol to be read is on
the right of the head if d =→ and on the left if d =←. Note that when reading
the left marker from right to left ← (resp. the right marker from left to right
→), the next direction can only be → (resp. ←). The structure of the alphabet
induces the behavior of the machine regarding the stack when reading the input
word: when reading on the right, a call symbol leads to push one symbol onto
the stack while a return symbol pops one symbol from the stack. When reading
on the left, a dual behaviour holds. In any direction internal transitions from
δint read internal symbols and do not affect the stack; hence, at a given position
in the input word, the height of the stack is always constant at each visit of
that position in the run of the machine. The triggering of a transition leads to
the update of the state of the machine, the future direction as well as the stack
content. For a direction d, a natural i (0 ≤ i ≤ |w|) and a word w, we denote by

– move(d, i) the integer i − 1 if d =← and i + 1 if d =→.
– read(w, d, i) the symbol w(i) if d =← and w(i + 1) if d =→.

Note that when switching directions (i.e. when the direction of the first part of
the transition is different from the second part), we read twice the same letter.
This ensures the good behavior of the stack, as reading a call letter from left to
right pushes a stack symbol, we need to pop it if we start moving from right to
left.

Formally, a stack σ is a finite word over Γ . The empty stack/word over Γ is
denoted ⊥. For a word w from Σ and a 2VPA A = (Q, qI , F, Γ, δ), a configuration
κ of A is a tuple (q, i, d, σ) where q ∈ Q, 0 ≤ i ≤ |w|, d ∈ D and σ is a stack. A
run of A on a word w is a finite sequence ρ from K(δK)∗, where K is the set of
all configurations κ (that is a sequence starting and ending with a configuration
and alternating between configurations and transitions); a run ρ is of the form

Two-Way Parikh Automata with a Visibly Pushdown Stack 195

(q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�) where for all 0 ≤ j <
, we
have:

– either dj =→ and read(w, dj , ij) ∈ Σc or dj =← and read(w, dj , ij) ∈ Σr,
τj+1 = (qj , dj , read(w, dj , ij), qj+1, dj+1, γ) ∈ δpush, ij+1 = move(ij , dj) and
σj+1 = σjγ

– either dj =← and read(w, dj , ij) ∈ Σc or dj =→ and read(w, dj , ij) ∈ Σr,
τj+1 = (qj , dj , read(w, dj , ij), γ, qj+1, dj+1) ∈ δpop, ij+1 = move(ij , dj) and
σj+1γ = σj

– read(w, dj , ij) ∈ Σi, τj+1 = (qj , dj , read(w, dj , ij), qj+1, dj+1) ∈ δint, ij+1 = ij
and σj+1 = σj .

Note that any configuration is actually a run on the empty word ε. The initial
configuration is (qI , 0,→,⊥). A configuration (q, i, d,⊥) is final if q ∈ F and i
is the last position. A run for the word w is accepting if its first configuration is
initial and its last configuration is final. A two-way visibly pushdown automaton
A is:

– deterministic (denoted D2VPA) if δpush (resp. δpop, δint) is a function from
Q × D × Σ (resp. Q × D × Σ × Γ , Q × D × Σ) to Q × D × Γ (resp. Q × D,
Q × D).

– one-way (denoted VPA) if all transitions in A have → for direction.
– finite-visit if for some k ≥ 0, any run visits at most k times the same input

position.

The size of a 2VPA is the number of states times the size of the stack alphabet.
For A an automaton, we denote by L(A) the language recognized by A.

Lemma 1 ([8]). Given a 2VPA A, deciding if L(A) is empty is ExpTime-
complete.

Parikh automata. Parikh automata were introduced in [22]. Informally, they
are automata with counters that can only be incremented, and do not
act on the transition relation. Acceptance of runs is done by evaluating
a Presburger formula whose free variables are set to the counter values.
In our setting, a Presburger formula is a positive formula ψ(x1, . . . , xn) =
∃y1 . . . ymϕ(x1, . . . , xn, y1, . . . , ym) such that ϕ is a boolean combination of atoms
s + s′ ≤ t + t′, for s, s′, t, t′ ∈ {0, 1, x1, . . . , xn, y1, . . . , ym}. For a set S and some
positive number m, we denote by Sm the set of all mappings from [1 . . . m] to
S. If (s1, . . . , sm) and (t1, . . . , tm) are two tuples of Sm and + is an binary oper-
ation on S, we extend + to Sm by considering the operation element-wise, i.e.
(s1, . . . , sm) + (t1, . . . , tm) = (s1 + t1, . . . , sm + tm).

Definition 2. A two-way visibly pushdown Parikh automaton (2VPPA for
short) is a tuple P = (A, λ, φ) where A is a 2VPA and for some natural dim, λ
is a mapping from δ to Ndim , the set of vectors of length dim of naturals and
φ(x1, . . . , xdim) is a Presburger formula with dim free variables.

196 L. Dartois et al.

When clear from context, we may omit the free variables from the Presburger
formula, and simply note φ. A run of a 2VPPA is a run of its underlying
2VPA. We extend canonically the mapping λ to runs. For a run ρ of the form
(q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�), we set

λ(ρ) = λ(τ1) + λ(τ2) + . . . + λ(τ�)

We recall that a single configuration c is a run over the empty word ε.
For such a run c, we set λ(c) = 0dim . A run (q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)
τ2 . . . τ�(q�, i�, d�, σ�) is accepted if (q0, i0, d0, σ0), (q�, i�, d�, σ�) are respec-
tively an initial and a final configuration of the underlying automaton and
for λ(ρ) = (n1, . . . , ndim), [x1 ← n1, . . . , x� ← ndim] |= φ(x1, . . . , xdim).
The language L(P) is the set of words which admit an accepting run.
We define the set of values computed by P as Val(P) = {λ(ρ) |
ρ a valid run of the underlying automaton of P}. We define the size of P as the
size of A plus the number of symbols in φ and |δ| · dim · log(W) where W is the
maximal value occurring in the codomain of λ.

It is deterministic (resp. one-way), denoted D2VPPA (resp. VPPA) if its
underlying automaton is deterministic (resp. one-way). It is known from [4] that
DPA (i.e. deterministic one-way and stack-free Parikh automata in our setting)
are strictly less expressive than their nondeterministic counterpart. As a counter
example, they exhibit the language L = {w | w#a(w) = b}, ie all words w such
that if n is the number of a in w, the letter at the nth position is a b. Note
that even in the two-way case, a deterministic machine recognizing L needs to
either have access, during the computation, to the number of a’s, or be able to
store, in counters, the position of each b. As the first solution cannot be done
since Parikh automata only access their counters at the end of the run, and the
second is also impossible since there are only a finite number of counters, this
language is also non definable by a D2VPPA, furthering the separation between
deterministic and nondeterministic Parikh automata.

Example 1. As an example, we give a deterministic 2VPPA P that, given an
input incki�rk with c, i, r in Σc, Σi and Σr respectively, accepts if k =
 and
n = k2. The 2VPPA P uses 4 variables xn, xk, x� and y. The first 3 variables
are used to count the number of the first block of is, the number of calls and
the second block of is respectively. The handling of these 3 variables is straight-
forward and can be done in a single pass over the input. The fourth variables
y counts the multiplication k ·
 and doing so is more involved. The part of the
underlying 2VPA of P handling y is given in Fig. 2. On this part, the mapping
λ simply increments the counter on transitions going to state 2 (i.e. on reading
the letters i from left to right). It makes as many passes on the set of internal
symbols in state 2 as there are call symbols, and the state of the stack upon
reading i� for the jth time is 1j0k−j . Finally, the accepting formula φ of P is
defined by xn = y ∧ xk = x�. Note that this widget allows us to compute the set
{(k2, k, k, k2) | k ∈ N} which is not semilinear.

Two-Way Parikh Automata with a Visibly Pushdown Stack 197

0, → 1, → 2, →

3, ←

4, ←5, ←6, →

Acc
c, push(1)

c, push(0)

i | y++

i | y++

r, pop(0)

r, push(0)

i

c, pop(0)

c, pop(0)

c, pop(1)

c, push(1)

r, pop(1)

Fig. 2. A 2VPPA reading words cki�rk and making k passes on i�, adding k · � to the
variable y. The transitions have two components, the first being the letter read, and
the second being the stack operation. There is no stack operation upon reading internal
symbols. The variable y is incremented in transitions going to state 2 only.

As we have seen in the previous example, the set Val(P) is not necessarily
semi-linear, even with P a D2VPPA. We use this fact to encode diophantine
equations, and get the following undecidability result:

Theorem 1. The emptiness problem of D2VPPA is undecidable.

Single-useness. In order to recover decidability, we adapt to Parikh Automata
the notion of single-useness introduced in [8]. Simply put, a 2VPPA is single-use
(denoted 2VPPAsu) if the transitions that affect the variables can only be taken
once on any given input position, thus effectively bounding the size of variables
linearly with respect to the size of the input. Formally, a state p of a 2VPPA P is
producing if there exists a transition t from p on some symbol and λ(t) �= 0dim .
A 2VPPA is single-use if for every input w and every accepting run ρ over w,
there do not exist two different configurations (p, i, d, σ) and (p, i, d, σ′) with
p a producing state, meaning that ρ does not reach any position in the same
direction twice in any given state of P . This property is a syntaxic restriction
of the model. However, since this property is regular, it can equivalently be
seen as a semantic one. Moreover, deciding the single-useness of a 2VPPA is
ExpTime-c (see [8] for the same result but on transducers). Note that the Parikh
automaton given in Example 1 is not single-use, since it passes over the second
subword of internal letters i in state 2 as many times as there are call symbols.
In the following, we prove that 2VPPAsu have the same expressiveness as VPPA,
while being exponentially more succinct. In particular, this equivalence implies
by Parikh’s Theorem [24], semi-linearity of Val(P) for any 2VPPAsu P .

3 Emptiness Complexity

We show that the non-emptiness problem for VPPA is NP-complete. We actu-
ally show the upper-bound for the strictly more expressive Pushdown Parikh
Automata (PPA), i.e. VPPA without the visibly restriction. While decidability
was known [20,21], the precise complexity was, to the best of our knowledge,
unknown. Let us also remark that the model and the proof are similar to the

198 L. Dartois et al.

proof of NP-completeness of k-reversal pushdown systems from [16]. However,
it is adapted here to Parikh automata as well as deterministic machines, which
was not the case in [16].

Theorem 2. The non-emptiness problem for VPPA and PPA is NP-complete.
The complexity bounds hold even if the automata are deterministic, with a fixed
dimension 2, tuples of values in {0, 1}2 and with a fixed Presburger formula
φ(x1, x2) ≡ x1 = x2.

From 2VPPAsu to VPPA From a two-way visibly pushdown Parikh automaton
satisfying the single-useness restriction, one can build an equivalent one-way
visibly pushdown Parikh automaton. The construction induces an exponential
blow-up, which cannot be avoided, as with most constructions from two-way to
one-way machines.

Theorem 3. For any 2VPPAsu A, one can construct a VPPA B whose size is
at most exponential in the size of A and such that L(A)=L(B). Moreover, the
procedure can be done in exponential time.

Proof (Sketch). The goal is to be able to correctly guess all the transitions exactly
taken by a run of the two-way machine at once. More precisely, the one-way
machine guesses the behavior of the two-way machine on each well-nested sub-
word of the input, i.e. a set of partial runs over a subword. A partial run is a pair
from Q × {←,→}. Informally, they describe a maximal subrun over a subword
of the input. We call these sets of partial runs profiles, and we define relations
C and Nc,r to describe compatible profiles. Formally, the relation C ⊆ P3 is the
concatenation relation, defined as set of triples (P, P ′, P ′′) such that there exists
a word u = u1vv′u2 where v and v′ are well-nested subwords of u, and a run r
on u such that P (resp. P ′) is the profile of v in r (resp. of v′) and P ′′ is the
profile of vv′ in r. Similarly, the relation Nc,r ⊆ P2 for c, r call and return letters
respectively, is the cr-nesting relation, and defined as the set of pairs (P, P ′)
such that there exists a word u = u1cvru2 where v is well-nested, and a run r of
A on u such that P is the profile of v in r and P ′ is the profile of cvr in r. We
prove that these relations are computable in exponential time.

Given these relations, we can compute a VPPA B whose runs are bijective to
the runs of A. Moreover, we can recover from a run of B which transitions are
effectively taken at each positions by its bijective run of A. Then, the increment
function simply does all the increments done by the run at a given position at
once. Since the operation is the addition on integers, it is commutative and the
variables are updated in the same way they were by the run of A. Note that
we only recover which transitions are taken, and not how many times they are
taken, which can depend on the size of the input. However, since A is single-use,
we only have to add each non zero transition once, which gives the result.

As a direct corollary of Theorems 3 and 2, we get the following.

Corollary 1. The emptiness of 2VPPAsu can be decided in NExpTime.

Two-Way Parikh Automata with a Visibly Pushdown Stack 199

4 NExpTime-Hardness

In this section, we show that the problem of deciding whether the language of
a 2VPPAsu is non-empty is hard for NExpTime. Moreover, we show that this
hardness does not depend on the fact that we have taken existential Presburger
formulas, nor on the vector dimensions, and nor on the fact that the values in
the tuples are encoded in binary.

Theorem 4. The non-emptiness problem for 2VPPAsu is NExpTime-hard. The
result holds even if the automaton is deterministic, of dimension 2, with counter
updates in {0, 1}, the Presburger formula is φ(x1, x2) ≡ x1 = x2, and it is finite-
visit.

Succinct Subset Sum Problem. We reduce to the succinct subset sum prob-
lem (SSSP), which is NExpTime-hard [16]. Let us define SSSP. Let m, k ≥ 1,
X = {x1, . . . , xk} and Y = {y1, . . . , ym} be sets of Boolean variables. Let θ be
a Boolean formula over X ∪ Y . Any word v ∈ {0, 1}k+m naturally defines a
valuation of X ∪ Y (the first bit of v is the value of x1, etc.). We denote by
θ[v] ∈ {0, 1} the truth value of θ under the valuation v. The formula θ defines
2k non-negative integers a1, . . . , a2k each with 2m bits, as follows:

ai = θ[bid1].22
m−1 + θ[bid2].22

m−2 + · · · + θ[bid2m].20

where bi is the binary encoding over k bits of i, and d1, . . . , d2m is the lex-
icographic enumeration of {0, 1}m, starting from 0m. Note that for all i ∈
{1, . . . , 2k}, ai ∈ {0, . . . , 22

m −1}. The Succinct Subset Sum Problem asks, given
X,Y and θ, whether there exists J ⊆ {1, . . . , 2k − 1} such that

∑
j∈J aj = a2k .

Overview of the construction and encoding the values ai. Given an instance of
SSSP I, our goal is to construct a D2VPPAsu P = (C, ρ, φ) of dimension 2 such
that |P| is polynomial in |θ| + k + m and L(P) �= ∅ iff I has a solution.

The main idea is to ensure that L(C) = {X1e1 . . . X2k−1e2k−1#e2k | Xi ∈
{0, 1}} where the Xi are internal symbols which are used to encode a subset
J ⊆ {1, . . . , 2k − 1}, and each ei is an encoding of ai, defined later, over some
alphabet containing the symbol 1, and such that the number of occurrences of 1
in ei is ai. In other words, ei somehow encodes ai in unary. For the vector part,
the machine P, when running over Xiei, updates its dimensions depending on
two cases: (1) if Xi = 1 (“put value ai in J”), then any transition reading 1
has weight (1, 0) and any other transition has weight (0, 0), (2) if Xi = 0, then
every transition has weight (0, 0). So, if Xi = 1, the value in the first dimension
after processing Xiei has been incremented by ai. Similarly, when processing
#e2k , any transition reading 1 increments the 2nd dimension by 1, so that after
processing #e2k , this dimension has value a2k . The formula φ(x1, x2) then only
requires equality of x1 and x2, i.e. φ(x1, x2) ≡ x1 = x2.

We now explain how to encode ai by a well-nested word ei. Due to the finite-
visit restriction, every incremental transition can be triggered at most once for
each input position. Since the value ai is possibly doubly exponential in m and

200 L. Dartois et al.

0 1

Σ<i Σ<i

i

Σ>i

0 1 2

Σ<m Σ<m

m m

Fig. 3. On the left, the automaton Ai, for i < m. On the right, the automaton Am.

we are allowed to have a polynomial number of transitions (in |θ| + k + m),
necessarily ei must be of doubly exponential length. The main idea is to use
the stack and the two-wayness to recognise with a polynomial number of states
well-nested words which are of doubly exponential length. We need a series of
intermediate lemmas to achieve this idea. We start with a useful result about
intersection of finite automata, here reversible finite automata (deterministic
and backward deterministic). Let Σ = {1, . . . , m} and let us define recursively
the sequence of words (ui)0≤i≤m ∈ Σ∗ as follows: u0 = 1, ui = ui−1iui−1 for
1 ≤ i < m and um = um−1mum−1m.

Lemma 2. The word um has length 2m, and there exist m reversible finite
automata A0, . . . , Am (Fig. 3) such that (i) each Ai has O(1) states, and (ii)⋂m

i=1 L(Ai) = {um}.

Encoding of the values ai. The idea is to define a well-nested word ei over
an alphabet of call symbols Σc = {c1, . . . , cm}, an alphabet of return symbols
Σr = {r1, . . . , rm} and an alphabet of internal symbols Σι = {0, 1,1,0}. The
number of occurrences of 1 in ei will be exactly ai, i.e. #1(ei) = ai and hence,
the Parikh automaton will just have to count the number of 1 occurrences. Let
us remind the reader that ai is actually given by θ, and therefore, the automaton
P will somehow have to evaluate θ for valuations of its variables that will be
contained in ei. Let us now define the words ei. For that, we call a binary
tree either an internal symbol 1,0, or a well-nested word of the form cjt1t2rj

where t1, t2 are themselves binary trees. For a well-nested word of the form
cwr, a root-to-leaf branch π is a sequence of calls x1 . . . xn such that cwr =
x1w1x2w2 . . . xnwnrnw′

nrn−1w
′
n−1 . . . r2w

′
2r1 where x1 = c, r1 = r and for some

wi, w
′
i well-nested words such that wn contains only internal symbols. The height

of a binary tree t is the maximal length of a root-to-leaf branch, and it is complete
if all root-to-leaf branches have the same length. Note that the number of internal
symbols of a complete binary tree of height n is 2n.

Then, ei is the well-nested word defined by ei = cj1bid1t1cj2bid2t2 . . . cj2m

bid2mt2mrj2m . . . rj1 where

1. the words ti are binary trees
2. every root-to-leaf branch π = ci1 . . . ci�

of ei satisfies i1 . . . i� = um

3. bi ∈ {0, 1}k and d1, . . . , d2m is a lexicographic enumeration of {0, 1}m (start-
ing from 0m)

4. for all j, all internal symbols occurring in tj are 1 if θ[bidj] = 1, 0 otherwise.

Two-Way Parikh Automata with a Visibly Pushdown Stack 201

Our goal is now to prove that ei is a correct encoding of ai.

Lemma 3. For all i ∈ {1, . . . , 2k}, #1(ei) = ai, where #1(ei) denotes the num-
ber of occurrences of 1 in ei.

Proof. By Condition 2, every root-to-leaf branch of ei has length 2m. There-
fore, for all j ∈ {1, . . . , 2m}, every root-to-leaf branch in tj has length 2m − j.
In particular, t2m does not contain any call symbol. Hence all the trees tj
are complete binary trees of height 2m − j. So, every tj has 22

m−j inter-
nal symbols and by Condition 4, we get #1(tj) = θ[bidj].22

m−j . Therefore,
#1(ei) =

∑2m

j=1 #1(tj) =
∑2m

j=1 θ[bidj].22
m−j = ai.

Note that Condition 3 was not used in the previous proof, but it will be useful
to define a succinct D2VPA recognising ei. The key result is the following. It
states the existence of a succinct D2VPA which recognises exactly the candidate
solutions to SSSP.

Lemma 4. One can construct a D2VPA B such that B has polynomially many
states in |θ| + k + m and L(B) = {X1e1 . . . X2k−1e2k−1#e2k | Xi ∈ {0, 1}}.
Proof (Sketch). First, we show the existence of a D2VPA A with polynomially
many states in |θ|+k+m such that L(A) = {ei | i ∈ {1, . . . , 2k}} (Proposition ??
in Appendix). The main idea is to construct succinct D2VPA which check each
of the conditions 1 to 4 of the definition of the encoding independently, and then
to take their intersection (by running the first, then the second, etc.). Condition
1 is easy to check. For condition 2, we rely on Lemma 2, and run sequentially the
automata Ai (in m passes) to check independently that for all i, each root-to-leaf
branch has a sequence of indices that belongs to Ai. Thanks to the reversibility
of Ai, it is possible when going upward in the tree, to recover the previous state
of Ai. For condition 3, we rely on the two-wayness to check that a sequence of
m bits is a successor of another sequence succinctly, by doing O(m) passes over
the two successor vectors. The stack is not necessary there. For condition 4, we
rely on the existence of a succinct 2DFA which accepts all the valuations that
satisfy a given Boolean formula.

We can finally construct the D2VPPAsu P = (C, ρ, φ) of dimension 2 whose
language is non-empty iff the SSSP instance I has a solution. The automaton C
performs a first pass on the whole word by running the automaton B of Lemma 4,
to check that the input is of the form X1e1 . . . X2k−1e2k−1#e2k . During this pass,
no vector dimension is incremented. During a second pass, C, when reading some
Xi = 1, it goes to some state q1 from which it increments the 1st dimension
whenever 1 is read (all other transitions have value (0, 0)). When reading some
Xi+1, it stays in q1 if Xi+1 = 1 or to q0 otherwise, from which no transition
touches the counters. When reading #, it goes to a state from which it increments
only the 2nd dimension on reading 1. Note that this automaton is single-use:
any symbol 1 occurring in the whole input word is counted at most once. It
is even finite-visit (each position is visited O(m + k + |θ|) times). Finally, one

202 L. Dartois et al.

only needs to check whether the first dimension equals the second one, using a
formula φ(x1, x2) ≡ x1 = x2. Note that the following lemma proves Theorem4,
since SSSP is NExpTime-c.

Lemma 5. Given an instance X,Y, θ of SSSP, one can construct a D2VPPAsu

P of polynomial size in |θ| + |X| + |Y | such that L(P) �= ∅ iff SSSP has a
solution.

5 Applications to Decision Problems for Nested Word
Transducers

In this section, we give two applications of 2VPPA, namely on decision problems
for two-way visibly pushdown transducers (2VPT). 2VPT were introduced in [8]
as a model to define transductions from well-nested words to words, or, modulo
tree linearisation, from tree to words. It was shown that they can express, even in
their deterministic and single-use version, all functions from well-nested words to
words definable in MSOT, in the sense of Courcelle [6], while having decidable
equivalence problem. No upper bound was provided however. Using 2VPPA,
we show that the equivalence of 2VPTsu defining functions can be tested in
NExpTime. We also consider other standard problems from transducer theory
and show, again using 2VPPA, their decidability. First, let us define formally
2VPT.

A two-way visibly pushdown transducer (2VPT for short) is a pair (A,μ)
where A is a 2VPA and μ is a morphism from the sequences of transitions δ∗ to
some output alphabet Γ ∗. A run of a 2VPT is a run of its underlying 2VPA. The
output of a run ρ of the form (q0, i0, d0, σ0)τ1(q1, i1, d1, σ1)τ2 . . . τ�(q�, i�, d�, σ�)
is μ(τ1...τ�). A run is accepted if it is accepted by its underlying automaton. The
transduction defined by a 2VPT is the set of pairs (u, v) such that v is the output
of some accepting run on u. A state p of a 2VPT is producing if there exists a
transition τ such that p is the first component of τ and μ(τ) �= ε. Similarly to
Parikh automata, a 2VPT T is single-use (denoted 2VPTsu) if for any valid run
of T , we do not reach the same position twice in the same producing state. It is
deterministic, denoted D2VPT, if its underlying automaton is deterministic.

Deciding the k-valuedness and equivalence problems. For any positive integer k,
we say that a transducer is k-valued if all input word have at most k different
outputs. In particular, it is 1-valued if it defines a (partial) function, and also
called functional in that case.

Theorem 5. Let T be a 2VPTsu, and k an integer. Then the k-valuedness of T
can be decided in NExpTime. It is also ExpTime-hard.

The theorem is proved by reducing the k-valuedness of T to the emptiness of
a 2VPPAsu P that guesses k + 1 runs of T that produce k + 1 different outputs.
To ensure that the output are different, during each run P guesses, and stores
in counters, k output positions and the letters produced at these positions. The

Two-Way Parikh Automata with a Visibly Pushdown Stack 203

formula of P at the end simply checks, for each pairs of runs, that the same posi-
tions were guessed by both runs, and that the letters were different, ensuring
that the guessed runs have different output pairwise. As two functional trans-
ducers are equivalent if they have the same domain and their union is 1-valued,
we get the following corollary.

Corollary 2. The equivalence of two functional 2VPTsu T and T ′ can be decided
in NExpTime. It is also ExpTime-hard.

The NexpTime complexity of equivalence of tree to string transducers was
already established for Streaming Tree to string transducers (STST), introduced
in [1]. However, the conversion between the 2VPTsu and STST yields an expo-
nential blow-up.

We can generalize Corollary 2 to strictly k-valued transducers. We say that
a transducer T is strictly k-valued if each input word in the domain of T has
exactly k different images. Then similarly to the previous corollary, two strictly
k-valued transducers are equivalent if, and only if, they have same domain and
their union is k-valued.

Corollary 3. The equivalence of two strictly k-valued 2VPTsu T and T ′ can be
decided in NExpTime. It is also ExpTime-hard.

Strict k-valuedness is however an undecidable property (this can be shown by
using the Post correspondence problem), even for k = 2. Deciding the equivalence
problem for k-valued 2VPTsu (which are not necessarily strictly k-valued) is open
already in the stack-less case, and a (very) particular case has been solved in
[14].

Type-checking against Parikh properties. Given a 2VPT T , it might be desirable
to check some properties of the output words it produces, i.e., for a language L,
whether the codomain of T is included in L. Formally, the type-checking problem
asks, given a transducer T and a language L, whether T (Σ∗) ⊆ L. Unfortunately,
this problem is undecidable when L is given by a visibly pushdown automaton
(and T is a VPT) [13]. Nevertheless, we show that the type-checking problem is
decidable when T is a 2VPTsu and L is the complement of the language given
by a (stack-less) Parikh Automaton. As a consequence, we are able to decide
whether a 2VPTsu T produces only well-nested words, i.e. if the output alphabet
of T is structured and for every input word u and any v ∈ T (u), v is a well-nested
word.

Theorem 6. Let T be a 2VPTsu and P be a (stack-free) Parikh Automaton
over the output alphabet of T . Then we can decide whether T (Σ∗) ∩ L(P) = ∅
in NExpTime. It is also ExpTime-hard.

This is done by constructing a 2VPPAsu P ′ which simulates T , and instead
of producing letters, simulates P on the output of T . A word w on a structured
alphabet Σ is not well-nested if either |w|c �= |w|r, i.e. the number of call letters
is not equal to the number of return letters, or if there exists a prefix u of w
such that |u|c < |u|r. As this can be checked by a (non-deterministic) Parikh
automata, we get the following corollary.

204 L. Dartois et al.

Corollary 4. Let T be a 2VPTsu whose output alphabet is structured. It can be
decided in CoNExpTime whether T only produces well-nested words.

Acknowledgements. This work was supported by the Belgian FNRS CDR project
Flare (J013116), the ARC project Transform (Fédération Wallonie Bruxelles) and by
the ANR Project DELTA, ANR-16-CE40-0007. Emmanuel Filiot is an FNRS research
associate (Chercheur Qualifié).

References

1. Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7392, pp. 42–53.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31585-5 8

2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

3. Burkart, O., Steffen, B.: Model checking the full modal mu-calculus for infinite
sequential processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.)
ICALP 1997. LNCS, vol. 1256, pp. 419–429. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63165-8 198

4. Cadilhac, M., Finkel, A., McKenzie, P.: On the expressiveness of Parikh automata
and related models. In: Proceedings of the Third Workshop on Non-Classical Mod-
els for Automata and Applications - NCMA 2011, Milan, Italy, 18 July–19 July
2011, pp. 103–119 (2011)

5. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite state
concurrent systems using temporal logic specifications. In: Conference Record of
the Tenth Annual ACM Symposium on Principles of Programming Languages, pp.
117–126. ACM, January 1983

6. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic -
A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applica-
tions, vol. 138. Cambridge University Press (2012). http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site locale=fr FR

7. Dang, Z., Ibarra, O.H., Bultan, T., Kemmerer, R.A., Su, J.: Binary reachability
analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P.
(eds.) CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000). https://
doi.org/10.1007/10722167 9

8. Dartois, L., Filiot, E., Reynier, P.-A., Talbot, J.-M.: Two-way visibly pushdown
automata and transducers. In: Proceedings of the 31st Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2016, New York, NY, USA, 5–8 July
2016, pp. 217–226 (2016). https://doi.org/10.1145/2933575.2935315

9. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic 2(2), 216–254 (2001)

10. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute
grammars, and MSO definable tree translations. Inf. Com-
put. 154(1), 34–91 (1999). https://doi.org/10.1006/inco.1999.2807.
http://www.sciencedirect.com/science/article/pii/S0890540199928079

11. Esparza, J., Ganty, P.: Complexity of pattern-based verification for multithreaded
programs. ACM SIGPLAN Not. - POPL 2011 46(1), 499–510 (2011). https://doi.
org/10.1145/1925844.1926443

https://doi.org/10.1007/978-3-642-31585-5_8
https://doi.org/10.1007/3-540-63165-8_198
https://doi.org/10.1007/3-540-63165-8_198
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
https://doi.org/10.1007/10722167_9
https://doi.org/10.1007/10722167_9
https://doi.org/10.1145/2933575.2935315
https://doi.org/10.1006/inco.1999.2807
http://www.sciencedirect.com/science/article/pii/S0890540199928079
https://doi.org/10.1145/1925844.1926443
https://doi.org/10.1145/1925844.1926443

Two-Way Parikh Automata with a Visibly Pushdown Stack 205

12. Figueira, D., Libkin, L.: Path logics for querying graphs: combining expressiveness
and efficiency. In: 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, 6–10 July 2015, pp. 329–340 (2015). https://
doi.org/10.1109/LICS.2015.39

13. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of vis-
ibly pushdown transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS,
vol. 6281, pp. 355–367. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15155-2 32

14. Gallot, P., Muscholl, A., Puppis, G., Salvati, S.: On the decomposition of
finite-valued streaming string transducers. In: STACS 2017. LIPIcs, vol. 66, pp.
34:1–34:14 (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.34. http://drops.
dagstuhl.de/opus/volltexte/2017/6999

15. Haase, C.: On the complexity of model checking counter automata. Ph.D. thesis,
University of Oxford, UK (2012). http://ora.ox.ac.uk/objects/uuid:f43bf043-de93-
4b5c-826f-88f1bd4c191d

16. Hague, M., Lin, A.W.: Model checking recursive programs with numeric data types.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 743–759.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 60

17. Hague, M., Lin, A.W.: Synchronisation- and reversal-bounded analysis of multi-
threaded programs with counters. In: Madhusudan, P., Seshia, S.A. (eds.) CAV
2012. LNCS, vol. 7358, pp. 260–276. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31424-7 22

18. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978). http://doi.acm.org/10.1145/322047.322058

19. Ibarra, O.H.: Automata with reversal-bounded counters: a survey. In: Jürgensen,
H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 5–22.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 2

20. Karianto, W.: Parikh automata with pushdown stack. Technical report (2004)
21. Klaedtke, F.: Parikh automata and monadic second-order logics with linear cardi-

nality constraints. Technical report, 30 July 2002
22. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Baeten,

J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 681–696. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45061-0 54. http://dl.acm.org/citation.cfm?id=1759210.1759277

23. König, B., Esparza, J.: Verification of graph transformation systems with context-
free specifications. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.)
ICGT 2010. LNCS, vol. 6372, pp. 107–122. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15928-2 8

24. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966). https://
doi.org/10.1145/321356.321364

25. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. Am. Math.
Soc. 284(1), 203–218 (1984)

26. Schwoon, S.: Model checking pushdown systems. Ph.D. thesis, Technical Univer-
sity Munich, Germany (2002). http://tumb1.biblio.tu-muenchen.de/publ/diss/in/
2002/schwoon.html

27. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
J. Res. Dev. 3(2), 198–200 (1959)

28. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society
(1986)

https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1109/LICS.2015.39
https://doi.org/10.1007/978-3-642-15155-2_32
https://doi.org/10.1007/978-3-642-15155-2_32
https://doi.org/10.4230/LIPIcs.STACS.2017.34
http://drops.dagstuhl.de/opus/volltexte/2017/6999
http://drops.dagstuhl.de/opus/volltexte/2017/6999
http://ora.ox.ac.uk/objects/uuid:f43bf043-de93-4b5c-826f-88f1bd4c191d
http://ora.ox.ac.uk/objects/uuid:f43bf043-de93-4b5c-826f-88f1bd4c191d
https://doi.org/10.1007/978-3-642-22110-1_60
https://doi.org/10.1007/978-3-642-31424-7_22
https://doi.org/10.1007/978-3-642-31424-7_22
http://doi.acm.org/10.1145/322047.322058
https://doi.org/10.1007/978-3-319-09704-6_2
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1007/3-540-45061-0_54
http://dl.acm.org/citation.cfm?id=1759210.1759277
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1007/978-3-642-15928-2_8
https://doi.org/10.1145/321356.321364
https://doi.org/10.1145/321356.321364
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/schwoon.html

206 L. Dartois et al.

29. Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn
clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–
352. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231 25

30. Walukiewicz, I.: Pushdown processes: games and model-checking. Inf.
Comput. 164(2), 234–263 (2001). https://doi.org/10.1006/inco.2000.2894.
http://www.sciencedirect.com/science/article/pii/S0890540100928943

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11532231_25
https://doi.org/10.1006/inco.2000.2894
http://www.sciencedirect.com/science/article/pii/S0890540100928943
http://creativecommons.org/licenses/by/4.0/

Kleene Algebra with Hypotheses

Amina Doumane1,2, Denis Kuperberg1(B), Damien Pous1, and Pierre Pradic1,2

1 Univ Lyon, EnsL, UCBL, CNRS, LIP, 69342 Lyon Cedex 07, France
denis.kuperberg@ens-lyon.fr

2 Warsaw University, MIMUW, Warsaw, Poland

Abstract. We study the Horn theories of Kleene algebras and star con-
tinuous Kleene algebras, from the complexity point of view. While their
equational theories coincide and are PSpace-complete, their Horn theo-
ries differ and are undecidable. We characterise the Horn theory of star
continuous Kleene algebras in terms of downward closed languages and
we show that when restricting the shape of allowed hypotheses, the prob-
lems lie in various levels of the arithmetical or analytical hierarchy. We
also answer a question posed by Cohen about hypotheses of the form
1 = S where S is a sum of letters: we show that it is decidable.

Keywords: Kleene algebra · Hypotheses · Horn theory · Complexity

1 Introduction

Kleene algebras [6,10] are idempotent semirings equipped with a unary operation
star such that x∗ intuitively corresponds to the sum of all powers of x. They
admit several models which are important in practice: formal languages, where
L∗ is the Kleene star of a language L; binary relations, where R∗ is the reflexive
transitive closure of a relation R; matrices over various semirings, where M∗ can
be used to perform flow analysis.

A fundamental result is that their equational theory is decidable, and actually
PSpace-complete. This follows from a completeness result which was proved
independently by Kozen [11] and Krob [17] and Boffa [3], and the fact that
checking language equivalence of two regular expressions is PSpace-complete:
given two regular expressions, we have

KA � e ≤ f iff [e] ⊆ [f]

(where KA � e ≤ f denotes provability from Kleene algebra axioms, and [e] is
the language of a regular expression e).

This work has been supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157)
and by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French
National Research Agency (ANR).

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 207–223, 2019.
https://doi.org/10.1007/978-3-030-17127-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_12

208 A. Doumane et al.

Because of their interpretation in the algebra of binary relations, Kleene
algebras and their extensions have been used to reason abstractly about program
correctness [1,2,9,12,15]. For instance, if two programs can be abstracted into
two relational expressions (R∗;S)∗ and ((R ∪S)∗;S)=, then we can deduce that
these programs are equivalent by checking that the regular expression (a∗b)∗

and (a + b)∗b + 1 denote the same language. This technique made it possible to
automate reasoning steps in proof assistants [4,16,19].

In such a scenario, one often has to reason under assumptions. For instance,
if we can abstract our programs into relational expressions (R+S)∗ and S∗;R∗,
then we can deduce algebraically that the starting programs are equal if we
know that R;S = R (i.e., that S is a no-op when executed after R). When
doing so, we move from the equational theory of Kleene algebras to their Horn
theory: we want to know whether a given set of equations, the hypotheses, entails
another equation in all Kleene algebras. Unfortunately, this theory is undecidable
in general [13]. In this paper, we continue the work initiated by Cohen [5] and
pursued by Kozen [13], by characterising the precise complexity of new subclasses
of this general problem.

A few cases have been shown to be decidable in the literature, when we
restrict the form of the hypotheses:

– when they are of the form e = 0 [5],
– when they are of the form a ≤ 1 for a a letter [5],
– when they are of the form 1 = w or a = w for a a letter and w a word,

provided that those equations seen as a word rewriting system satisfy certain
properties [14,18]; this includes equations like idempotency (x = xx) or self-
invertibility (1 = xx).

(In the first two cases, the complexity can be shown to remain in PSpace.)
We add one positive case, which was listed as open by Cohen [5], and which is
typically useful to express that a certain number of predicates cover all cases:

– when hypotheses are of the form S = 1 for S a sum of letters.

Conversely, Kozen also studied the precise complexity of various undecidable
sub-classes of the problem [13]. For those, one has to be careful about the precise
definition of Kleene algebras. Indeed, these only form a quasi-variety (their def-
inition involves two implications), and one often consider ∗-continuous Kleene
algebras [6], which additionally satisfy an infinitary implication (We define these
formally in Sect. 2). While the equational theory of Kleene algebras coincides
with that of ∗-continuous Kleene algebras, this is not the case for their Horn
theories: there exist Horn sentences which are valid in all ∗-continuous Kleene
algebras but not in all Kleene algebras.

Kozen [13] showed for instance that when hypotheses are of the form pq = qp
for pairs of letters (p, q), then validity of an implication in all ∗-continuous Kleene
algebras is Π0

1 -complete, while it is only known to be ExpSpace-hard for plain
Kleene algebras. In fact, for plain Kleene algebras, the only known negative
result is that the problem is undecidable for hypotheses of the form u = v for

Kleene Algebra with Hypotheses 209

1 =
∑

a a ≤ ∑
b a ≤ ∑

w a ≤ g

KAH � u ≤ f Decidable EXPTIME − complete Σ0
1−complete Σ0

1−complete
KAH � e ≤ f Decidable Undecidable Σ0

1−complete Σ0
1−complete

KA∗
H � u ≤ f Decidable EXPTIME − complete Σ0

1−complete Π1
1−complete

KA∗
H � e ≤ f Decidable Π0

1−complete Π0
2−complete Π1

1−complete

Fig. 1. Summary of the main results.

pairs (u, v) of words (Kleene star plays no role in this undecidability result: this
is just the word problem). We show that it is already undecidable, and in fact
Σ0

1 -complete when hypotheses are of the form a ≤ S where a is a letter and S is
a sum of letters. We use a similar encoding as in [13] to relate the Horn theories
of KA and KA∗ to runs of Turing Machines and alternating linearly bounded
automata. This allows us to show that deciding whether an inequality w ≤ f
holds where w is a word, in presence of sum-of-letters hypotheses, is EXPTIME-
complete. We also refine the Π1

1 -completeness result obtained in [13] for general
hypotheses, by showing that hypotheses of the form a ≤ g where a is a letter
already make the problem Π1

1 -complete.
The key notion we define and exploit in this paper is the following: given a set

H of equations, and given a language L, write clH(L) for the smallest language
containing L such that for all hypotheses (e ≤ f) ∈ H and all words u, v,

if u[f]v ⊆ clH(L) then u[e]v ⊆ clH(L) .

This notion makes it possible to characterise the Horn theory of ∗-continuous
Kleene algebras, and to approximate that of Kleene algebras: we have

KAH � e ≤ f ⇒ KA∗
H � e ≤ f ⇔ [e] ⊆ clH([f])

where KAH � e ≤ f (resp. KA∗
H � e ≤ f) denotes provability in Kleene algebra

(resp. ∗-continuous Kleene algebra). We study downward closed languages and
prove the above characterisation in Sect. 3.

The first implication can be strengthened into an equivalence in a few cases,
for instance when the regular expression e and the right-hand sides of all hypothe-
ses denote finite languages, or when hypotheses have the form 1 = S for S a
sum of letters. We obtain decidability in those cases (Sect. 4).

Then we focus on cases where hypotheses are of the form a ≤ e for a a
letter, and we show that most problems are already undecidable there. We do
so by exploiting the characterisation in terms of downward closed languages to
provide encodings of various undecidable problems on Turing machines, total
Turing machines, and linearly bounded automata (Sect. 5).

We summarise our results in Fig. 1. The top of each column restricts the
type of allowed hypotheses. Variables e, f stand for general expressions, u,w for
words, and a, b for letters. Grayed statements are implied by non-grayed ones.

210 A. Doumane et al.

Notations. We let a, b range over the letters of a finite alphabet Σ. We let u, v, w
range over the words over Σ, whose set is written Σ∗. We write ε for the empty
word; uv for the concatenation of two words u, v; |w| for the length of a word w.
We write Σ+ for the set of non-empty words. We let e, f, g range over the regular
expressions over Σ, whose set is written ExpΣ . We write [e] for the language of
such a an expression e: [e] ⊆ Σ∗. We sometimes implicitly regard a word as a
regular expression. If X is a set, P(X) (resp. Pfin(X)) is the set of its subsets
(resp. finite subsets) and |X| for its cardinality.

A long version of this extended abstract is available on HAL [8], with most
proofs in appendix.

2 The Systems KA and KA∗

Definition 1 (KA,KA∗). A Kleene algebra is a tuple (M, 0, 1,+, ·, ∗) where
(M, 0, 1,+, ·) is an idempotent semiring and the following axioms and impli-
cations, where the partial order ≤ is defined by x ≤ y if x + y = y, hold for all
x, y ∈ M .

1 + xx∗ ≤ x∗ xy ≤ y ⇒ x∗y ≤ y

1 + x∗x ≤ x∗ yx ≤ y ⇒ yx∗ ≤ y

A Kleene algebra is ∗-continuous if it satisfies the following implication:

(∀i ∈ N, xyiz ≤ t) ⇒ xy∗z ≤ t

A hypothesis is an inequation of the form e ≤ f , where e and f are regular
expressions. If H is a set of hypotheses, and e, f are regular expressions, we
write KAH � e ≤ f (resp. KA∗

H � e ≤ f) if e ≤ f is derivable from the axioms
and implications of KA (resp. KA∗) as well as the hypotheses from H. We omit
the subscript when H is empty.

Note that the letters appearing in the hypotheses are constants: they are not
universally quantified. In particular if H = {aa ≤ a}, we may deduce KAH �
a∗ ≤ a but not KAH � b∗ ≤ b.

Languages over the alphabet Σ form a ∗-continuous Kleene algebra, as well
as binary relations over an arbitrary set.

In absence of hypotheses, provability in KA is coincides with provability in
KA∗ and with language inclusion:

Theorem 1 (Kozen [11]).

KA � e ≤ f ⇔ KA∗ � e ≤ f ⇔ [e] ⊆ [f]

Kleene Algebra with Hypotheses 211

We will classify the theories based on the shape of hypotheses we allow; we
list them below (I is a finite non-empty set):

Name of the hypothesis Its shape

(1 =
∑

x) − hypothesis 1 =
∑

i∈I ai where ai ∈ Σ

(w ≤ ∑
w) − hypothesis v ≤ ∑

i∈I vi where v, vi ∈ Σ∗

(x ≤ ∑
w) − hypothesis a ≤ ∑

i∈I vi where a ∈ Σ, vi ∈ Σ∗

(x ≤ ∑
x) − hypothesis a ≤ ∑

i∈I ai where a, ai ∈ Σ

(1 ≤ ∑
x) − hypothesis 1 ≤ ∑

i∈I ai where ai ∈ Σ

(x ≤ 1) − hypothesis a ≤ 1 where a ∈ Σ

We call letter hypotheses any class of hypotheses where the left-hand side is
a letter (the last four ones). In the rest of the paper, we study the following
problem from a complexity point of view: given a set of C-hypotheses H, where
C is one of the classes listed above, and two expressions e, f ∈ ExpΣ , can we
decide whether KAH � e ≤ f (resp. KA∗

H � e ≤ f) holds? We call it the problem
of deciding KA (resp. KA∗) under C-hypotheses.

3 Closure of Regular Languages

It is known that provability in KA and KA∗ can be characterised by language
inclusions (Theorem1). In the presence of hypotheses, this is not the case any-
more: we need to take the hypotheses into account in the semantics. We do so
by using the following notion of downward closure of a language.

3.1 Definition of the Closure

Definition 2 (H-closure). Let H be a set of hypotheses and L ⊆ Σ∗ be a
language. The H-closure of L, denoted clH(L), is the smallest language K such
that L ⊆ K and for all hypotheses e ≤ f ∈ H and all words u, v ∈ Σ∗, we have

u[f]v ⊆ C ⇒ u[e]v ⊆ K

Alternatively, clH(L) can be defined as the least fixed point of the function
φL : P(Σ∗) → P(Σ∗) defined by φL(X) = L ∪ ψH(X), where

ψH(X) =
⋃

(e≤f)∈H

{u[e]v | u, v ∈ Σ∗, u[f]v ⊆ X}.

Example 1. If H = {ab ≤ ba} then clH([b∗a∗]) = [(a + b)∗], while clH([a∗b∗]) =
[a∗b∗].

212 A. Doumane et al.

In order to manipulate closures more conveniently, we introduce a syntactic
object witnessing membership in a closure: derivation trees.

Definition 3. Let H be a set of hypotheses and L a regular language. We define
an infinitely branching proof system related to clH(L), where statements are regu-
lar expressions, and rules are the following, called respectively axiom, extension,
and hypothesis:

(u)
u ∈ Lu

(u)u∈[e]

e

ufv
w ∈ [e], e ≤ f ∈ H

uwv

We write �H,L e if e is derivable in this proof system, i.e. if there is a well-
founded tree using these rules, with root e and all leaves labelled by words in L.
Such a tree will be called a derivation tree for [e] ⊆ clH(L) (or e ∈ clH(L) if e
is a word).

Example 2. The following derivation is a derivation tree for bababa ∈ clH([b∗a∗]),
where H = {ab ≤ ba}.

bbbaaa

bbabaa

bbaaba

bababa

Derivation trees witness membership to the closure as shown by the following
proposition.

Proposition 1. [e] ⊆ clH(L) iff �H,L e.

(See [8, App. A] for a proof.)

3.2 Properties of the Closure Operator

We summarise in this section some useful properties of the closure. Lemma 1
shows in particular that the closure is idempotent, monotonic (both for the set
of hypotheses and its language argument) and invariant by context application.
Lemma 2 shows that internal closure operators can be removed in the evaluation
of regular expressions. Those two lemmas are proved in [8, App. A].

Lemma 1. Let A,B,U, V ⊆ Σ∗. We have

1. A ⊆ clH(A)
2. clH(clH(A)) = clH(A)
3. A ⊆ B implies clH(A) ⊆ clH(B)
4. H ⊆ H ′ implies clH(A) ⊆ clH′(A)
5. clH(A) ⊆ clH(B) if and only if A ⊆ clH(B).
6. A ⊆ clH(B) implies UAV ⊆ clH(UBV).

Lemma 2. Let A,B ⊆ Σ∗, then

1. clH(A + B) = clH(clH(A) + clH(B)),
2. clH(AB) = clH(clH(A)clH(B)),
3. clH(A∗) = clH(clH(A)∗)

Kleene Algebra with Hypotheses 213

3.3 Relating Closure and Provability in KAH and KA∗
H

We show that provability in KA∗ can be characterized by closure inclusions. In
KA, provability implies closure inclusions but the converse is not true in general.

Theorem 2. Let H be a set of hypotheses and e, f be two regular expressions.

KAH � e ≤ f ⇒ KA∗
H � e ≤ f ⇔ [e] ⊆ clH([f])

Proof. Let CRegH,Σ = {clH(L) | L ∈ RegΣ}, on which we define the following
operations:

X ⊕ Y = clH(X + Y) X
 Y = clH(X · Y) X� = clH(X∗).

We define the closure model FH,Σ = (CRegH,Σ , ∅, {ε},⊕,
,�).
We write ≤ for the inequality induced by ⊕ in FH,Σ : X ≤ Y if X ⊕ Y = Y .

Lemma 3. FH,Σ = (CRegH,Σ , ∅, {ε},⊕,
,�) is a ∗-continuous Kleene algebra.
The inequality ≤ of FH,Σ coincides with inclusion of languages.

Proof. By Lemma 2, the function clH : (P(Σ∗),+, ·, ∗) → (CRegH,Σ ,⊕,
,�) is
a homomorphism. We show that FH,Σ is a ∗-continuous Kleene algebra. First,
identities of LangΣ = (P(Σ∗),+, ·, ∗) are propagated through the morphism
clH , so only Horn formulas defining ∗-continuous Kleene algebras remain to
be verified. It suffices to prove that FH,Σ satisfies the ∗-continuity implication,
because the implication xy ≤ y → x∗y ≤ y and its dual can be deduced from
it. Let A,B,C ∈ FH,Σ such that for all i ∈ N, A
 B

i
 C ≤ D, where
B

i = B
 · · ·
 B. By Lemma 2, A
 B
i
 C = clH(ABiC), so we have

clH(ABiC) ≤ D, and in particular ABiC ≤ D for all i. By ∗-continuity of
LangΣ , we obtain AB∗C ≤ D. By Lemma 1 and using D = clH(D), we obtain
clH(AB∗C) ≤ D and finally by Lemma2, A
 B�
 C ≤ D. This achieves the
proof that FH,Σ is a ∗-continuous Kleene algebra.

Let A,B ∈ CRegH,Σ . We have A ≤ B ⇔ A ⊕ B = B ⇔ clH(A + B) = B ⇔
A ⊆ B. Finally, if e ≤ f is a hypothesis from H, then we have clH [e] ⊆ clH([f]),
so the hypothesis is verified in FH,Σ . ��

The implications KA
(∗)
H � e ≤ f ⇒ [e] ⊆ clH(f) follow from the fact that if

an inequation e ≤ f is derivable in KAH (resp. KA∗
H) then it is true in every

model, in particular in the model FH,Σ , thus clH([e]) ⊆ clH([f]) or, equivalently.
[e] ⊆ clH([f]).

Let us prove that for any regular expressions e, f , if [e] ⊆ clH([f]) then
KA∗

H � e ≤ f . Let e, f be two such expressions and let T be a derivation tree
for [e] ⊆ clH([f]), i.e. witnessing �H,L e ≤ f . We show that we can transform
this tree T into a proof tree in KA∗

H . The extension rule is an occurrence of [8,
App. A, Lem. 12]. Finally, the hypothesis rule is also provable in KA∗

H , using
the hypothesis e ≤ f together with compatibility of ≤ with concatenation, and
completeness of KA∗ for membership of u ∈ [e]. We can therefore build from the
tree T a proof in KA∗

H witnessing KA∗
H � e ≤ f . ��

When we restrict the shape of the expression e to words, and hypotheses to
(w ≤ ∑

w)-hypotheses, we get the implication missing from Theorem 2.

214 A. Doumane et al.

Proposition 2. Let H be a set of (w ≤ ∑
w)-hypotheses, w ∈ Σ∗ and f ∈

ExpΣ.
KAH � w ≤ f ⇔ w ∈ clH([f])

Proof. Let us show that w ∈ clH([f]) implies KAH � w ≤ f . We proceed by
induction on the height of a derivation tree for w ∈ clH([f]). If this tree is just
a leaf, then w ∈ [f] and by Theorem 1 KA � w ≤ f . Otherwise, this derivation
starts with the following steps:

(. . .
uwiv

)

i

u(
∑

i wi)v
w ≤ ∑

i wi ∈ Huwv

Our inductive assumption is that KAH � uwiv ≤ f for all i, thus KAH �∑
i uwiv ≤ f . We also have KAH � w ≤ (

∑
i wi) hence KA � w ≤ f by

distributivity. ��

4 Decidability of KA and KA∗ with (1 =
∑

x)-Hypotheses

In this section, we answer positively the decidability problem of KAH , where H
is a set of (1 =

∑
x)-hypotheses, posed by Cohen [5]:

Theorem 3. If H is a set of (1 =
∑

x)-hypotheses, then KAH is decidable.

To prove this theorem we show that in the case of (1 =
∑

x)-hypotheses:

(P1) KAH � e ≤ f if and only if [e] ⊆ clH([f]).
(P2) clH([f]) is regular and we can compute effectively an expression for it.

Decidability of KAH follows immediately from (P1) and (P2), since it amounts
to checking language inclusion for two regular expressions.

To show (P1) and (P2), it is enough to prove the following result:

Theorem 4. Let H be a set of (1 =
∑

x)-hypotheses and let f be a regular
expression. The language clH([f]) is regular and we can compute effectively an
expression c such that [c] = clH([f]) and KAH � c ≤ f .

(P2) follows immediately from Theorem 4. To show (P1), it is enough to prove
that [e] ⊆ clH([f]) implies KAH � e ≤ f , since the other implication is always
true (Theorem 2). Let e, f such that [e] ⊆ clH([f]). If c is the expression given
by Theorem 4, we have KAH � c ≤ f and [e] ⊆ [c] so by Theorem 1 KA � e ≤ c,
and this concludes the proof.

To prove Theorem 4, we first show that the closure of (1 =
∑

x)-hypotheses
can be decomposed into the closure of (x ≤ 1)-hypotheses followed by the closure
of (1 ≤ ∑

x)-hypotheses:

Proposition 3 (Decomposition result). Let H = {1 = Sj | j ∈ J} be a set
of (1 =

∑
x)-hypotheses.

We set Hsum = {1 ≤ Sj | j ∈ J} and Hid = {a ≤ 1 | a ∈ [Sj], j ∈ J}. For
every language L ⊆ Σ∗, we have clH(L) = clHsum

(clHid
(L)).

Kleene Algebra with Hypotheses 215

Sketch. We show that rules from Hid can be locally permuted with rules of
Hsum in a derivation tree. This allows to compute a derivation tree where all
rules from Hid occur after (i.e. closer to leaves than) rules from Hsum . ��

Now, we will show results similar to Theorem 4, but which apply to (x ≤ 1)-
hypotheses and (1 ≤ ∑

x)-hypotheses (Propositions 5 and 6 below). To prove
Theorem 4, the idea is to decompose H into Hid and Hsum using the decom-
position property Proposition 3, then applying Propositions 5 and 6 to Hid and
Hsum respectively.

To show these two propositions, we make use of a result from [7]:

Definition 4. Let A = (Q,Δ, ι, F) be an NFA, H be a set of hypotheses and
ϕ : Q → ExpΣ a function from states to expressions. We say that ϕ is H-
compatible with A if:

– KAH � 1 ≤ ϕ(q) whenever q ∈ F ,
– KAH � aϕ(r) ≤ ϕ(q) for all transitions (q, a, r) ∈ Δ.

We set ϕA = ϕ(ι).

Proposition 4 ([7]). Let A be a NFA, H be a set of hypothesis and ϕ be a
function H-compatible with A. We can construct a regular expression fA such
that:

[fA] = [A] and KAH � fA ≤ ϕA

Proposition 5. Let H be a set of (x ≤ 1)-hypotheses and let f be a regular
expression. The language clH([f]) is regular and we can compute effectively an
expression c such that [c] = clH([f]) and KAH � c ≤ f .

Proof. Let K = clH([f]) and Γ = {a | (a ≤ 1) ∈ H}, we show that K is regular.
If A is a NFA for f , a NFA Aid recognizing K can be built from A by adding a
Γ -labelled loop on every state. It is straightforward to verify that the resulting
NFA recognizes K, by allowing to ignore any letter from Γ .

For every q ∈ Q, let fq be a regular expression such that [fq] = [q]A, where
[q]A denotes the language accepted from q in A. Let ϕ : Q → ExpΣ which maps
each state q of Aid (which is also a state of A) to ϕ(q) = fq. Let us show that ϕ is
H-compatible with A. If q ∈ F , then 1 ∈ [fq], so by completeness of KA, we have
KA � 1 ≤ fq. Let (p, a, q) be a transition of Aid . Either (p, a, q) ∈ Δ, in which
case we have a[fq] ⊆ [fp], and so by Theorem1 KA � afq ≤ fp. Or p = q (this
transition is a loop that we added). Then KAH � a ≤ 1, so KAH � afp ≤ fp,
and this concludes the proof.

By Proposition 4, we can now construct a regular expression c which satisfies
the desired properties. ��
Definition 5. Let Γ be a set of letters. A language L is said to be Γ -closed if:

∀u, v ∈ Σ∗,∀a ∈ Γ uv ∈ L ⇒ uav ∈ L

If H = {1 ≤ Si | i ∈ I} is a set of (1 ≤ ∑
x)-hypotheses, we say that a

language L is H-closed if if it is Γ -closed where Γ = ∪i∈I [Si].

216 A. Doumane et al.

Remark 1. If H is a set of (x ≤ 1)-hypothesis, and Γ = {a | (a ≤ 1) ∈ H}, then
clH(L) is Γ -closed for every language L.

Proposition 6. Let H be a set of (1 ≤ ∑
x)-hypotheses and let f be a regular

expression whose language is H-closed. The language clH([f]) is regular and we
can compute effectively an expression c such that [c] = clH([f]) and KAH � c ≤ f .

Proof. We set L = [f], H = {1 ≤ Sj | j ∈ J} and Γ = {a | a ∈ [Sj], j ∈ J}.

Let us show that clH(L) is regular. The idea is to construct a set of words
L�, where each word u� is obtained from a word u of clH(L), by adding at the
position where a rule (1 ≤ Sj) is applied in the derivation tree for clH(L) � u, a
new symbol �j . We will show that this set satisfies the two following properties:

– clH(L) is obtained from L� by erasing the symbols �j .
– L� is regular.

Since the operation that erases letters preserves regularity, we obtain as a corol-
lary that clH(L) is regular.

Let us now introduce more precisely the language L� and show the properties
that it satisfies. Let Θ� = {�j | j ∈ J} be a set of new letters and Σ� = Σ ∪ Θ�

be the alphabet Σ enriched with these new letters.
We define the function exp : Σ� → P(Σ) that expands every letter �j into

the sum of the letters corresponding to its rule in H as follows:

exp(a) = a if a ∈ Σ
exp(�j) = {a | a ∈ [Sj]} ∀j ∈ J

This function can naturally be extended to exp : (Σ�)∗ → P(Σ∗).
If L ⊆ Σ∗, we define L� ⊆ (Σ�)∗ as follows:

L� = exp−1(P(L)) = {u ∈ (Σ�)∗ | exp(u) ⊆ L}

We define the morphism π : (Σ�)∗ → Σ∗ that erases the letters from Θ� as
follows: π(a) = a if a ∈ Σ and π(�j) = ε for all j ∈ J . Our goal is to prove
that clH(L) = π(L�) and that L� is regular. To prove the first part, we need an
alternative presentation of L� as the closure of a new set of hypotheses H� which
we define as follows:

H� = {�j ≤ Sj | j ∈ J} ∪ {�j ≤ 1 | j ∈ J}

Lemma 4. We have L� = clH�
(L). In particular L� is Θ�-closed.

See App. B for a detailed proof of Lemma4.

Lemma 5. clH(L) = π(L�).

Kleene Algebra with Hypotheses 217

Proof. If u ∈ π(L�), let v ∈ L� such that u = π(v). By Lemma 4, there is a
derivation tree Tv for v ∈ clH�

(L). Erasing all occurrences of �j in Tv yields a
derivation tree for u ∈ clH(L).

Conversely, if u ∈ clH(L) is witnessed by some derivation tree Tu, we show
by induction on Tu that there exists v ∈ L� ∩ π−1(u). If Tu is a single leaf, we
have u ∈ L, and therefore it suffices to take v = u.

Otherwise, the rule applied at the root of Tu partitions u into u = wz, and has
premises {wbz | b ∈ [Sj]} for some j ∈ J and w, z ∈ Σ∗. By induction hypothesis,
for all b ∈ [Sj], there is vb ∈ L� ∩ π−1(wbz). Let w = w1 . . . wn and z = z1 . . . zm

be the decompositions of w, z into letters of Σ. By definition of π, for all b ∈ [Sj],
vb can be written vb = αb,1w1αb,2w2 . . . wnαb,nbαb,n+1z1αb,n+2 . . . zmαb,n+m+3,
with αb,0 . . . αb,n+m+3 ∈ (Θ�)∗. For each k ∈ [0, n+m+3], let αk = Πb∈[Sj]αb,k.
Let w′ = α0w1α1 . . . wnαn+1 and z′ = αn+2z1αn+3 . . . zmαn+m+3. By Lemma 4,
L� is Θ�-closed, so for each b ∈ [Sj] the word v′

b = w′bz′ is in L�, since v′
b is

obtained from vb by adding letters from Θ�. We can finally build v = w′�jz
′. We

have exp(v) =
⋃

b∈[Sj]
exp(v′

b) ⊆ L, and π(v) = π(w′)π(z′) = wz = u. ��
Lemma 6. L� is a regular language, computable effectively.

Sketch. From a DFA A = (Σ,Q, q0, F, δ) for for L, we first build a DFA A∧ =
(Σ,P(Q), q0,P(F), δ∧), which corresponds to a powerset construction, except
that accepting states are P(F). This means that the semantic of a state P is the
conjunction of its members. We then build A� = (Σ,P(Q), q0,P(F), δ�) based
on A∧, which can additionally read letters of the form �j , by expanding them
using the powerset structure of A∧. ��
Lemma 7. We can construct a regular expression c such that [c] = clH(L) and
KAH � c ≤ f .

Proof. Let A� be the DFA constructed for L� in the proof of Lemma 6. We will
use the notations of this proof in the following.

Let π(A�) = (Σ,P(Q), q0,P(F), π(δ�)) be the NFA obtained from A�

by replacing every transition δ�(P, �j) = R, where j ∈ J , by a transition
π(δ�)(P, ε) = R. By Lemma 5, the automaton π(A�) recognizes the language
clH(L). Let us construct a regular expression c for this automaton such that
KAH � c ≤ f .

For every P ∈ P(Q), let fP be a regular expression such that [fP] = [P]A∧ .
Let ϕ : P(Q) → ExpΣ be the function which maps each state P of π(A�) to

ϕ(P) = fP . Let us show that ϕ is H-compatible.
If P ∈ P(F), then P is a final state of A∧, so 1 ∈ [fP], and by completeness

of KA, KA � 1 ≤ fP . Let (P, a,R) ∈ π(Δ�). Either a ∈ Σ, so (P, a,R) ∈ Δ∧ and
a[fR] ⊆ [fP], so by Theorem 1 KA � afR ≤ fP . Or a = ε so there is j ∈ J such
that (P, �j , R) ∈ Δ�. This means that R = ∪b∈[Sj]Rb where δ∧(P, b) = Rb,∀b ∈
[Sj]. We have then that b[fRb

] ⊆ [fP] for all b ∈ [Sj]. Note that for all b ∈ [Sj],
Rb ⊆ R, so [fR] ⊆ [fRb

] and then Sj [fR] ⊆ [fP]. By Theorem 1 KA � SjfR ≤ fP .
We have also that KAH � �j ≤ Sj , so KAH � �jfR ≤ fP .

By Proposition 4, we can construct the desired regular expression c. ��

218 A. Doumane et al.

5 Complexity Results for Letter Hypotheses

In this section, we give a recursion-theoretic characterization of KAH and KA∗
H

where H is a set of letter hypotheses or (w ≤ ∑
w)-hypotheses. In all the section,

by “deciding KA
(∗)
H ” we mean deciding whether KA

(∗)
H � e ≤ f , given e, f,H as

input.
Theses various complexity classes will be obtained by reduction from some

known problems concerning Turing Machines (TM) and alternating linearly
bounded automata (LBA), such as halting problem and universality.

To obtain these reductions, we build on a result which bridges TMs and LBAs
on one hand and closures on the other: the set of co-reachable configurations of
a TM (resp. LBA) can be seen as the closure of a well-chosen set of hypotheses.

We present this result in Sect. 5.1, and show in Sect. 5.2 how to instantiate
it to get our complexity classes.

5.1 Closure and Co-reachable States of TMs and LBAs

Definition 6. An alternating Turing Machine over Σ is a tuple M =
(Q,QF , Γ, ι, B,Δ) consisting of a finite set of states Q and final states QF ⊆ Q,
a finite set of states Q, a finite working alphabet Γ ⊇ Σ, an initial state ι ∈ Q,
B ∈ Γ the blank symbol and a transition function Δ : (Q \ QF) × Γ →
P(P({L,R} × Γ × Q)). Let #L,#R /∈ Γ be fresh symbols to mark the ends
of the tape, and Γ# = Γ ∪ {#L,#R}.

A configuration is a word uqav = #LΓ ∗QΓ+#R, where #L and #R are
special symbols not in Γ , meaning that the head of the TM points to the letter
a. We denote by C the set of configurations of M. A configuration is final if it
is of the form #LΓ ∗QF Γ+#L.

The execution of the TM M over input w ∈ Σ may be seen as a game-like
scenario between two players ∃loise and ∀belard over a graph C�(C×P({L,R}×
Γ × Q)), with initial position ιw which proceeds as follows.

– over a configuration uqav with a ∈ Γ , u, v ∈ Γ ∗
#, ∃loise picks a transition

X ∈ Δ(q, a) to move to position (uqav,X)
– over a position (uqav,X) with a ∈ Γ , u, v ∈ Γ ∗, ∀belard picks a triple

(d, c, r) ∈ X to move in configuration
• ucrB#R if v = #R and d = R
• ucrv if v �= #R and d = R
• #LrBcv if u = #L and d = L
• u′rbcv if u = #Ru′b and d = L

Given a subset of configurations D ⊆ C, we define Attr∃loise(D) the ∃loise
attractor for D as the set of configurations from which ∃loise may force the
execution to go through D.

A deterministic TM M is one where every Δ(q, a) ⊆ {{(d, c, r)}} for some
(d, c, r) ∈ {L,R}×Γ ×Q In such a case, we may identify M with the underlying
partial function [M] : Σ∗ ⇀ QF .

Kleene Algebra with Hypotheses 219

An alternating linearly bounded automaton over the alphabet Σ is a tuple
A = (Q,QF , Γ, ι,Δ) where (Q,QF , Γ �{B}, ι, B,Δ) is a TM that does not insert
B symbols. This means that the head can point to �d, and for every X ∈ Δ(q,#d)
and (d′, a, r) ∈ X, we have d �= d′ and a = #d.

An LBA is deterministic if its underlying TM is.

Definition 7. A set of (w ≤ ∑
w)-hypotheses is said to be length-preserving if

for every (v ≤ ∑
i∈I vi) ∈ H, we have that |v| = |vi| for all i ∈ I.

The following lemma generalizes a similar construction from [13].

Lemma 8. For every TM M of working alphabet Γ , there exists a set of (w ≤∑
w)-hypotheses HM over the alphabet Θ = Q ∪ Γ such that, for any set of

configurations D ⊆ C we have that: clHA(D) = Attr∃loise(D). Furthermore, this
reduction is polytime computable, and HA is length-preserving if M is an LBA.

A configuration c is co-reachable if ∃loise has a strategy to reach a final
configuration from c. Lemma 8 shows that the set of co-reachable configurations
can be seen as the closure by (w ≤ ∑

w)-hypotheses. Since we are also interested
in (x ≤ ∑

x)-hypotheses, we will show that (w ≤ ∑
w) hypotheses can be

transformed into letter hypotheses. Moreover, this transformation preserves the
length-preserving property.

Theorem 5. Let Σ be an alphabet, H be a set of (w ≤ ∑
w)-hypotheses over

Σ. There exists an extended alphabet Σ′ ⊇ Σ, a set of (x ≤ ∑
w)-hypotheses

H ′ over Σ′ and a regular expression h ∈ ExpΣ′ such that the following holds for
every f ∈ ExpΣ and w ∈ Σ∗.

w ∈ clH([f]) if and only if w ∈ clH′([f + h])

Furthermore, we guarantee the following:

– (Σ′,H ′, h) can be computed in polynomial time from (Σ,H).
– H ′ is length-preserving whenever H is.

5.2 Complexity Results

Lemma 9. If H is a set of length-preserving (w ≤ ∑
w)-hypotheses (resp. a

set of (x ≤ ∑
x)-hypotheses), w ∈ Σ∗ and f ∈ ExpΣ, deciding KAH � w ≤ f is

EXPTIME − complete.

Proof. We actually show that our problem is complete in alternating-PSPACE
(APSPACE), which enables us to conclude as EXPTIME and APSPACE coin-
cide. First, notice that by completeness of KAH over this fragment (Proposi-
tion 2), we have KAH � w ≤ f ⇔ w ∈ clH([f]). Hence, we work directly with the
latter notion. It suffices to show hardness for the (x ≤ ∑

x) case and membership
for the (w ≤ ∑

w) case.
Given an arbitrary alternating Turing Machine M in APSPACE there exists

a polynomial p ∈ N[X] such that executions of M over words w are bisimilar to

220 A. Doumane et al.

executions of the LBA(M) over wBp(|w|). Hence, by Lemma 8 and Theorem 5,
the problem with (x ≤ ∑

x)-hypotheses is APSPACE-hard. Conversely, we may
show that our problem with (w ≤ ∑

w)-hypotheses falls into APSPACE. On
input w, the alternating algorithm first checks whether w ∈ [f] in linear time.
If it is the case, it returns “yes”. Otherwise, it non-deterministically picks a fac-
torization w = uxv with x ∈ Σ∗ and a hypothesis x ≤ ∑

i yi. It then universally
picks yi ∈ Σ|x|, and replaces x by yi on the tape, so that the new tape content
is w′ = uyiv. Then the algorithm loops back to its first step. In parallel, we
keep track of the number of steps and halt by returning “no” as soon as we
reach |Σ||w| steps. This is correct because, if there is a derivation tree witnessing
w ∈ clH([f]), there is one where on every path, all nodes have distinct labels, so
the nondeterministic player can play according to this tree, while the universal
player selects a branch. ��
Theorem 6. Deciding KA∗

H is Π0
1−complete for (x ≤ ∑

x)-hypotheses.

Proof. By Lemma 9 and the fact that regular expressions are in recursive bijec-
tion with natural numbers, our set is clearly Π0

1 . To show completeness, we effec-
tively reduce the set of universal LBAs, which is known to be Π0

1−complete, to
our set of triples. Indeed, by Lemma 8, an LBA A is universal if and only if
#L{ι}Σ∗#R ⊆ clH(CF) where CF is the set of final configurations. ��
Theorem 7. If H is a set of (x ≤ ∑

w)-hypotheses, w ∈ Σ∗ and f ∈ ExpΣ,
deciding KA

(∗)
H � w ≤ f is Σ0

1−complete.

Proof. As KAH is a recursively enumerable theory, our set is Σ0
1 . By the com-

pleteness theorem (Proposition 2), we have KAH � w ≤ f ⇔ KA∗
H � w ≤

f ⇔ w ∈ clH([f]), so we may work directly with closure. In order to show
completeness, we reduce the halting problem for Turing machines (on empty
input) to this problem. Let M be a Turing machine with alphabet Σ and final
state qf , and HM be the set of (w ≤ ∑

w)-hypotheses given effectively by
Lemma 8. Let f = Σ∗qfΣ∗, by Lemma 8 we have M halts on empty input
if and only if q0 ∈ clHM(f). Notice that hypotheses of H ′ are of the form
u ≤ V where u ∈ Θ3 and V ⊆ Θ3. By Theorem 5, we can compute a set
H ′ of (x ≤ ∑

x)-hypotheses, and an expression h on an extended alphabet such
that q0 ∈ clHM([f]) ⇔ q0 ∈ clH′([f + h]). ��
Theorem 8. Deciding KA∗

H is Π0
2−complete for (x ≤ ∑

w)-hypotheses.

Proof. This set is Π0
2 by Theorem 7. It is complete by reduction from the set

of Turing Machines accepting all inputs, which is known to be Π0
2 . Indeed, let

M be a Turing Machine on alphabet Σ with final state qf , by Lemma 8, we
can compute a set of (w ≤ ∑

w)-hypotheses HM with finite language in second
components such that c ∈ clHM(c′) if and only if configuration c′ is reachable
from c. As before, by Theorem 5, we can compute a set of letter hypotheses
H ′ with finite languages in second components, and a regular expression h on
an extended alphabet, such that for any clH′([f + h]) ∩ Θ∗ = clH([f]) for any
f ∈ ExpΘ. Let Cf = Σ∗qfΣ∗, we obtain that M accepts all inputs if and only
if [q0Σ∗] ⊆ clH′([Cf + h]), which achieves the proof of Π0

2 -completeness. ��

Kleene Algebra with Hypotheses 221

Theorem 9. Deciding KA∗
H is Π1

1−complete for (x ≤ g)-hypotheses (g ∈
ExpΣ).

Sketch. It is shown in [13] that the problem is complete with hypotheses of the
form H = Hw ∪ {x ≤ g}, where Hw is a set of length-preserving (w ≤ ∑

w)
hypotheses. A slight refinement of Theorem 5 allows us to reduce this problem
to hypotheses of the form x ≤ g. ��

5.3 Undecidability of KAH for Sums of Letters

Fix an alphabet Σ, a well-behaved coding function �·� of Turing machines with
final states {0, 1} into Σ∗ and a recursive pairing function 〈·, ·〉 : Σ∗ ×Σ∗ → Σ∗.
A universal total F : Σ∗ → {0, 1} is a function such that, for every total Turing
machine M and input w ∈ Σ∗ we have F (〈�M�, w〉) = [M](w). In particular,
F should be total and is not uniquely determined over codes of partial Turing
machines. The next folklore lemma follows from an easy diagonal argument.

Lemma 10. There is no universal total Turing machine.

Our strategy is to show that decidability of KAH with (x ≤ ∑
x) hypothe-

ses would imply the existence of a universal total TM. To do so, we need one
additional lemma.

Lemma 11. Suppose that M = (Q,QF , Γ, ι, B,Δ) is a total Turing machine
with final states {0, 1} and initial state ι. Let w ∈ Σ∗ be an input word for M.

Then there is effectively a set of length-preserving (w ≤ ∑
w)-hypotheses H

and expressions ew, h such that [M](w) = 1 if and only if KAH � ew ≤ h.

Theorem 10. KAH is undecidable for (x ≤ ∑
x)-hypotheses.

Proof. Assume that KAH is decidable. This means that we have an algorithm A
taking tuples (Σ,w, f,H), with H consisting only of sum-of-letters hypotheses
and returning true when KAH � w ≤ f and false otherwise. Without loss of
generality, we can assume that A is total. By Theorem 5, we may even provide
an algorithm A′ taking as input tuples (w, f,H) where H is a set of length-
preserving (w ≤ ∑

w)-hypotheses with a similar behaviour: A′ returns true
when KAH � w ≤ f and false otherwise.

Given A′, consider M defined so that [M](�N�, w) = [A′](ew, h,H), where
the last tuple is given by Lemma 11. We show that M is a total universal Turing
machine. Since such a machine cannot exist by Lemma 10, this is enough to con-
clude. Since A′ is total, so is M. For total Turing Machines N , Lemma 11 guar-
antees that [N](w) = 1 if and only if [A′](ew, h,H) = [M](�N�, w) = 1. Since
both [A′] and [M] are total with codomain {0, 1}, we really have [M](�N�, w) =
[N](w). ��

222 A. Doumane et al.

References

1. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. In: Proceedings
of the POPL, pp. 113–126. ACM (2014). https://doi.org/10.1145/2535838.2535862

2. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech-
nical report TR2001-1844, CS Dpt., Cornell University, July 2001. http://hdl.
handle.net/1813/5831

3. Boffa, M.: Une remarque sur les systèmes complets d’identités rationnelles.
Informatique Théorique et Applications 24, 419–428 (1990). http://archive.
numdam.org/article/ITA19902444190.pdf

4. Braibant, T., Pous, D.: An efficient Coq tactic for deciding Kleene algebras. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 163–178.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5 13

5. Cohen, E.: Hypotheses in Kleene algebra. Technical report, Bellcore, Morris-
town, N.J. (1994). http://www.researchgate.net/publication/2648968 Hypotheses
in Kleene Algebra

6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

7. Das, A., Doumane, A., Pous, D.: Left-handed completeness for Kleene algebra, via
cyclic proofs. In: Proceedings of the LPAR. EPiC Series in Computing, vol. 57, pp.
271–289. EasyChair (2018). https://doi.org/10.29007/hzq3

8. Doumane, A., Kuperberg, D., Pous, D., Pradic, P.: Kleene algebra with hypotheses.
Full version of this extended abstract (2019). https://hal.archives-ouvertes.fr/hal-
02021315

9. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 27

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In:
Automata Studies, pp. 3–41. Princeton University Press (1956). http://www.rand.
org/pubs/research memoranda/2008/RM704.pdf

11. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inform. Comput. 110(2), 366–390 (1994). https://doi.org/10.1006/inco.
1994.1037

12. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Log. 1(1), 60–76 (2000). https://doi.org/10.1145/343369.343378

13. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inform. Comput.
179, 152–162 (2002). https://doi.org/10.1006/inco.2001.2960

14. Kozen, D., Mamouras, K.: Kleene algebra with equations. In: Esparza, J., Fraig-
niaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp.
280–292. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-
7 24

15. Kozen, D., Patron, M.-C.: Certification of compiler optimizations using Kleene
algebra with tests. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861,
pp. 568–582. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44957-
4 38

16. Krauss, A., Nipkow, T.: Proof pearl: regular expression equivalence and relation
algebra. JAR 49(1), 95–106 (2012). https://doi.org/10.1007/s10817-011-9223-4

17. Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991).
https://doi.org/10.1016/0304-3975(91)90395-I

https://doi.org/10.1145/2535838.2535862
http://hdl.handle.net/1813/5831
http://hdl.handle.net/1813/5831
http://archive.numdam.org/article/ITA19902444190.pdf
http://archive.numdam.org/article/ITA19902444190.pdf
https://doi.org/10.1007/978-3-642-14052-5_13
http://www.researchgate.net/publication/2648968_Hypotheses_in_Kleene_Algebra
http://www.researchgate.net/publication/2648968_Hypotheses_in_Kleene_Algebra
https://doi.org/10.29007/hzq3
https://hal.archives-ouvertes.fr/hal-02021315
https://hal.archives-ouvertes.fr/hal-02021315
https://doi.org/10.1007/978-3-642-04081-8_27
http://www.rand.org/pubs/research_memoranda/2008/RM704.pdf
http://www.rand.org/pubs/research_memoranda/2008/RM704.pdf
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/343369.343378
https://doi.org/10.1006/inco.2001.2960
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/s10817-011-9223-4
https://doi.org/10.1016/0304-3975(91)90395-I

Kleene Algebra with Hypotheses 223

18. Mamouras, K.: Extensions of Kleene algebra for program verification. Ph.D. the-
sis, Cornell University, Ithaca, NY (2015). https://ecommons.cornell.edu/handle/
1813/40960

19. Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 15

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://ecommons.cornell.edu/handle/1813/40960
https://ecommons.cornell.edu/handle/1813/40960
https://doi.org/10.1007/978-3-642-39634-2_15
http://creativecommons.org/licenses/by/4.0/

Trees in Partial Higher Dimensional
Automata

Jérémy Dubut1,2(B)

1 National Institute of Informatics, Tokyo, Japan
dubut@nii.ac.jp

2 Japanese-French Laboratory for Informatics, Tokyo, Japan

Abstract. In this paper, we give a new definition of partial Higher
Dimension Automata using lax functors. This definition is simpler and
more natural from a categorical point of view, but also matches more
clearly the intuition that pHDA are Higher Dimensional Automata with
some missing faces. We then focus on trees. Originally, for example in
transition systems, trees are defined as those systems that have a unique
path property. To understand what kind of unique property is needed in
pHDA, we start by looking at trees as colimits of paths. This definition
tells us that trees are exactly the pHDA with the unique path property
modulo a notion of homotopy, and without any shortcuts. This property
allows us to prove two interesting characterisations of trees: trees are
exactly those pHDA that are an unfolding of another pHDA; and trees
are exactly the cofibrant objects, much as in the language of Quillen’s
model structure. In particular, this last characterisation gives the pre-
misses of a new understanding of concurrency theory using homotopy
theory.

Keywords: Higher Dimensional Automata · Trees ·
Homotopy theories

1 Introduction

Higher Dimensional Automata (HDA, for short), introduced by Pratt in [23],
are a geometric model of true concurrency. Geometric, because they are defined
very similarly to simplicial sets, and can be interpreted as glueings of geometric
objects, here hypercubes of any dimension. Similarly to other models of concur-
rency much as event structures [21], asynchronous systems [1,25], or transition
systems with independence [22], they model true concurrency, in the sense that
they distinguish interleaving behaviours from simultaneous behaviours. In [12],
van Glabbeek proved that they form the most powerful models of a hierarchy of
concurrent models. In [6], Fahrenberg described a notion of bisimilarity of HDA
using the general framework of open maps from [17]. If this work is very natural,

The author was supported by ERATO HASUO Metamathematics for Systems Design
27 Project (No. JPMJER1603), JST.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 224–241, 2019.
https://doi.org/10.1007/978-3-030-17127-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_13

Trees in Partial Higher Dimensional Automata 225

it is confronted with a design problem: paths (or executions) cannot be nicely
encoded as HDA. Indeed, in a HDA, it is impossible to model the fact that two
actions must be executed at the same time, or that two actions are executed
at the same time but one must start before the other. From a geometric point
of view, those impossibilities are expressed by the fact that we deal with closed
cubes, that is, cubes that must contain all of their faces. Motivated by those
examples, Fahrenberg, in [7], extended HDA to partial HDA, intuitively, HDA
with cubes with some missing faces. If the intuition is clear, the formalisation is
still complicated to achieve: the definition from [7] misses the point that faces
can be not uniquely defined. This comes from the fact that Fahrenberg wanted
to stick to the ‘local’ definition of precubical sets, that is, that cubes must satisfy
some local conditions about faces. As we will show, those local equations are not
enough in the partial case. Another missed point is the notion of morphisms of
partial HDA: as defined in [7], the natural property that morphisms map execu-
tions to executions is not satisfied. In Sect. 2, we address those issues by giving
a new definition of partial HDA in terms of lax functors. This definition, similar
to the presheaf theoretic definition of HDA, avoid the issues discussed above by
considering global inclusions, instead of local equations. This illustrates more
clearly the intuition of partial HDA being HDA with missing faces: we coher-
ently replace sets and total functions by sets and partial functions. From this
similarity with the original definition of HDA, we can prove that it is possible to
complete a partial HDA to turn it into a HDA, by adding the missing faces, and
from this completion, it is possible to define a geometric realisation of pHDA
(which was impossible with Fahrenberg’s definition).

The geometry of Higher Dimensional Automata, and more generally, of
true concurrency, has been studied since Goubault’s PhD thesis [13]. Since
then, numerous pieces of work relating algebraic topology and true concurrency
have been achieved (for example, see the textbooks [9,14]). In particular, some
attempts of defining nice homotopy theories for true concurrency (or directed
topology), through the language of model structures of Quillen [24], have been
made by Gaucher [10], and the author [3]. In the second part of this paper
(Sects. 3, 4 and 5), we consider another point of view of this relationship between
HDA and model structures. The goal is not to understand the true concurrency
of HDA, that is, understanding the homotopy theory of HDA as an abstract
homotopy theory, but to understand the concurrency theory of HDA. By this
we mean to understand how paths (or executions) and extensions of paths can
be understood using (co)fibrations (in Quillen’s sense). Also, the goal is not to
construct a model structure, as Quillen’s axioms would fail, but to give intuitions
and some preliminary formal statements toward the understanding of concur-
rency using homotopy theory. Using this point of view, many constructions in
concurrency can be understood using the language of model structures:

– Open maps from [17] can be understood as trivial fibrations, namely weak
equivalences (here, bisimulations) that have the right lifting properties with
respect to some morphisms.

226 J. Dubut

– Those morphisms are precisely extensions of executions, which means that
they can be seen as cofibration generators (in the language of cofibrantly
generated model structures [15]).

– Cofibrations are then morphisms that have the left lifting property with
respect to open maps. In particular, this allows us to define cofibrant objects
as those objects whose unique morphisms from the initial object is a cofibra-
tion. In a way, cofibrant objects are those objects that are constructed by just
using extensions of paths, and should correspond to trees.

– The cofibrant replacement is then given by canonically constructing a cofi-
brant object, which is weakly equivalent (here, bisimilar) to a given object.
That should correspond to the unfolding.

The main ingredient is to understand what trees are in this context. In the case
of transition systems for semantics of CCS [19], synchronisation trees are those
systems with exactly one path from the initial state to any state. Those trees are
then much simpler to reason on, but they are still powerful enough to capture any
bisimulation type: by unfolding, it is possible to canonically construct a tree from
a system. The goal of Sects. 3 and 4 will be to understand how to generalise this
to pHDA. In this context, it is not clear what kind of unique path property should
be considered as, in general, in truly concurrent systems, we have to deal with
homotopies, namely, equivalences of paths modulo permutation of independent
actions. Following [4], we will first consider trees as colimits of paths. This will
guide us to determine what kind of unique path property is needed: a tree is
a pHDA with exactly one class of paths modulo a notion of homotopy, from
the initial state to any state, and without any shortcuts. This will be proved
by defining a suitable notion of unfolding of pHDA. Finally, in Sect. 5, we prove
that those trees coincide exactly with the cofibrant objects, illustrating the first
steps of this new understanding of concurrency, using homotopy theory.

2 Fixing the Definition of pHDA

In this Section, we review the definitions of HDA (Sect. 2.1), the first one using
face maps, and the second one using presheaves. In Sect. 2.2, we describe the
definition of partial HDA from [7] and explain why it does not give us what we
are expecting. We tackle those issues by introducing a new definition in Sect. 2.3,
extending the presheaf theoretic definition, using lax functors instead of strict
functors. Finally, in Sect. 2.4, we prove that HDA form a reflective subcategory
of partial HDA, by constructing a completion of a partial HDA.

2.1 Higher Dimensional Automata

Higher Dimensional Automata are an extension of transition systems: they are
labeled graphs, except that, in addition to vertices and edges, the graph structure
also has higher dimensional data, expressing the fact that several actions can be
made at the same time. Those additional data are intuitively cubes filling up
interleaving: if a and b can be made at the same time, instead of having an

Trees in Partial Higher Dimensional Automata 227

empty square as on the left figure, with a.b and b.a as only behaviours, we have
a full square as on the right figure, with any possible behaviours in-between. This
requires to extend the notion of graph to add those higher dimensional cubical
data: that is the notion of precubical sets.

•

•

•

•

b b

a

a

•

•

•

•

a and b
at the same time

b b

a

a

Concrete Definition of Precubical Sets. A precubical set X is a col-
lection of sets (Xn)n∈N together with a collection of functions (∂α

i,n : Xn −→
Xn−1)n>0,1≤i≤n,α∈{0,1} satisfying the local equations ∂α

i,n ◦ ∂β
j,n+1 = ∂β

j,n ◦
∂α

i+1,n+1 for every α, β ∈ {0, 1}, n > 0 and 1 ≤ j ≤ i ≤ n. A morphism of
precubical sets from X to Y is a collection of functions (fn : Xn −→ Yn)n∈N

satisfying the equations fn ◦ ∂α
i,n = ∂α

i,n ◦ fn+1 for every n ∈ N, 1 ≤ i ≤ n and
α ∈ {0, 1}. The elements of X0 are called points, X1 segments, X2 squares,
Xn n-cubes. In the following, we will call past (resp. future) i-face maps the
∂0

i,n (resp. ∂1
i,n). We denote this category of precubical sets by pCub.

Precubical Sets as Presheaves. Equivalently, pCub is the category of
preshea-ves over the cubical category �. � is the subcategory of Set whose
objects are the sets {0, 1}n for n ∈ N and whose morphisms are generated by
the so-called coface maps:

dα
i,n : {0, 1}n−1 −→ {0, 1}n (β1, . . . , βn−1) �−→ (β1, . . . , βi−1, α, βi, . . . , βn−1)

A precubical set is a functor X : �op −→ Set, that is, a presheaf over �, and a
morphism of precubical sets is a natural transformation.

Higher Dimensional Automata [11]. From now on, fix a set L, called the
alphabet. We can form a precubical set also noted L such that Ln = Ln and
the i-face maps are given by δα

i (a1 . . . an) = a1 . . . ai−1.ai+1 . . . an. We can also
form the following precubical set ∗ such that ∗0 = {∗} and ∗n = ∅ for n > 0.
A HDA X on L is a bialgebra ∗ → X → L in pCub. In other words, a HDA
X is a precubical set, also noted X, together with a specified point, the initial
state, i ∈ X0 and a labelling function λ : X1 −→ L satisfying the equations
λ ◦ ∂0

i,2 = λ ◦ ∂1
i,2 for i ∈ {1, 2} (see previous figure, right). A morphism of

HDA from X to Y is a morphism f of precubical sets from X to Y such that
f0(iX) = iY and λX = λY ◦ f1. HDA on L and morphisms of HDA form a
category that we denote by HDAL. This category can also be defined as a
the double slice category ∗/pCub/L. Remark that we are only concerned with
labelling-preserving morphisms, not general morphisms as described in [5].

228 J. Dubut

2.2 Original Definition of Partial Higher Dimensional Automata

Originally [7], partial HDA are defined similarly to the concrete definition of
HDA, except that the face maps can be partial functions and the local equations
hold only when both sides are well defined. There are two reasons why it fails to
give the good intuition:

not defined

n
ot

d
efi

n
ed

•
de

fin
ed

in
tw

o

di
ffe

re
nt

wa
ys

– first the ‘local’ equations are not enough
in the partial case. Imagine that we want to
model a full cube c without its lower face,
that is, ∂0

3,3 is not defined on c, and such that
∂1
1,2 is undefined on ∂1

1,3(c) and ∂1
2,3(c), that

is, we remove an edge. We cannot prove using
the local equations that ∂1

1 ◦∂0
2 ◦∂1

1(c) = ∂1
1 ◦

∂0
2 ◦ ∂1

2(c), that is, that the vertices of the
cube are uniquely defined. Indeed, to prove
this equality using the local equations, you
can only permute two consecutive ∂. From
∂1
1 ◦ ∂0

2 ◦ ∂1
1(c), you can:

• either permute the first two and you obtain ∂1
1 ◦ ∂1

1 ◦ ∂0
3(c),

• or permute the last two and you obtain ∂0
1 ◦ ∂1

1 ◦ ∂1
1(c).

and both faces are not defined. On the other hand, those two should be equal
because the comaps d11 ◦ d02 ◦ d11 and d12 ◦ d02 ◦ d11 are equal in �, and ∂1

1 ◦ ∂0
2 ◦ ∂1

1

and ∂1
1 ◦ ∂0

2 ◦ ∂1
2 are both defined on c.

segment

split segment

• •

• •

a

a

– secondly, the notion of morphism is not good (or at
least, ambiguous). The equations fn ◦ ∂α

i,n,X = ∂α
i,n,Y ◦

fn+1 hold in [7] only when both face maps are defined,
which authorises many morphisms. For example, consider
the segment I, and the ‘split’ segment I ′ which is defined
as I, except that no face maps are defined (geometrically,
this corresponds to two points and an open segment). The
identity map from I to I ′ is a morphism of partial precubical sets in the sense of
[7], which is unexpected. A bad consequence of that is that the notion of paths in
a partial HDA does not correspond to morphisms from some particular partial
HDA, and paths are not preserved by morphisms, as we will see later.

2.3 Partial Higher Dimensional Automata as Lax Functors

The idea is to generalise the ‘presheaf’ definition of precubical sets. The problem
is to deal with partial functions and when two of them should coincide. Let pSet
be the category of sets and partial functions. A partial function f : X −→ Y
can be either seen as a pair (A, f) of a subset A ⊆ X and a total function
f : A −→ Y , or as a functional relation f ⊆ X × Y , that is, a relation such that
for every x ∈ X, there is at most one y ∈ Y with (x, y) ∈ f . We will freely use
both views in the following. For two partial maps f, g : X −→ Y , we denote by
f ≡ g if and only if for every x ∈ X such that f(x) and g(x) are defined, then

Trees in Partial Higher Dimensional Automata 229

f(x) = g(x). Note that this is not equality, but equality on the intersection of the
domains. We also write f ⊆ g if and only if f is include in g as a relation, that is,
if and only if, for every x ∈ X such that f(x) is defined, then g(x) is defined and
f(x) = g(x). By a lax functor F : C ⇀ pSet, we mean the following data [20]:

– for every object c of C, a set Fc,
– for every morphism i : c −→ c′, a partial function Fi : Fc −→ Fc′

satisfying that F idc = idFc and Fj ◦ Fi ⊆ F (j ◦ i).
The point is that partial precubical sets as defined in [7] do not satisfy the

second condition, while they should. In addition, this definition will authorise
a square to have vertices, that is, that some ∂∂ are defined, while having no
edge, that is, no ∂ defined. This may be useful to define paths as discrete traces
in [8] (that we will call shortcuts later), that is, paths that can go directly
from a point to a square for example. Observe also that if j ◦ i = j′ ◦ i′ then
Fj ◦ Fi ≡ Fj′ ◦ Fi′, which gives us the local equations from [7]. A partial
precubical set X is then a lax functor F : �op ⇀ pSet. It becomes harder to
describe explicitly what a partial precubical set is, since we cannot restrict to
the ∂α

i anymore. It is a collection of sets (Xn)n∈N together with a collection of
partial functions (∂α1,...,αk

i1<...<ik
: Xn+k −→ Xn) satisfying the inclusions ∂β1,...,βm

j1<...<jm
◦

∂α1,...,αn

i1<...<in
⊆ ∂

γ1,...,γn+m

k1<...<kn+m
where the ks and γs are defined as follows. (k1 < . . . <

kn+m; γ1, . . . , γn+m) = (i1 < . . . < in;α1, . . . , αn) 	 (j1 < . . . < jm;β1, . . . , βm)
where 	 is defined by induction on n + m:

– if n = 0, ε 	 (j1 < . . . < jm;β1, . . . , βm) = (j1 < . . . < jm;β1, . . . , βm),
– if m = 0, (i1 < . . . < in;α1, . . . , αn) 	 ε = (i1 < . . . < in;α1, . . . , αn),
– if i1 ≤ j1, (i1 < . . . < in;α1, . . . , αn) 	 (j1 < . . . < jm;β1, . . . , βm) =

(i1;α1).((i2 < . . . < in;α2, . . . , αn) 	 (j1 + 1 < . . . < jm + 1;β1, . . . , βm)),
– if i1 > j1, (i1 < . . . < in;α1, . . . , αn) 	 (j1 < . . . < jm;β1, . . . , βm) =

(j1;β1).((i1 < . . . < in;α1, . . . , αn) 	 (j2 < . . . < jm;β2, . . . , βm)).

A function-valued op-lax transformation [20] from F : C ⇀ pSet to
G : C ⇀ pSet is a collection (fc)c∈Ob(C) of total functions such that for every
i : c −→ c′, fc′ ◦ F (i) ⊆ G(i) ◦ fc. A morphism of partial precubical sets
from X to Y is then a function-valued op-lax transformation. In other words,
this is a collection of total functions (fn : Xn −→ Yn)n∈N satisfying the equations
fn◦∂α1,...,αk

i1<...<ik
⊆ ∂α1,...,αk

i1<...<ik
◦fn+k. Partial precubical sets and morphisms of partial

precubical sets form a category that we denote by ppCub. pCub is a full
subcategory of ppCub. In particular, the precubical sets ∗ and L are partial
precubical sets. A partial HDA X on L is a partial precubical set, also noted
X, together with a specified point, the initial state i ∈ X0 and a morphism
of ppCub, the labelling functions, (λn : Xn −→ Ln)n∈N. A morphism of
pHDA from X to Y is a morphism f of partial precubical sets from X to Y
such that f0(iX) = iY and λX = λY ◦ f . Partial HDA on L and morphisms of
partial HDA form a category that we note pHDAL. In other words, this is the
double slice category ∗/ppCub/L.

230 J. Dubut

2.4 Completion of a pHDA

Let us describe how it is possible to construct a HDA from a pHDA X, by
‘completing’ X, that is, by adding the faces that are missing, and by connecting
the faces that are not. Let

Yn = {((i1 < . . . < ik;α1, . . . , αk), x) | x ∈ Xn+k ∧ ik ≤ n + k}

Y = (Yn)n∈N is intuitively the collection of all abstract faces of all cubes of X,
that is, pairs of a cube and all possible ways to define a face from it. Of course,
some of those are the same, since there are several ways to describe a cube as
the face of some other cube. Define ∼ as the smallest equivalence relation such
that:

– if ∂α1,...,αk

i1<...<ik
(x) is defined, then

((i1 < . . . < ik;α1, . . . , αk), x) ∼ (ε, ∂α1,...,αk

i1<...<ik
(x)).

This means that, if a face of a cube exists in X, this face is identified with
both abstract faces (ε, ∂α1,...,αk

i1<...<ik
(x)) (i.e., the cube ∂α1,...,αk

i1<...<ik
(x) itself) and

((i1 < . . . < ik;α1, . . . , αk), x) (i.e., the face of x, which consists of taking the
(ik, αk) face, then the (ik−1, αk−1) face, and so on).

– if ((i1 < . . . < ik;α1, . . . , αk), x) ∼ ((j1 < . . . < jl;β1, . . . , βl), y), then ((i1 <
. . . < ik;α1, . . . , αk) 	 (i, α), x) ∼ ((j1 < . . . < jl;β1, . . . , βl) 	 (i, α), y). This
means that if two abstract faces coincide, then taking both their (i, α) face
gives two abstract faces that also coincide.
Let χ(X)n = Yn/ ∼ and we denote by � (i1 < . . . < ik;α1, . . . , αk), x

the equivalence class of ((i1 < . . . < ik;α1, . . . , αk), x) modulo ∼. We define
the i-face map as ∂α

i (� (i1 < . . . < ik;α1, . . . , αk), x
) = � (i1 < . . . <
ik;α1, . . . , αk) 	 (i, α), x
, the initial state as � ε, i
 and the labelling
function as λ(� (i1 < . . . < ik;α1, . . . , αk), x
) = δα1

i1
◦ . . . ◦ δαk

ik
(λ(x)).

Theorem 1. χ is a well-defined functor and is the left adjoint of τ , the injec-
tion of HDAL into pHDAL. Furthermore, HDAL is a reflective subcategory of
pHDAL.

Now, we can define the geometric realisation of a pHDA X as the subspace
of the realisation of χ(X) consisting of points whose carrier is of the form �
ε, x
 for some x ∈ X. This really corresponds to the drawings we have been
using to depict pHDA until now.

3 Paths in Partial Higher Dimensional Automata

Executions of HDA are defined using the notion of paths. Those paths describe
the succession of starting and finishing of actions in a HDA. For example, a
HDA can start an action then start another at the same time, and finish the two

Trees in Partial Higher Dimensional Automata 231

actions. This sequence is then not just a sequence of 1-dimensional transitions,
since some actions can be made at the same time, but a sequence of hypercubes
corresponding to the evolution of the state of the system. We will formalise this
idea in Sect. 3.2, and we will see in particular that those paths can be encoded
in the category pHDAL (while it is not possible in the category HDAL) as
morphisms from particular pHDA, called path shapes. In Sect. 3.1, let us first
start by recalling the general framework of [17].

3.1 Path Category, Open Maps, Coverings

In the general framework of [17], we start with a category M of systems, together
with a subcategory P of execution shapes. For example, keep in mind the case
where M is the category of transition systems and P is the full subcategory of
finite linear systems. One interesting remark about this case is that executions
of a given systems are in bijective correspondance with morphisms from a finite
linear system to this given system. This means that to reason about behaviours
of such systems, it is enough to reason about morphisms and execution shapes.

Y ′

X ′

Y

X

g

y

f

x

θ

This idea was formalised by describing precisely which
morphisms are witnesses for the existence of a bisimula-
tion between systems. This description uses right lifting
properties: we say that a morphism f : X −→ Y has the
right lifting property with respect to g : X ′ −→ Y ′

if for every x : X ′ −→ X and y : Y ′ −→ Y such that
f ◦ x = y ◦ g, there exists θ : Y ′ −→ X such that x = θ ◦ g
and f ◦ θ = y. For example, let us assume that f is a
morphism of transition systems and that X ′ and Y ′ are finite linear systems.
Then x (resp. y) is the same as an execution in X (resp. Y), and f ◦ x = y ◦ g
means that the execution y is a extension of the image of the execution x by f .
The right lifting property means that the longer execution y of Y can be lifted
to a longer execution θ of X, that is, θ is an extension of x and the image of
θ by f is y. This property of lifting longer executions is precisely the property
needed on a morphism to make its graph relation a bisimulation. They are also
very similar to morphisms of coalgebras [16]. We call P-open (or simply open
when P is clear), a morphism that has the right lifting property with respect
to every morphism in P. From open maps, it is possible to describe similarity
and bismilarity as the existence of a span of morphisms/open maps, and many
kinds of bisimilarities can be captured in this way [17]. An open map is said to
be a P-covering (or simply covering) if furthermore the lifts in the right lifting
properties are unique. Being a covering is a very strong requirement, as they
correspond to partial unfolding of a system.

232 J. Dubut

3.2 Encoding Paths in pHDA

In this section, we describe the classical notion of execution of HDA from [12],
extended to partial HDA in [7], defined using the notion of path. We then show

no
t

de
fin

ed not defined

•

×

•

•

0 1

2

α

β

γ
c

In red: path

π = 0
1,0−−→ β

2,0−−→ c
1,1−−→ γ

in the pHDA X

that those executions can be encoded as an execution
shapes subcategory, as in the general framework of [17],
proving in particular that paths are in bijective corre-
spondance with a class of morphisms. A path π of a
HDA X is a sequence i = x0

j1,α1−−−→ x1
j2,α2−−−→ . . .

jn,αn−−−−→
xn where xk ∈ X, jk > 0 and αk ∈ {0, 1} are such that
for every k:

– if αk = 0, then xk−1 = ∂0
jk
(xk),

– if αk = 1, then xk = ∂1
jk
(xk−1).

This definition can easily be extended to pHDA, by requiring that the jk-face
maps are defined on xk or xk−1. A natural property of executions and morphisms
is that morphisms map executions to executions. This is the case here (while it
is not for [7], e.g., the split segment):

Proposition 1. If f : X −→ Y is a map of pHDA and if π = x0
j1,α1−−−→ x1

j2,α2−−−→
. . .

jn,αn−−−−→ xn is a path in X, then π′ = f(x0)
j1,α1−−−→ f(x1)

j2,α2−−−→ . . .
jn,αn−−−−→ f(xn)

is a path in Y .

One advantage of considering pHDA instead of HDA is that paths can be
encoded in pHDA, which is not really possible in HDA. It is done as follows. A
spine σ is a sequence (0, ε) = (d0, w0)

j1,α1−−−→ (d1, w1)
j2,α2−−−→ . . .

jn,αn−−−−→ (dn, wn)
where jk > 0, dk ∈ N, wk ∈ Ldk and αk ∈ {0, 1} are such that:

– if αk = 0, then dk−1 = dk − 1, δjk(wk) = wk−1 and jk ≤ dk,
– if αk = 1, then dk = dk−1 − 1, δjk(wk−1) = wk and jk ≤ dk−1.

no
t

de
fin

ed
not

defined

no
t

de
fin

ed

not defined

n
ot

d
efi

n
ed

•

×

×

×

ε a

ab b

path shape of the spine

σ = (0, ε)
1,0−−→ (1, a)

2,0−−→ (2, ab)
1,1−−→ (1, b)

A path π has a underlying spine σπ by mapping
xk to the pair of its dimension and its label. A spine
σ induces a pHDA Bσ as follows:

– Bσp = {k ∈ {0, . . . , n} | dk = p},
– the partial face maps ∂α1,...,αn

i1<...<in
are the smallest

(as relations ordered by inclusion) partial func-
tions such that:

• if αk = 0, then ∂0
jk
(k) = k − 1,

• if αk = 1, then ∂1
jk
(k − 1) = k,

• ∂β1,...,βm

j1<...<jm
◦ ∂α1,...,αn

i1<...<in
⊆ ∂

γ1,...,γn+m

k1<...<kn+m
, for

(k1, . . . , kn+m; γ1, . . . , γn+m) = (i1, . . . , in;
α1, . . . , αn) 	 (j1, . . . , jm;β1, . . . , βm).

Trees in Partial Higher Dimensional Automata 233

– the initial state is 0,
– the labelling functions λn map k to wk.

By a path shape, we mean such a pHDA Bσ. The set SpineL of spines can
be partially ordered by prefix. B can then be extended to an embedding from
SpineL to pHDAL. We note PSL the image of this embedding, i.e., the full
sub-category of path shapes.

Proposition 2. There is a bijection between paths in a pHDA X and morphisms
of pHDA from a path shape to X.

Again, this is not true with the definition of morphisms from [7] (e.g., the
split segment). As an example, the red path π above corresponds to a morphism
from the path shape Bσ to X.

4 Trees and Unfolding in pHDA

In this section, we introduce our notion of trees. Following [4], we consider trees
as colimits (or glueings of paths). Section 4.1 is dedicated to proving that those
colimits actually exist, by giving an explicit construction of those. From this
explicit construction, we will describe the kind of unique path properties that are
satisfied by those trees in Sect. 4.2. Starting by showing, that the strict unicity of
path fails, we then describe a notion of homotopy, the confluent homotopy, which
is weaker than the one from [12], for which every tree has the property that there
is exactly one homotopy class of paths form the initial state to any state. We will
also see that, because the face maps of trees are defined in a local way, they do
not have any shortcuts, that is, paths that ‘skip’ dimensions, for example, going
from a point to a square without going through a segment. Finally, in Sect. 4.3,
we will prove that those two properties – the unicity of paths modulo confluent
homotopy, and the non-existence of shortcuts – completely characterise trees.
This proof will use a suitable notion of unfolding of pHDA, showing furthermore
that trees form a coreflective subcategory of pHDA.

4.1 Trees, as Colimits of Paths in pHDA

In this section, we give an explicit construction of colimits of diagrams with val-
ues in path shapes. Those will be our first definition of trees in pHDA, following
[4]. Let D : C −→ PSL be a small diagram with values in PSL, that is, a functor
from C to PSL. Let us use some notations: for every object u of C, Du = Bσu

with σu = (du
0 , wu

0)
ju
1 ,αu

1−−−−→ (du
1 , wu

1)
ju
2 ,αu

2−−−−→ . . .
ju
lu

,αu
lu−−−−−→ (du

lu
, wu

lu
). The definition

of the colimit colD will be in two steps. The first step consists in putting all the
paths Du side-by-side, and in glueing them together, along the morphisms Df ,
for every morphism f of C. This is done as follows. Define (Xn)n∈N to be:

– X0 = {(u, k) | u ∈ C, k ≤ lu ∧ du
k = 0} � {ε},

– Xn = {(u, k) | u ∈ C, k ≤ lu ∧ du
k = n}.

234 J. Dubut

We quotient Xn by the smallest equivalence relation ∼ (for inclusion) such that:

– for every u, (u, 0) ∼ ε,
– if i : u −→ v ∈ C, and if k ≤ lu, lv, then (u, k) ∼ (v, k).

We denote by Yn the quotient Xn/ ∼, and by [u, k] the equivalence class of (u, k)
modulo ∼.

At this stage, we still do not have the colimit because it is not possible to
define the face maps. Let us consider the following example.

(0, ε)
1,0−−→ (1, b)

1,0−−→ (2, ab)1,1−−→ (1, b)
1,1−−→ (0, ε)

B •

×

×

•β1

(0, ε)
1,0−−→ (1, b)

1,0−−→ (2, ab)

A •

×

×

×
(0, ε)

1,0−−→ (1, b)
1,0−−→ (2, ab)2,1−−→ (1, a)
1,1−−→ (0, ε)

C•

×

×

•β2

•

×

×

•

D
α

β�
ch

A, B and C are path shapes, and we would like to compute their pushout.
The expected outcome is D, since we must identify the three squares by the
previous construction. The problem is that the previous construction does not
identify β1 and β2. Those two must be identified because they are both the top
right corner of the same square (after identification). We hence need to quotient
a little more to be able to define the face maps, as follows. Define Zn to be the
quotient of Yn by the smallest equivalence relation ≈ such that if there are two
sequences u0, . . . , ul and v0, . . . , vl such that:

– [u0, k] ≈ [v0, k],
– for every 0 ≤ s ≤ l, αus

k+1+s = αvs

k+1+s = 1,
– for every 0 ≤ s < l, [us, k + s + 1] ≈ [us+1, k + s + 1] and [vs, k + s + 1] ≈

[vs+1, k + s + 1],
– (ju0

k+1; 1) 	 . . . 	 (jul

k+l+1; 1) = (jv0
k+1; 1) 	 . . . 	 (jvl

k+l+1; 1),
then, [ul, k+ l+1] ≈ [vl, k+ l+1]. colD is the pHDA ZN with the face maps
being the smallest relations for inclusion such that:

– if αu
k = 0, then ∂0

ju
k
(〈u, k〉) is defined and is equal to 〈u, k − 1〉,

– if αu
k+1 = 1 then ∂1

ju
k
(〈u, k〉) is defined and is equal to 〈u, k + 1〉,

– ∂β1,...,βm

j1<...<jm
◦ ∂α1,...,αn

i1<...<in
⊆ ∂

γ1,...,γn+m

k1<...<kn+m
, for (k1, . . . , kn+m; γ1, . . . , γn+m) =

(i1, . . . , in;α1, . . . , αn) 	 (j1, . . . , jm;β1, . . . , βm).

The initial state is 〈ε〉 and the labelling λ : colD −→ L maps 〈u, k〉 to wu
k .

Trees in Partial Higher Dimensional Automata 235

Proposition 3. colD is the colimit of D in pHDAL

By tree we mean any pHDA that is the colimit of a diagram with values in
path shapes. We denote by TrL the full subcategory of trees.

4.2 The Unique Path Properties of Trees

Failure of the Unicity of Paths. Let us consider the pushout square above
again. In particular, the pHDA on the bottom-right corner is a tree, by definition.
However, there are two paths from α to β (in red and blue). This actually comes
from the fact that we needed to identify β1 and β2 to be able to define the face
maps. This means that trees do not have the unique path property.

Confluent Homotopy. A careful reader may have observed that the only dif-
ference between the two previous paths is that some future faces are swapped.
Actually, this is the only obstacle for the unicity of paths for trees: there is a
unique path modulo equivalence of paths that permutes arrows of the form

,1−−→.
That is what we call confluent homotopy. This confluent homotopy will be
defined by restricting the elementary homotopies of [12] to be of only one type
out of the four possible, which means our notion of homotopy makes fewer paths
equivalent than the one from [12].

•

•

•

•
π′

π

�
ch

We say that a path π = x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn,αn−−−−→

xn is elementary confluently homotopic to a path

π′ = x′
0

j′
1,α′

1−−−→ x′
1

j′
2,α′

2−−−→ . . .
j′
n,α′

n−−−−→ x′
n, and denote by

π �ch π′, if and only if there are 0 < s < t ≤ n such
that:

– for all k < s or k ≥ t, xk = x′
k,

– for all k < s or k > t, jk = j′
k and αk = α′

k,
– for all s ≤ k ≤ t, αk = α′

k = 1,
– (js, αs) 	 . . . 	 (jt, αt) = (j′

s, α
′
s) 	 . . . 	 (j′

t, α
′
t).

We denote by ∼ch, and call confluent homotopy, the reflexive transitive clo-
sure of �ch.

Lemma 1. If X is a tree, then for every element (of any dimension) x of X,
there is exactly one path modulo confluent homotopy from the initial state to x.

Shortcuts. The face maps of path shapes and of the colimits we computed
in Sect. 4.1 are of a very particular form: we start by defining the ∂α

j and we
extend this definition to general ∂α1,...,αn

j1<...<jn
. In a way, they are locally defined, and

then extended to higher face maps. This means in particular that, in addition
to having unique paths modulo confluent homotopy, they also do not have any
‘shortcut’. A possible shortcut can be defined as a generalisation of paths, in
which we allow to make transitions that go, for example, from a point to a square
or to a cube, not only to segments, a shortcut being such a possible shortcut
which is not confluently homotopic to a path. Those shortcuts may occur in a

236 J. Dubut

pHDA, even if it has the unique path property. Concretely, by shortcut we mean
the following situation: the face ∂α1,...,αn

i1<...<in
(x) is defined, but there is no sequence

(j1;β1) 	 . . . 	 (jn;βn) = (i1 < . . . < in;α1, . . . , αn) such that ∂αn
jn

◦ . . . ◦ ∂α1
j1

(x)
is defined. By local-definedness of the face maps:

Lemma 2. Trees do not have any shortcuts.

Trees. We say that a pHDA has the unique path property modulo con-
fluent homotopy if it has no shortcut, and there is exactly one class of paths
modulo confluent homotopy from the initial state to any state. Given such a
pHDA X and an element x of X, by depth of x we mean the length of a path
from the initial state to x in X. Since homotopic paths have the same length,
this is uniquely defined. We deduce from the previous discussions that:

Proposition 4. Trees have unique path property modulo confluent homotopy.

In the following, we will prove the converse: trees, defined as colimits of path
shapes are exactly those pHDA that have the unique path property modulo con-
fluent homotopy. This will be done by proving that such a pHDA X is isomorphic
to its unfolding. A question that occurs now is the following. Much as the general
framework of [4], trees are colimits of paths. Everything tends to work well when
those trees have a nice property, which we called accessibility, intuitively, that
the colimit process do not ‘create’ paths. This property is actually deeply related
to the unicity of paths. Since this unicity fails in the case of pHDA, accessibility
fails too. However, an accessibility modulo confluent homotopy holds: the colimit
process in pHDA do not create confluent homotopy classes of paths.

4.3 Trees Are Unfoldings

We are now constructing our unfolding U(X) of a pHDA X by giving an explicit
definition, similar to [6,11], and proving that this is a tree. We will prove that
there is a covering unfX : U(X) −→ X, which in particular means that the
unfolding U(X) is PSL-bisimilar (in the general sense of [17]) to X, and that
this covering is actually an isomorphism when X has the unique path property
modulo confluent homotopy.

Unfolding of a pHDA. Let us start with a few notations. Given a path π =
x0

j1,α1−−−→ x1
j2,α2−−−→ . . .

jn,αn−−−−→ xn we note e(π) = xn, l(π) = n and π−k =

x0
j1,α1−−−→ x1

j2,α2−−−→ . . .
jn−k,αn−k−−−−−−−→ xn−k. Given a pHDA X, its unfolding is the

following pHDA:

– U(X)n is the set of equivalence classes [π] of paths modulo confluent homo-
topy, such that e(π) is of dimension n,

– the face maps are the smallest relations for inclusion such that:
• ∂1

i (α) = [π
i,1−−→ ∂1

i (e(π))], for any π ∈ α such that ∂1
i (e(π)) is defined,

• ∂0
i (α) = [π−1] for any π ∈ α such that π = π−1

i,0−−→ e(π),

Trees in Partial Higher Dimensional Automata 237

• ∂β1,...,βm

j1<...<jm
◦ ∂α1,...,αn

i1<...<in
⊆ ∂

γ1,...,γn+m

k1<...<kn+m
, for (k1, . . . , kn+m; γ1, . . . , γn+m) =

(i1, . . . , in;α1, . . . , αn) 	 (j1, . . . , jm;β1, . . . , βm).
– the initial state is [i],
– the labelling is given by λ(α) = λ(e(π)) for π ∈ α.

Following ideas from [4] again, the unfolding can be seen as the glueing of all pos-
sible executions of a system, but with care needed to handle confluent homotopy.
Concretely:

Proposition 5. The unfolding of a pHDA is a tree.

We can also define unfX : U(X) −→ X as the function that maps [π] to e(π).

Proposition 6. unfX is a covering, and so, U(X) is PSL-bisimilar to X.

The Unique Path Property Characterises Trees. When X has exactly one
class of paths modulo confluent homotopy from the initial state to any state, it
is possible to define a function ηX : X −→ U(X) that maps any element x of
X to the unique confluent homotopy class to x. When furthermore X does not
have shortcuts, then η is actually a morphism of pHDA.

Proposition 7. When X has the unique path property modulo confluent homo-
topy, then ηX is the inverse of unfX . In particular, X is a tree.

Together with Proposition 4, this implies the following:

Theorem 2. Trees are exactly the pHDA that have the unique path property
modulo confluent homotopy.

Another consequence is that this isomorphism ηX is actually natural (in the
categorical sense) and is part of an adjunction, which implies that trees form a
coreflective subcategory of pHDA:

Corollary 1. U extends to a functor, which is the right adjoint of the embedding
ι : TrL −→ pHDAL. Furthermore, this is a coreflection.

5 Cofibrant Objects

Cofibrant objects are another type of ‘simple objects’, coming from homotopy
theory, more particularly the language of model categories from [24]. Those cofi-
brant objects are those whose unique morphism from the initial object is a cofi-
bration. Intuitively (intuition which holds at least in cofibrantly generated model
structures [15]), this means that cofibrant objects are those objects constructed
from ‘nothing’, using only very basic constructions (generators of cofibrations).
In the case of the classical model structure on topological spaces (Kan-Quillen),
those spaces are those constructed from the empty space by adding ‘cells’, which
produces what is called CW-complexes. In this section, we want to mimic this
idea with trees: trees are those pHDA constructed from an initial state by only
extending paths. We also want to emphasize that much as CW-complexes gives
a kind of homotopy type of a space, trees gives a concurrency type of a pHDA, in
the sense that there is a canonical way to produce an equivalent cofibrant object
out of any object, which is called the cofibrant replacement in homotopy
theory. In concurrency theory, this is the unfolding.

238 J. Dubut

5.1 Cofibrant Objects in pHDAL

∗ Y

X Z

!

f

g

!
h

Following the language of model structures from [24], we say
that a pHDA X is cofibrant if for every PSL-open morphism
f : Y −→ Z and every morphism g : X −→ Z, there is a
morphism h : X −→ Y , such that f ◦ h = g. That is, a partial
HDA X is cofibrant if and only if every PSL-open morphism
has the right lifting property with respect to the unique morphism from ∗ to X.

5.2 Cofibrant Objects Are Exactly Trees

In this section, we would like to prove the following:

Theorem 3. The cofibrant objects are exactly trees.

∗ U(X)

X X

!

unf

idX

! h

Let us start by giving the idea of the proof of the fact
that cofibrant objects are trees. By Proposition 6, unfX is
a covering, so is open. This means that for every cofibrant
object X, there is a morphism h : X −→ U(X) such that
unfX ◦ h = idX , that is, X is a retract of its unfolding. Since
we know that the unfolding is a tree by Proposition 5, it is enough to observe
the following:

Lemma 3. A retract of a tree is a tree.

Intuitively, a pHDA is the retract of a tree only when it is obtain by retracting
branches. This can only produce a tree. For the converse:

Proposition 8. A tree is a cofibrant object. Furthermore, if f : Y −→ Z is a
covering, then the lift h : X −→ Y is unique.

The lift h is constructed by induction as follows. We define Xn as the
restriction of X to elements whose depth is smaller than n, and the face maps
∂α1,...,αm

j1<...<jm
(x) are defined if and only if ∂α1,...,αm

j1<...<jm
(x) is defined in X and belongs

to Xn. We then construct hn : Xn −→ Y using the unique path property mod-
ulo confluent homotopy, in a natural way (in the categorical meaning), i.e., such
that hn ◦ κn = hn−1, where κn : Xn−1 −→ Xn is the inclusion. h is then the
inductive limit of those hn. This proof can be seen as a small object argument.

5.3 The Unfolding Is Universal

As an application of the previous theorem, we would like to prove that the
unfolding is universal. As in the case of covering spaces in algebraic topology, a
covering corresponds to a partial unrolling of a system, in the sense that we can
unroll some loops or even partially unroll a loop (imagine for example executing
a few steps of a while-loop). In this sense, we can describe the fact that a covering
unrolls more than another one, and that, an unfolding is a complete unrolling:
since the domain is a tree, it is impossible to unroll more. Actually, much as the

Trees in Partial Higher Dimensional Automata 239

topological and the groupoidal cases (see [18] for example), unfoldings are the
only such maximal unrollings among coverings: they are initial among coverings,
that is why we call them ‘universal’. In a way, this says that our definition of
unfolding is the only reasonable one. Concretely, we say that a PSL-covering is
universal if its domain is a tree.

Corollary 2. If f : Y −→ X is a universal covering, then for every covering
g : Z −→ X there is a unique map h : Y −→ X such that f = g ◦ h. Further-
more, h is itself a covering. Consequently, the universal covering is unique up-to
isomorphism, and is given by the unfolding.

This whole story is similar to the universal covering of a topological space:
just replace pHDA by spaces and trees by simply-connected spaces [2].

6 Conclusion and Future Work

In this paper, we have given a cleaner definition of partial precubical sets and
partial Higher Dimensional Automata, as they really correspond to collections
of cubes with missing faces. From this categorical definition, we derived that
pHDA can be completed, giving rise to a geometric realisation. We also describe
the first premisses of a homotopy theory of the concurrency of pHDA where the
cofibrant objects are trees, and replacement is the unfolding. As a future work,
we could look at wider class of paths, typically allowing shortcuts as paths, or
introducing general homotopies in the path category, which is possible because
we can encode those inside the category of pHDA. Another direction would be
to continue the description of this homotopy theory, to see if it corresponds to
some kind of Quillen’s model structure, or at least to some weaker version (e.g.,
category of cofibrant objects).

References

1. Bednarczyk, M.A.: Categories of asynchronous systems. Ph.D. thesis, University
of Sussex (1987)

2. tom Dieck, T.: Algebraic Topology. Textbooks in Mathematics. European Mathe-
matical Society, Zürich (2008)

3. Dubut, J.: Directed homotopy and homology theories for geometric models of true
concurrency. Ph.D. thesis, ENS Paris-Saclay (2017)

4. Dubut, J., Goubault, E., Goubault-Larrecq, J.: Bisimulations and unfolding in
P-accessible categorical models. In: Proceedings of the 27th International Confer-
ence on Concurrency Theory (CONCUR 2016). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 59, pp. 1–14. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2016)

5. Fahrenberg, U.: A category of higher-dimensional automata. In: Sassone, V. (ed.)
FoSSaCS 2005. LNCS, vol. 3441, pp. 187–201. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5 12

6. Fahrenberg, U., Legay, A.: History-preserving bisimilarity for higher-dimensional
automata via open maps. Electron. Notes Theor. Comput. Sci. 298, 165–178 (2013)

https://doi.org/10.1007/978-3-540-31982-5_12
https://doi.org/10.1007/978-3-540-31982-5_12

240 J. Dubut

7. Fahrenberg, U., Legay, A.: Partial higher-dimensional automata. In: CALCO 2015,
pp. 101–115 (2015)

8. Fajstrup, L.: Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math.
35(2), 188–206 (2005)

9. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed Alge-
braic Topology and Concurrency. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-15398-8

10. Gaucher, P.: Towards a homotopy theory of higher dimensional transition systems.
Theory Appl. Categ. 25, 295–341 (2011)

11. van Glabbeek, R.J.: Bisimulations for higher dimensional automata, June 1991.
http://theory.stanford.edu/∼rvg/hda

12. van Glabbeek, R.J.: On the expresiveness of higher dimensional automata:
(extended abstract). Electron. Notes Theor. Comput. Sci. 128(2), 5–34 (2005)

13. Goubault, E.: Géométrie du parallélisme. Ph.D. thesis, Ecole Polytechnique (1995)
14. Grandis, M.: Directed Algebraic Topology: Models of Non-Reversible Worlds. New

Mathematical Monographs, vol. 13. Cambridge University Press, Cambridge (2009)
15. Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys

and Monographs, vol. 99. American Mathematical Society, Providence (2003)
16. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-

vation. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, New York (2016)

17. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput.
127(2), 164–185 (1996)

18. May, J.P.: A Concise Course in Algebraic Topology. Chicago Lectures in Mathe-
matics. University of Chicago Press, Chicago (1999)

19. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

20. Niefield, S.: Lax presheaves and exponentiability. Theory Appl. Categ. 24(12),
288–301 (2010)

21. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13(1), 85–108 (1981)

22. Nielsen, M., Sassone, V., Winskel, G.: Relationships between models of concur-
rency. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993.
LNCS, vol. 803, pp. 425–476. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58043-3 25

23. Pratt, V.: Modeling concurrency with geometry. In: Proceedings of the 18th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), pp. 311–322, January 1991

24. Quillen, D.G.: Homotopical Algebra. LNM, vol. 43. Springer, Heidelberg (1967).
https://doi.org/10.1007/BFb0097438

25. Shields, M.W.: Concurrent machines. Comput. J. 28(5), 449–465 (1985)

https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1007/978-3-319-15398-8
http://theory.stanford.edu/~rvg/hda
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-58043-3_25
https://doi.org/10.1007/3-540-58043-3_25
https://doi.org/10.1007/BFb0097438

Trees in Partial Higher Dimensional Automata 241

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

The Bernays-Schönfinkel-Ramsey Class
of Separation Logic on Arbitrary Domains

Mnacho Echenim1, Radu Iosif2, and Nicolas Peltier1(B)

1 Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
Nicolas.peltier@imag.fr

2 Univ. Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France

Abstract. This paper investigates the satisfiability problem for Sepa-
ration Logic with k record fields, with unrestricted nesting of separating
conjunctions and implications, for prenex formulæ with quantifier prefix
∃∗∀∗. In analogy with first-order logic, we call this fragment Bernays-
Schönfinkel-Ramsey Separation Logic [BSR(SLk)]. In contrast to existing
work in Separation Logic, in which the universe of possible locations is
assumed to be infinite, both finite and infinite universes are considered.
We show that, unlike in first-order logic, the (in)finite satisfiability prob-
lem is undecidable for BSR(SLk). Then we define two non-trivial subsets
thereof, that are decidable for finite and infinite satisfiability respectively,
by controlling the occurrences of universally quantified variables within
the scope of separating implications, as well as the polarity of the occur-
rences of the latter. Beside the theoretical interest, our work has natural
applications in program verification, for checking that constraints on the
shape of a data-structure are preserved by a sequence of transformations.

1 Introduction

Separation Logic [10,14], or SL, is a logical framework used in program ver-
ification to describe properties of the dynamically allocated memory, such as
topologies of data structures (lists, trees), (un)reachability between pointers,
etc. In a nutshell, given an integer k ≥ 1, the logic SLk is obtained from the first-
order theory of a finite partial function h : U ⇀ Uk called a heap, by adding two
substructural connectives: (i) the separating conjunction φ1 ∗ φ2, that asserts a
split of the heap into disjoint heaps satisfying φ1 and φ2 respectively, and (ii)
the separating implication or magic wand φ1 −∗ φ2, stating that each extension
of the heap by a heap satisfying φ1 must satisfy φ2. Intuitively, U is the universe
of possible of memory locations (cells) and k is the number of record fields in
each memory cell.

The separating connectives ∗ and −∗ allow concise definitions of program
semantics, via weakest precondition calculi [10] and easy-to-write specifications
of recursive linked data structures (e.g. singly- and doubly-linked lists, trees with
linked leaves and parent pointers, etc.), when higher-order inductive definitions
are added [14]. Investigating the decidability and complexity of the satisfiability

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 242–259, 2019.
https://doi.org/10.1007/978-3-030-17127-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_14

The Bernays-Schönfinkel-Ramsey Class 243

problem for fragments of SL is of theoretical and practical interest. In this paper,
we consider prenex SL formulæ with prefix ∃∗∀∗. In analogy with first-order logic
with equality and uninterpreted predicates [12], we call this fragment Bernays-
Schönfinkel-Ramsey SL [BSR(SLk)].

As far as we are aware, all existing work on SL assumes that the universe (set
of available locations) is countably infinite. This assumption is not necessarily
realistic in practice since the available memory is usually finite, although the
bound depends on the hardware and is not known in advance. The finite universe
hypothesis is especially useful when dealing with bounded memory issues, for
instance checking that the execution of a program satisfies its postcondition,
provided that there are sufficiently many available memory cells. In this paper
we consider both the finite and infinite satisfiability problems. We show that
both problems are undecidable for BSR(SLk) (unlike in first-order logic) and
that they become PSPACE-complete under some additional restrictions, related
to the occurrences of the magic wand and universal variables:

1. The infinite satisfiability problem is PSPACE-complete if the positive occur-
rences of −∗ (i.e., the occurrences of −∗ that are in the scope of an even number
of negations) contain no universal variables.

2. The finite satisfiability problem is PSPACE-complete if there is no positive
occurrence of −∗ (i.e., −∗ only occurs in the scope of an odd number of
negations).

Reasoning on finite domains is more difficult than on infinite ones, due to pos-
sibility of asserting cardinality constraints on unallocated cells, which explains
that the latter condition is more restrictive than the former one. Actually, the
finite satisfiability problem is undecidable even if there is only one positive occur-
rence of a −∗ with no variable within the scope of −∗. These results establish sharp
decidability frontiers within BSR(SLk).

Undecidability is shown by reduction from BSR first-order formulæ with two
monadic function symbols. To establish the decidability results, we first show
that every quantifier-free SL formula can be transformed into an equivalent
boolean combination of formulæ of some specific patterns, called test formulæ.
This result is interesting in itself, since it provides a precise and intuitive char-
acterization of the expressive power of SL: it shows that separating connectives
can be confined to a small set of test formulæ. Afterward, we show that such test
formulæ can be transformed into first-order formulæ. If the above conditions (1)
or (2) are satisfied, then the obtained first-order formulæ are in the BSR class,
which ensures decidability. The PSPACE upper-bound relies on a careful analy-
sis of the maximal size of the test formulæ. The analysis reveals that, although
the boolean combination of test formulæ is of exponential size, its components
(e.g., the conjunctions in its dnf) are of polynomial size and can be enumerated
in polynomial space. For space reasons, full details and proofs are given in a
technical report [8].

Applications. Besides theoretical interest, our work has natural applications in
program verification. Indeed, purely universal SL formulæ are useful to express

244 M. Echenim et al.

pre- or post-conditions asserting “local” constraints on the shape of the data
structures manipulated by a program. Consider the atomic proposition x �→
(y1, . . . , yk) which states that the value of the heap at x is the tuple (y1, . . . , yk)
and there is no value, other than x, in the domain of h. With this in mind, the
following formula describes a well-formed doubly-linked list:

∀x1, x2, x3, x4, x5 . x1 �→ (x2, x3) ∗ x2 �→ (x4, x5) ∗ � ⇒ x5 ≈ x1 ∧ ¬x3 ≈ x4 (1)

Such constraints could also be expressed by using inductively defined predicates,
unfortunately checking satisfiability of SL formulæ, even of very simple fragments
with no occurrence of −∗ in the presence of user-defined inductive predicates is
undecidable, unless some rather restrictive conditions are fulfilled [9]. In contrast,
checking entailment between two universal formulæ boils down to checking the
satisfiability of a BSR(SLk) formula, which can be done thanks to the decidability
results in our paper.

The separating implication (magic wand) seldom occurs in such shape con-
straints. However, it is useful to describe the dynamic transformations of the
data structures, as in the following Hoare-style axiom, giving the weakest pre-
condition of ∀u . ψ with respect to redirecting the i-th record field of x to z
[10]:

{x �→ (y1, . . . , yk)∗ [x �→ (y1, . . . , yi−1, z, yi+1, . . . , yk)−∗∀u . ψ]} x.i := z {∀u . ψ}
It is easy to check that the precondition is equivalent to the formula ∀u . x �→
(y1, . . . , yk) ∗ [x �→ (y1, . . . , yi−1, z, yi+1, . . . , yk) −∗ ψ] because, although hoist-
ing universal quantifiers outside of the separating conjunction is unsound in
general, this is possible here due to the special form of the left-hand side
x �→ (y1, . . . , yi−1, z, . . . , yk) which unambiguously defines a single heap cell.
Therefore, checking that ∀u . ψ is an invariant of the program statement x.i := z
amounts to checking that the formula ∀u . ψ ∧ ∃u . ¬[x �→ (y1, . . . , yk) ∗ (x �→
(y1, . . . , yi−1, z, . . . , yk) −∗ ψ)] is unsatisfiable. Because the magic wand occurs
negated, this formula falls into a decidable class defined in the present paper, for
both finite and infinite satisfiability. The complete formalization of this deductive
program verification technique and the characterization of the class of programs
for which it is applicable is outside the scope of the paper and is left for future
work.

Related Work. In contrast to first-order logic for which the decision prob-
lem has been thoroughly investigated [1], only a few results are known for SL.
For instance, the problem is undecidable in general and PSPACE-complete for
quantifier-free formulæ [4]. For k = 1, the problem is also undecidable, but it
is PSPACE-complete if in addition there is only one quantified variable [6] and
decidable but nonelementary if there is no magic wand [2]. In particular, we
have also studied the prenex form of SL1 [7] and found out that it is decidable
and nonelementary, whereas BSR(SL1) is PSPACE-complete. In contrast, in this
paper we show that undecidability occurs for BSR(SLk), for k ≥ 2.

Expressive completeness results exist for quantifier-free SL1 [2,11] and for SL1

with one and two quantified variables [5,6]. There, the existence of equivalent

The Bernays-Schönfinkel-Ramsey Class 245

boolean combinations of test formulæ is shown implicitly, using a finite enumer-
ation of equivalence classes of models, instead of an effective transformation.
Instead, here we present an explicit equivalence-preserving transformation of
quantifier-free SLk into boolean combinations of test formulæ, and translate the
latter into first-order logic. Further, we extend the expressive completeness result
to finite universes, with additional test formulæ asserting cardinality constraints
on unallocated cells.

Another translation of quantifier-free SLk into first-order logic with equality
has been described in [3]. There, the small model property of quantifier-free SLk

[4] is used to bound the number of first-order variables to be considered and the
separating connectives are interpreted as first-order quantifiers. The result is an
equisatisfiable first-order formula. This translation scheme cannot be, however,
directly applied to BSR(SLk), which does not have a small model property, being
moreover undecidable. Theory-parameterized versions of BSR(SLk) have been
shown to be undecidable, e.g. when integer linear arithmetic is used to reason
about locations, and claimed to be PSPACE-complete for countably infinite and
finite unbounded location sorts, with no relation other than equality [13]. In the
present paper, we show that this claim is wrong, and draw a precise chart of
decidability for both infinite and finite satisfiability of BSR(SLk).

2 Preliminaries

Basic Definitions. Let Z∞ = Z ∪ {∞} and N∞ = N ∪ {∞}, where for each
n ∈ Z we have n + ∞ = ∞ and n < ∞. For a countable set S we denote by
||S|| ∈ N∞ the cardinality of S. Let Var be a countable set of variables, denoted
as x, y, z and U be a sort. Vectors of variables are denoted by x, y, etc. A function
symbol f has #(f) ≥ 0 arguments of sort U and a sort σ(f), which is either the
boolean sort Bool or U . If #(f) = 0, we call f a constant. We use ⊥ and
 for
the boolean constants false and true, respectively. First-order (FO) terms t and
formulæ ϕ are defined by the following grammar:

t := x | f(t, . . . , t
︸ ︷︷ ︸

#(f)

) ϕ := ⊥ |
 | t ≈ t | p(t, . . . , t
︸ ︷︷ ︸

#(p)

) | ϕ ∧ ϕ | ¬ϕ | ∃x . ϕ

where x ∈ Var, f and p are function symbols, σ(f) = U and σ(p) = Bool.
We write ϕ1 ∨ ϕ2 for ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 for ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 for
ϕ1 → ϕ2 ∧ϕ2 → ϕ1 and ∀x . ϕ for ¬∃x . ¬ϕ. The size of a formula ϕ, denoted as
size(ϕ), is the number of symbols needed to write it down. Let var(ϕ) be the set
of variables that occur free in ϕ, i.e. not in the scope of a quantifier. A sentence ϕ
is a formula where var(ϕ) = ∅.

First-order formulæ are interpreted over FO-structures (called structures,
when no confusion arises) S = (U, s, i), where U is a countable set, called the
universe, the elements of which are called locations, s : Var ⇀ U is a mapping of
variables to locations, called a store and i interprets each function symbol f by a
function f i : U#(f) → U, if σ(f) = U and f i : U#(f) → {⊥i,
i} if σ(f) = Bool.

246 M. Echenim et al.

A structure (U, s, i) is finite when ||U|| ∈ N and infinite otherwise. We write
S |= ϕ iff ϕ is true when interpreted in S. This relation is defined recursively
on the structure of ϕ, as usual. When S |= ϕ, we say that S is a model of ϕ.
A formula is [finitely] satisfiable when it has a [finite] model. We write ϕ1 ≡ ϕ2

when (U, s, i) |= ϕ1 ⇔ (U, s, i) |= ϕ2, for every structure (U, s, i).
The Bernays-Schönfinkel-Ramsey fragment of FO, denoted by BSR(FO), is

the set of sentences ∃x1 . . . ∃xn∀y1 . . . ∀ym . ϕ, where ϕ is a quantifier-free formula
in which all function symbols f of arity #(f) > 0 have sort σ(f) = Bool.

Separation Logic. Let k be a strictly positive integer. The logic SLk is the set
of formulæ generated by the grammar:

ϕ := ⊥ |
 | emp | x ≈ y | x �→ (y1, . . . , yk) | ϕ ∧ ϕ | ¬ϕ | ϕ ∗ ϕ | ϕ −∗ ϕ | ∃x . ϕ

where x, y, y1, . . . , yk ∈ Var. The connectives ∗ and −∗ are respectively called
the separating conjunction and separating implication (magic wand). We write
ϕ1 � ϕ2 for ¬(ϕ1 −∗ ¬ϕ2) (� is called septraction). The size and set of free
variables of an SLk formula ϕ are defined as for first-order formulæ.

Given an SLk formula φ and a subformula ψ of φ, we say that ψ occurs at
polarity p ∈ {−1, 0, 1} iff one of the following holds: (i) φ = ψ and p = 1, (ii)
φ = ¬φ1 and ψ occurs at polarity −p in φ1, (iii) φ = φ1 ∧ φ2 or φ = φ1 ∗ φ2, and
ψ occurs at polarity p in φi, for some i = 1, 2, or (iv) φ = φ1−∗φ2 and either ψ is
a subformula of φ1 and p = 0, or ψ occurs at polarity p in φ2. A polarity of 1, 0
or −1 is also referred to as positive, neutral or negative, respectively. Note that
our notion of polarity is slightly different than usual, because the antecedent
of a separating implication is of neutral polarity while the antecedent of an
implication is usually of negative polarity. This is meant to strengthen upcoming
decidability results, see Remark 2.

SLk formulæ are interpreted over SL-structures I = (U, s, h), where U and
s are as before and h : U ⇀fin Uk is a finite partial mapping of locations to
k-tuples of locations, called a heap. As before, a structure (U, s, h) is finite when
||U|| ∈ N and infinite otherwise. We denote by dom(h) the domain of the heap
h and by ||h|| ∈ N the cardinality of dom(h). Two heaps h1 and h2 are disjoint
iff dom(h1) ∩ dom(h2) = ∅, in which case h1 � h2 denotes their union. A heap h′

is an extension of h by h′′ iff h′ = h � h′′. The relation (U, s, h) |= ϕ is defined
inductively, as follows:

(U, s, h) |= emp ⇔ h = ∅
(U, s, h) |= x �→ (y1, . . . , yk) ⇔ h = {〈s(x), (s(y1), . . . , s(yk))〉}
(U, s, h) |= ϕ1 ∗ ϕ2 ⇔ there exist disjoint heaps h1, h2 such that h = h1 	 h2

and (U, s, hi) |= ϕi, for i = 1, 2
(U, s, h) |= ϕ1 −∗ ϕ2 ⇔ for all heaps h′ disjoint from h such that (U, s, h′) |= ϕ1

we have (U, s, h 	 h′) |= ϕ2

The semantics of equality, boolean and first-order connectives is the usual one.
Satisfiability, entailment and equivalence are defined for SLk as for FO formulæ.

The Bernays-Schönfinkel-Ramsey Class 247

The Bernays-Schönfinkel-Ramsey fragment of SLk, denoted by BSR(SLk), is
the set of sentences ∃x1 . . . ∃xn∀y1 . . . ∀ym . φ, where φ is a quantifier-free SLk

formula. Since there is no function symbol of arity greater than zero in SLk, there
is no restriction, other than the form of the quantifier prefix defining BSR(SLk).

3 Test Formulæ for SLk

We define a small set of SLk patterns of formulæ, possibly parameterized by a
positive integer, called test formulæ. These patterns capture properties related
to allocation, points-to relations in the heap and cardinality constraints.

Definition 1. The following patterns are called test formulæ:

x ↪→ y def= x �→ y ∗
 |U | ≥ n
def=
 � |h| ≥ n, n ∈ N

alloc(x) def= x �→ (x, . . . , x)
︸ ︷︷ ︸

k times

−∗⊥ |h| ≥ |U | − n
def= |h| ≥ n + 1 −∗ ⊥, n ∈ N

x ≈ y |h| ≥ n
def=

⎧

⎨

⎩

|h| ≥ n − 1 ∗ ¬emp, if n > 0

, if n = 0
⊥, if n = ∞

where x, y ∈ Var, y ∈ Vark and n ∈ N∞ is a positive integer or ∞.

The semantics of test formulæ is very natural: x ↪→ y means that x points
to vector y, alloc(x) means that x is allocated, and the arithmetic expressions
are interpreted as usual, where |h| and |U | respectively denote the number of
allocated cells and the number of locations (possibly ∞). Formally:

Proposition 1. Given an SL-structure (U, s, h), the following equivalences hold,
for all variables x, y1, . . . , yk ∈ Var and integers n ∈ N:

(U, s, h) |= x ↪→ y ⇔ h(s(x)) = s(y) (U, s, h) |= |h| ≥ |U | − n ⇔ ||h|| ≥ ||U|| − n
(U, s, h) |= |U | ≥ n ⇔ ||U|| ≥ n (U, s, h) |= |h| ≥ n ⇔ ||h|| ≥ n
(U, s, h) |= alloc(x) ⇔ s(x) ∈ dom(h)

Not all atoms of SLk are test formulæ, for instance x �→ y and emp are not test
formulæ. However, by Proposition 1, we have the equivalences x �→ y ≡ x ↪→
y ∧ ¬|h| ≥ 2 and emp ≡ ¬|h| ≥ 1. Note that, for any n ∈ N, the test formulæ
|U | ≥ n and |h| ≥ |U | −n are trivially true and false respectively, if the universe
is infinite. We write t < u for ¬(t ≥ u).

We need to introduce a few notations useful to describe upcoming transfor-
mations in a concise and precise way. A literal is a test formula or its negation.
Unless stated otherwise, we view a conjunction T of literals as a set1 and we use
the same symbol to denote both a set and the formula obtained by conjoining
the elements of the set. The equivalence relation x ≈T y is defined as T |= x ≈ y
and we write x �≈T y for T |= ¬x ≈ y. Observe that x �≈T y is not the com-
plement of x ≈T y. For a set X of variables, |X|T is the number of equivalence
classes of ≈T in X.
1 The empty set is thus considered to be true.

248 M. Echenim et al.

Definition 2. A variable x is allocated in an SL-structure I iff I |= alloc(x).
For a set of variables X ⊆ Var, let alloc(X) def=

∧

x∈X alloc(x) and nalloc(X) def=
∧

x∈X ¬alloc(x). For a set T of literals, let:

av(T) def=
{

x ∈ Var | x ≈T x′, T ∩ {alloc(x′), x′ ↪→ y | y ∈ Vark} �= ∅}

nv(T) def= {x ∈ Var | x ≈T x′, ¬alloc(x′) ∈ T}
fpX(T) def= T ∩ {alloc(x),¬alloc(x), x ↪→ y,¬x ↪→ y | x ∈ X,y ∈ Vark}

We let #a(T) def= |av(T)|T be the number of equivalence classes of ≈T containing
variables allocated in every model of T and #n(X,T) def= |X ∩ nv(T)|T be the
number of equivalence classes of ≈T containing variables from X that are not
allocated in any model of T . We also let fpa(T) def= fpav(T)(T).

Intuitively, av(T) [nv(T)] is the set of variables that must be [are never] allocated
in every [any] model of T , and fpX(T) is the footprint of T relative to the set
X ⊆ Var, i.e. the set of formulæ describing allocation and points-to relations
over variables from X. For example, if T = {x ≈ z, alloc(x),¬alloc(y),¬z ↪→ y},
then av(T) = {x, z}, nv(T) = {y}, fpa(T) = {alloc(x),¬z ↪→ y} and fpnv(T)(T) =
{¬alloc(y)}.

3.1 From Test Formulæ to FO

The introduction of test formulæ (Definition 1) is motivated by the reduction of
the (in)finite satisfiability problem for quantified boolean combinations thereof
to the same problem for FO. The reduction is devised in such a way that the
obtained formula is in the BSR class, if possible. Given a quantified boolean
combination of test formulæ φ, the FO formula τ(φ) is defined by induction on
the structure of φ:

τ(|h| ≥ n) def= an τ(|U | ≥ n) def= bn

τ(|h| ≥ |U | − n) def= ¬cn+1 τ(¬φ1)
def= ¬τ(φ1)

τ(x ↪→ y) def= p(x, y1, . . . , yk) τ(alloc(x)) def= ∃y1 . . . ∃yk . p(x, y1, . . . , yk)
τ(φ1 ∧ φ2)

def= τ(φ1) ∧ τ(φ2) τ(∃x . φ1)
def= ∃x . τ(φ1)

τ(x ≈ y) def= x ≈ y

where p is a (k + 1)-ary function symbol of sort Bool and an, bn and cn are
constants of sort Bool, for all n ∈ N. These function symbols are related by the
following axioms, where un, vn and wn are constants of sort U , for all n > 0:

P : ∀x∀y∀y′ . p(x,y) ∧ p(x,y′) → ∧k
i=1 yi ≈ y′

i

A0 : a0 An :
{∃y . an → an−1 ∧ p(un,y) ∧ ∧n−1

i=1 ¬ui ≈ un

∧ ∀x∀y . ¬an ∧ p(x,y) → ∨n−1
i=1 x ≈ ui

}

B0 : b0 Bn :
{

bn → bn−1 ∧ ∧n−1
i=1 ¬vi ≈ vn

∧ ∀x . ¬bn → ∨n−1
i=1 x ≈ vi

}

C0 : c0 Cn : ∀y . cn → cn−1 ∧ ¬p(wn,y) ∧ ∧n−1
i=1 ¬wn ≈ wi

The Bernays-Schönfinkel-Ramsey Class 249

Intuitively, p encodes the heap and an (resp. bn) is true iff there are at least n
cells in the domain of the heap (resp. in the universe), namely u1, . . . , un (resp.
v1, . . . , vn). If cn is true, then there are at least n locations w1, . . . ,wn outside
of the domain of the heap (free), but the converse does not hold. The Cn axioms
do not state the equivalence of cn with the existence of at least n free locations,
because such an equivalence cannot be expressed in BSR(FO)2. As a consequence,
the transformation preserves sat-equivalence only if the formulæ |h| ≥ |U | − n
occur only at negative polarity (see Lemma 1, Point 2). If the domain is infinite
then this problem does not arise since the formulæ |h| ≥ |U |−n are always false.

Definition 3. For a quantified boolean combination of test formulæ φ, we let
N (φ) be the maximum integer n occurring in a test formula θ of the form |h| ≥ n,
|U | ≥ n, or |h| ≥ |U |−n from φ and define A(φ) def= {P}∪{Ai}N (φ)

i=0 ∪{Bi}N (φ)
i=0 ∪

{Ci}N (φ)+1
i=0 as the set of axioms related to φ.

The relationship between φ and τ(φ) is stated below.

Lemma 1. Let φ be a quantified boolean combination of test formulæ. The fol-
lowing hold, for any universe U and any store s:

1. if (U, s, h) |= φ, for a heap h, then (U, s, i) |= τ(φ) ∧ A(φ), for an interpreta-
tion i;

2. if each test formula |h| ≥ |U | − n in φ occurs at a negative polarity and
(U, s, i) |= τ(φ) ∧ A(φ) for an interpretation i such that ||pi|| ∈ N, then
(U, s, h) |= φ, for a heap h.

The translation of alloc(x) introduces existential quantifiers depending on x.
For instance, ∀x . alloc(x) is translated as ∀x∃y1 . . . ∃yk . p(x, y1, . . . , yk), which
lies outside of the BSR(FO) fragment. Because upcoming decidability results
(Theorem 2) require that τ(φ) be in BSR(FO), we end this section by delimiting
a fragment of SLk whose translation falls into BSR(FO).

Lemma 2. Given an SLk formula ϕ = ∀z1 . . . ∀zm . φ, where φ is a boolean
combination of test formulæ containing no positive occurrence of alloc(zi) for
any i ∈ [1,m], τ(ϕ) is equivalent (up to transformation into prenex form) to a
BSR(FO) formula with the same constants and free variables as τ(ϕ).

Intuitively, if a formula alloc(x) occurs negatively then the quantifiers ∃y1 . . .
∃yk added when translating alloc(x) can be transformed into universal ones by
transformation into nnf, and if x is not universal then they may be shifted at
the root of the formula since y1, . . . , yk depend only on x. In both cases, the
quantifier prefix ∃∗∀∗ is preserved.

2 The converse of Cn: ∀x . (¬cn ∧ ∀y . ¬p(x,y)) → ∨n−1
i=1 x ≈ wi is not in BSR(FO).

250 M. Echenim et al.

4 From Quantifier-Free SLk to Test formulæ

This section states the expressive completeness result of the paper, namely that
any quantifier-free SLk formula is equivalent, on both finite and infinite mod-
els, to a boolean combination of test formulæ. Starting from a quantifier-free
SLk formula ϕ, we define a set μ(ϕ) of conjunctions of test formulæ and their
negations, called minterms, such that ϕ ≡ ∨

M∈μ(ϕ) M . Although the number of
minterms in μ(ϕ) is exponential in the size of ϕ, checking the membership of a
given minterm M in μ(ϕ) can be done in PSPACE. Together with the translation
of minterms into FO (Sect. 3.1), this fact is used to prove PSPACE membership
of the two decidable fragments of BSR(SLk), defined next (Sect. 5.2).

4.1 Minterms

A minterm M is a set (conjunction) of literals containing: exactly one literal
|h| ≥ minM and one literal |h| < maxM , where minM ∈ N ∪ {|U | − n | n ∈ N}
and maxM ∈ N∞∪{|U | − n | n ∈ N}, and at most one literal of the form |U | ≥ n,
respectively |U | < n.

A minterm may be viewed as an abstract description of a heap. The con-
ditions are for technical convenience only and are not restrictive. For instance,
tautological test formulæ of the form |h| ≥ 0 and/or |h| < ∞ may be added
if needed so that the first condition holds. If M contains two literals t ≥ n1

and t ≥ n2 with n1 < n2 and t ∈ {|h|, |U |} then t ≥ n1 is redundant and
can be removed – and similarly if M contains literals |h| ≥ |U | − n1 and
|h| ≥ |U | − n2. Heterogeneous constraints are merged by performing a case split
on the value of |U |. For example, if M contains both |h| ≥ |U | − 4 and |h| ≥ 1,
then the first condition prevails if |U | ≥ 5 yielding the equivalence disjunction:
|h| ≥ 1∧|U | < 5∨|h| ≥ |U |−4∧|U | ≥ 5. Thus, in the following, we assume that
any conjunction of literals can be transformed into a disjunction of minterms [8].

Definition 4. Given a minterm M , we define the sets:

Me def
= M ∩ {x ≈ y, ¬x ≈ y | x, y ∈ Var} Ma def

= M ∩ {alloc(x), ¬alloc(x) | x ∈ Var}
Mu def

= M ∩ {|U | ≥ n, |U | < n | n ∈ N} Mp def
= M ∩ {x ↪→ y, ¬x ↪→ y | x,y ∈ Vark+1}

Thus, M = Me ∪Mu ∪Ma ∪Mp ∪{|h| ≥ minM , |h| < maxM}, for each minterm
M . Given a set of variables X ⊆ Var, a minterm M is (1) E-complete for X iff for
all x, y ∈ X exactly one of x ≈ y ∈ M , ¬x ≈ y ∈ M holds, and (2) A-complete
for X iff for each x ∈ X exactly one of alloc(x) ∈ M , ¬alloc(x) ∈ M holds.

For a literal 	, we denote by 	 its complement, i.e. θ
def= ¬θ and ¬θ

def= θ, where
θ is a test formula. Let M be the minterm obtained from M by replacing each
literal with its complement. The complement closure of M is cc(M) def= M ∪ M .
Two tuples y,y′ ∈ Vark are M-distinct if yi �≈M y′

i, for some i ∈ [1, k]. Given a
minterm M that is E-complete for var(M), its points-to closure is pc(M) def= ⊥
if there exist literals x ↪→ y, x′ ↪→ y′ ∈ M such that x ≈M x′ and y, y′ are M -
distinct, and pc(M) def= M , otherwise. Intuitively, pc(M) is ⊥ iff M contradicts the

The Bernays-Schönfinkel-Ramsey Class 251

fact that the heap is a partial function3. The domain closure of M is dc(M) def= ⊥
if either minM = n1 and maxM = n2 for some n1, n2 ∈ Z such that n1 ≥ n2, or
minM = |U | − n1 and maxM = |U | − n2, where n2 ≥ n1; and otherwise:

dc(M) def= M ∪ {|U | ≥ ⌈

k
√

maxx∈av(M)(δx(M) + 1)
⌉}

∪{|U | ≥ n1 + n2 + 1 | minM = n1,maxM = |U | − n2, n1, n2 ∈ N}
∪ {|U | < n1 + n2 | minM = |U | − n1,maxM = n2, n1, n2 ∈ N}

where δx(M) is the number of pairwise M -distinct tuples y for which there exists
¬x′ ↪→ y ∈ M such that x ≈M x′. Intuitively, dc(M) asserts that minM < maxM

and that the domain contains enough elements to allocate all cells. Essentially,
given a structure (U, s, h), if h(x) is known to be defined and distinct from n
pairwise distinct vectors of locations v1, . . . ,vn, then necessarily at least n + 1
vectors must exist. Since there are ||U||k vectors of length k, we must have ||U||k ≥
n + 1, hence ||U|| ≥ k

√
n + 1. For instance, if M = {¬x ↪→ yi, alloc(x), yi �≈ yj |

i, j ∈ [1, n], i �= j}, then it is clear that M is unsatisfiable if there are less than
n locations, since x cannot be allocated in this case.

Definition 5. A minterm M is footprint-consistent4 if for all x, x′ ∈ Var and
y,y′ ∈ Vark, such that x ≈M x′ and yi ≈M y′

i for all i ∈ [1, k], we have (1) if
alloc(x) ∈ M then ¬alloc(x′) �∈ M , and (2) if x ↪→ y ∈ M then ¬alloc(x′),¬x′ ↪→
y′ �∈ M .

We are now ready to define a boolean combination of test formulæ that is
equivalent to M1 ∗ M2, where M1 and M2 are minterms satisfying a number
of additional conditions. Let npto(M1,M2)

def= (M1 ∩ M2) ∩ {¬x ↪→ y | x �∈
av(M1 ∪ M2),y ∈ Vark} be the set of negative points-to literals common to M1

and M2, involving left-hand side variables not allocated in either M1 or M2.

Lemma 3. Let M1, M2 be two footprint-consistent minterms that are and
E-complete for var(M1 ∪ M2), with cc(Mp

1) = cc(Mp
2). Then M1 ∗ M2 ≡

elim∗(M1,M2), where

elim∗(M1,M2)
def= Me

1 ∧ Me
2 ∧ dc(M1)u ∧ dc(M2)u ∧ (2)

∧

x∈av(M1), y∈av(M2)

¬x ≈ y ∧ fpa(M1) ∧ fpa(M2) ∧ (3)

nalloc(nv(M1) ∩ nv(M2)) ∧ npto(M1,M2) ∧ (4)
|h| ≥ minM1 + minM2 ∧ |h| < maxM1 + maxM2 − 1 (5)
∧ η12 ∧ η21 (6)

and ηij
def=

∧

Y ⊆nv(Mj)\av(Mi)
alloc(Y) →

(|h| ≥ #a(Mi) + |Y |Mi
+ minMj

∧ #a(Mi) + |Y |Mi
< maxMi

)

.

3 Note that we do not assert the equality y ≈ y′, instead we only check that it is not
falsified. This is sufficient for our purpose because in the following we always assume
that the considered minterms are E-complete.

4 Footprint-consistency is a necessary, yet not sufficient, condition for satisfiability of
minterms. For example, the minterm M = {x ↪→ y, x′ ↪→ y′, ¬y ≈ y′, |h| < 2} is at
the same time footprint-consistent and unsatisfiable.

252 M. Echenim et al.

Intuitively, if M1 and M2 hold separately, then all heap-independent literals from
M1 ∪ M2 must be satisfied (2), the variables allocated in M1 and M2 must be
pairwise distinct and their footprints, relative to the allocated variables, jointly
asserted (3). Moreover, unallocated variables on both sides must not be allocated
and common negative points-to literals must be asserted (4). Since the heap
satisfying elim∗(M1,M2) is the disjoint union of the heaps for M1 and M2, its
bounds are the sum of the bounds on both sides (5) and, moreover, the variables
that M2 never allocates [nv(M2)] may occur allocated in the heap of M1 and
viceversa, thus the constraints η12 and η21, respectively (6).

Next, we show a similar result for the separating implication. For technical
convenience, we translate the septraction M1 � M2, instead of M1 −∗M2, as an
equivalent boolean combination of test formulæ. This is without loss of general-
ity, because M1 −∗ M2 ≡ ¬(M1 � ¬M2). Unlike with the case of the separating
conjunction (Lemma 3), here the definition of the boolean combination of test
formulæ depends on whether the universe is finite or infinite.

If the complement of some literal 	 ∈ fpa(M1) belongs to M2 then no exten-
sion by a heap that satisfies 	 may satisfy 	. Therefore, as an additional sim-
plifying assumption, we suppose that fpa(M1) ∩ M2 = ∅, so that M1 � M2 is
not trivially unsatisfiable. We write φ ≡fin ψ [φ ≡inf ψ] if φ has the same truth
value as ψ in all finite [infinite] structures.

Lemma 4. Let M1 and M2 be footprint-consistent minterms that are E-
complete for var(M1 ∪ M2), such that: M1 is A-complete for var(M1 ∪ M2),
Ma

2 ∪ Mp
2 ⊆ cc(Ma

1 ∪ Mp
1) and fpa(M1) ∩ M2 = ∅.

Then, M1 � M2 ≡fin elimfin
� (M1,M2) and M1 � M2 ≡inf eliminf

� (M1,M2),
where:

elim†
�(M1,M2)

def= pc(M1)
e ∧ Me

2 ∧ dc(M1)
u ∧ dc(M2)

u ∧ (7)
nalloc(av(M1)) ∧ fpnv(M1)(M2) ∧ (8)
|h| ≥ minM2 − maxM1 + 1 ∧ |h| < maxM2 − minM1 (9)
∧ λ† (10)

with

λfin def=
∧

Y ⊆var(M1∪M2)
nalloc(Y) →

(|h| < |U | − minM1 − #n(Y,M1) + 1
∧ |U | ≥ minM2 + #n(Y,M1)

)

,

λinf def=
.

A heap satisfies M1 � M2 iff it has an extension, by a disjoint heap satisfying
M1, that satisfies M2. Thus, elim†

�(M1,M2) must entail the heap-independent
literals of both M1 and M2 (7). Next, no variable allocated by M1 must be
allocated by elim†

�(M1,M2), otherwise no extension by a heap satisfying M1 is
possible and, moreover, the footprint of M2 relative to the unallocated variables
of M1 must be asserted (8). The heap’s cardinality constraints depend on the
bounds of M1 and M2 (9) and, if Y is a set of variables not allocated in the heap,
these variables can be allocated in the extension (10). Actually, this is where the
finite universe assumption first comes into play. If the universe is infinite, then

The Bernays-Schönfinkel-Ramsey Class 253

there are enough locations outside the heap to be assigned to Y . However, if the
universe is finite, then it is necessary to ensure that there are at least #n(Y,M1)
free locations to be assigned to Y (10).

4.2 Translating Quantifier-Free SLk into Minterms

We prove next that each quantifier-free SLk formula is equivalent to a finite
disjunction of minterms:

Lemma 5. Given a quantifier-free SLk formula φ, there exist two sets of
minterms μfin(φ) and μinf (φ) such that the following equivalences hold: (1)
φ ≡fin

∨

M∈μfin(φ) M , and (2) φ ≡inf
∨

M∈μinf (φ) M .

The formal definition of μfin(φ) and μinf (φ) is given in [8] and omitted for the sake
of conciseness and readability. Intuitively, these sets are defined by induction on
the structure of the formula. For base cases, the following equivalences are used:

x �→ y ≡ x ↪→ y ∧ |h| ≈ 1 emp ≡ |h| ≈ 0 x ≈ y ≡ x ≈ y ∧ |h| ≥ 0 ∧ |h| < ∞

For formulæ ¬ψ1 or ψ1 ∧ψ2, the transformation is first applied recursively on ψ1

and ψ2, then the obtained formula is transformed into dnf. For formulæ ψ1 ∗ ψ2

or ψ1 � ψ2, the transformation is applied on ψ1 and ψ2, then the following
equivalences are used to shift ∗ and � innermost in the formula:

(φ1 ∨ φ2) ∗ φ ≡ (φ1 ∗ φ) ∨ (φ2 ∗ φ) (φ1 ∨ φ2) � φ ≡ (φ1 � φ) ∨ (φ2 � φ)
φ ∗ (φ1 ∨ φ2) ≡ (φ ∗ φ1) ∨ (φ ∗ φ2) φ � (φ1 ∨ φ2) ≡ (φ � φ1) ∨ (φ � φ2)

Afterwards, the operands of ∗ and � are minterms, and the result is obtained
using the equivalences in Lemmas 3 and 4, respectively (up to a transformation
into dnf). The only difficulty is that these lemmas impose some additional con-
ditions on the minterms (e.g., being E-complete, or A-complete). However, the
conditions are easy to enforce by case splitting, as illustrated by the following
example:

Example 1. Consider the formula x �→ x � y �→ y. It is easy to check that
μ†(x �→ x) = {M1}, for † ∈ {fin, inf }, where M1 = x ↪→ x∧ |h| ≥ 1∧ |h| < 2 and
μ†(y �→ y) = {M2}, where M2 = y ↪→ y∧|h| ≥ 1∧|h| < 2. To apply Lemma 4, we
need to ensure that M1 and M2 are E-complete, which may be done by adding
either x ≈ y or x �≈ y to each minterm. We also have to ensure that M1 is A-
complete, thus for z ∈ {x, y}, we add either alloc(z) or ¬alloc(z) to M1. Finally,
we must have Ma

2 ∪ Mp
2 ⊆ cc(Ma

1 ∪ Mp
1), thus we add either y ↪→ y or ¬y ↪→

y to M1. After removing redundancies, we get (among others) the minterms:
M ′

1 = x ↪→ x ∧ |h| ≥ 1 ∧ |h| < 2 ∧ x ≈ y and M ′
2 = y ↪→ y ∧ |h| ≥ 1 ∧ |h| <

2∧x ≈ y. Afterwards we compute elimfin

�(M ′
1,M

′
2) = x ≈ y∧¬alloc(x)∧|h| ≥ 0∧

|h| < 1. �
As explained in Sect. 3.1, boolean combinations of minterms can only be

transformed into sat-equivalent BSR(FO) formulæ if there is no positive occur-
rence of test formulæ |h| ≥ |U |−n or alloc(x) (see the conditions in Lemmas 1 (2)

254 M. Echenim et al.

and 2). Consequently, we relate the polarity of these formulæ in some minterm
M ∈ μfin(φ)∪μinf (φ) with that of a separating implication within φ. The analysis
depends on whether the universe is finite or infinite.

Lemma 6. For any quantifier-free SLk formula φ, the following properties hold:

1. For all M ∈ μinf (φ), we have M ∩ {|h| ≥ |U | − n, |h| < |U | − n | n ∈ N} = ∅.
2. If |h| ≥ |U |−n ∈ M [|h| < |U |−n ∈ M] for some minterm M ∈ μfin(φ), then

a formula ψ1 −∗ ψ2 occurs at a positive [negative] polarity in φ.
3. If alloc(x) ∈ M [¬alloc(x) ∈ M] for some minterm M ∈ μinf (φ), then a

formula ψ1−∗ψ2, such that x ∈ var(ψ1)∪var(ψ2), occurs at a positive [negative]
polarity in φ.

4. If M ∩ {alloc(x),¬alloc(x) | x ∈ Var} �= ∅ for some minterm M ∈ μfin(φ),
then a formula ψ1 −∗ ψ2, such that x ∈ var(ψ1) ∪ var(ψ2), occurs in φ at
some polarity p ∈ {−1, 1}. Moreover, alloc(x) occurs at a polarity −p, only if
alloc(x) is in the scope of a λfin subformula (10) of a formula elimfin

�(M1,M2)
used to compute

∨

M∈μfin(φ) M .

Given a quantifier-free SLk formula φ, the number of minterms occurring in
μfin(φ) [μinf (φ)] is exponential in the size of φ, in the worst case. Therefore, an
optimal decision procedure cannot generate and store these sets explicitly, but
rather must enumerate minterms lazily. We show that (i) the size of the minterms
in μfin(φ) ∪ μinf (φ) is bounded by a polynomial in the size of φ, and that (ii) the
problem “given a minterm M, does M occur in μfin(φ) [resp. in μinf (φ)]?” is in
PSPACE. To this aim, we define a measure on a quantifier-free formula φ, which
bounds the size of the minterms in the sets μfin(φ) and μinf (φ), inductively on
the structure of the formulæ:

M(x ≈ y)
def
= 0 M(⊥)

def
= 0

M(emp)
def
= 1 M(x �→ y)

def
= 2

M(¬φ1)
def
= M(φ1) M(φ1 ∧ φ2)

def
= max(M(φ1), M(φ2))

M(φ1 ∗ φ2)
def
=

∑2
i=1(M(φi) + ||var(φi)||) M(φ1 −∗ φ2)

def
=

∑2
i=1(M(φi) + ||var(φi)||)

Definition 6. A minterm M is M-bounded by a formula φ, if for each literal
	 ∈ M , the following hold: (i) M() ≤ M(φ) if 	 ∈ {|h| ≥ minMi

, |h| < maxMi
}

(ii) M() ≤ 2M(φ) + 1, if 	 ∈ {|U | ≥ n, |U | < n | n ∈ N}.
The following lemma provides the desired result:

Lemma 7. Given a quantifier-free SLk formula φ, each minterm M ∈ μfin(φ) ∪
μinf (φ) is M-bounded by φ.

The proof goes by a careful analysis of the test formulæ introduced in Lemmas 3
and 4 or created by minterm transformations (see [8] for details). Since M(φ) is
polynomially bounded by size(φ), this entails that it is possible to check whether
M ∈ μfin(φ) [resp. μinf (φ)] using space bounded also by a polynomial in size(φ).

Lemma 8. Given a minterm M and an SLk formula φ, the problems of checking
whether M ∈ μfin(φ) and M ∈ μinf (φ) are in PSPACE.

The Bernays-Schönfinkel-Ramsey Class 255

Remark 1. Observe that the formulæ elim∗(M1,M2) and elimfin
� (M1,M2) in

Lemmas 3 and 4 are of exponential size, because Y ranges over sets of vari-
ables. However these formulæ do not need to be constructed explicitly. To check
that M ∈ μfin(φ) or M ∈ μinf (φ), we only have to guess such sets Y . See [8] for
details.

5 Bernays-Schönfinkel-Ramsey SLk

This section gives the results concerning decidability of the (in)finite satisfi-
ability problems within the BSR(SLk) fragment. BSR(SLk) is the set of sen-
tences ∀y1 . . . ∀ym . φ, where φ is a quantifier-free SLk formula, with var(φ) =
{x1 , . . . , xn , y1 , . . . , ym}, where the existentially quantified variables x1, . . . , xn

are left free. First, we show that, contrary to BSR(FO), the satisfiability of
BSR(SLk) is undecidable for k ≥ 2. Second, we carve two nontrivial fragments
of BSR(SLk), for which the infinite and finite satisfiability problems are both
PSPACE-complete. These fragments are defined based on restrictions of (i) polar-
ities of the occurrences of the separating implication, and (ii) occurrences of
universally quantified variables in the scope of separating implications. These
results draw a rather precise chart of decidability within the BSR(SLk) frag-
ment. For k = 1, the satisfiability problem of BSR(SL1) is in PSPACE [7] (it is
undecidable for arbitrary SL1 formulæ [2] and decidable but nonelementary for
prenex formulæ [7]).

5.1 Undecidability of BSR(SLk)

Theorem 1. The finite and infinite satisfiability problems are both undecidable
for BSR(SLk).

We provide a brief sketch of the proof, see [8] for details. We consider the finite
satisfiability problem of the [∀, (0), (2)]= fragment of FO, which consists of sen-
tences of the form ∀x . φ(x), where φ is a quantifier-free boolean combination
of atomic propositions t1 ≈ t2, and t1, t2 are terms built using two function
symbols f and g, of arity one, the variable x and constant c. It is known (see
e.g. [1, Theorem 4.1.8]) that finite satisfiability is undecidable for [∀, (0), (2)]=.
We reduce this problem to BSR(SLk) satisfiability. The idea is to encode the
value of f and g into the heap, in such a way that every element x points to
(f(x), g(x)). Given a sentence ϕ = ∀x . φ(x) in [∀, (0), (2)]=, we proceed by first
flattening each term in φ consisting of nested applications of f and g. The result
is an equivalent sentence ϕflat = ∀x1 . . . ∀xn . φflat , in which the only terms
are xi, c, f(xi), g(xi), f(c) and g(c), for i ∈ [1, n]. For example, the formula
∀x . f(g(x)) ≈ c is flattened into ∀x1∀x2 . g(x1) �≈ x2 ∨ f(x2) ≈ c. We define the
following BSR(SL2) sentences ϕ†

sl , for † ∈ {fin, inf }:

α† ∧ xc ↪→ (yc, zc) ∧ ∀x1 . . . ∀xn∀y1 . . . ∀yn∀z1 . . . ∀zn .

n∧

i=1

(xi ↪→ (yi, zi) → φsl) (11)

with αfin def= ∀x . alloc(x) or αfin def= |h| ≥ |U | − 0, αinf def= ∀x∀y∀z . x ↪→ (y, z) →
alloc(y) ∧ alloc(z) and φsl is obtained from φflat by replacing each occurrence

256 M. Echenim et al.

of c by xc, each term f(c) [g(c)] by yc [zc] and each term f(xi) [g(xi)] by yi

[zi]. Intuitively, αfin asserts that the heap is a total function, and αinf states
that every referenced cell is allocated5. It is easy to check that ϕ and ϕsl are
equisatisfiable. The undecidability result still holds for finite satisfiability if a
single occurrence of −∗ is allowed, in a (ground) formula |h| ≥ |U | − 0 (see the
definition of αfin above).

5.2 Two Decidable Fragments of BSR(SLk)

The reductions (11) use either positive occurences of alloc(x), where x is uni-
versally quantified, or test formulæ |h| ≥ |U | − n. We obtain decidable subsets
of BSR(SLk) by eliminating the positive occurrences of both (i) alloc(x), with x
universally quantified, and (ii) |h| ≥ |U |−n, from μ†(φ), where † ∈ {fin, inf } and
∀y1 . . . ∀ym . φ is any BSR(SLk) formula. Note that μinf (φ) contains no formulæ
of the form |h| ≥ |U | − n, which explains why slightly less restrictive conditions
are needed for infinite structures.

Definition 7. Given an integer k ≥ 1, we define:

1. BSRinf (SLk) as the set of sentences ∀y1 . . . ∀ym . φ such that for all i ∈ [1,m]
and all formulæ ψ1 −∗ ψ2 occurring at polarity 1 in φ, we have yi �∈ var(ψ1) ∪
var(ψ2),

2. BSRfin(SLk) as the set of sentences ∀y1 . . . ∀ym . φ such that no formula
ψ1 −∗ ψ2 occurs at polarity 1 in φ.

Note that BSRfin(SLk) � BSRinf (SLk) � BSR(SLk), for any k ≥ 1.

Remark 2. Because the polarity of the antecedent of a −∗ is neutral, Definition 7
imposes no constraint on the occurrences of separating implications at the left
of a −∗6.
The decidability result of this paper is stated below:

Theorem 2. For any integer k ≥ 1 not depending on the input, the infinite
satisfiability problem for BSRinf (SLk) and the finite satisfiability problem for
BSRfin(SLk) are both PSPACE-complete.

We provide a brief sketch of the proof (all details are available in [8]). In both
cases, PSPACE-hardness is an immediate consequence of the fact that the quan-
tifier-free fragment of SLk, without the separating implication, but with the sepa-
rating conjunction and negation, is PSPACE-hard [4]. For PSPACE-membership,
consider a formula ϕ in BSRinf (SLk), and its equivalent disjunction of minterms
ϕ′ (of exponential size). Lemma 8 gives us an upper bound on the size of test

5 Note that the two definitions of αfin are equivalent. The formula αfin is unsatisfiable
on infinite universes, which explains why the definitions of αfin and αinf differ.

6 The idea is that if a formula alloc(x) or |h| ≥ |U | − n occurs in the antecedent of a
−∗, then it will be eliminated by the transformation in Lemma 4. In contrast, such
test formulæ will not be eliminated if they occur in the subsequent of a −∗.

The Bernays-Schönfinkel-Ramsey Class 257

formulæ in ϕ′, hence on the number of constant symbols occurring in τ(ϕ′). This,
in turns, gives a bound on the cardinality of the model of τ(ϕ′). We may thus
guess such an interpretation, and check that it is indeed a model of τ(ϕ′) by
enumerating all the minterms in ϕ′ (this is feasible in polynomial space thanks
to Lemma 8) and translating them on-the-fly into first-order formulæ. The only
subtle point is that the model obtained in this way is finite, whereas our aim
is to test that the obtained formula has a infinite model. This difficulty can be
overcome by adding an axiom ensuring that the domain contains more unallo-
cated elements than the total number of constant symbols and variables in the
formula. This is sufficient to prove that the obtained model – although finite
– can be extended into an infinite model, obtained by creating infinitely many
copies of these elements.

The proof for BSRfin(SLk) is similar, but far more involved. The problem is
that, if the universe is finite, then alloc(x) test formulæ may occur at a pos-
itive polarity, even if every φ1 −∗ φ2 subformula occurs at a negative polarity,
due to the positive occurrences of alloc(x) within λfin (10) in the definition of
elimfin

�(M1,M2). As previously discussed, positive occurrences of alloc(x) hinder
the translation into BSR(FO), because of the existential quantifiers that may
occur in the scope of a universal quantifier. The solution is to distinguish a
class of finite structures (U, s, h), the so-called α-controlled structures, for some
α ∈ N, for which there are locations 	1, . . . , 	α, such that every location 	 ∈ U
is either 	i or points to a tuple from the set {	1, . . . , 	α, 	}. For such structures,
the formulæ alloc(x) can be eliminated in a straightforward way because they
are equivalent to

∧α
i=1(x ≈ 	i → alloc(i)). If the structure is not α-controlled,

then we can show that there exist sufficiently many unallocated cells, so that
all the cardinality constraints of the form |h| ≤ |U | − n or |U | ≥ n are always
satisfied. This ensures that the truth value of the positive occurrences of alloc(x)
are irrelevant, because they only occur in formulæ λfin that are always true if
all test formulæ |h| ≤ |U | − n or |U | ≥ n are true (see the definition of λfin in
Lemma 4).

6 Conclusions and Future Work

We have studied the decidability problem for SL formulæ with quantifier prefix
in the language ∃∗∀∗, denoted as BSR(SLk). Although the fragment was found to
be undecidable, we identified two non-trivial subfragments for which the infinite
and finite satisfiability are PSPACE-complete. These fragments are defined by
restricting the use of universally quantified variables within the scope of sepa-
rating implications at positive polarity. The universal quantifiers and separating
conjunctions are useful to express local constraints on the shape of the data-
structure, whereas the separating implications allow one to express dynamic
transformations of these data-structures. As a consequence, separating implica-
tions usually occur negatively in the formulæ tested for satisfiability, and the
decidable classes found in this work are of great practical interest. Future work
involves formalizing and implementing an invariant checking algorithm based on

258 M. Echenim et al.

the above ideas, and using the techniques for proving decidability (namely the
translation of quantifier-free SL(k) formulæ into boolean combinations of test
formulæ) to solve other logical problems, such as frame inference, abduction and
possibly interpolation.

Acknowledgments. The authors wish to acknowledge the contributions of Stéphane
Demri and Étienne Lozes to the insightful discussions during the early stages of this
work.

References

1. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, Heidelberg (1997)

2. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput. 211,
106–137 (2012)

3. Calcagno, C., Gardner, P., Hague, M.: From separation logic to first-order logic. In:
Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 395–409. Springer, Berlin,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5 25

4. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results
for a spatial assertion language for data structures. In: Hariharan, R., Vinay, V.,
Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Berlin,
Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X 10

5. Demri, S., Deters, M.: Expressive completeness of separation logic with two vari-
ables and no separating conjunction. In: Henzinger, T.A., Miller, D. (eds.), Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science
Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), CSL-LICS 2014, Vienna, Austria, 14–18 July 2014, pp.
37:1–37:10. ACM (2014)

6. Demri, S., Galmiche, D., Larchey-Wendling, D., Méry, D.: Separation logic with
one quantified variable. Theory Comput. Syst. 61(2), 371–461 (2017)

7. Echenim, M., Iosif, R., Peltier, N.: The complexity of prenex separation logic with
one selector. CoRR, abs/1804.03556 (2018)

8. Echenim, M., Iosif, R., Peltier, N.: On the expressive completeness of Bernays-
Schoenfinkel-Ramsey separation logic. ArXiv e-prints (2018)

9. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38574-2 2

10. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. ACM SIGPLAN Not. 36, 14–26 (2001)

11. Lozes, É.: Expressivité des logiques spatiales. Thèse de doctorat, Laboratoire de
l’Informatique du Parallélisme, ENS Lyon, France, November 2004

12. Ramsey, F.P.: On a problem of formal logic. In: Classic Papers in Combinatorics,
pp. 1–24 (1987)

https://doi.org/10.1007/978-3-540-31982-5_25
https://doi.org/10.1007/3-540-45294-X_10
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.1007/978-3-642-38574-2_2

The Bernays-Schönfinkel-Ramsey Class 259

13. Reynolds, A., Iosif, R., Serban, C.: Reasoning in the Bernays-Schönfinkel-Ramsey
fragment of separation logic. In: Bouajjani, A., Monniaux, D. (eds.) VMCAI 2017.
LNCS, vol. 10145, pp. 462–482. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52234-0 25

14. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS 2002, pp. 55–74. IEEE Computer Society (2002)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-52234-0_25
https://doi.org/10.1007/978-3-319-52234-0_25
http://creativecommons.org/licenses/by/4.0/

Continuous Reachability for Unordered
Data Petri Nets is in PTime

Utkarsh Gupta1, Preey Shah1, S. Akshay1(B), and Piotr Hofman2

1 Department of CSE, IIT Bombay, Mumbai, India
akshayss@cse.iitb.ac.in

2 University of Warsaw, Warsaw, Poland

Abstract. Unordered data Petri nets (UDPN) are an extension of clas-
sical Petri nets with tokens that carry data from an infinite domain and
where transitions may check equality and disequality of tokens. UDPN
are well-structured, so the coverability and termination problems are
decidable, but with higher complexity than for Petri nets. On the other
hand, the problem of reachability for UDPN is surprisingly complex,
and its decidability status remains open. In this paper, we consider the
continuous reachability problem for UDPN, which can be seen as an
over-approximation of the reachability problem. Our main result is a
characterization of continuous reachability for UDPN and polynomial
time algorithm for solving it. This is a consequence of a combinatorial
argument, which shows that if continuous reachability holds then there
exists a run using only polynomially many data values.

Keywords: Petri nets · Continuous reachability · Unordered data ·
Polynomial time

1 Introduction

The theory of Petri nets has been developing since more than 50 years. On one
hand, from a theory perspective, Petri nets are interesting due to their deep math-
ematical structure and despite exhibiting nice properties, like being a well struc-
tured transition system [1], we still don’t understand them well. On the other hand,
Petri nets are a useful pictorial formalism for modeling and thus found their way
to the industry. To connect this theory and practice, it would be desirable to use
the developed theory of Petri nets [2–4] for the symbolic analysis and verification
of Petri nets models. However, we already know that this is difficult in its full gen-
erality. It suffices to recall two results that were proved more than 30 years apart.
An old but classical result by Lipton [5] shows that even coverability is ExpSpace-
hard, while the non-elementary hardness of the reachability relation has just been

Supported by Polish NCN grant UMO-2016/21/D/ST6/01368, DST Inspire faculty
award IFA12-MA-17, and DST/CEFIPRA project EQuaVe.
U. Gupta and P. Shah—Contributed equally to this work.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 260–276, 2019.
https://doi.org/10.1007/978-3-030-17127-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_15

Continuous Reachability for Unordered Data Petri Nets is in PTime 261

established this year [6]. Moreover, when we look at Petri nets based formalisms
that are needed to model various aspects of industrial systems, we see that they go
beyond the expressivity of Petri nets. For instance, colored Petri nets, which are
used in modeling workflows [7], allow the tokens to be colored with an infinite set
of colors, and introduce a complex formalism to describe dependencies between
colors. This makes all verification problems undecidable for this generic model.
Given the basic nature and importance of the reachability problem in Petri nets
(and its extensions), there have been several efforts to sidestep the complexity-
theoretic hardness results. One common approach is to look for easy subclasses
(such as bounded nets [8], free-choice nets [9] etc.). The other approach, which we
adopt in this work, is to compute over-approximations of the reachability relation.

Continuous Reachability. A natural question regarding the dynamics of a Petri
net is to ask what would happen if tokens instead of behaving like discrete units
start to behave like a continuous fluid? This simple question led to an elegant
theory of so-called continuous Petri nets [10–12]. Petri nets with continuous
semantics allow markings to be functions from places to nonnegative rational
numbers (i.e., in Q

+) instead of natural numbers. Moreover, whenever a tran-
sition is fired a positive rational coefficient is chosen and both the number of
consumed and produced tokens are multiplied with the coefficient. This allows
to split tokens into arbitrarily small parts and process them independently. This
may occur, e.g., in applications related to hybrid systems where the discrete part
is used to control the continuous system [13,14]. Interestingly, this makes things
simpler to analyze. For example reachability under the continuous semantics for
Petri nets is PTime-complete [11]. However, when one wants to analyze exten-
sions of Petri nets, e.g., reset Petri nets with continuous semantics, it turns out
that reachability is as hard as reachability in reset Petri nets under the usual
semantics i.e. it is undecidable1. In this paper we identify an extension of Petri
nets with unordered data, for which this is not the case and continuous semantics
leads to a substantial reduction in the complexity of the reachability problem.

Unordered Data Petri Nets. The possibility of equipping tokens with some addi-
tional information is one of the main lines of research regarding extensions of Petri
nets, the best known being Colored Petri nets [15] and various types of timed Petri
nets [16,17]. In [18] authors equipped tokens with data and restricted interactions
between data in a way that allow to transfer techniques for well structured transi-
tion systems. They identified various classes of nets exhibiting interesting combi-
natorial properties which led to a number of results [19–23]. Unordered Data Petri
Nets (UDPN), are simplest among them: every token carries a single datum like a
barcode and transitions may check equality or disequality of data in consumed and
produced tokens. UDPN are the only class identified in [18] for which the reacha-
bility is still unsolved, although in [20] authors show that the problem is at least
Ackermannian-hard (for all other data extensions, reachability is undecidable).
A recent attempt to over-approximate the reachability relation for UDPN in [22]

1 This can be seen on the same lines as the proof of undecidability of continuous
reachability for Petri nets with zero tests [12].

262 U. Gupta et al.

considers integer reachability i.e. number of tokens may get negative during the
run (also called solution of the state equation). From the above perspective, this
paper is an extension of the mentioned line of research.

Our Contribution. Our main contribution is a characterization of continuous
reachability in UDPN and a polynomial time algorithm for solving it. Observe
that if we find an upper bound on the minimal number of data required by a run
between two configurations (if any run exists), then we can reduce continuous
reachability in UDPN to continuous reachability in vanilla Petri nets with an
exponential blowup and use the already developed characterization from [11].
In Sect. 5 we prove such a bound on the minimal number of required data. The
bound is novel and exploits techniques that did not appear previously in the
context of data nets. Further, the obtained bounds are lower than bounds on
the number of data values required to solve the state equation [22], which is
surprising considering that existence of a continuous run requires a solution of a
sort of state equation. Precisely, the difference is that we are looking for solutions
of the state equation over Q+ instead of N and in this case we prove better bounds
for the number of data required. This also gives us an easy polytime algorithm
for finding Q

+-solutions of state equations of UDPN (we remark that for Petri
nets without data, this appears among standard algebraic techniques [24]).

Finally, with the above bound, we solve continuous reachability in UDPN
by adapting the techniques from the non-data setting of [12,25]. We adapt the
characterization of continuous reachability to the data setting and next encode
it as system of linear equations with implications. In doing so, however, we face
the problem that a naive encoding (representing data explicitly) gives a system
of equations of exponential size, giving only an ExpTime-algorithm. To improve
the complexity, we use histograms, a combinatorial tool developed in [22], to
compress the description of solutions of state equations in UDPNs. However,
this may lead to spurious solutions for continuous reachability. To eliminate
them, we show that it suffices to first transform the net and then apply the
idea of histograms to characterize continuous runs in the modified net. The
whole procedure is described in Sect. 7.3 and leads us to our PTime algorithm
for continuous reachability in UDPN. Note that since we easily have PTime
hardness for the problem (even without data), we obtain that the problem of
continuous reachability in UDPN is PTime-complete.

Towards Verification. Over-approximations are useful in verification of Petri
nets and their extensions: as explained in [24], for many practical problems,
over-approximate solutions are already correct. Further, we can use them as a
sub-routine to improve the practical performance of verification algorithms. A
remarkable example is the recent work in [25], where the PTime continuous
reachability algorithm for Petri nets from [11] is used as a subroutine to solve
the ExpSpace hard coverability problem in Petri nets, outperforming the best
known tools for this problem, such as Petrinizer [26]. Our results can be seen as a
first step in the same spirit towards handling practical instances of coverability,
but for the extended model of UDPN, where the coverability problem for UDPN
is known to be Ackermannian-hard [20].

Omitted proofs and details can be found in the extended version at [27].

Continuous Reachability for Unordered Data Petri Nets is in PTime 263

2 Preliminaries

We denote integers, non-negative integers, rationals, and reals as Z,N,Q, and
R, respectively. For a set X ⊆ R denote by X

+, the set of all non-negative
elements of X. We denote by 0, a vector whose entries are all zero. We define
in a standard point-wise way operations on vectors i.e. scalar multiplication ·,
addition +, subtraction −, and vector comparison ≤. In this paper, we use
functions of the type X → (Y → Z), and instead of (f(x))(y), we write f(y, x).
For functions f, g where the range of g is a subset of the domain of f , we denote
their composition by f ◦ g. If π is an injection then by π−1 we mean a partial
function such that π−1 ◦ π is the identity function. Let f : X1 → Y , g : X2 → Y
be two functions with addition and scalar multiplication operations defined on Y.
A scalar multiplication of a function is defined as follows (a·f)(x) = a·f(x) for all
x ∈ X1. We lift addition operation to functions pointwise, i.e. f+g : X1∪X2 → Y
such that

(f + g)(x) =

⎧
⎪⎨

⎪⎩

f(x) if x ∈ X1 \ X2

g(x) if x ∈ X2 \ X1

f(x) + g(x) if x ∈ X1 ∩ X2.

Similarly for subtraction (f − g)(x) = f(x) + −1 · g(x), and f ≤ g if for all
x ∈ X1 ∪ X2, (g − f)(x) ≤ 0.

We use matrices with rows and columns indexed by sets S1,S2, possibly
infinite. For a matrix M , let M(r, c) denote the entry at column c and row
r, and M(r, •), M(•, c) denote the row vector indexed by r and column vec-
tor indexed by c, respectively. Denote by col(M), row(M) the set of indices
of nonzero columns and nonzero rows of the matrix M , respectively. Even if
we have infinitely many rows or columns, our matrices will have only finitely
many nonzero rows and columns, and only this nonzero part will be repre-
sented. Following our nonstandard matrix definition we precisely define oper-
ations on them, although they are natural. First, a multiplication by a con-
stant number produces a new matrix with row and columns labelled with the
same sets S1,S2 and defined as follows (a · M)(r, c) = a · (M(r, c)) for all
(r, c) ∈ S1 × S2. Addition of two matrices is only defined if the sets index-
ing rows S1 and columns S2 are the same for both summands M1 and M2,
∀(r, c) ∈ S1 × S2 the sum (M1 + M2)(r, c) = M1(r, c) + M2(r, c), the subtraction
M1 − M2 is a shorthand for M1 + (−1) · M2. Observe that all but finitely many
entries in matrices are 0, and therefore when we do computation on matrices we
can restrict to rows row(M1) ∪ row(M2) and columns col(M1) ∪ col(M2). Sim-
ilarly the comparison for two matrices M1,M2 is defined as follows M1 ≤ M2

if ∀(r, c) ∈ (row(M1) ∪ row(M2)) × (col(M1) ∪ col(M2)) M1(r, c) ≤ M2(r, c);
relations >,≥,≤ are defined analogically. The last operation which we need is
matrix multiplication M1 · M2 = M3, it is only allowed if the set of columns
of the first matrix M1 is the same as the set of rows of the second matrix
M2, the sets of rows and columns of the resulting matrix M3 are rows of the
matrix M1 and columns of M2, respectively. M3(r, c) =

∑
k M1(r, k)M2(k, c)

264 U. Gupta et al.

where k runs through columns of M1. Again, observe that if the row or a col-
umn is equal to 0 for all entries then the effect of multiplication is 0, thus we
may restrict to row(M1) and col(M2). Moreover in the sum it suffices to write∑

k∈col(M1)
M1(r, k)M2(k, c).

3 UDPN, Reachability and Its Variants: Our Main
Results

Unordered data Petri nets extend the classical model of Petri nets by allowing
each token to hold a data value from a countably-infinite domain D. Our defini-
tion is closest to the definition of ν-Petri nets from [28]. For simplicity we choose
this one instead of using the equivalent but complex one from [18].

Definition 1. Let D be a countably infinite set. An unordered data Petri net
(UDPN) over domain D is a tuple (P, T, F,Var) where P is a finite set of places,
T is a finite set of transitions, Var is a finite set of variables, and F : (P ×T)∪
(T × P) → (Var → N) is a flow function that assigns each place p ∈ P and
transition t ∈ T a function over variables in Var.

For each transition t ∈ T we define functions F (•, t) and F (t, •), Var →
(P → N) as F (•, t)(p, x) = F (p, t)(x) and analogously F (t, •)(p, x) = F (t, p)(x).
Displacement of the transition t is a function Δ(t) : Var → (P → Z) defined as
Δ(t) def= F (t, •) − F (•, t).

For X ∈ {N,Z,Q,Q+}, we define an X-marking as a function M : D → (P →
X) that is constant 0 on all except finitely many values of D. Intuitively, M(p, α)
denotes the number of tokens with the data value α at place p. The fact that
it is 0 at all but finitely many data means that the number of tokens in any
X-marking is finite. We denote the infinite set of all X-markings by MX.

We define an X-step as a triple (c, t, π) for a transition t ∈ T , mode π being
an injective map π : Var → D, and a scalar constant c ∈ X

+. An X-step (c, t, π)
is fireable at a X-marking i if i − c · F (•, t) ◦ π−1 ∈ MX.

The X-marking f reached after firing an X-step (c, t, π) at i is given as
f = i + c · Δ(t) ◦ π−1. We also say that an X-step (c, t, π) when fired consumes
tokens c ·F (•, t)◦π−1 and produces tokens c ·F (t, •)◦π−1. We define an X-run as
a sequence of X-steps and we can represent it as {(ci, ti, πi)}|ρ| where (ci, ti, πi)
is the ith X-step and |ρ| is the number of X-steps. A run ρ = {(ci, ti, πi)}|ρ|
is fireable at a X-marking i if, ∀1 ≤ i ≤ |ρ|, the step (ci, ti, πi) is fireable at
i +

∑i−1
j=1 ciΔ(tj) ◦ π−1

j . By i
ρ−→X f we denote that ρ is fireable at i and after

firing ρ at i we reach X-marking f = i +
∑|ρ|

i=1 ci · Δ(ti) ◦ π−1
i . We call (the

function computed by) the mentioned sum
∑|ρ|

i=1 ciΔ(ti) ◦ π−1
i as the effect of

the run and denote it by Δ(ρ).
We fix some notations for the rest of the paper. We use Greek letters α, β, γ

to denote data values from data domain D, ρ, σ to denote a run, π to denote
a mode and x, y, z to denote the variables. When clear from the context, we
may omit X from X-marking, X-run and just write marking, run, etc. Further,

Continuous Reachability for Unordered Data Petri Nets is in PTime 265

we will use letters in bold, e.g., m to denote markings, where i , f will be used
for initial and final markings respectively. Further, throughout the paper, unless
stated explicitly otherwise, we will refer to a UDPN N = (P, T, F,Var), therefore
P, T, F,Var will denote the places, transitions, flow, and variables of this UDPN.

Example 1. An example of a simple UDPN N1 is
given in Fig. 1. For this example, we have P =
{p1, p2, p3, p4}, T = {t}, V ar = {x, y, z}, and the flow
relation is given by F (p1, t) = {y �→ 1}, F (p2, t) =
{x �→ 1}, F (t, p3) = {y �→ 2}, F (t, p4) = {x �→ 1, z �→
1}, and an assignment of 0 to every variable for the
remaining of the pairs. Thus, for enabling transition
p1 and p2 must have one token each with a different
data value (since x �= y) and after firing two tokens
are produced in p3 with same data value as was con-
sumed from p1 and two tokens are produced in p4, one
of whom has same data as consumed from p2.

p2

t

x

p1

y

p4x,zp3
2y

Fig. 1. A simple UDPN N1

Definition 2. Given X-markings i, f, we say f is X-reachable from i if there
exists an X-run ρ s.t., i

ρ−→X f.

When X = N, X-reachability is the classical reachability problem, whose
decidability is still unknown, while Z-reachability for UDPN is in NP [22].

In this paper we tackle Q and Q
+-reachability, also called continuous reach-

ability in UDPN.
The first step towards the solution is showing that if a Q

+-marking f is
Q

+-reachable from a Q
+-marking i , then there exists a Q

+-run ρ which uses
polynomially many data values and i

ρ−→Q+ f . We first formalize the set of
distinct data values associated with X-markings, data values used in X-runs and
variables associated with a transition.

Definition 3. For N = (P, T, F,Var) a UDPN, X-marking m, t ∈ T , and
X-run ρ = {(ci, ti, πi)}|ρ|, we define

1. vars(t) = {x ∈ Var | ∃p ∈ P : F (p, t)(x) �= 0 ∨ F (t, p)(x) �= 0}.
2. dval(m) = {α ∈ D | ∃p ∈ P : m(p, α) �= 0}.
3. dval(ρ) = {α ∈ D | ∃i ≤ |ρ| ∃x ∈ vars(ti) : (πi(x) = α)}.

With this we state the first main result of this paper, which provides a bound
on witnesses of Q,Q+-reachability, and is proved in Sect. 5.

Theorem 1. For X ∈ {Q,Q+}, if an X-marking f is X-reachable from an initial
X-marking i, then there is an X-run ρ such that i

ρ−→X f and |dval(ρ)| ≤ |dval(i)∪
dval(f)| + 1 + maxt∈T (|vars(t)|).
Using the above bound, we obtain a polynomial time algorithm for Q-
reachability, as detailed in Sect. 6.

266 U. Gupta et al.

Theorem 2. Given N = (P, T, F,Var) a UDPN and two Q-markings i, f,
deciding if f is Q-reachable from i in N is in polynomial time.

Finally, we consider continuous, i.e., Q+-reachability for UDPN. We adapt
the techniques used for Q

+-reachability of Petri nets without data from [11,12]
to the setting with data, and obtain a characterization of Q

+-reachability for
UDPN in Sect. 7.1. Finally, in Sect. 7.3, we show how the characterization can
be combined with the above bound and compression techniques from [22] to
obtain a polynomial sized system of linear equations with implications over Q+.
To do so, we require a slight transformation of the net which is described in
Sect. 7.2. This leads to our headline result, stated below.

Theorem 3 (Continuous reachability for UDPN). Given a UDPN N =
(P, T, F,Var) and two Q

+-markings i, f, deciding if f is Q
+-reachable from i in

N is in polynomial time.

The rest of this paper is dedicated to proving these theorems. First, we present
an equivalent formulation via matrices, which simplifies the technical arguments.

4 Equivalent Formulation via Matrices

From now on, we restrict X to a symbol denoting Q or Q
+. We formulate the

definitions presented earlier in terms of matrices, since defining object such as
X-marking as functions is intuitive to define but difficult to operate upon.

In the following, we abuse the notation and use the same names for objects as
well as matrices representing them. We remark that this is safe as all arithmetic
operations on objects correspond to matching operations on matrices.

An X-marking m is a P × D matrix M , where ∀p ∈ P,∀α ∈ D,M(p, α) =
m(p, α). As a finite representation, we keep only a P × dval(m) matrix of non-
zero columns. For a transition t ∈ T , we represent F (t, •), F (•, t) as P × Var
matrices. Note that (t, •) is not the position in the matrix, but is part of the
name of the matrix; its entry at (i, j) ∈ P × Var is given by F (t, •)(i, j). For
a place p ∈ row(F (t, •)), the row F (t, •)(p, •) is a vector in N

Var , given by
an equation F (•, t)(p, •)(x) = F (p, t)(x) for p ∈ P, t ∈ T, x ∈ Var . Similarly,
Δ(t) is a P × Var matrix with Δ(t)(p, x) = F (t, •)(p, x) − F (•, t)(p, x) for t ∈
T, p ∈ P, and x ∈ Var . Although, both Δ(t) and F (•, t) are defined as P × Var
matrices, only the columns for variables in vars(t) may be non-zero, so often we
will iterate only over vars(t) instead of Var .

Finally, we capture a mode π : Var → D as a Var × D permutation matrix
P. Although P may not be a square matrix, we abuse notation and call them
permutation matrices. P basically represents assignment of variables in Var to
data values just like π does. An entry of 1 represents that the corresponding
variable is assigned corresponding data value in mode π. Thus, for each mode
π : Var → D there is a permutation matrix Pπ, such that for all x ∈ Var , α ∈ D,
Pπ(x, α) = 1 if π(x) = α, and Pπ(x, α) = 0 otherwise. Formulating a mode as a
permutation matrix has the advantage that Δ(t) ◦ π−1 is captured by Δ(t) · Pπ.

Continuous Reachability for Unordered Data Petri Nets is in PTime 267

Example 2. In the UDPN N1 from Example 1, if D = {red, blue, green, black}
then the initial marking i can be represented by the matrix i below and the
function Δ(t) by the matrix Δ(t)

i =

red blue green black
⎛

⎜
⎝

⎞

⎟
⎠

1 0 1 0 p1
0 1 0 0 p2
2 0 0 0 p3
1 1 0 0 p4

Δ(t) =

x y z
⎛

⎜
⎝

⎞

⎟
⎠

0 −1 0 p1
−1 0 0 p2
0 2 0 p3
1 0 1 p4

If we fire transition t with the assignment x = blue, y = green, z = black, we
get the following net depicted below (left), with marking f (below center). The
permutation matrix corresponding to the mode of fired transition is given by P
matrix on the right. Note that the matrix f − i is indeed the matrix Δ(t) · P.

p2

t

x

p1

y

x,zp3
2y

f =

red blue green black⎛
⎜⎝

⎞
⎟⎠

1 0 0 0 p1
0 0 0 0 p2
2 0 2 0 p3
1 2 0 1 p4

P =

red blue green black()x 0 1 0 0
y 0 0 1 0
z 0 0 0 1

Using the representations developed so far we can represent an X-run ρ as
{(ci, ti,Pi)}|ρ| where (ci, ti,Pi) denotes the ith X-step fired with coefficient ci

using transition ti with a mode corresponding to permutation matrix Pi. The
sum of the matrices (

∑|ρ|
i=1 ciΔ(ti) · Pi) gives us the effect of the run i.e. Δ(ρ) =

f − i where i
ρ−→X f . Effect of an X-run ρ on a data value α is Δ(ρ)(•, α). Also,

for an X-run ρ = {(ci, ti,Pi)}|ρ|, define kρ = {(kci, ti,Pi)}|ρ| where k ∈ X
+.

5 Bounding Number of Data Values Used in Q,Q+-run

We now prove the first main result of the paper, namely, Theorem 1, which shows
a linear upper bound on the number of data values required in a Q

+-run and a
Q-run. Theorem 1 is an immediate consequence of the following lemma, which
states that if more than a linearly bounded number of data values are used in a
Q or Q

+ run, then there is another such run in which we use at least one less
data value.

Lemma 1. Let X ∈ {Q,Q+}. If there exists an X-run σ such that i σ−→X f and
|dval(σ)| > |dval(i)∪dval(f)|+1+maxt∈T (|vars(t)|), then there exists an X-run
ρ such that i

ρ−→X f and |dval(ρ)| ≤ |dval(σ)| − 1.

By repeatedly applying this lemma, Theorem 1 follows immediately. The rest of
this section is devoted to proving this lemma. The central idea is to take any Q

or Q
+-run between i , f and transform it to use at least one less data value.

268 U. Gupta et al.

5.1 Transformation of an X-run

The transformation which we call decrease is defined as a combination of two
separate operations on an X-run; we name them uniformize and replace and
denote them by U and R respectively.

– uniformize takes an X-step and a non-empty set of data values E as input
and produces an X-run, such that in the resultant run, the effect of the run
for each data value in E is equal.

– replace takes an X-step, a single data value α, and a non-empty set of data
values E as input and outputs an X-step which doesn’t use data value α.

The intuition behind the decrease operation is that we would like to take two
data values α and β used in the run such that effect on both of them is 0
(they exists as the effect on every data value not present in the initial of final
configuration is 0) and replace usage of α by β. However, such a replacement can
only be done if both data are not used together in a single step (indeed, a mode
π cannot assign the same data values to two variables). Unfortunately we cannot
guarantee the existence of such a β that may replace α globally. We circumvent
this by applying the replace operation separately for every step, replacing α with
different data values in different steps.

But such a transformation would not preserve the effect of the run. To repair
this aspect we uniformize i.e. guarantee that the final effect after replacing α by
other data values is equal for every datum that is used to replace α. As the effect
on α was 0 then if we split it uniformly it adds 0 to effects of data replacing α,
which is exactly what we want. We now formalize this intuition below.

The Uniformize Operator. By c© we denote an operator of concatenation of
two sequences. Although the data set D is unordered, the following definitions
require access to an arbitrary but fixed linear order on its elements. The definition
of the uniformize operator needs another operator to act on an X-step, which
we call rotate and denote by rot .

Definition 4. For a non-empty finite set of data values E ⊂ D and an X-step,
ω = (c, t,P), define rot(E, ω) = (c, t,P ′) where P ′ is obtained from P as follows.

– ∀α ∈ col(P) \ E, P ′(•, α) = P(•, α).
– ∀α ∈ E, P ′(•, α) = P(•, nextE(α)), where nextE(α) = min({β ∈ E | β > α})

if |{β ∈ E | β > α}| > 0 and min(E) otherwise.

For a fixed set E, we can repeatedly apply rot(E, •) operation on an X-step,
which we denote by rotk(E, ω), where k is the number of times we applied the
operation (for example: rot2(E, ω) = rot(E, (rot(E, ω))).

Continuous Reachability for Unordered Data Petri Nets is in PTime 269

Definition 5. For a finite and non-empty set of data values E ⊂ D and an
X-step ω = (c, t,P), we define uniformize as follows

U(E, ω) = rot0(E, ω
|E|) c© rot1(E, ω

|E|) c© rot2(E, ω
|E|) c© ... c© rot |E|−1(E, ω

|E|).

An important property of uniformize is its effect on data values.

Lemma 2. For a finite and non-empty set of data values E ⊂ D and an X-step

ω = (c, t,P), i ω−→Q+ f, if i′
U(E,ω)−−−−→ f ′, then

1. ∀α ∈ dval(ω)\E, f ′(•, α) − i′(•, α) = f(•, α) − i(•, α)
2. ∀α ∈ E, , f ′(•, α) − i′(•, α) =

∑
β∈E

(f(•,β)−i(•,β))

|E| .

This lemma tells us the effect of the run on the initial marking is equalized
for data values in E by the U operation, and is unchanged for the other data
values.

The Replace Operator. To define the replace operator it is useful to introduce
swapα,β(P) which exchanges columns α and β in the matrix P.

Definition 6. For a finite set of data values E, an X-step ω = (c, t,P), and
α �∈ E we define replace as follows

R(α,E, ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c, t,P) if (F (t, •) · P)(•, α) = (F (•, t) · P)(•, α) = 0

(c, t, swapα,β(P)) else, if β is the smallest datum in E s.t.,

(F (t, •) · P)(•, β) = (F (•, t) · P)(•, β) = 0

undefined otherwise.

After applying the replace operation α is no longer used in the run, which reduces
the number of data values used in the run. Observe that replace can not be always
applied to an X-step. It requires a zero column labelled with an element from E

in the permutation matrix corresponding to the X-step.

The Decrease Transformation. Finally, we define the transformation on an
X-run between two markings which we call decrease and denote by dec.

Definition 7. For two X-markings i, f, and an X-run σ such that i σ−→X f and
|dval(σ)| > |dval(i) ∪ dval(f)| + 1 + maxt∈T (|vars(t)|), let {α} ∪ E = dval(σ) \
(dval(i) ∪ dval(f)) and α �∈ E. We define decrease by, dec(E, α, σ) =

U(E,R(α,E, σ(1))) c© U(E,R(α,E, σ(2))) c© ... c© U(E,R(α,E, σ(|σ|))).
where σ(j) denotes the jth

X-step of σ.

Observe that the required size of dval(σ) guarantees existence of a β ∈ E

which can be replaced with α, for every application of the R operation. Note
that the exchanged data value β could be different for each step. Finally, we
can analyze the decrease transformation and show that if the original run allows
for the decrease transformation (as given in the above definition), then after
the application of it, the resulting sequence of transitions is a valid run of the
system.

270 U. Gupta et al.

Lemma 3. Let σ be an X-run such that i
σ−→X f and |dval(σ)| > |dval(i) ∪

dval(f)| + 1 + maxt∈T (|dval(t)|). Let α ∈ dval(σ) \ (dval(i) ∪ dval(f)) and E =
dval(σ) \ (dval(i) ∪ dval(f) ∪ {α}). Then for ρ = dec(E, α, σ), we obtain i

ρ−→X f.

Proof. Suppose σ = σ1σ2 . . . σl where each σj = (cj , tj ,Pj), for 1 ≤ j ≤ l
is an X-step. Then ρ = ρ1 c© . . . c©ρl, where each ρj is an X-run defined by
ρj = U(E,R(α,E, σj)). It will be useful to identify intermediate X-markings

i = m0
σ1−→X m1

σ2−→X m2
σ3−→X . . .

σl−→X m l = f (1)

i = m ′
o

U(E,R(α,E,σ1))−−−−−−−−−−→Q m ′
1

U(E,R(α,E,σ2))−−−−−−−−−−→Q m ′
2 . . .

U(E,R(α,E,σl))−−−−−−−−−−→Q m ′
l = f ′ (2)

We split the proof: first we show that f = f ′ and then ρ is X-fireable from i .

Step 1: Showing that the final markings reached are the same. We
prove a stronger statement which implies that f = f ′, namely:

Claim 1. For all 0 ≤ j ≤ l,

1. m′
j(•, α) = 0

2. ∀γ ∈ dval(i) ∪ dval(f), m′
j(•, γ) = mj(•, γ)

3. ∀γ ∈ E m′
j(•, γ) = 1

|E|
(∑

δ∈E∪{α} mj(•, δ)
)

.

The proof is obtained by induction on j. Intuitively, point 1 holds as we
shift effects on α to β, point 2 holds as the transformation does not touch
γ ∈ dval(i) ∪ dval(f). The last and most complicated point follows from the
fact that the number of tokens consumed and produced along each segment
U(E,R(α,E,σj))−−−−−−−−−−→ is the same as for σj , but uniformized over E.

Step 2: Showing that ρ is an X-run. If X = Q then the run ρ is fireable, as
any Q-run is fireable, so in this case this step is trivial. The case when X = Q

+

is more involved. As we know from Claim 1, each m′
j is a Q

+-marking, so it

suffices to prove that for every j, m ′
j

U(E,R(α,E,σj))−−−−−−−−−−→Q+ m ′
j+1. Consider a data

vector of tokens consumed along the Q
+-run U(E,R(α,E, σj)). If we show that

it is smaller than or equal to m ′
j (component-wise), then we can conclude that

U(E,R(α,E, σj)) is indeed Q
+-fireable from m ′

j . To show this, we examine the
consumed tokens for each datum γ separately. There are three cases:

(i) γ = α. For this case, every step in U(E,R(α,E, σj)) does not make any
change on α so tokens with data value α are not consumed along the Q

+-
run U(E,R(α,E, σj)).

(ii) γ ∈ dval(i) ∪ dval(f). This is similar to the above case. Consider any data
value γ ∈ (dval(σ)\E) \ {α}. Since γ does not change on rotate operation,
the U operation causes each Q-step in U(E,R(α,E, σj)) to consume 1

|E| of
the tokens with data value γ consumed when σj is fired. This is repeated
|E| times and hence the vector of tokens with data value γ consumed along
U(E,R(α,E, σj)) is equal to the vector of tokens with value γ consumed

Continuous Reachability for Unordered Data Petri Nets is in PTime 271

by step σj . But we know that, it is smaller than mj(•, γ) and concluding
smaller than m ′

j(•, γ). The last inequality is true as mj(•, γ) = m ′
j(•, γ)

according to Claim 1.
(iii) γ ∈ E. Let ω be a triple (cj , F (•, tj),Pj) where (cj , tj ,Pj) = σj . ω simply

describes tokens consumed by σj . We slightly overload the notation and
treat a triple ω like a step, where F (•, tj) represents a transition “ ” for
which F (•,) = F (•, tj) and F (, •) is a zero matrix. We calculate the
vector of consumed tokens with data value γ as follows: consumed(•, γ) =

1
|E|

|E|−1∑

k=0

Δ(rotk(E,R(α,E, ω)))(•, γ) =
1

|E|
|E|∑

k=0

Δ(rotk(E ∪ {α}, ω))(•, γ)

the first equality is from definition and the second by the replace operation,

=
cj

|E|
|E|∑

k=0

(rotk(E∪{α}, (1, F (•, tj),Pj)))(•, γ) =
cj

|E|
∑

δ∈E∪{α}
(F (•, tj)·Pj)(•, δ)

Further, observe that as σj can fired in mj

cj(F (•, tj) · Pj)(•, δ) ≤ mj(•, δ) for all δ ∈ D,

summing up over δ ∈ E ∪ {α} and multiplying with 1
|E| we get

1
|E|cj

∑

δ∈E∪{α}
(F (•, tj) · Pj)(•, δ) ≤ 1

|E|
∑

δ∈E∪{α}
mj(•, δ) = m ′

j(δ, γ),

where the last equality comes from Claim 1 point 3. Combining inequalities
we get consumed(•, γ) ≤ m ′

i(•, γ).

Proof (of Lemma 1). Now the proof of Lemma 1 (and hence Theorem 1) fol-
low immediately, since we can use the decrease transformation, to decrease the
number of data values required in an X-run. We simply take α ∈ dval(σ) \
(dval(i) ∪ dval(f)) and E = dval(σ) \ (dval(i) ∪ dval(f)) \ {α}. Next, let
ρ = dec(E, α, σ). Due to Lemma 3 we know that i

ρ−→X f . Moreover, observe that
dval(ρ) ⊆ dval(σ). But in addition, α �∈ dval(ρ) as due to the one of properties of
the decrease operation α does not participate in the run ρ. So dval(ρ) ⊂ dval(σ).
Therefore |dval(ρ)| ≤ |dval(σ)| − 1.

6 Q-reachability is in PTime

We recall the definition of histograms from [22].

Definition 8. A histogram M of order q ∈ Q is a Var × D matrix having non-
negative rational entries such that,

272 U. Gupta et al.

1.
∑

α∈col(M) M(x, α) = q for all x ∈ row(M).
2.

∑
x∈row(M) M(x, α) ≤ q for all α ∈ col(M).

A permutation matrix is a histogram of order 1.
In the following lemma, we state two properties of histograms. We say that a

histogram of order a is an [a]-histogram if the histogram has only {0, a} entries.

Lemma 4. Let H,H1,H2, ..,Hn be histograms of order q, q1, q2, ..., qn respec-
tively and of same row dimensions then (i)

∑n
i=1 Hi is a histogram of order∑n

i qi, (ii) H can be decomposed as a sum of [ai]-histograms such that
∑

i ai = q.

Using histograms we define a representation Hist(ρ) for an X-run ρ, which
captures Δ(ρ). From an X-run ρ = {(cj , tj ,Pj)}|ρ| we obtain Hist(ρ) as follows.
For all transitions t ∈ T , define the set It = {j ∈ [1..|ρ|]| tj = t}. Then calcu-
late the matrix Ht =

∑
i∈It

ciPi. Observe that since permutation matrices are
histograms and histograms are closed under scalar multiplication and addition,
Ht is a histogram. If It is empty, then Ht is simply the null matrix. We define
Hist(ρ) as a mapping from T to histograms such that t is mapped to Ht.

Analogous to an X-run we can represent Hist(ρ) simply as {(tj ,Htj
)}, unlike

an X-run we don’t indicate the length of the sequence since it is dependent on
the net and not the individual run itself.

Proposition 1. Let N = (P, T, F,Var) be a UDPN, i, f X-markings, and σ an
X-run such that i σ−→X f. Then for each t ∈ T there exists Ht such that:

1. f − i =
∑

t∈T Δ(t) · Ht,
2. col(Ht) ⊆ dval(σ) for every t ∈ T.

A PTime Procedure. We start by observing that from any Q-marking i ,
every Q-step (c, t,P) is fireable and every Q run is fireable. This follows from
the fact that rationals are closed under addition, thus i + c · F (•, t) · P is a
marking in MQ. Thus if we have to find a Q-run ρ = {(cj , tj ,Pj)}|ρ| between
two Q-markings, i , f it is sufficient to ensure that f − i =

∑|ρ|
j=1 cjΔ(tj) · Pj .

Thus for a Q-run all that matters is the difference in markings caused by the
Q-run which is captured succinctly by Hist(ρ) = {tj ,Htj

}. This brings us to
our characterization of Q-run.

Lemma 5. Let N = (P, T, F,Var) be a UDPN, a marking f is Q-reachable
from i iff there exists set E of size bounded by |E| ≤ |dval(i) ∪ dval(f)| + 1 +
maxt∈T (|vars(t)|) and a histogram Ht for each t ∈ T such that f−i =

∑
t∈T Δ(t)·

Ht and ∀t ∈ T col(Ht) ⊆ E.

Using this characterization we can write a system of linear inequalities to
encode the condition of Lemma 5. Thus, we obtain our second main result,
namely, Theorem 2, with detailed proofs in [27].

Continuous Reachability for Unordered Data Petri Nets is in PTime 273

7 Q
+-reachability is in PTime

Finally, we turn to Q
+-reachability for UDPNs and to the proof of Theorem 3. At

a high level, the proof is in three steps. We start with a characterization of Q+-
reachability in UDPNs. Then we present a polytime reduction of the continuous
reachability problem to the same problem but for a special subclass of UDPN,
called loop-less nets. Finally, we present how to encode the characterization for
loop-less nets into a system of linear equations with implications to obtain a
polytime algorithm for continuous reachability in UDPNs.

7.1 Characterizing Q
+-reachability

We begin with a definition. For an X-run we introduce the notion of the
pre and post sets of X−run. For an X-run, ρ = {(ci, ti,Pi)}|ρ| we define
Pre(ρ) = {(p, α)| ∃ ti,∃ x : F (p, ti)(x) < 0 ∧ Pi(x, α) = 1}. We also define
Post(ρ) = {(p, α)| ∃ ti,∃ x : F (ti, p)(x) > 0 ∧ Pi(x, α) = 1}. Intuitively,
Pre(ρ), Post(ρ) denote the set of (p, α) (place, data value) pairs describing
tokens that are consumed, produced respectively by the run ρ.

Throughout this section, by a marking we denote a Q
+-marking.

Lemma 6. Let N = (P, T, F,Var) be an UDPN and i, f are markings. For
any Q

+-run σ such that i
σ−→Q+ f there exist markings i ′ and f ′ (possibly on a

different run) such that

1. i′ is Q
+-reachable from i in at most |P | · |dval(σ)| Q+-steps

2. There is a run σ′ such that dval(σ′) ⊆ dval(σ) and i′ σ′
−→Q f ′

3. f is Q
+-reachable from f ′ in at most |P | · |dval(σ)| Q+-steps

4. ∀(p, α) ∈ Pre(σ′), i′(p, α) > 0
5. ∀(p, α) ∈ Post(σ′), f ′(p, α) > 0

Remark 1. If in conditions 1 and 3 we drop the requirement on the number of
steps then the five conditions still imply continuous reachability.

Note that if there exist markings i ′ and f ′ and Q
+ -runs ρ, ρ′, ρ′′ such

that i
ρ−→Q+ i ′, i ′ ρ′

−→Q+ f ′, f ′ ρ′′
−→Q+ f then there is a Q

+-run σ such that
i

σ−→Q+ f . The above characterization and its proof are obtained by adapting to
the data setting, the techniques developed for continuous reachability in Petri
nets (without data) in [11] and [12].

7.2 Transforming UDPN to Loop-less UDPN

For a UDPN N = (P, T, F,Var), we construct a UDPN N ′ which is poly-
nomial in the size of N and the Q

+-reachability problem is equivalent. We
define PreP lace(t) = {p ∈ P |∃v ∈ Var s.t. F (p, t)(v) > 0} and PostP lace(t)
= {p ∈ P |∃v ∈ Var s.t. F (t, p)(v) > 0}, where t ∈ T . The essential property
of the transformed UDPN is that for every transition the sets of PrePlace and

274 U. Gupta et al.

PostPlace do not intersect. A UDPN N = (P, T, F,Var) is said to be loop-less
if for all t ∈ T , PreP lace(t) ∩ PostP lace(t) = ∅.

Any UDPN can easily be transformed in polynomial time into a loop-less
UDPN such that Q+-reachability is preserved, by doubling the number of places
and adding intermediate transitions. Formally, For every net N and two mark-
ings i , f in polynomial time one can construct a loop-less net N ′ and two mark-
ings i ′, f ′ such that i −→Q+ f in the net N iff i ′ −→Q+ f ′ in N ′. Now, the
following lemma which describes a property of loop-less nets will be crucial for
our reachability algorithm:

Lemma 7. In a loop-less net, for markings i, f, if there exist a histogram H,
and a transition t ∈ T such that i + Δ(t) · H = f, then there exist a Q

+-run ρ

such that i
ρ−→Q+ f.

7.3 Encoding Q
+-reachability as Linear Equations with Implications

Linear equations with implications, as we use them, are defined in [23], but were
introduced in [12]. A system of linear equations with implications, also denoted
a =⇒ system, is a finite set of linear inequalities over the same variables, plus
a finite set of implications of the form x > 0 =⇒ y > 0, where x, y are variables
appearing in the linear inequalities.

Lemma 8 [12]. The Q
+ solvability problem for a =⇒ system is in PTime.

We then reduce the Q
+-reachability problem to checking the solvability of a sys-

tem of linear equations with implications, using the characterization established
in Lemma 6 in the following lemma.

Lemma 9. Q
+-reachability in a UDPN N = (P, T, F,Var) between markings

i, f can be encoded as a set of linear equations with implications in P-time.

Finally, we obtain Theorem 3 as a consequence of Lemmas 8 and 9.

8 Conclusion

In this paper, we provided a polynomial time algorithm for continuous reacha-
bility in UDPN, matching the complexity for Petri nets without data. This is in
contrast to problems such as discrete coverability, termination, where Petri nets
with and without data differ enormously in complexity, and to (discrete) reach-
ability, where decidability is still open. As future work, we aim to implement
the continuous reachability algorithm developed here, to build the first tool for
discrete coverability in UDPN on the lines of what has been done for Petri nets
without data. The main obstacle will be performance evaluation due to lack of
benchmarks for UDPNs. Another interesting avenue for future work would be
to tackle continuous reachability for Petri nets with ordered data, which would
allow us to analyze continuous variants of Timed Petri nets.

Acknowledgments. We thank the anonymous reviewers for their careful reading and
their helpful and insightful comments.

Continuous Reachability for Unordered Data Petri Nets is in PTime 275

References

1. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

2. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223–231 (1978)

3. Rao Kosaraju, S.: Decidability of reachability in vector addition systems (prelimi-
nary version). In: Proceedings of the 14th Annual ACM Symposium on Theory of
Computing, San Francisco, California, USA, 5–7 May 1982, pp. 267–281 (1982)

4. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, 6–10 July 2015, pp. 56–67 (2015)

5. Cardoza, E., Lipton, R.J., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups: preliminary report. In: Proceedings of the
8th Annual ACM Symposium on Theory of Computing, Hershey, Pennsylvania,
USA, 3–5 May 1976, pp. 50–54 (1976)

6. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reach-
ability problem for Petri nets is not elementary (extended abstract). CoRR,
abs/1809.07115 (2018)

7. van der Aalst, W.M.P.: The application of Petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

8. Esparza, J.: Decidability and complexity of Petri net problems — an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

9. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New
York (1995)

10. David, R., Alla, H.: Continuous Petri nets. In: Proceedings of the 8th European
Workshop on Application and Theory of Petri Nets, Zaragoza, Spain, pp. 275–294
(1987)

11. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundam.
Inform. 137(1), 1–28 (2015)

12. Blondin, M., Haase, C.: Logics for continuous reachability in Petri nets and vector
addition systems with states. In: 32nd Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12
(2017)

13. David, R., Alla, H.: Petri nets for modeling of dynamic systems: a survey. Auto-
matica 30(2), 175–202 (1994)

14. Alla, H., David, R.: Continuous and hybrid Petri nets. J. Circ. Syst. Comput. 8,
159–188 (1998)

15. Jensen, K.: Coloured Petri nets - preface by the section editor. STTT 2(2), 95–97
(1998)

16. Wang, J.: Timed Petri nets. Timed Petri Nets: Theory and Application. The
Kluwer International Series on Discrete Event Dynamic Systems, vol. 9, pp. 63–123.
Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5537-7 4

17. Abdulla, P.A., Nylén, A.: Timed Petri nets and BQOs. In: Colom, J.-M., Koutny,
M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 53–70. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45740-2 5

18. Lazic, R., Newcomb, T.C., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with
tokens which carry data. Fundam. Inform. 88(3), 251–274 (2008)

https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-1-4615-5537-7_4
https://doi.org/10.1007/3-540-45740-2_5

276 U. Gupta et al.

19. Rosa-Velardo, F., de Frutos-Escrig, D.: Forward analysis for Petri nets with name
creation. In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp.
185–205. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13675-
7 12

20. Lazić, R., Totzke, P.: What makes Petri nets harder to verify: stack or data? In:
Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and
Puzzles. LNCS, vol. 10160, pp. 144–161. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-51046-0 8

21. Hofman, P., Lasota, S., Lazić, R., Leroux, J., Schmitz, S., Totzke, P.: Coverability
trees for Petri nets with unordered data. In: Jacobs, B., Löding, C. (eds.) FOSSACS
2016. LNCS, vol. 9634, pp. 445–461. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 26

22. Hofman, P., Leroux, J., Totzke, P.: Linear combinations of unordered data vectors.
In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–11 (2017)

23. Hofman, P., Lasota, S.: Linear equations with ordered data. In: 29th Interna-
tional Conference on Concurrency Theory, CONCUR 2018, Beijing, China, 4–7
September 2018, pp. 24:1–24:17 (2018)

24. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

25. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 28

26. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 40

27. Gupta, U., Shah, P., Akshay, S., Hofman, P.: Continuous reachability for
unordered data Petri nets is in PTime. CoRR abs/1902.05604 (2019).
arxiv.org/abs/1902.05604

28. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of Petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-13675-7_12
https://doi.org/10.1007/978-3-642-13675-7_12
https://doi.org/10.1007/978-3-319-51046-0_8
https://doi.org/10.1007/978-3-319-51046-0_8
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1007/3-540-65306-6_19
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
http://arxiv.org/abs/org/abs/1902.05604
http://creativecommons.org/licenses/by/4.0/

Optimal Satisfiability Checking
for Arithmetic µ-Calculi

Daniel Hausmann(B) and Lutz Schröder

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
{daniel.hausmann,lutz.schroeder}@fau.de

Abstract. The coalgebraic µ-calculus provides a generic semantic
framework for fixpoint logics with branching types beyond the standard
relational setup, e.g. probabilistic, weighted, or game-based. Previous
work on the coalgebraic µ-calculus includes an exponential time upper
bound on satisfiability checking, which however requires a well-behaved
set of tableau rules for the next-step modalities. Such rules are not avail-
able in all cases of interest, in particular ones involving either integer
weights as in the graded µ-calculus, or real-valued weights in combina-
tion with non-linear arithmetic. In the present work, we prove the same
upper complexity bound under more general assumptions, specifically
regarding the complexity of the (much simpler) satisfiability problem
for the underlying one-step logic, roughly described as the nesting-free
next-step fragment of the logic. The bound is realized by a generic global
caching algorithm that supports on-the-fly satisfiability checking. Exam-
ple applications include new exponential-time upper bounds for satis-
fiability checking in an extension of the graded µ-calculus with poly-
nomial inequalities (including positive Presburger arithmetic), as well as
an extension of the (two-valued) probabilistic µ-calculus with polynomial
inequalities.

1 Introduction

Modal fixpoint logics are a well-established tool in the temporal specification,
verification, and analysis of concurrent systems. One of the most expressive log-
ics of this type is the modal μ-calculus [2,3,20], which features explicit least and
greatest fixpoint operators; roughly speaking, these serve to specify liveness prop-
erties (least fixpoints) and safety properties (greatest fixpoints), respectively.
Like most modal logics, the modal μ-calculus is traditionally interpreted over
relational models such as Kripke frames or labelled transition systems. The grow-
ing interest in more expressive models where transitions are governed, e.g., by
probabilities, weights, or games has sparked a commensurate growth of tempo-
ral logics and fixpoint logics interpreted over such systems; prominent examples
include probabilistic μ-calculi [5,17,24], the alternating-time μ-calculus [1], and
the monotone μ-calculus, which contains Parikh’s game logic [28]. The graded
μ-calculus [21] features next-step modalities that count successors; it is stan-
dardly interpreted over Kripke frames but, as pointed out by D’Agostino and
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 277–294, 2019.
https://doi.org/10.1007/978-3-030-17127-8_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_16&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_16

278 D. Hausmann and L. Schröder

Visser [6], graded modalities are more naturally interpreted over so-called multi-
graphs, where edges carry integer weights, and in fact this modification leads to
better bounds on minimum model size for satisfiable formulas.

Coalgebraic logic [29,34] has emerged as a unifying framework for modal
logics interpreted over such more general models. It is based on casting the
transition type of the systems at hand as a set functor, and the systems in
question as coalgebras for this type functor, following the paradigm of univer-
sal coalgebra [31]; additionally, modalities are interpreted as so-called predicate
liftings. The coalgebraic μ-calculus [4] caters for fixpoint logics within this frame-
work, and essentially covers all mentioned (two-valued) examples as instances.
It has been shown that satisfiability checking in a coalgebraic μ-calculus is in
ExpTime, provided that one exhibits a set of tableau rules for the modalities,
so-called one-step rules, that is tractable in a suitable sense (an assumption made
also in our own previous work on the flat [14] and alternation-free [16] fragments
of the coalgebraic μ-calculus). Such rules are known for many important cases,
notably including alternating-time logics, the probabilistic μ-calculus even when
extended with linear inequalities, and game logic [4,22,36]. There are, however,
important cases where such rule sets are currently missing, and where there is
in fact little perspective for finding suitable rules. One prominent case of this
kind is graded modal logic; further cases arise when logics over systems with
non-negative real weights, such as probabilistic systems, are taken beyond linear
arithmetic to include polynomial inequalities.

The object of the current paper is to fill this gap by proving a generic
ExpTime upper bound for coalgebraic μ-calculi in the absence of tractable sets
of modal tableau rules. The method we use instead is to analyse the so-called
one-step satisfiability problem of the logic on a semantic level – this problem is
essentially the satisfiability problem of a very small fragment of the logic, the one-
step logic, which excludes not only fixpoints, but also nested next-step modali-
ties, with a correspondingly simplified semantics that no longer involves actual
transitions. E.g. the one-step logic of the relational μ-calculus is interpreted over
models essentially consisting of a set with a distinguished subset, abstracting
the successors of a single state that is not itself part of the model. We have
applied this principle to satisfiability checking in coalgebraic (next-step) modal
logics [35], coalgebraic hybrid logics [26], and reasoning with global assumptions
in coalgebraic modal logics [23]. It also appears implicitly in work on automata
for the coalgebraic μ-calculus [8], which however establishes only a doubly expo-
nential upper bound in the case without tractable modal tableau rules.

Our main example applications are on the one hand the graded modal μ-
calculus and its extension with (monotone) polynomial inequalities, including
Presburger modalities, i.e. (monotone) linear inequalities, and on the other hand
the extension of the (two-valued) probabilistic μ-calculus [4,24] with (monotone)
polynomial inequalities. While the graded μ-calculus as such is known to be in
ExpTime [21], the other mentioned instances of our result are, to our best
knowledge, new. At the same time, our proofs are fairly simple, even compared
to specific ones, e.g. for the graded μ-calculus.

Optimal Satisfiability Checking for Arithmetic µ-Calculi 279

Technically, we base our results on an automata-theoretic treatment by means
of standard parity automata with singly exponential branching degree (in par-
ticular on modal steps), thus precisely enabling the singly exponential upper
bound, in contrast to previous work in [8] where the introduced Λ-automata
lead to doubly exponential branching on modal steps in the resulting satisfia-
bility games. Our algorithm witnessing the singly exponential time bound is, in
fact, a global caching algorithm [11,12], and is able to decide the satisfiability
of nodes on-the-fly, that is, possibly before the tableau is fully expanded, thus
offering a perspective for practically feasible reasoning. A side result of our app-
roach is a criterion for a polynomial bound on branching in models, which holds
in all our examples.

Organization. In Sect. 2, we recall the basics of the coalgebraic μ-calculus.
We outline our automata-theoretic approach in Sect. 3, and present the global
caching algorithm and its runtime analysis in Sect. 4. Soundness and complete-
ness of the algorithm are proved in Sect. 5.

2 The Coalgebraic µ-Calculus

We recall basic definitions in coalgebraic logic [29,34] and the coalgebraic μ-
calculus [4].

Syntax. We fix a modal similarity type Λ, that is, a set of modal operators with
assigned finite arities, possibly including propositional atoms as nullary modal-
ities. For readability, we restrict the technical development to unary modalities,
noting that all proofs generalize to higher arities by just writing more indices; in
fact, we will liberally use higher arities in examples. We assume that Λ is closed
under duals, i.e., that for each modal operator ♥ ∈ Λ, there is a dual ♥ ∈ Λ

such that ♥ = ♥ for all ♥ ∈ Λ. Let V be an infinite set of fixpoint variables.
Formulas of the coalgebraic μ-calculus (over Λ) are given by the grammar

ψ, φ ::= ⊥ | � | ψ ∧ φ | ψ ∨ φ | ♥φ | X | μX.ψ | νX.ψ ♥ ∈ Λ,X ∈ V.

As usual, μ and ν take least and greatest fixpoints, respectively. Negation is
not included but can be defined as usual. Throughout, we use η ∈ {μ, ν} as
a placeholder for fixpoint operators; we briefly refer to formulas of the form
ηX. φ as fixpoints. Fixpoint operators bind their fixpoint variables, so that we
have standard notions of bound and free fixpoint variables; a formula is closed
if it contains no free fixpoint variables. We assume w.l.o.g. that all formulas are
clean, i.e. each fixpoint variable appears in at most one fixpoint operator, and
irredundant, i.e. each bound variable is used at least once. Moreover, we restrict
to guarded formulas, in which all occurrences of fixpoint variables are separated
by at least one modal operator from their binding fixpoint operator (this is
standard although possibly not w.l.o.g. [9]). For ♥ ∈ Λ, we denote by size(♥)
the length of a suitable representation of ♥; for natural or rational numbers
indexing ♥, we assume binary representation. The length |ψ| of a formula is its

280 D. Hausmann and L. Schröder

length over the alphabet {⊥,�,∧,∨} ∪ Λ ∪ V ∪ {ηX. | X ∈ V}, while the size
size(ψ) of ψ is defined by counting size(♥) for each ♥ ∈ Λ (and 1 for all other
operators). The alternation depth ad(ηX.ψ) of a fixpoint ηX.ψ is the maximal
depth of nesting of such alternating least and greatest fixpoints in ψ that depend
on X, tweaked to be even for least fixpoint formulas and odd for greatest fixpoint
formulas (that is, starting with ad(μX.ψ) = 2 and ad(νX.ψ) = 1 for closed
ψ). For a more detailed definition of various flavours of alternation depth, see
e.g. [27].

Semantics. As indicated above, the branching type of the underlying systems
is a parameter of the framework, given by fixing a Set-endofunctor T . Ele-
ments of TU should be thought of as structured collections over U that serve
as collections of successors of states – e.g. in the most basic example, classi-
cal relational systems, T is powerset P. Formulas are then interpreted over
T -coalgebras (C, ξ) consisting of a set C of states and a transition function
ξ : C → TC that assigns a structured collection ξ(x) ∈ TC of successors (and
observations) to x ∈ C; e.g. P-coalgebras are just Kripke frames, as they assign
a set of successors to each state. We interpret each modal operator ♥ ∈ Λ as
a T -predicate lifting [[♥]], that is, a natural transformation [[♥]] : Q → Q ◦ T op

where Q : Setop → Set denotes the contravariant powerset functor. Predicate
liftings thus are families of functions [[♥]]U : Q(U) → Q(TU) satisfying natu-
rality, i.e. [[♥]]U (f−1[A]) = (Tf)−1[[[♥]]V (A)] for f : U → V and A ⊆ V , where
f−1 denotes preimage. E.g. the standard relational box modality is interpreted
by [[�]]U (A) = {B ∈ P(U) | B ⊆ A}. For sets U ⊆ V , we write U = V \ U
for the complement of U in V when V is understood from the context. We
require that duality of modal operators is respected, i.e. [[♥]]U (A) = [[♥]]UA for
A ⊆ U . To ensure existence of fixpoints, we require that all [[♥]] are monotone,
i.e. A ⊆ B ⊆ U implies [[♥]]U (A) ⊆ [[♥]]U (B).

A valuation is a partial function i : V �→ P(C) that assigns sets i(X) of states
to fixpoint variables X. The extension [[φ]]i ⊆ C of a formula φ in a T -coalgebra
(C, ξ) is defined by the expected clauses for propositional operators and

[[♥ψ]]i = ξ−1[[[♥]]C([[ψ]]i)] [[μX.ψ]]i = LFP([[ψ]]Xi)

[[X]]i = i(X) [[νX.ψ]]i = GFP([[ψ]]Xi),

where LFP and GFP compute the least and greatest fixpoints of their argu-
ment functions, respectively, where [[ψ]]Xi (A) = [[ψ]]i[X �→A] for A ⊆ C, and where
(i[X �→ A])(X) = A and (i[X �→ A])(Y) = i(Y) for Y
= X. In particular,
the extension is invariant under unfolding of fixpoints, i.e. [[ηX.ψ]]i = [[ψ[X �→
ηX.ψ]]]i. For closed formulas ψ, the valuation i is irrelevant, so we write [[ψ]]
instead of [[ψ]]i. A state x ∈ C satisfies a closed formula ψ (denoted x |= ψ) if
x ∈ [[ψ]]. Given a set Z, we define the set Λ(Z) = {♥z | ♥ ∈ Λ, z ∈ Z} of modal
literals (over Z). A closed formula χ is satisfiable if there is a coalgebra (C, ξ)
and a state x ∈ C such that x |= χ.

Example 1. We now detail several instances of the coalgebraic μ-calculus; for
further examples, e.g. the alternating-time μ-calculus, see [4].

Optimal Satisfiability Checking for Arithmetic µ-Calculi 281

1. To obtain the standard modal μ-calculus [19] (which contains CTL as a frag-
ment), we take Λ = {♦,�} ∪ P where P is a set of propositional atoms, seen
as nullary modalities. The semantics is captured by TU = P(U) × P(P), so
that T -coalgebras are Kripke models, as they assign to each state a set of
successors and a set of atoms satisfied in the state. The relevant predicate
liftings are

[[♦]]U (A) = {(B,Q) ∈ TU | A ∩ B
= ∅} [[�]]U (A) = {(B,Q) ∈ TU | B ⊆ A}

and [[p]]U = {(B,Q) ∈ TU | p ∈ Q}, a nullary predicate lifting. Standard
example formulas include the CTL-formula AF p = μX. (p∨�X), which states
that on all paths, p eventually holds, and the fairness formula νX. μY. ((p ∧
♦X) ∨ ♦Y), which asserts the existence of a path on which p holds infinitely
often.

2. We interpret the graded μ-calculus [21] over multigraphs [6], i.e. T -coalgebras
for the multiset functor T = B, defined by

B(U) = {θ : U → N ∪ {∞}} B(f)(θ)(v) =
∑

u∈U |f(u)=v θ(u)

for sets U, V and functions f : U → V , θ : U → N ∪ {∞}. Thus B-coalgebras
(C, ξ) assign multisets ξ(x) to states x ∈ C, with the intuition that x has
y ∈ C as successor with multiplicity m if ξ(x)(y) = m. We use the modal
similarity type Λ = {〈m〉, [m] | m ∈ N∪{∞}} and define the predicate liftings

[[〈m〉]]U (A) = {θ ∈ B(U) | θ(A) > m} [[[m]]]U (A) = {θ ∈ B(U) | θ(A) ≤ m}

for sets U and A ⊆ U , where θ(A) =
∑

a∈A θ(a). E.g. a state satisfies νX. (ψ∧
〈1〉X) if it is the root of an infinite binary tree in which ψ is satisfied globally.

3. Similarly, the two-valued probabilistic μ-calculus [4,24] is obtained by using
the distribution functor T = D that maps sets U to probability distributions
over U with countable support, defined by

D(U) = {d : U → (Q ∩ [0, 1]) | ∑
u∈U d(u) = 1}.

Then T -coalgebras are just Markov chains. We use the modal similarity type
Λ = {〈p〉, [p] | p ∈ Q ∩ [0, 1]} and define the predicate liftings

[[〈p〉]]U (A) = {d ∈ D(U) | d(A) > p} [[[p]]]U (A) = {d ∈ D(U) | d(A) ≤ p},

for sets U and A ⊆ U , where again d(A) =
∑

a∈A d(a).
4. We interpret the graded μ-calculus with polynomial inequalities over the

semantic domain from item 2 (i.e. multigraphs). We put Λ = {Lp,b,Mp,b |
p ∈ N>0[X1, . . . , Xn], b, n ∈ N} (that is, p ranges over multivariate polynomi-
als with positive integer coefficients) and define the predicate liftings

[[Lp,b]]U (A1, . . . , An) = {θ ∈ B(U) | p(θ(A1), . . . , θ(An)) > b)}
[[Mp,b]]U (A1, . . . , An) = {θ ∈ B(U) | p(θ(A1), . . . , θ(An)) ≤ b)},

282 D. Hausmann and L. Schröder

for sets U and A1, . . . , An ⊆ U , where θ(A) =
∑

a∈A θ(a). This logic subsumes
the Presburger μ-calculus, that is, the extension of the graded μ-calculus with
(monotone) linear inequalities, which may be seen as the fixpoint variant of
Presburger modal logic [7]. E.g. the formula μY. (r ∨ L2X1+X2

2 ,2(p ∧ Y, q ∧ Y))
says that the current state is the root of a finite tree all whose leaves satisfy r,
and each of whose inner nodes has n1 children satisfying p and n2 children
satisfying q where 2n1 +n2

2 > 2. One sees an apparent coding of the logic into
the graded μ-calculus, which however incurs exponential blowup.

5. Similarly, we use the semantic domain from item 3, Markov chains, to
obtain the probabilistic μ-calculus with polynomial inequalities [23]: We put
Λ = {Lp,b,Mp,b | p ∈ Q>0[X1, . . . , Xn], b ∈ Q≥0, n ∈ N} (i.e. p ranges over
polynomials) and

[[Lp,b]]U (A1, . . . , An) = {d ∈ D(U) | p(d(A1), . . . , d(An)) > b}
[[Mp,b]]U (A1, . . . , An) = {d ∈ D(U) | p(d(A1), . . . , d(An)) ≤ b}

for sets U and A1, . . . , An ⊆ U . This logic presumably does not encode into
the probabilistic μ-calculus as in 3 above, and can express constraints on inde-
pendent products of events (see also [25]). E.g. the formula νY. LX1X2,0.9(p ∧
Y, q ∧ Y) says roughly that two independently sampled successors of the cur-
rent state will satisfy p and q, respectively, and then satisfy the same property
again, with probability at least 0.9.

(The modalities in the last two items are inevitably less general than in the
corresponding next-step logics [7,23], due to the need to ensure monotonicity.)

3 Tracking Automata

We use parity automata (e.g. [13]) that track single formulas along paths through
potential models to decide whether it is possible to construct a model in which
all least fixpoint formulas are eventually satisfied. Formally, (nondeterministic)
parity automata are tuples A = (V,Σ,Δ, q0, α) where V is a set of nodes; Σ is a
finite set, the alphabet ; Δ ⊆ V × Σ × V is the transition relation assigning a set
Δ(v, a) = {u | (v, a, u) ∈ Δ} of nodes to all v ∈ V and a ∈ Σ; q0 ∈ V is the initial
node; and α : Δ → N is the priority function, assigning priorities α(v, a, u) ∈ N

to transitions (v, a, u) ∈ Δ (this is the standard in recent work since it yields
slightly more succinct automata). If Δ is a (partial) functional relation, then A
is said to be deterministic, and we denote the corresponding partial function by
δ : V ×Σ �→ V . The automaton A accepts an infinite word w = w0, w1, . . . ∈ Σω if
there is a w-path through A on which the highest priority that is passed infinitely
often is even; formally, the language that is accepted by A is defined by L(A) =
{w ∈ Σω | ∃ρ ∈ run(A, w). max(Inf(α ◦ ρ)) is even}, where run(A, w) denotes
the set of infinite sequences (ρ0, w0, ρ1), (ρ1, w1, ρ2), . . . ∈ Δω such that ρ0 = q0
and where, given an infinite sequence S, Inf(S) denotes the elements that occur
infinitely often in S. Here, we see infinite sequences ρ ∈ Uω over some set U as
functions N → U and write ρi to denote the i-th element of ρ.

Optimal Satisfiability Checking for Arithmetic µ-Calculi 283

We now fix a target formula χ and put n0 = |χ|, n1 = size(χ). We let F
denote the Fischer-Ladner closure [20] of χ; i.e. F contains all formulas that
can arise as subformulas when unfolding each fixpoint in χ exactly once. We put
k = max{ad(ψ) | ψ ∈ F} and selections = P(F ∩ Λ(F)) (F ∩ Λ(F) is the set of
modal literals in F). We have |F| ≤ n and hence |selections| ≤ 2n.

Definition 2 (Tracking automaton). The tracking automaton for χ is a non-
deterministic parity automaton Aχ = (F, Σ,Δ, q0, α), where q0 = χ,

Σ = {(ψ0 ∨ ψ1, b) ∈ F × {0, 1}} ∪ {(ψ0 ∧ ψ1, 0) ∈ F × {0}}∪
{(ηX.ψ1, 0) ∈ F × {0}} ∪ selections ,

and for ψ,ψ0, ψ1 ∈ F, κ ∈ selections and b ∈ {0, 1},

Δ(ψ, κ) = {ψ0 ∈ F | ψ ∈ κ ∩ Λ({ψ0})}
Δ(ψ, (ψ0 ∨ ψ1, b)) = {ψb | ψ = ψ0 ∨ ψ1} ∪ {ψ | ψ
= ψ0 ∨ ψ1}
Δ(ψ, (ψ0 ∧ ψ1, 0)) = {ψ0, ψ1 | ψ = ψ0 ∧ ψ1} ∪ {ψ | ψ
= ψ0 ∧ ψ1}
Δ(ψ, (ηX.ψ1, 0)) = {ψ1[X �→ ψ] | ψ = ηX.ψ1} ∪ {ψ | ψ
= ηX.ψ1}

E.g. the last clause means that when tracking the unfolding of a fixpoint ηX.ψ1

at ψ, we track ψ to the unfolding ψ1[X �→ ψ] if ψ equals the unfolded fixpoint,
and to ψ otherwise; similarly for the other clauses, and in particular a modal
literal ψ = ♥ψ0 is only tracked to ψ0 through a selection κ if ♥ψ0 ∈ κ, i.e. if κ
selects ♥ψ0 to be tracked. The priority function α is derived from the alternation
depths of formulas, counting only unfoldings of fixpoints (i.e. all other transitions
have priority 1). Formally, α(ψ, σ, ψ′) = 1 if ψ = ψ′ or ψ is not a fixpoint literal;
if ψ is a fixpoint literal and ψ
= ψ′, then we put α(ψ, σ, ψ′) = ad(ψ).

Intuitively, words from Σω encode infinite paths through coalgebras (C, ξ) in
which states x ∈ C are labelled with sets l(x) of formulas, where letters
κ ∈ selections encode modal steps from states x ∈ C with label l(x) to states
y ∈ C with label {ψ | ♥ψ ∈ κ ∩ l(x)}. The automaton is built to accept
L(Aχ) = BadBranchχ where BadBranchχ is the set of words that encode a path
on which a least fixpoint formula ψ is unfolded infinitely often without being
dominated by any outer fixpoint formula (i.e. one with alternation depth greater
than ad(ψ)). Letters (ψ0 ∨ ψ1, b) choose disjuncts according to b, while for let-
ters (ψ0 ∧ ψ1, 0), the tracking automaton is nondeterministic, reflecting the fact
that bad fixpoints can reside in either ψ0 or ψ1. The automaton Aχ has size n0

and priorities 1 to k. Using a standard construction (e.g. [18]), we transform Aχ

into an equivalent Büchi automaton of size n0k. Then we determinize the Büchi
automaton using, e.g., the Safra/Piterman-construction [30,32] and obtain an
equivalent deterministic parity automaton with priorities 0 to 2n0k − 1 and size
O(((n0k)!)2). Finally we complement this parity automaton by increasing every
priority by 1, obtaining a deterministic parity automaton Bχ = (Dχ, Σ, δ, v0, β)
of size O(((n0k)!)2), with priorities 1 to 2n0k and with

L(Bχ) = L(Aχ) = BadBranchχ =: GoodBranchχ,

284 D. Hausmann and L. Schröder

i.e. Bχ is a deterministic parity automaton that accepts the words that encode
paths along which satisfaction of least fixpoints is never deferred indefinitely. We
define a labelling function l : Dχ → P(F) mapping each state of Bχ (e.g. a Safra
tree) to the set of formulas occurring in it.

Remark 3. It has been noted that the standard tracking automata for
alternation-free formulas are, in fact, Co-Büchi automata [10,16] and that
the tracking automata for aconjunctive formulas are limit-deterministic par-
ity automata [15]. These considerably simpler automata can be determinized to
deterministic Büchi automata of size 3n0 and to deterministic parity automata
of size O((n0k)!) and with 2n0k priorities, respectively. This observation also
holds true for the tracking automata in this work so that for formulas of suit-
able syntactic shape, Lemma 11 below yields accordingly lower bounds on the
runtime of our satisfiability checking algorithm.

4 Global Caching for the Coalgebraic µ-Calculus

We now introduce a generic global caching algorithm for satisfiability in the
coalgebraic μ-calculus. Given an input formula χ, the algorithm expands the
determinized and complemented tracking automaton Bχ step by step and prop-
agates (un)satisfiability through this graph; the algorithm terminates as soon as
the initial node v0 is marked as (un)satisfiable. The algorithm bears similarity to
standard game-based algorithms for μ-calculi [8,9,15]; however, it crucially devi-
ates from these algorithms in the treatment of modal steps: Intuitively, our algo-
rithm decides whether it is possible to remove some of the modal transitions as
well as one of the transitions from each reachable pair ((ψ0∨ψ1), 0), ((ψ0∨ψ1), 1)
of disjunction transitions within the automaton Bχ in such a way that the result-
ing sub-automaton of Bχ is totally accepting, that is, accepts any word for which
there is an infinite run. In doing so, it is crucial that the labels of state nodes v
in the reduced automaton are one-step satisfiable, in a sense introduced next, in
the set of states that are reachable from v by the remaining modal transitions.
Propagating (un)satisfiability over modal transitions thus involves one-step sat-
isfiability checking, a functor-specific problem that in many instances can be
solved in time singly exponential in size(χ). In previous work [8], a variant of
one-step satisfiability has been used in satisfiability games for coalgebraic μ-
calculi, which however leads to a doubly exponential number of modal moves for
one of the players and hence does not yield a singly exponential upper bound on
satisfiability checking (unless a suitable set of tableau rules is provided).

Definition 4 (One-step satisfiability problem [26,33,35]). Let V be a finite
set, let v ⊆ Λ(V) such that a
= b whenever ♥1a,♥2b ∈ v, and let U ⊆ P(V).
The one-step satisfiability problem for inputs v and U is to decide whether
TU ∩ [[v]]1
= ∅, where

[[v]]1 =
⋂

♥a∈v[[♥]]{u ∈ U | a ∈ u}.

We put size(v) =
∑

♥a∈v size(♥), and denote the time it takes to solve the
problem on v, U with size(v) = a and |V | = b (hence |U | ≤ 2b) by t(a, b).

Optimal Satisfiability Checking for Arithmetic µ-Calculi 285

Remark 5. We keep the definition of the actual one-step logic as mentioned in
the introduction somewhat implicit in the above definition of the one-step satis-
fiability problem. One can see that it contains two layers: a purely propositional
layer embodied in U , which postulates which propositional formulas over V are
satisfiable; and a modal layer with nesting depth of modalities uniformly equal
to 1, embodied in the set v, which specifies constraints on an element of TU .

Example 6. For the standard modal μ-calculus (Example 1.1), the one-step
satisfiability problem is to decide for given v ⊆ Λ(V) and U ⊆ P(V) whether
there is A ∈ P(U) ∩ [[v]]1, that is, a subset A ⊆ U such that for each ♦a ∈ v,
there is u ∈ A such that a ∈ u, and for each �a ∈ v and each u ∈ A, a ∈ u. Here
we have t(a, b) ≤ a · 2b where a = size(v), b = |V |. For the graded μ-calculus
(Example 1.2), the one-step satisfiability problem is to decide for v, U as above
whether there is a multiset θ ∈ B(U) such that

∑
u∈U |a∈u θ(u) > m for each

〈m〉a ∈ v and
∑

u∈U |a/∈u θ(u) ≤ m for each [m]a ∈ v.

Definition 7 (States and Prestates). A node v of Bχ is a state if its label
contains only modal literals (l(v) ⊆ Λ(F)), and otherwise a prestate, in which
case we fix ψv ∈ l(v)\Λ(F). We write states, prestates ⊆ Dχ for the sets of states
and prestates, respectively.

We next define 2n0k-ary set functions f and g that compute one-step
(un)satisfiability w.r.t. their argument sets.

Definition 8 (One-step propagation). For sets G ⊆ Dχ and X =
X1, . . . , X2n0k ∈ P(G)2n0k, we put

f(X) ={v ∈ prestates | ∃b ∈ {0, 1}. δ(v, (ψv, b)) ∈ Xβ(v,(ψv,b))}∪
{v ∈ states | T (

⋃
1≤i≤2n0k Xi(v)) ∩ [[l(v)]]1
= ∅}

g(X) ={v ∈ prestates | ∀b ∈ {0, 1}. δ(v, (ψv, b)) ∈ Xβ(v,(ψv,b))}∪
{v ∈ states | T (

⋃
1≤i≤2n0k Xi(v)) ∩ [[l(v)]]1 = ∅},

where β(v, (ψv, b)) abbreviates β(v, (ψv, b), δ(v, (ψv, b))) and where

Xi(v) = {l(u) | u ∈ Xi,∃κ ∈ selections. δ(v, κ) = u, β(v, κ, u) = i}.

Since for states v, l(v) ⊆ Λ(F) and Xi(v) ⊆ P(F) for all i, one-step propagation
steps for states are instances of the one-step satisfiability problem with |V | = |F|,
solvable in time t(n1, n0) because size(l(v)) ≤ n1 and |F| ≤ n0.

Definition 9 (Propagation). Given a set G, we put

EG = η2n0kX2n0k. . . . η2X2.η1X1.f(X)
AG = η2n0kX2n0k . . . η2X2.η1X1.g(X),

where X = X1, . . . , X2n0k for Xi ⊆ G, where ηi = μ for odd i, ηi = ν for even i
and where ν = μ and μ = ν.

286 D. Hausmann and L. Schröder

The set EG contains nodes v ∈ G for which there are choices for all disjunctions
and modal transitions that are reachable from v within G (as indicated at the
beginning of the section) such that the labels of all reachable states in the chosen
sub-automaton of Bχ are one-step satisfiable and such that on all paths through
the chosen sub-automaton, the highest priority that is passed infinitely often
is even, the intuition being that no least fixpoint is unfolded infinitely often
without being dominated. Dually, the set AG contains nodes for which there
exist no such suitable choices.

We recall that v0 ∈ Dχ is the initial state of the determinized and comple-
mented tracking automaton Bχ. The algorithm expands Bχ step-by-step starting
from v0; for prestates u, the expansion step adds nodes according to the fixed
non-modal formula ψu that is to be expanded next (Definition 7), and for states,
the expansion follows all (matching) selections. The order of expansion can be
chosen freely, e.g. by heuristic methods. Optional intermediate propagation steps
can be used judiciously to realize on-the-fly solving.

Algorithm 10 (Global caching). To decide the satisfiability of the input for-
mula χ, initialize the sets of unexpanded and expanded nodes, U = {v0} and
G = ∅, respectively.

1. Expansion: Choose some unexpanded node u ∈ U , remove u from U , and
add u to G. If u is a prestate, then add the set {δ(u, σ) | σ ∈ Σ∩(ψu×{0, 1})}
to U . If u is a state, then add the set {δ(u, κ) | κ ∈ selections} to U .

2. Optional propagation: Compute EG and/or AG. If v0 ∈ EG, then return
‘satisfiable’, if v0 ∈ AG, then return ‘unsatisfiable’.

3. If U
= ∅, then continue with step 1.
4. Final propagation: Compute EG. If v0 ∈ EG, then return ‘satisfiable’, other-

wise return ‘unsatisfiable’.

Lemma 11. Algorithm 10 runs in time O(((n0k)!)4n0k · t(n1, n0)).

Proof. The loop of the algorithm expands the determinized and complemented
tracking automaton node by node and hence is executed at most |Dχ| ∈
O(((n0k)!)2) ⊆ 2O(n0k log n0) times. A single expansion step can be implemented
in time O(2n0) since propositional expansion is unproblematic and for the
modal expansion of a state u, all (matching) selections, of which there are
(at most) 2n0 , have to be considered. A single propagation step consists in
computing two fixpoints of nesting depth 2n0k of the functions f and g over
P(Dχ)2n0k and can hence be implemented in time 2(|Dχ|2n0k · t(n1, n0)) ∈
O(((n0k!)2)2n0k ·t(n1, n0)) ⊆ 2O(n2

0k2 log n0+log(t(n1,n0))), noting that a single com-
putation of f(X) and g(X) for a tuple X ∈ P(Dχ)2n0k can be implemented
in time O(t(n1, n0)) – this has been noted above for states, and prestates are
unproblematic. Thus the complexity of the whole algorithm is dominated by the
complexity of the propagation step. ��
Corollary 12. If the one-step satisfiability problem of a coalgebraic logic can
be solved in time t(a, b) exponential in a + b on inputs v ⊆ Λ(V), U ⊆ P(V)

Optimal Satisfiability Checking for Arithmetic µ-Calculi 287

with size(v) = a, |V | = b, then the satisfiability problem of the corresponding
coalgebraic μ-calculus is in ExpTime.

Since the existence of a tractable set of tableau rules implies the required
time bound on one-step satisfiability, the above result subsumes earlier bounds
obtained by tableau-based approaches in [4,15,16]; however, it covers additional
example logics for which no suitable tableau rules are known. In particular we
have

Proposition 13. The satisfiability problems of the following logics are in
ExpTime:

1. the standard μ-calculus,
2. the graded μ-calculus,
3. the (two-valued) probabilistic μ-calculus,
4. the graded μ-calculus with polynomial inequalities,
5. the (two-valued) probabilistic μ-calculus with polynomial inequalities.

(Tractable sets of tableau rules have previously been claimed for the graded [36]
and Presburger [22] μ-calculus but have since been discovered to be flawed [23].)

Proof. It suffices to show that the respective one-step satisfiability problems
can be solved on inputs v ⊆ Λ(V), U ⊆ P(V) with size(v) = a and |V | = b
in singly exponential time in a + b, i.e. in time t(a, b) ∈ 2p(a+b) for p at most
polynomial. E.g. for standard relational modalities, we have t(a, b) = a · 2b =
2b+log a, see Example 6. While the bounds can be established by relatively easy
arguments (e.g. using known bounds on sizes of solutions of systems of real or
integer linear inequalities) for all of our remaining example logics, we import
them from previous work for brevity. For the one-step satisfiability problem of
graded modal logic, by [21, Lemma 1], we have t(a, b) ≤ (2 · 2a + 2)b ≤ 2ab+2b;
the Lemma uses counters to check joint one-step satisfiability of constraints and
directly extends to the one-step satisfiability problem of graded modal logic with
monotone polynomial inequalities, in which case we require n counters for each
n-ary polynomial. The bound for (two-valued) probabilistic modal logic (with
polynomial inequalities) is shown in [23, Example 7]. ��
Remark 14. We also obtain a polynomial bound on branching width in models
for all our example logics simply by importing Lemma 6 and the observations in
Example 7 from [23]. With the exception of the standard μ-calculus, this bound
appears to be new in all our example logics. Of course, for graded and Presburger
μ-calculi, polynomial branching holds only in their coalgebraic semantics, i.e.
over multigraph models but not over Kripke models.

5 Soundness and Completeness

We now prove the central result, that is, the soundness and completeness of
Algorithm 10. As the sets EG and AG grow monotonically with G, it suffices

288 D. Hausmann and L. Schröder

to prove equivalence of satisfiability and containment of the initial node v0 in
E := EDχ

. Our program is as follows: We show that v0 ∈ E if and only if there is
a pre-semi-tableau (Definition 15) for χ with unfolding timeouts (Definition 17),
which in turn is the case if and only if χ is satisfiable. We establish the latter
equivalence by constructing a model for χ from a given pre-semi-tableau with
unfolding timeouts and, for the converse direction, extracting a pre-semi-tableau
with unfolding timeouts from the model.

Definition 15 (Pre-semi-tableau). Given a ternary relation R ⊆ A × B × A
and a ∈ A, b ∈ B, we generally write R(a) = {a′ ∈ A | ∃b ∈ B. (a, b, a′) ∈ R} and
R(a, b) = {a′ ∈ A | (a, b, a′) ∈ R}. Let W ⊆ Dχ and put U = W ∩ prestates and
V = W ∩states. Given a ternary relation L ⊆ W ×Σ×W , the pair (W,L) is a pre-
semi-tableau for χ if the following conditions hold: L ⊆ δ; T (L(v)) ∩ [[l(v)]]1
=
∅ for all v ∈ V ; for each u ∈ U , there is exactly one b ∈ {0, 1} such that
L(u, (ψu, b)) = {δ(u, (ψu, b))}, and for all other σ ∈ Σ, L(u, σ) = ∅; and there
is no L-cycle that contains only elements from U . A path through a pre-semi-
tableau is an infinite sequence (v0, σ0), (v1, σ1), . . . ∈ (W × Σ)ω such that for all
i, vi+1 ∈ L(vi, σi). We denote the first state that is reachable by zero or more
L-steps from a node v ∈ W by �v� (since there is no L-cycle within U , such a
state always exists).

Given a state v, the relation L of a pre-semi-tableau thus picks a set L(v) of
nodes in which l(v) is one-step satisfiable; given a prestate u, L picks a single
(pre)state that is obtained from u by transforming the formula ψu.

Definition 16 (Tracking timeouts). Given a path ρ = (v0, σ0), (v1, σ1), . . .
through a pre-semi-tableau, we say that priority i occurs (at position j) in ρ if
β(vj , σj , vj+1) = i, recalling that β is the priority function of the determinised
and complemented tracking automaton Bχ. Then the path ρ has tracking time-
outs m = (m2n0k, . . . ,m1) if for each odd 1 ≤ i < 2n0k, priority i occurs at
most mi times in ρ before some priority greater than i occurs in ρ. Nothing is
said about the mi for even i, which are in fact irrelevant and serve only to ease
notation. A node w ∈ W in a pre-semi-tableau (W,L) has tracking timeouts m
if every path through (W,L) starting at w has tracking timeouts m. A pre-semi-
tableau (W,L) has tracking timeouts if each w ∈ W has tracking timeouts m for
some m.

Intuitively, a pre-semi-tableau (W,L) has tracking timeouts if every word that
encodes an infinite L-path through W is accepted by Bχ. The next definition is
geared towards characterizing non-acceptance by Aχ:

Definition 17 (Traces and unfolding timeouts). Let (W,L) be a graph
with L ⊆ W × Σ × W and labeling function l : W → P(F). Given an L-path
ρ = (v0, σ0), (v1, σ1), . . . (with (vi, σi, vi+1) ∈ L for i ≥ 0) and a sequence of
formulas Ψ = ψ0, ψ1, . . ., we say that Ψ is a trace of ψ0 along ρ (we also say
that ρ contains the trace Ψ) if ψi ∈ l(vi) and ψi+1 ∈ Δ(ψi, σi) for all i. For
i with ψi = ηX.ψ for some fixpoint variable X and some formula ψ, we say
that Ψ unfolds at level ad(ψi) at position i. Then the trace Ψ has unfolding

Optimal Satisfiability Checking for Arithmetic µ-Calculi 289

timeout m ∈ N for ψ0 at level j if Ψ unfolds at most m times at level j before
Ψ unfolds at some level greater than j. The path ρ has unfolding timeouts for
ψ0 at level j if there is, for all its traces Ψ of ψ0, some m such that Ψ has
unfolding timeout m for ψ0 at level j. A node w ∈ W has unfolding timeouts
at level j for some formula ψ if every path through (W,L) that starts at w
and that contains infinitely many steps (vi, σi) such that σi ∈ selections has
unfolding timeouts for ψ at level i. (Since fixpoint variables are by assumption
guarded by modal operators, it suffices to require timeouts just for such paths
that contain infinitely many modal steps.) A node w ∈ W has unfolding timeouts
m = (mk, . . . ,m1) for some formula ψ if every path through (W,L) that starts
at w and that contains infinitely many steps (vi, σi) such that σi ∈ selections
has, for each odd 1 ≤ i ≤ k, unfolding timeouts m for ψ at level i; again the
unfolding timeouts for even i, that is, for greatest fixpoints, are irrelevant. The
graph (W,L) has unfolding timeouts if for each element w ∈ W and each formula
ψ ∈ l(v), there is some vector m such that w has unfolding timeouts m for ψ. We
denote the set of nodes that have unfolding timeouts m for ψ by uto(ψ,m) ⊆ W .

A graph (W,L) has unfolding timeouts if for all words that encode an infinite
L-path through (W,L), all runs of the nondeterministic tracking automaton Aχ

on the word are non-accepting. We recall that a run of Aχ is accepting if it
unfolds some least fixpoint infinitely often without having it dominated.

Lemma 18. Let (W,L) be a pre-semi-tableau. Then (W,L) has tracking time-
outs if and only if it has unfolding timeouts.

Proof. We recall that Bχ is obtained from Aχ by determinization and subse-
quent complementation so that we have L(Bχ) = L(Aχ). The result thus follows
directly from the fact that having tracking timeouts means that Bχ accepts all
words that encode a path in (W,L) while having unfolding timeouts means that
Aχ does not accept any word that encodes a path in (W,L). ��
Lemma 19. We have v0 ∈ E if and only if there is a pre-semi-tableau for χ
that has tracking timeouts.

Combining Lemmas 19 and 18, we obtain

Corollary 20. We have v0 ∈ E if and only if there is a pre-semi-tableau for χ
that has unfolding timeouts.

We now show that satisfiability of χ and the existence of a semi-pre-tableau for
χ with unfolding timeouts coincide.

Definition 21. Given a pre-semi-tableau (W,L) with set of states V , we put

[̂[ψ]] = {v ∈ V | l(v) �PL ψ} [̂[ψ]]m = [̂[ψ]] ∩ {�u� ∈ V | u ∈ uto(ψ,m)}

where ψ ∈ F, where �PL denotes propositional entailment and where m is a
vector of k natural numbers.

290 D. Hausmann and L. Schröder

Thus we have v ∈ [[ψ]]m if there is a node u ∈ W such that �u� = v and u
has timeouts m for ψ. This serves to ease the proofs of the upcoming existence
and truth lemmas as it anchors the timeout vector m at the node u instead of
anchoring it at the state v which may not have timeouts m for ψ (namely, if a
greatest fixpoint is unfolded on the L-path from u to v).

Definition 22 (Strong coherence). Let (W,L) be a pre-semi-tableau with
set V of states. A coalgebra C = (V, ξ) is strongly coherent if for all states v ∈ V ,
for all formulas ♥ψ ∈ F and for all timeout-vectors m,

v ∈ [̂[♥ψ]]m implies ξ(v) ∈ [[♥]]([̂[ψ]]m).

Strongly coherent coalgebras exist over pre-semi-tableaux:

Lemma 23 (Existence). Let (W,L) be a pre-semi-tableau with set of states V .
Then there is a strongly coherent coalgebra over V .

Since all least fixpoint literals are satisfied after finitely many unfolding steps
in strongly coherent coalgebras with unfolding timeouts, they are models, i.e.
satisfy all the formulas in their labels:

Lemma 24 (Truth). In strongly coherent coalgebras that have unfolding time-
outs, we have that for all ψ ∈ F,

[̂[ψ]] ⊆ [[ψ]].

Definition 25 (Timed-out satisfaction). Given sets U ⊆ W , a function f :
P(W) → P(W) and an ordinal number λ, we define fλ(U) = U if λ = 0,
fλ(U) = f(fλ′

(U)) if λ = λ′ + 1 and fλ(U) =
⋃

k<λ fk(U) if λ is a limit-
ordinal. The target formula χ is clean so that it contains, for each fixpoint
variable X ∈ V, at most a single fixpoint literal ηX.ψ0 as a subformula; we
denote this formula by θ(X). Given a coalgebra (C, ξ), a formula ψ and a vector
λ = (λk, . . . , λj) of ordinal numbers, we define [[ψ]]λ = [[ψ]]i where i : V �→ P(C)
is defined, for fixpoint variables Xj that occur freely in ψ and for which we have
θ(Xj) = ηXjψj , by i(Xj) = ([[ψj]]

Xj

i′)λj (∅) if η = μ and by i(Xj) = [[νXj .ψj]]i′

if η = ν, where i′(Xj′) is undefined for j′ ≥ j and where i′(Xj′) = i(Xj′) for
j′ < j. Again the timeouts for greatest fixpoint variables are irrelevant and serve
only to ease notation.

Definition 26 (Strongly supporting Kripke frame). Let (C, ξ) be a coal-
gebra. For states x ∈ C and formulas ψ such that x ∈ [[ψ]], let λψ denote the
least vector of ordinal numbers such that x ∈ [[ψ]]λψ . Also let, for ψ ∈ F, ψ be
the subformula of χ such that ψ is obtained from ψ by repeatedly replacing free
variables X by θ(X). A graph (C,L) with L ⊆ C×Σ×C and with labeling func-
tion l : C → P(F) such that l(x) = {ψ ∈ F | x ∈ [[ψ]]} is a strongly supporting
Kripke frame (for C, ξ) if

Optimal Satisfiability Checking for Arithmetic µ-Calculi 291

– for all ψ ∈ F and x ∈ C, if x /∈ [[ψ]], then L(x, (ψ, b)) = ∅ for b ∈ {0, 1};
if x ∈ [[ψ]], then we distinguish upon the shape of ψ: if ψ = ψ0 ∨ ψ1, then
we require L(x, (ψ, b)) = {x} for exactly one b ∈ {0, 1} with x ∈ [[ψb]]λψ and
L(x, (ψ, b)) = ∅, where 1 = 0, 0 = 1; if ψ = ψ0 ∧ ψ1 or ψ = ηX.ψ0, then we
require L(x, (ψ, 0)) = {x}.

– for all x ∈ C and κ ∈ selections, we have L(x, κ) = {y} for some y ∈ A =

∩♥ψ∈κ[[ψ
λ♥ψ]] if A
= ∅, and L(x, κ) = ∅ otherwise.

Lemma 27. Every coalgebra has a strongly supporting Kripke frame.

Definition 28. Given a coalgebra (C, ξ) with strongly supporting Kripke frame
(C,L), a formula ψ and a valuation i : V �→ P(C), we define [[ψ]]Li by the same
clauses as [[ψ]]i in all cases except the following:

[[ψ0 ∨ ψ1]]Li ={x ∈ C | x ∈ [[ψb]]Li , b ∈ {0, 1}, L(x, (φ0 ∨ φ1, b)) = {x}}
[[♥ψ0]]Li ={x ∈ C | (Tgx)(ξ(x)) ∈ [[♥]](gx[[[ψ0]]Li])}

[[μX.ψ0]]Li ={x ∈ C | x has unfolding timeouts at level ad(μX.φ0)
for μX.φ0 in (C,L)},

where μX.ψ0 = μX.φ0 and ψ0 ∨ ψ1 = φ0 ∨ φ1, and where gx : C → {yκ |
L(x, κ) = {yκ}} is defined by gx(c) = yκ if and only if κ = {♥ψ ∈ F | c ∈ [[ψ]]}.

Strongly supporting Kripke frames have unfolding timeouts:

Lemma 29. For all coalgebras (C, ξ) with strongly supporting Kripke frame
(C,L), all formulas ψ and all valuations i : V �→ P(C), we have [[ψ]]i ⊆ [[ψ]]Li .

Lemma 30 (Soundness). Let χ be satisfiable. Then a pre-semi-tableau for χ
with unfolding timeouts can be constructed over a subset of Dχ.

Proof (Sketch). By Lemmas 27 and 29, any model of χ has a strongly supporting
Kripke frame (C,L) with unfolding timeouts. We derive a pre-semi-tableau for
χ from (C,L), inheriting unfolding timeouts. ��
Corollary 31 (Soundness and completeness). We have

v0 ∈ E if and only if χ is satisfiable.

Our model construction moreover yields the same bound on minimum model
size as in earlier work on the coalgebraic μ-calculus [4]:

Corollary 32 (Small model property). Let χ be a satisfiable coalgebraic μ-
calculus formula. Then χ has a model of size O(((nk)!)2) ∈ 2O(nk log n).

292 D. Hausmann and L. Schröder

6 Conclusion

We have shown that the satisfiability problem of the coalgebraic μ-calculus is
in ExpTime, subject to establishing a suitable time bound on the much sim-
pler one-step satisfiability problem. Prominent examples include the graded μ-
calculus, the (two-valued) probabilistic μ-calculus, and extensions of the prob-
abilistic and the graded μ-calculus, respectively, with (monotone) polynomial
inequalities; the ExpTime bound appears to be new for the last two logics. We
have also presented a generic satisfiability algorithm that realizes the time bound
and supports global caching and on-the-fly solving. Moreover, we have obtained
a polynomial bound on minimum branching width in models for all example
logics mentioned above.

References

1. Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. J. ACM
49, 672–713 (2002)

2. Bradfield, J., Stirling, C.: Modal µ-calculi. In: Handbook of Modal Logic, pp. 721–
756. Elsevier (2006)

3. Bradfield, J., Walukiewicz, I.: The mu-calculus and model checking. In: Clarke,
E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp.
871–919. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8 26

4. Ĉırstea, C., Kupke, C., Pattinson, D.: EXPTIME tableaux for the coalgebraic µ-
calculus. Log. Methods Comput. Sci. 7, 1–33 (2011)

5. Cleaveland, R., Iyer, S., Narasimha, M.: Probabilistic temporal logics via the modal
µ-calculus. Theor. Comput. Sci. 342, 316–350 (2005)

6. D’Agostino, G., Visser, A.: Finality regained: a coalgebraic study of Scott-sets and
multisets. Arch. Math. Logic 41, 267–298 (2002)

7. Demri, S., Lugiez, D.: Presburger modal logic is PSPACE-complete. In: Fur-
bach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 541–556.
Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 44

8. Fontaine, G., Leal, R., Venema, Y.: Automata for coalgebras: an approach using
predicate liftings. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 381–392.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 32

9. Friedmann, O., Lange, M.: Deciding the unguarded modal µ-calculus. J. Appl.
Non-Classical Log. 23, 353–371 (2013)

10. Friedmann, O., Latte, M., Lange, M.: Satisfiability games for branching-time logics.
Log. Methods Comput. Sci. 9, 1–36 (2013)

11. Goré, R., Nguyen, L.A.: Exptime tableaux for ALC using sound global caching. J.
Autom. Reason. 50, 355–381 (2013)

12. Goré, R., Widmann, F.: Sound global state caching for ALC with inverse roles.
In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009. LNCS (LNAI), vol. 5607, pp.
205–219. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02716-
1 16

13. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games: A
Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36387-4

https://doi.org/10.1007/978-3-319-10575-8_26
https://doi.org/10.1007/11814771_44
https://doi.org/10.1007/978-3-642-14162-1_32
https://doi.org/10.1007/978-3-642-02716-1_16
https://doi.org/10.1007/978-3-642-02716-1_16
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4

Optimal Satisfiability Checking for Arithmetic µ-Calculi 293

14. Hausmann, D., Schröder, L.: Global caching for the flat coalgebraic µ-calculus. In:
Grandi, F., Lange, M., Lomuscio, A. (eds.) Temporal Representation and Reason-
ing, TIME 2015, pp. 121–143. IEEE (2015)

15. Hausmann, D., Schröder, L., Deifel, H.-P.: Permutation games for the weakly acon-
junctive µ-calculus. In: Beyer, D., Huisman, M. (eds.) TACAS 2018, Part II. LNCS,
vol. 10806, pp. 361–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89963-3 21

16. Hausmann, D., Schröder, L., Egger, C.: Global caching for the alternation-free
coalgebraic µ-calculus. In: Desharnais, J., Jagadeesan, R. (eds.) Concurrency The-
ory, CONCUR 2016. LIPIcs, vol. 59, pp. 34:1–34:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2016)

17. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Logic
in Computer Science, LICS 1997, pp. 111–122. IEEE (1997)

18. King, V., Kupferman, O., Vardi, M.Y.: On the complexity of parity word automata.
In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 276–286.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45315-6 18

19. Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

20. Kozen, D.: A finite model theorem for the propositional µ-calculus. Stud. Log. 47,
233–241 (1988)

21. Kupferman, O., Sattler, U., Vardi, M.Y.: The complexity of the graded µ-calculus.
In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 423–437. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1 34

22. Kupke, C., Pattinson, D.: On modal logics of linear inequalities. In: Beklemishev,
L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, AiML 2010, pp.
235–255. College Publications (2010)

23. Kupke, C., Pattinson, D., Schröder, L.: Reasoning with global assumptions in arith-
metic modal logics. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS,
vol. 9210, pp. 367–380. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22177-9 28

24. Liu, W., Song, L., Wang, J., Zhang, L.: A simple probabilistic extension of modal
mu-calculus. In: Yang, Q., Wooldridge, M. (eds.) International Joint Conference
on Artificial Intelligence, IJCAI 2015, pp. 882–888. AAAI Press (2015)

25. Mio, M.: Probabilistic modal µ-calculus with independent product. In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 290–304. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19805-2 20

26. Myers, R., Pattinson, D., Schröder, L.: Coalgebraic hybrid logic. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 11

27. Niwinski, D., Walukiewicz, I.: Games for the µ-calculus. Theor. Comput. Sci. 163,
99–116 (1996)

28. Parikh, R.: The logic of games and its applications. Ann. Discret. Math. 24, 111–
140 (1985)

29. Pattinson, D.: Coalgebraic modal logic: soundness, completeness and decidability
of local consequence. Theor. Comput. Sci. 309, 177–193 (2003)

30. Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic
parity automata. Log. Methods Comput. Sci. 3(3:5), 1–21 (2007)

31. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249,
3–80 (2000)

32. Safra, S.: On the complexity of omega-automata. In: Foundations of Computer
Science, FOCS 1988, pp. 319–327. IEEE Computer Society (1988)

https://doi.org/10.1007/978-3-319-89963-3_21
https://doi.org/10.1007/978-3-319-89963-3_21
https://doi.org/10.1007/3-540-45315-6_18
https://doi.org/10.1007/3-540-45620-1_34
https://doi.org/10.1007/978-3-319-22177-9_28
https://doi.org/10.1007/978-3-319-22177-9_28
https://doi.org/10.1007/978-3-642-19805-2_20
https://doi.org/10.1007/978-3-642-00596-1_11

294 D. Hausmann and L. Schröder

33. Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log.
Algebr. Prog. 73, 97–110 (2007)

34. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor.
Comput. Sci. 390(2–3), 230–247 (2008)

35. Schröder, L., Pattinson, D.: Shallow models for non-iterative modal logics. In: Den-
gel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI
2008. LNCS (LNAI), vol. 5243, pp. 324–331. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85845-4 40

36. Schröder, L., Pattinson, D.: PSPACE bounds for rank-1 modal logics. ACM Trans.
Comput. Log. 10(2), 13:1–13:33 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-85845-4_40
https://doi.org/10.1007/978-3-540-85845-4_40
http://creativecommons.org/licenses/by/4.0/

Constructing Inductive-Inductive Types
in Cubical Type Theory

Jasper Hugunin(B)

University of Washington, Seattle, WA, USA
jasper@hugunin.net

Abstract. Inductive-inductive types are a joint generalization of mutual
inductive types and indexed inductive types. In extensional type theory,
inductive-inductive types can be constructed from inductive types, and
this construction has been conjectured to work in intensional type theory
as well. In this paper, we show that the existing construction requires
Uniqueness of Identity Proofs, and present a new construction (which
we conjecture generalizes) of one particular inductive-inductive type in
cubical type theory, which is compatible with homotopy type theory.

1 Introduction

Inductive-inductive types allow for the mutual inductive definition of a type and
a family over that type. As an example, we can simultaneously define contexts
and types defined in a context, with dependently typed context extension:

Ctx : Type, Ty : Ctx → Type,
ε : Ctx, U : (Γ : Ctx) → Ty Γ,

ext : (Γ : Ctx) → Ty Γ → Ctx, El : (Γ : Ctx) → Ty (ext Γ (U Γ)).

Such definitions have been used for example by Danielsson [9] and Chapman
[5] to define intrinsically typed syntax of a dependent type theory, and Agda
supports such definitions natively.

These types have been studied extensively in Nordvall Forsberg [15]. There,
in §5.3, inductive-inductive types with simple elimination rules (defined in op.
cit. §3.2.5) are constructed from indexed inductive types in extensional type
theory, and in §5.4 this is conjectured to work in intensional type theory as well.

In this paper, we first show that this construction does not work in intensional
type theory without assuming Uniqueness of Identity Proofs (UIP), which is
incompatible with the Univalence axiom of Homotopy Type Theory [18]. We
then give an alternate construction in cubical type theory [6], which is compatible
with Univalence. Specifically, this paper makes the following contributions:1

1 The formalization can be found at https://github.com/jashug/ConstructingII.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 295–312, 2019.
https://doi.org/10.1007/978-3-030-17127-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_17&domain=pdf
http://orcid.org/0000-0002-1133-5354
https://github.com/jashug/ConstructingII
https://doi.org/10.1007/978-3-030-17127-8_17

296 J. Hugunin

1. In Sect. 2, we show that, in intensional type theory, if the types constructed
by Nordvall Forsberg satisfy the simple elimination rules, then UIP holds
(formalized in both Coq and Agda).

2. In Sect. 3, we give the construction of a particular inductive-inductive type
with simple elimination rules in cubical type theory (formalized in cubical
Agda).

1.1 Syntax and Conventions

We mostly mimic Agda syntax. The double bar symbol = is used for definitions
directly and by pattern matching, and for equality of terms up to conversion.
We write (a : A) → B for the dependent product type, and A → B for the
non-dependent version. Functions are given by pattern matching f x = y or by
lambda expressions f = λx.y. Similarly (a : A) × B is the dependent pair type,
and A × B the non-dependent version. Pairs are (a, b), and projections are p.1
and p.2. The unit type is �, with unique inhabitant �. Identity types are x ≡X y
for the type of identifications of x with y in type X, and we write refl for a
proof of reflexivity. We do not assume that axiom K holds for identity types. We
write Type for a universe of types (where Agda uses Set). In Sect. 3 we work in
cubical type theory, which will be explained there.

1.2 Running Example of an Inductive-Inductive Definition

For the purposes of this paper, we will focus on one relatively simple inductive-
inductive definition (with only 5 clauses), parametrized by a type X, which is
given in Fig. 1. We will use this definition to prove that Nordvall Forsberg’s
construction implies UIP in Sect. 2 and as a running example to demonstrate
our construction in cubical type theory in Sect. 3.

Our example starts with the simplest inductive-inductive sorts, taking A :
Type and B : A → Type, and then populates A and B with simple constructors
which suffice for our proof of UIP. We have inj, which is supposed to give exactly
one element of each B a, while ext lets us mix Bs back into the As (mirroring the
type of context extension), and η gives us something to start with: one element of
A for each element of X (following the use of η in [15, Example 3.3]). The proof
of UIP in Sect. 2 proceeds by considering the type B (ext (η x) (inj (η x))
for some x : X, and noticing that, while the simple elimination rules tell us
that there should only be one element of this type (given by inj), in Nordvall
Forsberg’s construction there are actually as many as there are proofs of x ≡X x.

Our goal in this paper is to construct (A,B, η, ext, inj) of the types given in
Fig. 1 such that the simple elimination rules hold without using UIP. But first,
we will show why Nordvall Forsberg’s approach is not sufficient.

2 Deriving UIP

Uniqueness of Identity proofs (UIP) for a type X is the principle that, for all
x : X, y : X, p : x ≡X y, q : x ≡X y, the type p ≡x≡Xy q is inhabited.

Constructing Inductive-Inductive Types in Cubical Type Theory 297

Fig. 1. Running example

Equivalently, for all x : X, p : x ≡X x, the type p ≡x≡Xx refl is inhabited. It
expresses that there is at most one proof of any equality. UIP is independent of
standard intensional type theory [13], and is inconsistent with Homotopy Type
Theory [18].

Nordvall Forsberg’s construction of inductive-inductive types is described in
[15, §5.3]. In this section, we show that if the simple elimination rules hold for
this construction of the inductive-inductive type in Fig. 1, then UIP holds for the
type X (Theorem 1). This argument has been formalized in both Coq version
8.8.0 [8] (see UIP from Forsberg II.v) and Agda using the --without-K flag
(see UIP from Forsberg II.agda).

To recap, Nordvall Forsberg [15, §5.3] constructs an inductive-inductive type
by first defining an approximation (the pre-syntax) which drops the A index
from B leaving a mutual inductive definition. Concretely, we have Apre and Bpre

defined as in Fig. 2. Then a mutual indexed inductive definition is used to define
the index relationship between Apre and Bpre; these are the goodness predicates
Agood and Bgood. Finally, the inductive object (A,B, η, ext, inj) is defined by
pairing the pre-syntax with goodness proofs (see Fig. 3).

In extensional type theory, Nordvall Forsberg proved that Agood a is a mere
proposition (all inhabitants are equal) [15, Lemma 5.37(ii)]. In intensional type
theory as well, if function extensionality and UIP hold then Agood is a mere

298 J. Hugunin

Fig. 2. Pre-syntax for the running example

Fig. 3. Construction given by Nordvall Forsberg

proposition. This uniqueness of goodness proofs justifies having the definition of
B ignore the goodness proof agood, since agood can have at most one value.

In the next two subsections, we prove that:

1. If Agood a is a mere proposition then UIP holds for the type X (Lemma 2).
2. If the simple elimination rules from Fig. 1 hold for the (A,B, η, inj, ext)

constructed above then Agood a is a mere proposition (Lemma 5).

Combining these results, we conclude that Nordvall Forsberg’s construction sat-
isfies the simple elimination rules in intensional type theory only if UIP holds
(Theorem 1).

Constructing Inductive-Inductive Types in Cubical Type Theory 299

2.1 Unique Goodness Implies UIP

We define notation (x == y) to mean the term

extpre (ηpre x) (injpre (ηpre y)) : Apre.

We first prove that there are at least as many proofs of Agood (x == y) as there
are of x ≡X y.

Lemma 1 (x ≡X y is a retract of Agood). For all x : X and y : X, there are
functions

f : x ≡X y → Agood (x == y), g : Agood (x == y) → x ≡X y,

such that for all e : x ≡X y, g (f e) ≡ e.

Proof. To define f , we let f refl =

extgood (ηpre x) (ηgood x) (injpre (ηpre x)) (injgood (ηpre x) (ηgood x)).

To define g, pattern matching on agood has only one possibility: agood =

extgood (ηpre x) (ηgood x) (injpre (ηpre x)) (injgood (ηpre x) (ηgood x)),

forcing y to be x, and in this case x ≡X y holds by reflexivity. Then when
e = refl, f e returns a proof in the format matched by g, so g (f refl) ≡ refl,
and thus g (f e) ≡ e.

Lemma 2 (Unique goodness implies UIP). If Agood t is a mere proposition
for all t : Apre, then UIP holds for the type X.

Proof. Assume goodness proofs are unique, and take x : X, y : X, with p : x ≡ y,
q : x ≡ y. We want to show that p ≡ q. Using the f and g from Lemma 1,

p ≡ g (f p) by Lemma 1
≡ g (f q) by uniqueness in Agood (x == y), f p ≡ f q

≡ q by Lemma 1.

2.2 Simple Elimination Rules Imply Unique Goodness

Now we prove that there are at least as many proofs of B (tpre, tgood) as there
are of Agood tpre.

Lemma 3 (Agood is a retract of B). For all tpre : Apre and tgood : Agood tpre,
there are functions

f : Agood tpre → B (tpre, tgood), g : B (tpre, tgood) → Agood tpre

such that for all agood : Agood tpre, g (f agood) ≡ agood.

300 J. Hugunin

Proof. We define f agood = injpre tpre, injgood tpre agood. By induction on
Bgood, we define a function

g′ : (apre : Apre) → (bpre : Bpre) → Bgood apre bpre → Agood apre

taking
g′ apre (injpre apre) (injgood apre agood) = agood.

Then we can define g (bpre, bgood) = g′ tpre bpre bgood. Then g (f agood) ≡ agood

holds by reflexivity.

Lemma 4 (B a is contractible). Assuming the simple elimination rules from
Fig. 1 hold for the (A,B, η, inj, ext) constructed above, for all a : A and b : B a,
inj a ≡B a b.

Proof. Referring to the simple elimination rules given in Fig. 1, we pattern match
on B by giving motives (PA,PB) and methods (Pη, Pext, Pinj), and then using
the resulting EB .

We set PA a = �, and take PB a b = inj a ≡B a b. Then we have Pη x = �,
and Pext a � b H = �, and we take Pinj a � = refl : inj a ≡B a inj a. The
conclusion follows by EB : (a : A) → (b : B a) → inj a ≡B a b.

Lemma 5 (Simple elimination rules imply unique goodness). If the sim-
ple eliminators hold for the (A,B, η, inj, ext) constructed above, then for all
t : Apre, Agood t is a mere proposition.

Proof. Assume that the simple elimination rules hold, and take t : Apre, and a1

and a2 in Agood t. We use the definition of f and g from Lemma 3 with tpre = t
and tgood = a1.

By Lemma 4, we know that

inj (t, a1) ≡B (t,a1) f a2.

Applying g to both sides, and recognizing that g (inj (t, a1)) computes to a1,
while g (f a2) computes to a2 we find that

a1 = g (inj (t, a1)) ≡Agood t g (f a2) = a2.

2.3 Simple Elimination Rules for Nordvall Forsberg’s Construction
only if UIP

Theorem 1. If the simple elimination rules hold for Nordvall Forsberg’s con-
struction, then UIP holds for the type X.

Proof. Compose the results of Lemmas 2 and 5.

Therefore Nordvall Forsberg’s approach to constructing inductive-inductive
types requires UIP. Since UIP is inconsistent with the Univalence axiom at the
center of Homotopy Type Theory (HoTT) [18], we have an incentive to come up
with a different construction which is consistent with HoTT.

Constructing Inductive-Inductive Types in Cubical Type Theory 301

3 Constructing an Inductive-Inductive Type in Cubical
Type Theory

Cubical type theory [6] is a recently developed type theory which gives a con-
structive interpretation of the Univalence axiom of Homotopy Type Theory. It
has an implementation as a mode for Agda [19], which we use to formalize the
construction given in this section of the running example from Fig. 1.

The most important difference between cubical type theory and standard
intensional type theory as implemented by Coq or vanilla Agda is that the iden-
tity type x ≡X y is represented (loosely speaking) by the type of functions p
from an interval type I with two endpoints i0 and i1 to X such that p i0 reduces
to x and p i1 reduces to y. This allows, for example, a simple proof of function
extensionality: if we have A : Type, B : A → Type, f and g functions of type
(a : A) → B a, and h : (a : A) → f a ≡ g a, then we have (λi.λa.h a i) : f ≡ g.
Taking cong f = λp.λi.f (p i) : x ≡ y → f x ≡ f y and ◦ for function composi-
tion, we also have nice properties such as (cong f) ◦ (cong g) = cong (f ◦ g).

In this section, we construct the running example from Fig. 1, along with the
simple elimination rules, in cubical type theory. Our construction proceeds in
several steps:

– In Sect. 3.1, we approximate by dropping the indices, leaving a standard
mutual inductive definition called the pre-syntax. This is the same as the
pre-syntax given in Fig. 2.

– In Sect. 3.2, we define goodness algebras, collections of predicates over the pre-
syntax which define the index relationship (analogously to Agood and Bgood

from Sect. 2). We also show that a goodness algebra exists, and call it O.
– In Sect. 3.3, we define a predicate nice on goodness algebras, such that if we

have a nice goodness algebra, then we can construct the simple elimination
rules. Being nice is similar to having proofs of goodness be unique as in Sect. 2.

– In Sect. 3.4, we use pattern matching over the pre-syntax to define a function
S from goodness algebras to goodness algebras.

– In Sect. 3.5, we define the limit of the sequence

O, S O, S (S O), . . . , Sn
O, . . .

and show that it is nice. This is the only section that utilizes the differences
between cubical type theory and standard intentional type theory.

Given the nice goodness algebra in Sect. 3.5 we can then construct the sim-
ple elimination rules by Sect. 3.3. This construction has been formalized
in Agda2 using the --cubical flag which implies --without-K (see Running
Example.agda).

The intuition for our construction is that the Nordvall Forsberg’s approach
of pairing an approximation with goodness predicates can be repeated, and each
time the approximation gets better. Using HoTT terminology, we showed in

2 Agda version 2.6.0 commit bd338484d.

302 J. Hugunin

Sect. 2 that one iteration suffices only if X has homotopy level 0 (is a homotopy
set, satisfies UIP). In general, n + 1 iterations are sufficient if only if X has
homotopy level n. The successor goodness algebra defined in Sect. 3.4 is a slightly
simplified version of Nordvall Forsberg’s construction, and taking the limit (in
Sect. 3.5) gives a construction which works for arbitrary homotopy levels.

3.1 Pre-syntax

The pre-syntax is the same as that used in Sect. 2, defined as a mutually inductive
type in Fig. 2. The constructors of the pre-syntax have the same types as the
constructors of the full inductive-inductive definition (given in Fig. 1), except we
replace B a with Bpre everywhere, ignoring the dependence of B on A.

Consider this as the closest approximation of the target inductive-inductive
type by a standard inductive type; the dependence of B on A is the only new ele-
ment that inductive-inductive definitions add. Of course, this is only an approx-
imation. We can form elements of the pre-syntax, such as

extpre (ηpre x) (injpre (ηpre y))

for x �= y that should be excluded from the inductive-inductive formulation,
since inj (η y) : B (η y) while ext (η x) : B (η x) → A.

We will use definitions by induction and by pattern-matching on the pre-
syntax in sections Sects. 3.3 and 3.4 respectively.

3.2 Goodness Algebras

As we saw in Sect. 3.1, the pre-syntax is too lenient, and contains terms we
want to exclude from the inductive-inductive object. In this section, we define
a notion of sub-algebra of the pre-syntax, which we will call a goodness alge-
bra, and explain how to combine a goodness algebra with the pre-syntax to
get an inductive-inductive object (A,B, η, ext, inj). We also define a goodness
algebra O.

In Fig. 4, for each clause of the inductive-inductive specification, we define 3
things:

1. For each sort X a type IxX giving the data X depends on, and for each
operation F constructing an element of sort X, a family ArgF : Y → Ix X →
Type where Y collects the arguments of the operation in the pre-syntax, where
Arg F y φ gives the data needed to justify that pre-syntax constructed by Fpre

from y has index φ. In later sections we will also write Ix X δG and ArgF δG

to specify which goodness algebra we are working in.
2. The type of the corresponding component in the goodness algebra. For sorts,

this is a predicate relating Ix and the pre-syntax, while for the operations,
this is a function witnessing that each element of Arg gives a goodness proof
relating the index φ to the pre-syntax.

Constructing Inductive-Inductive Types in Cubical Type Theory 303

Fig. 4. Goodness algebras

3. A way to combine the goodness algebra with the pre-syntax to form an
inductive-inductive object. For sorts, we pair the pre-syntax with a good-
ness proof, while for operations we apply the operation given by the goodness
algebra, mimicking the construction in Fig. 3.

Comparing this definition to the construction in Sect. 2, the mutual inductive
definition of Agood and Bgood (in Fig. 3) has types equivalent to the result of
dropping the dependence of δG.B on δG.A (defined in Fig. 4), going from

304 J. Hugunin

δG.B : (a : Apre) × δG.A � a → Bpre → Type to Bgood : Apre → Bpre → Type.

The other difference is that we replace the inductive index (call it s) in the
conclusion by a fresh variable φ, with the condition s = φ included in Arg.

3.3 Niceness

In this section, we identify a property niceness that is sufficient for a good-
ness algebra to produce an inductive-inductive object (A,B, η, ext, inj) which
satisfies the simple elimination rules, as given in Fig. 1.

To define niceness, we use the concept of equivalence, as defined in Uni-
valent Foundations Program [18] (§4.4 Contractible fibers). Given a function
f : A → B, we write isEquiv f (leaving A and B implicit) to denote that f is an
equivalence between A and B. We will also write A � B for the type of pairs of
a function f with a proof that f is an equivalence.

We will say that a goodness algebra is nice if we have equivalence proofs
(δN .η, δN .ext, δN .inj), with types

δN .η x φ : isEquiv (δG.η x φ),

δN .ext (a, b) φ : isEquiv (δG.ext (a, b) φ),

δN .inj a φ : isEquiv (δG.inj a φ).

Equivalences between types are very close to equalities between types (the
Univalence axiom makes this precise). If we have a nice goodness algebra, the
combined data looks similar to a recursive definition:

δG.A : � → Apre → Type,

δG.B : ((a : Apre) × δG.A � a) → Bpre → Type,

δG.A φ (ηpre x) � Arg η x φ,

δG.A φ (extpre a b) � Arg ext (a, b) φ,

δG.B φ (injpre a) � Arg inj a φ.

However, the dependence of δG.B on δG.A makes this what Nordvall Forsberg
calls a “recursive-recursive” definition, and so we cannot use the standard elim-
inator of the pre-syntax. In Sect. 3.5, we will expend much effort to construct
a solution to this system. Once we have done so, the inductive-inductive object
produced by the goodness algebra will satisfy the simple elimination rules, as we
show in the following lemma.

Lemma 6 (Nice goodness algebras give simple elimination rules).
Given a goodness algebra δG with proof of niceness δN , the inductive-inductive
object (A,B, η, ext, inj) produced from δG as specified in Sect. 3.2 satisfies the
simple induction rules given in Fig. 1.

Constructing Inductive-Inductive Types in Cubical Type Theory 305

Proof. The proof is formalized in RunningExample.agda. The main idea of the
proof is to induct on the pre-syntax, and exploit the equivalences provided by
niceness δN . In the inj case for example, we have a proof of δG.B φ (injpre a).
But without loss of generality, we can replace that goodness proof with δG.inj
applied to an element of Arg inj a φ, which contains both a proof agood : δG.A �
a and a proof that (a, agood) ≡ φ. Using J to eliminate that equality leaves a
goal to which the provided simple induction step for inj applies. This proof does
not use cubical type theory in any essential way.

3.4 Successor Goodness Algebra

We are trying to create a nice goodness algebra by taking the limit of successive
approximations, so we need a step function, which we will call S, that takes a
goodness algebra δG and returns a new goodness algebra S δG, which is closer
in some sense to being nice. We do so by pattern matching on the pre-syntax to
unroll one level of the recurrence equations niceness encodes.

We define by pattern matching

(E δG).A : (a : Apre) → (φ : IxA δG) → (Y : Type) × (Y → δG.A φ a),

(E δG).B : (b : Bpre) → (φ : IxB δG) → (Y : Type) × (Y → δG.B φ b),

(E δG).A (ηpre x) = λφ. Arg η δG x φ, δG.η x φ,

(E δG).A (extpre a b) = λφ. Arg ext δG (a, b) φ, δG.ext (a, b) φ,

(E δG).B (injpre a) = λφ. Arg inj δG a φ, δG.inj a φ,

which gives a new property Y which maps back to δG.B φ b for each b and φ,
and similarly for A.

Then, in Fig. 5, we define the new goodness algebra (S δG) along with pro-
jection functions (δπ δG) which take Ix and Arg from (S δG) to δG.

The projection functions (δπ δG) consist of applying the map given by the
second component of (E δG) everywhere in sight. The sorts are then defined by
the first component of (E δG), while the operations can be defined to be the
corresponding projection function itself.

Concretely, for the sort B, we define (δπ δG).B to map between Ix B (SδG)
and IxB δG. This consists of applying the function ((E δG).A apre � .2) which
we defined by pattern matching above to agood. Then, since (S δG).B gets an
inductive index φ in (S δG) but ((E δG) b φ .1) is expecting an inductive index
in δG, we span the gap with the projection function (δπ δG).B just defined. The
definition of A follows the same pattern, but (δπ δG).A is even simpler because
IxA δG = � regardless of what goodness algebra we are working in.

For the operations, consider inj. Like with the sorts, we first define a projec-
tion function (δπ δG).inj a φ, which maps from Arg inj (S δG) to Arg inj δG,
and we fix up the inductive index φ with (δπ δG).B. For the first component of
Arg, we use the function given by the second component of (E δG).A to fix up
agood. For the second component, applying the projection (δπ δG).B to the equal-
ity proof works out on the left hand side because all these projection functions

306 J. Hugunin

Fig. 5. Successor goodness algebra

are doing the same thing: applying the function given by the second component
of (E δG) everywhere. Finally, we can define (S δG).inj = (δπ δG).inj, because
(S δG).inj a φ is supposed to have codomain

(S δG).B φ (injpre a),

which is defined to be

(E δG).B (injpre a) ((δπ δG).B φ) .1,

which reduces on (injpre a) to

Arg inj δG a ((δπ δG).B φ),

which is exactly the codomain of (δπ δG).inj a φ.

3.5 Limit of Goodness Algebras

We will now construct a nice goodness algebra by taking the limit of the sequence
Sn

O and showing that it is nice, where Sn
O is defined by recursion on n with

S0
O = O, S1+n

O = S(Sn
O). But first, we consider the limit of a chain of types.

Constructing Inductive-Inductive Types in Cubical Type Theory 307

Limit of Types. This subsection Limit of Types is formalized in Chain.agda.
In order to take the limit of successive goodness algebras, we need to know

how to work with chains of types. Specifically, given (X : N → I → Type) and
π : (n : N) → X (n + 1) i0 → X n i1, we consider the limit given by the type

chain.t X π = (f : (n : N) → X n i0) × ((n : N) → f n ≡X n π n (f (n + 1)).

If we have x : chain.t X π, then let x.p denote the second projection.
This definition is designed to work well in cubical type theory, and uses the

interval I and native heterogeneous equality x ≡X y where X : I → Type (where
we can form p = λi.w : x ≡X y when p i0 = x, p i1 = y, and p i : X i). In
particular, this definition allows for dependent chains without transporting over
the base equality, which is problematic in cubical type theory because transport
gets stuck on neutral types; instead given

A : N → Type with fA : (n : N) → A (1 + n) → A n and
B : (n : N) → A n → Type with

fB : (n : N) → (a : A (1 + n)) → B (1 + n) a → B n (fA n a),

we can form

LA = chain.t (λn.λi.A n) fA :Type,
LB = λa.chain.t(λn.cong(B n)(a.p n))(λn.fB n (a.p (1 + n) i0)) :LA → Type

using cong(B n)(a.p n) which is particularly well behaved in cubical type theory.
This construction commutes with most type formers: dependent function

types, dependent pair types, identity types, and constants. We also note a depen-
dent version of the fact that the limit of a chain is equivalent to the limit of a
shifted chain to substitute for Ahrens et al. [1, Lemma 12].

Lemma 7 (Dependent chain equivalent to shifted chain). Given

X : N → Type, πX : (n : N) → X (1 + n) → X n,

Y0 : (n : N) → X n → Type, Y1 : (n : N) → X n → Type,
f : (n : N) → (x : X n) → Y1 n x → Y0 n x,

g : (n : N) → (x : X (1 + n)) → Y0 (1 + n) x → Y1 n (πX n x),
x : chain.t (λn.λi.X n) πX ,

and letting the X arguments to f and g be implicit, we can define the types

t = chain.t (λn.cong (Y0 n) (x.p n)) (λn.λy.f n (g n y)),

t+ = chain.t (λn.cong (Y1 n) (x.p n)) (λn.λy.g n (f (1 + n) y)).

Applying f component-wise gives a function from t+ to t. This function is an
equivalence.

We only use Lemma 7 when Y1 n (πX n x) = Y0 (1 + n) x, so we may take g to
be the identity, leaving t+ the shifted chain of t up to X arguments.

308 J. Hugunin

Limit of Goodness Algebras. Now we use the lemmas about chains to con-
struct a nice goodness algebra, and then conclude by constructing an inductive-
inductive object (A,B, η, ext, inj) that satisfies the simple elimination rules.

Lemma 8. A nice goodness algebra exists.

Proof. The sorts of the limit goodness algebra are defined as a chain, and opera-
tions act pointwise on each component of the chain. To prove that the operations
are equivalences, we compose a proof that Arg commutes with chains (given by
combining the lemmas about chains commuting with type formers) with a proof
that for each sort, the chain given by the (E (Sn

O)) is equivalent to the chain
given by (Sn

O) (given by Lemma 7). Since (E (Sn
O)) is defined by pattern

matching to reduce to Arg, the right and left sides of these equivalences agree,
and we find that the operations are indeed nice. See the formalization for details.

Theorem 2. There exists an inductive-inductive object (A,B, η, ext, inj) that
satisfies the simple elimination rules as defined in Fig. 1.

Proof. A nice goodness algebra exists by Lemma 8, therefore we can construct
(A,B, η, ext, inj) satisfying the simple elimination rules by Lemma6.

We have therefore succeeded. In cubical type theory, the inductive-inductive
definition from Fig. 1 is constructible.

4 Related Work

The principle of simultaneously defining a type and a family over that type
has been used many times before. Danielsson [9] used an inductive-inductive-
recursive definition to define the syntax of dependent type theory, and Chapman
[5] used an inductive-inductive definition for the same purpose. Conway’s surreal
numbers [7] are given (up to a defined equivalence relation) by the inductive-
inductive definition of number and less than, where less than is a relation indexed
by two numbers [15, §7.1]. The HoTT book §11.3 gives a definition of the Cauchy
reals as a higher inductive-inductive definition [18].

In his thesis and previous papers [15–17], Nordvall Forsberg studies the gen-
eral theory of inductive-inductive types, axiomatizing a limited class of such
definitions, and giving a set theoretic model showing that they are consistent.
He also considers various extensions such as allowing a third type indexed by
the first two, allowing the second type to be indexed by two elements of the first,
or combining inductive-inductive definitions with inductive-recursive definitions
from Dybjer and Setzer [10].

There have been several attempts to define a general class of inductive-
inductive types larger than that in Nordvall Forsberg’s thesis. Kaposi and Kovács
[14] gives an external syntactic description of a class which includes higher
inductive-inductive types, and Altenkirch et al. [2] gives a semantic description
of a class including quotient inductive-inductive types, but neither gives a type

Constructing Inductive-Inductive Types in Cubical Type Theory 309

of codes that can be reasoned about internally. Working with UIP, Altenkirch
et al. [4] propose a class of quotient inductive-inductive types.

Nordvall Forsberg’s thesis [15] appears to give the best previously known
reduction of inductive-inductive types to regular inductive types known. As we
have shown, Nordvall Forsberg’s approach can only be applied to intensional type
theory if UIP holds. Furthermore, the equations for both Nordvall Forsberg’s
approach and our approach only hold propositionally.

Many other structures have been reduced to plain inductive types. Our con-
struction of inductive-inductive types can be seen as an adaptation of the tech-
nique in Ahrens et al. [1], where coinductive types are constructed from N by
taking a limit. Indexed inductive types (which are used in Nordvall Forsberg’s
construction) are constructed from plain inductive types in Altenkirch et al. [3],
with good computational properties (provided an identity type that satisfies J
strictly). And small induction-recursion is reduced to plain indexed inductive
types in Hancock et al. [11].

5 Conclusions and Future Work

In this paper, we have:

1. Shown that the construction of inductive-inductive types given by Nordvall
Forsberg implies UIP.

2. Given an alternative construction of one particular inductive-inductive type
in cubical type theory, which is compatible with Homotopy Type Theory.

We claim that the construction of our specific running example is straight-
forwardly generalizable to other inductive-inductive types, and have formalized
the construction of a number of other examples including types with non-finitary
constructors and indices to support this claim (see the GitHub repository refer-
enced in the introduction).

Going forward, we would like to investigate

– An internal definition of inductive-inductive specifications in HoTT. Early
experiments suggest that this requires surmounting difficulties related to
increasingly complex coherence conditions similar to those encountered when
defining semi-simplicial sets, c.f. Herbelin [12].

– Extending the proof given here to construct the general elimination rules.
The general elimination rules were defined in Nordvall Forsberg [15], but
that formulation they relies on either strict computation rules or extensional
type theory to be well typed. Kaposi and Kovács [14] give equivalent rules
which are well typed in intensional type theory.

– Identifying what needs to be added for the simple elimination rules to have
the expected computational behavior. Given the similar construction method,
this hopefully also allows the construction of coinductive types with nice
computational behavior, c.f. Ahrens et al. [1].

310 J. Hugunin

– In the opposite direction from the previous point, rewriting the construction
given here in Coq + Function Extensionality. While the elimination rules
will have poor computational behavior, this would make using inductive-
inductive types in Coq possible without requiring any change to Coq itself,
while being compatible with HoTT. In particular, using cubical type theory
makes the proofs in Sect. 3.5 simpler, but we speculate that axiomatic function
extensionality is sufficient.

Acknowledgements. I would like to thank Talia Ringer and Dan Grossman from
the UW PLSE lab, for their invaluable feedback throughout the revision process. I
also thank Pavel Panchekha, John Leo, Remy Wang, and Fredrik Nordvall Forsberg
for their comments.

Some of this work was completed while studying at Tokyo Institute of Technology
under Professor Ryo Kashima. I would like to thank Professor Kashima, as well as
my fellow lab members and mentors Asami and Maniwa for making my stay both
productive and enjoyable.

References

1. Ahrens, B., Capriotti, P., Spadotti, R.: Non-wellfounded trees in homotopy type
theory. In: TLCA (2015)

2. Altenkirch, T., Capriotti, P., Dijkstra, G., Kraus, N., Nordvall Forsberg, F.: Quo-
tient inductive-inductive types. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018.
LNCS, vol. 10803, pp. 293–310. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-89366-2 16

3. Altenkirch, T., Ghani, N., Hancock, P., McBride, C., Morris, P.: Indexed contain-
ers. J. Funct. Program. 25, e5 (2015)

4. Altenkirch, T., Kaposi, A., Kovács, A.: Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang. 3(POPL), 2:1–2:24 (2019).
http://doi.acm.org/10.1145/3290315

5. Chapman, J.: Type theory should eat itself. Electron. Notes Theoret. Com-
put. Sci. 228, 21–36 (2009). http://www.sciencedirect.com/science/article/pii/
S157106610800577X. Proceedings of the International Workshop on Logical Frame-
works and Metalanguages: Theory and Practice (LFMTP 2008)

6. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical Type Theory: a con-
structive interpretation of the univalence axiom. IfCoLog J. Logics Appl. 4(10),
3127–3169 (2017). http://www.collegepublications.co.uk/journals/ifcolog/?00019

7. Conway, J.: On Numbers and Games. AK Peters Series. Taylor & Francis, Milton
Park (2000). https://books.google.com/books?id=tXiVo8qA5PQC

8. The Coq Development Team: The Coq proof assistant, version 8.8.0, April 2018.
https://doi.org/10.5281/zenodo.1219885

9. Danielsson, N.A.: A formalisation of a dependently typed language as an inductive-
recursive family. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol.
4502, pp. 93–109. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74464-1 7

10. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions. In:
Girard, J.Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 129–146. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48959-2 11

https://doi.org/10.1007/978-3-319-89366-2_16
https://doi.org/10.1007/978-3-319-89366-2_16
http://doi.acm.org/10.1145/3290315
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.sciencedirect.com/science/article/pii/S157106610800577X
http://www.collegepublications.co.uk/journals/ifcolog/?00019
https://books.google.com/books?id=tXiVo8qA5PQC
https://doi.org/10.5281/zenodo.1219885
https://doi.org/10.1007/978-3-540-74464-1_7
https://doi.org/10.1007/978-3-540-74464-1_7
https://doi.org/10.1007/3-540-48959-2_11

Constructing Inductive-Inductive Types in Cubical Type Theory 311

11. Hancock, P., McBride, C., Ghani, N., Malatesta, L., Altenkirch, T.: Small induction
recursion. In: Hasegawa, M. (ed.) TLCA 2013. LNCS, vol. 7941, pp. 156–172.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38946-7 13

12. Herbelin, H.: A dependently-typed construction of semi-simplicial types. Math.
Struct. Comput. Sci. 25(5), 1116–1131 (2015)

13. Hofmann, M., Streicher, T.: The groupoid interpretation of type theory. In:
Twenty-Five Years of Constructive Type Theory (Venice, 1995), Oxford Logic
Guides, vol. 36, pp. 83–111. Oxford University Press, New York (1998)

14. Kaposi, A., Kovács, A.: A syntax for higher inductive-inductive types. In:
Kirchner, H. (ed.) 3rd International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2018. Leibniz International Proceedings in Infor-
matics, LIPIcs, vol. 108, pp. 20:1–20:18. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany (2018). http://drops.dagstuhl.de/opus/volltexte/
2018/9190

15. Nordvall Forsberg, F.: Inductive-inductive definitions. Ph.D. thesis. Swansea
University (2013)

16. Nordvall Forsberg, F., Setzer, A.: Inductive-inductive definitions. In: Dawar, A.,
Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 454–468. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15205-4 35

17. Nordvall Forsberg, F., Setzer, A.: A finite axiomatisation of inductive-inductive
definitions. In: Berger, U., Hannes, D., Schuster, P., Seisenberger, M. (eds.) Logic,
Construction, Computation, Ontos Mathematical Logic, vol. 3, pp. 259–287. Ontos
Verlag (2012)

18. The Univalent Foundations Program: Homotopy Type Theory: Univalent
Foundations of Mathematics, Institute for Advanced Study (2013). https://
homotopytypetheory.org/book

19. Vezzosi, A.: Adding cubes to agda (2017). https://hott-uf.github.io/2017/
abstracts/cubicalagda.pdf

https://doi.org/10.1007/978-3-642-38946-7_13
http://drops.dagstuhl.de/opus/volltexte/2018/9190
http://drops.dagstuhl.de/opus/volltexte/2018/9190
https://doi.org/10.1007/978-3-642-15205-4_35
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://hott-uf.github.io/2017/abstracts/cubicalagda.pdf
https://hott-uf.github.io/2017/abstracts/cubicalagda.pdf

312 J. Hugunin

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Causal Inference by String Diagram
Surgery

Bart Jacobs1, Aleks Kissinger1, and Fabio Zanasi2(B)

1 Radboud University, Nijmegen, The Netherlands
2 University College London, London, UK

f.zanasi@ucl.ac.uk

Abstract. Extracting causal relationships from observed correlations is
a growing area in probabilistic reasoning, originating with the seminal
work of Pearl and others from the early 1990s. This paper develops a
new, categorically oriented view based on a clear distinction between
syntax (string diagrams) and semantics (stochastic matrices), connected
via interpretations as structure-preserving functors.

A key notion in the identification of causal effects is that of an interven-
tion, whereby a variable is forcefully set to a particular value independent
of any prior dependencies. We represent the effect of such an intervention
as an endofunctor which performs ‘string diagram surgery’ within the syn-
tactic category of string diagrams. This diagram surgery in turn yields
a new, interventional distribution via the interpretation functor. While
in general there is no way to compute interventional distributions purely
from observed data, we show that this is possible in certain special cases
using a calculational tool called comb disintegration.

We showcase this technique on a well-known example, predicting the
causal effect of smoking on cancer in the presence of a confounding com-
mon cause. We then conclude by showing that this technique provides
simple sufficient conditions for computing interventions which apply to
a wide variety of situations considered in the causal inference literature.

Keywords: Causality · String diagrams · Probabilistic reasoning

1 Introduction

An important conceptual tool for distinguishing correlation from causation is
the possibility of intervention. For example, a randomised drug trial attempts to
destroy any confounding ‘common cause’ explanation for correlations between
drug use and recovery by randomly assigning a patient to the control or treat-
ment group, independent of any background factors. In an ideal setting, the
observed correlations of such a trial will reflect genuine causal influence. Unfor-
tunately, it is not always possible (or ethical) to ascertain causal effects by means
of actual interventions. For instance, one is unlikely to get approval to run a clin-
ical trial on whether smoking causes cancer by randomly assigning 50% of the

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 313–329, 2019.
https://doi.org/10.1007/978-3-030-17127-8_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_18&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_18

314 B. Jacobs et al.

patients to smoke, and waiting a bit to see who gets cancer. However, in certain
situations it is possible to predict the effect of such a hypothetical intervention
from purely observational data.

In this paper, we will focus on the problem of causal identifiability. For this
problem, we are given observational data as a joint distribution on a set of
variables and we are furthermore provided with a causal structure associated
with those variables. This structure, which typically takes the form of a directed
acyclic graph or some variation thereof, tells us which variables can in principle
have a causal influence on others. The problem then becomes whether we can
measure how strong those causal influences are, by means of computing an inter-
ventional distribution. That is, can we ascertain what would have happened if
a (hypothetical) intervention had occurred?

Over the past 3 decades, a great deal of work has been done in identifying
necessary and sufficient conditions for causal identifiability in various special
cases, starting with very specific notions such as the back-door and front-door
criteria [20] and progressing to more general necessary and sufficient conditions
for causal identifiability based on the do-calculus [11], or combinatoric concepts
such as confounded components in semi-Makovian models [25,26].

This style of causal reasoning relies crucially on a delicate interplay between
syntax and semantics, which is often not made explicit in the literature. The
syntactic object of interest is the causal structure (e.g. a causal graph), which
captures something about our understanding of the world, and the mechanisms
which gave rise to some observed phenomena. The semantic object of interest is
the data: joint and conditional probability distributions on some variables. Fixing
a causal structure entails certain constraints on which probability distributions
can arise, hence it is natural to see distributions satisfying those constraints as
models of the syntax.

In this paper, we make this interplay precise using functorial semantics in the
spirit of Lawvere [17], and develop basic syntactic and semantic tools for causal
reasoning in this setting. We take as our starting point a functorial presentation
of Bayesian networks similar to the one appearing in [7]. The syntactic role is
played by string diagrams, which give an intuitive way to represent morphisms of
a monoidal category as boxes plugged together by wires. Given a directed acyclic
graph (dag) G, we can form a free category SynG whose arrows are (formal)
string diagrams which represent the causal structure syntactically. Structure-
preserving functors from SynG to Stoch, the category of stochastic matrices,
then correspond exactly to Bayesian networks based on the dag G.

Within this framework, we develop the notion of intervention as an oper-
ation of ‘string diagram surgery’. Intuitively, this cuts a string diagram at a
certain variable, severing its link to the past. Formally, this is represented as
an endofunctor on the syntactic category cutX : SynG → SynG, which propagates
through a model F : SynG → Stoch to send observational probabilities F(ω) to
interventional probabilities F(cutX(ω)).

The cutX endofunctor gives us a diagrammatic means of computing interven-
tional distributions given complete knowledge of F . However, more interestingly,

Causal Inference by String Diagram Surgery 315

we can sometimes compute interventionals given only partial knowledge of F ,
namely some observational data. We show that this can also be done via a tech-
nique we call comb disintegration, which is a string diagrammatic version of
a technique called c-factorisation introduced by Tian and Pearl [26]. Our app-
roach generalises disintegration, a calculational tool whereby a joint state on two
variables is factored into a single-variable state and a channel, representing the
marginal and conditional parts of the distribution, respectively. Disintegration
has recently been formulated categorically in [5] and using string diagrams in [4].
We take the latter as a starting point, but instead consider a factorisation of a
three-variable state into a channel and a comb. The latter is a special kind of map
which allows inputs and outputs to be interleaved. They were originally studied
in the context of quantum communication protocols, seen as games [8], but have
recently been used extensively in the study of causally-ordered quantum [3,21]
and generalised [15] processes. While originally imagined for quantum processes,
the categorical formulation given in [15] makes sense in both the classical case
(Stoch) and the quantum. Much like Tian and Pearl’s technique, comb factorisa-
tion allows one to characterise when the confounding parts of a causal structure
are suitably isolated from each other, then exploit that isolation to perform the
concrete calculation of interventional distributions.

However, unlike in the traditional formulation, the syntactic and semantic
aspects of causal identifiability within our framework exactly mirror one-another.
Namely, we can give conditions for causal identifiability in terms of factorisation a
morphism in SynG, whereas the actual concrete computation of the interventional
distribution involves factorisation of its interpretation in Stoch. Thanks to the
functorial semantics, the former immediately implies the latter.

To introduce the framework, we make use of a running example taken from
Pearl’s book [20]: identifying the causal effect of smoking on cancer with the help
of an auxiliary variable (the presence of tar in the lungs). After providing some
preliminaries on stochastic matrices and the functorial presentation of Bayesian
networks in Sects. 2 and 3, we introduce the smoking example in Sect. 4. In Sect. 5
we formalise the notion of intervention as string diagram surgery, and in Sect. 6
we introduce the combs and prove our main calculational result: the existence
and uniqueness of comb factorisations. In Sect. 7, we show how to apply this
theorem in computing the interventional distribution in the smoking example,
and in 8, we show how this theorem can be applied in a more general case which
captures (and slightly generalises) the conditions given in [26]. In Sect. 9, we
conclude and describe several avenues of future work.

2 Stochastic Matrices and Conditional Probabilities

Symmetric monoidal categories (SMCs) give a very general setting for studying
processes which can be composed in sequence (via the usual categorical composi-
tion ◦) and in parallel (via the monoidal composition ⊗). Throughout this paper,
we will use string diagram notation [24] for depicting composition of morphisms
in an SMC. In this notation, morphisms are depicted as boxes with labelled input

316 B. Jacobs et al.

and output wires, composition ◦ as ‘plugging’ boxes together, and the monoidal
product ⊗ as placing boxes side-by-side. Identity morphisms are depicted simply
as a wire and the unit I of ⊗ as the empty diagram. The ‘symmetric’ part of the
structure consists of symmetry morphisms, which enable us to permute inputs
and outputs arbitrarily. We depict these as wire-crossings: . Morphisms whose
domain is I are called states, and they will play a special role throughout this
paper.

A monoidal category of prime interest in this paper is Stoch, whose objects
are finite sets and morphisms f : A → B are |B| × |A| dimensional stochastic
matrices. That is, they are matrices of positive numbers (including 0) whose
columns each sum to 1:

f = {f j
i ∈ R

+ | i ∈ A, j ∈ B} with
∑

j f j
i = 1, for all i.

Note we adopt the physicists convention of writing row indices as superscripts
and column indices as subscripts. Stochastic matrices are of interest for proba-
bilistic reasoning, because they exactly capture the data of a conditional prob-
ability distribution. That is, if we take A := {1, . . . , m} and B := {1, . . . , n},
conditional probabilities naturally arrange themselves into a stochastic matrix:

f j
i := P (B = j|A = i) � f =

⎛
⎜⎝

P (B = 1|A = 1) · · · P (B = 1|A = m)
...

. . .
...

P (B = n|A = 1) · · · P (B = n|A = m)

⎞
⎟⎠

States, i.e. stochastic matrices from a trivial input I := {∗}, are (non-
conditional) probability distributions, represented as column vectors. There is
only one stochastic matrix with trivial output: the row vector consisting only of
1’s. The latter, with notation as on the right, will play a special role in this
paper (see (1) below).

Composition of stochastic matrices is matrix multiplication. In terms of con-
ditional probabilities, that is multiplication followed by marginalization over the
shared variable:

∑
B P (C|B)P (B|A). Identities are thus given by identity matri-

ces, which we will often express in terms of the Kronecker delta function δj
i .

The monoidal product ⊗ in Stoch is the cartesian product on objects, and
Kronecker product of matrices: (f ⊗ g)(k,l)

(i,j) := fk
i gl

j . We will typically omit

parentheses and commas in the indices, writing e.g. hkl
ij instead of h

(k,l)
(i,j) for an

arbitrary matrix entry of h : A ⊗ B → C ⊗ D. In terms of conditional probabil-
ities, the Kronecker product corresponds to taking product distributions. That
is, if f represents the conditional probabilities P (B|A) and g the probabilities
P (D|C), then f ⊗g represents P (B|A)P (D|C). Stoch also comes with a natural
choice of ‘swap’ matrices σ : A⊗B → B⊗A given by σkl

ij := δl
iδ

k
j , making it into

a symmetric monoidal category. Every object A in Stoch has three other pieces
of structure which will play a key role in our formulation of Bayesian networks
and interventions: the copy map, the discarding map, and the uniform state:

()jk

i
:= δj

i δ
k
i

()
i
:= 1

()i

:=
1

|A| (1)

Causal Inference by String Diagram Surgery 317

Abstractly, this provides Stoch with the structure of a CDU category.

Definition 2.1. A CDU category (for copy, discard, uniform) is a symmetric
monoidal category (C,⊗, I) where each object A has a copy map : A → A⊗A,
a discarding map : A → I, and a uniform state : I → A satisfying the
following equations:

= = = = (2)

CDU functors are symmetric monoidal functors between CDU categories pre-
serving copy maps, discard maps and uniform states.

We assume that the CDU structure on I is trivial and the CDU structure
on A ⊗ B is constructed in the obvious way from the structure on A and B. We
also use the first equation in (2) to justify writing ‘copy’ maps with arbitrarily

many output wires:
...

.
Similar to [2], we can form the free CDU category FreeCDU(X,Σ) over a

pair (X,Σ) of a generating set of objects X and a generating set Σ of typed
morphisms f : u → w, with u,w ∈ X� as follows. The category FreeCDU(X,Σ)
has X� as set of objects, and morphisms the string diagrams constructed from
the elements of Σ and maps : x → x ⊗ x, : x → I and : I → x for each
x ∈ X, taken modulo the equations (2).

Lemma 2.2. Stoch is a CDU category, with CDU structure defined as in (1).

f =
A

B

B (3)

An important feature of Stoch is that I = {�}
is the final object, with : B → I the map pro-
vided by the universal property, for any set B.
This yields Eq. (3) on the right, for any f : A →
B, justifying the name “discarding map” for .

We conclude by recording another significant feature of Stoch: disintegra-
tion [4,5]. In probability theory, this is the mechanism of factoring a joint prob-
ability distribution P (AB) as a product of the first marginal P (A) and a condi-
tional distribution P (B|A). We recall from [4] the string diagrammatic rendition
of this process. We say that a morphism f : X → Y in Stoch has full support if,
as a stochastic matrix, it has no zero entries. When f is a state, it is a standard
result that full support ensures uniqueness of disintegrations of f .

Proposition 2.3 (Disintegration). For any state ω : I → A ⊗ B with full
support, there exists unique morphisms a : I → A, b : A → B such that:

b
=

a

ω

A
A B

B

(4)

318 B. Jacobs et al.

Note that Eq. (3) and the CDU rules immediately imply that the unique a : I →
A in Proposition 2.3 is the marginal of ω onto A: BA

ω
.

3 Bayesian Networks as String Diagrams

Bayesian networks are a widely-used tool in probabilistic reasoning. They give
a succinct representation of conditional (in)dependences between variables as a
directed acyclic graph. Traditionally, a Bayesian network on a set of variables
A,B,C, . . . is defined as a directed acyclic graph (dag) G, an assignment of sets to
each of the nodes VG := {A,B,C, . . .} of G and a joint probability distribution
over those variables which factorises as P (VG) =

∏
A∈VG

P (A |Pa(A)) where
Pa(A) is the set of parents of A in G. Any joint distribution that factorises
this way is said to satisfy the global Markov property with respect to the dag
G. Alternatively, a Bayesian network can be seen as a dag equipped with a set
of conditional probabilities {P (A |Pa(A)) | A ∈ VG} which can be combined
to form the joint state. Thanks to disintegration, these two perspectives are
equivalent.

Much like in the case of disintegration in the previous section, Bayesian net-
works have a neat categorical description as string diagrams in the category
Stoch [7,13,14]. For example, here is a Bayesian network in its traditional depic-
tion as a dag with an associated joint distribution over its vertices, and as a
string diagram in Stoch:

A

B D

C E

P (ABCDE) =
P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

A B EC D

In the string diagram above, the stochastic matrix a : I → A contains the
probabilities P (A), b : B → A contains the conditional probabilities P (B|A),
c : B ⊗ D → C contains P (C|BD), and so on. The entire diagram is then equal
to a state ω : I → A ⊗ B ⊗ C ⊗ D ⊗ E which represents P (ABCDE).

Note the dag and the diagram above look similar in structure. The main
difference is the use of copy maps to make each variable (even those that are
not leaves of the dag, A, B and D) an output of the overall diagram. This
corresponds to a variable being observed. We can also consider Bayesian net-
works with latent variables, which do not appear in the joint distribution due to
marginalisation. Continuing the example above, making A into a latent variable
yields the following depiction as a string diagram:

Causal Inference by String Diagram Surgery 319

A

B D

C E

P (BCDE) =∑
A P (A)P (B|A)P (D|A)P (C|BD)P (E|D) a

A

db

DB

c e

B EC D

In general, a Bayesian network (with possible latent variables), is a string
diagram in Stoch that (1) only has outputs and (2) consists only of copy maps
and boxes which each have exactly one output.

By ‘a string diagram in Stoch’, we mean not only the stochastic matrix itself,
but also its decomposition into components. We can formalise exactly what we
mean by taking a perspective on Bayesian networks which draws inspiration
from Lawvere’s functorial semantics of algebraic theories [16]. In this perspective,
which elaborates on [7, Ch. 4], we maintain a conceptual distinction between the
purely syntactic object (the diagram) and its probabilistic interpretation.

Starting from a dag G = (VG, EG), we construct a free CDU category SynG

which provides the syntax of causal structures labelled by G. The objects of
SynG are generated by the vertices of G, whereas the morphisms are generated
by the following signature:

ΣG =

⎧
⎨

⎩

A

a

B1 Bk

. . .

∣
∣
∣
∣
∣
∣
A ∈ VG with parents B1, . . . , Bk ∈ VG

⎫
⎬

⎭

Then SynG := FreeCDU(VG, ΣG).1 The following result establishes that models
(à la Lawvere) of SynG coincide with G-based Bayesian networks.

Proposition 3.1. There is a 1-1 correspondence between Bayesian networks
based on the dag G and CDU functors of type SynG → Stoch.

We refer to [12] for a proof. This proposition justifies the following definition
of a category BNG of G-based Bayesian networks: objects are CDU functors
SynG → Stoch and arrows are monoidal natural transformations between them.

4 Towards Causal Inference: The Smoking Scenario

We will motivate our approach to causal inference via a classic example, inspired
by the one given in the Pearl’s book [20]. Imagine a dispute between a scientist
and a tobacco company. The scientist claims that smoking causes cancer. As
a source of evidence, the scientist cites a joint probability distribution ω over
variables S for smoking and C for cancer, which disintegrates as in (5) below,

1 Note that EG is implicitly used in the construction of SynG: the edges of G determine
the parents of a vertex, and hence the input types of the symbols in ΣG.

320 B. Jacobs et al.

with matrix c = (0.9 0.7
0.1 0.3). Inspecting this c : S → C, the scientist notes that the

probability of getting cancer for smokers (0.3) is three times as high as for non-
smokers (0.1). Hence, the scientist claims that smoking has a significant causal
effect on cancer.

c

=

s

ω

S
S C

C

(5)

An important thing to stress here is that the
scientist draws this conclusion using not only the
observational data ω but also from an assumed
causal structure which gave rise to that data,
as captured in the diagram in Eq. (5). That is,
rather than treating diagram (5) simply as a cal-
culation on the observational data, it can also be
treated as an assumption about the actual, physical mechanism that gave rise
to that data. Namely, this diagram encompasses the assumption that there is
some prior propensity for people to smoke captured by s : I → S, which is both
observed and fed into some other process c : S → C whereby an individuals
choice to smoke determines whether or not they get cancer.

=
s

ω

S

S C

C
c

h

H
(6)

The tobacco company, in turn, says that the
scientists’ assumptions about the provenance of
this data are too strong. While they concede that
in principle it is possible for smoking to have
some influence on cancer, the scientist should
allow for the possibility that there is some latent
common cause (e.g. genetic conditions, stressful
work environment, etc.) which leads people both
to smoke and get cancer. Hence, says the tobacco company, a ‘more honest’
causal structure to ascribe to the data ω is (6). This structure then allows for
either party to be correct. If the scientist is right, the output of c : S ⊗ H → C
depends mostly on its first input, i.e. the causal path from smoking to cancer.
If the tabacco company is right, then c depends very little on its first input,
and the correlation between S and C can be explained almost entirely from the
hidden common cause.

So, who is right after all? Just from the observed distribution ω, it is impos-
sible to tell. So, the scientist proposes a clinical trial, in which patients are
randomly required to smoke or not to smoke. We can model this situation by
replacing s in (6) with a process that ignores its inputs and outputs the uniform
state. Graphically, this looks like ‘cutting’ the link s between H and S:

=
s

ω

S

S C

C
c

h

H
� =: ω′

S

S C

C
c

h

H
(7)

This captures the fact that variable S is now randomised and no longer depen-
dent on any background factors. This new distribution ω′ represents the data

Causal Inference by String Diagram Surgery 321

the scientist would have obtained had they run the trial. That is, it gives the
results of an intervention at s. If this ω′ still shows a strong correlation between
smoking and cancer, one can conclude that smoking indeed causes cancer even
when we assume the weaker causal structure (6).

Unsurprisingly, the scientist fails to get ethical approval to run the trial, and
hence has only the observational data ω to work with. Given that the scientist
only knows ω (and not c and h), there is no way to compute ω′ in this case.
However, a key insight of statistical causal inference is that sometimes it is possi-
ble to compute interventional distributions from observational ones. Continuing
the smoking example, suppose the scientist proposes the following revision to
the causal structure: they posit a structure (8) that includes a third observed
variable (the presence of T of tar in the lungs), which completely mediates the
causal effect of smoking on cancer.

ω

S T C

=

s

S C

c

h

H

t

T

(8)

As with our simpler structure, the
diagram (8) contains some assumptions
about the provenance of the data ω.
In particular, by omitting wires, we are
asserting there is no direct causal link
between certain variables. The absence of
an H-labelled input to t says there is no
direct causal link from H to T (only medi-
ated by S), and the absence of an S-
labelled input wire into c captures that
there is no direct causal link from S to C (only mediated by T). In the tradi-
tional approach to causal inference, such relationships are typically captured by
a graph-theoretic property called d-separation on the dag associated with the
causal structure.

We can again imagine intervening at S by replacing s : H → S by ◦ .
Again, this ‘cutting’ of the diagram will result in a new interventional distribu-
tion ω′. However, unike before, it is possible to compute this distribution from
the observational distribution ω.

However, in order to do that, we first need to develop the appropriate cate-
gorical framework. In Sect. 5, we will model ‘cutting’ as a functor. In 6, we will
introduce a generalisation of disintegration, which we call comb disintegration.
These tools will enable us to compute ω′ for ω, in Sect. 7.

5 Interventional Distributions as Diagram Surgery

The goal of this section is to define the ‘cut’ operation in (7) as an endofunctor
on the category of Bayesian networks. First, we observe that such an operation
exclusively concerns the string diagram part of a Bayesian network: following
the functorial semantics given in Sect. 3, it is thus appropriate to define cut as
an endofunctor on SynG, for a given dag G.

322 B. Jacobs et al.

Definition 5.1. For a fixed node A ∈ VG in a graph G, let cutA : SynG → SynG

be the CDU functor freely obtained by the following action on the generators
(VG, ΣG) of SynG:

– For each object B ∈ VG, cutA(B) = B.

– cutA(
A

a

B1 Bk

. . .
) =

A

B1 Bk

. . .
and cutA(

B

b

C1 Cj

. . .
) =

B

b

C1 Cj

. . .
for any other

B

b

C1 Cj

. . .
∈ ΣG.

Intuitively, cutA applied to a string diagram f of SynG removes from f each
occurrence of a box with output wire of type A.

Proposition 3.1 allows us to “transport” the cutting operation over to
Bayesian networks. Given any Bayesian network based on G, let F : SynG →
Stoch be the corresponding CDU functor given by Proposition 3.1. Then, we
can define its A-cutting as the Bayesian network identified by the CDU functor
F ◦ cutA. This yields an (idempotent) endofunctor CutA : BNG → BNG.

6 The Comb Factorisation

Thanks to the developments of Sect. 5, we can understand the transition from
left to right in (7) as the application of the functor CutS applied to the ‘Smoking’
node S. The next step is being able to actually compute the individual Stoch-
morphisms appearing in (8), to give an answer to the causality question.

= =

In order to do that, we want to work in a
setting where t : S → T can be isolated and
‘extracted’ from (8). What is left behind is a
stochastic matrix with a ‘hole’ where t has been
extracted. To define ‘morphisms with holes’, it is convenient to pass from SMCs
to compact closed categories (see e.g. [24]). Stoch is not itself compact closed,
but it embeds into Mat(R+), whose morphisms are all matrices over positive
numbers. Mat(R+) has a (self-dual) compact closed structure; that means, for
any set A there is a ‘cap’ ∩ : A⊗A → I and a ‘cup’ ∪ : I → A⊗A, which satisfy
the ‘yanking’ equations on the right. As matrices, caps and cups are defined by
∩ij = ∪ij = δj

i . Intuitively, they amount to ‘bent’ identity wires. Another aspect
of Mat(R+) that is useful to recall is the following handy characterisation of the
subcategory Stoch.

Lemma 6.1. A morphism f : A → B in Mat(R+) is a stochastic matrix (thus
a morphism of Stoch) if and only if (3) holds.

A suitable notion of ‘stochastic map with a hole’ is provided by a comb. These
structures originate in the study of certain kinds of quantum channels [3].

Definition 6.2. A 2-comb in Stoch is a morphism f : A1 ⊗ A2 → B1 ⊗ B2

satisfying, for some other morphism f ′ : A1 → B1,

f = f ′

A1

B1

A2

B2

A1

B1

A2

(9)

Causal Inference by String Diagram Surgery 323

This definition extends inductively to n-combs, where we require that dis-
carding the rightmost output yields f ′ ⊗ , for some (n − 1)-comb f ′. However,
for our purposes, restricting to 2-combs will suffice.

The intuition behind condition (9) is that the contribution from input A2 is
only visible via output B2. Thus, if we discard B2 we may as well discard A2. In
other words, the input/output pair A2, B2 happen ‘after’ the pair A1, B1. Hence,
it is typical to depict 2-combs in the shape of a (hair) comb, with 2 ‘teeth’, as
in (10) below:

f

A2

B1

A1

B2

� f

A1

B1

A2

B2

(10)
f

A1

B1

A2

B2

g :=

f

A2

B1

A2

g

A1

B2

(11)

While combs themselves live in Stoch, Mat(R+) accommodates a second-order
reading of the transition � in (10): we can treat f as a map which expects as
input a map g : B1 → A2 and produces as output a map of type A1 → B2.
Plugging g : B1 → A2 into the 2-comb can be formally defined in Mat(R+) by
composing f and g in the usual way, then feeding the output of g into the second
input of f , using caps and cups, as in (11).

Importantly, for generic f and g of Stoch, there is no guarantee that form-
ing the composite (11) in Mat(R+) yields a valid Stoch-morphism, i.e. a mor-
phism satisfying the finality Eq. (3). However, if f is a 2-comb and g is a Stoch-
morphism, Eq. (9) enables a discarding map plugged into the output B2 in (11)
to ‘fall through’ the right side of f , which guarantees that the composed map
satisfies the finality equation for discarding. See [12, § ??] for the explicit diagram
calculation.

With the concept of 2-combs in hand, we can state our factorisation result.

Theorem 6.3. For any state ω : I → A ⊗ B ⊗ C of Stoch with full support,
there exists a unique 2-comb f : B → A ⊗ C and stochastic matrix g : A → B
such that, in Mat(R+):

f

A B C

gω

A B C

= (12)

Proof. The construction of f and g mimics the one of c-factors in [26], using
string diagrams and (diagrammatic) disintegration. We first use ω to construct
maps a : I → A, b : A → B, c : A ⊗ B → C, then construct f using a and c
and construct g using b. For the full proof, including uniqueness, see [12]. �

Note that Theorem 6.3 generalises the normal disintegration property given
in Proposition 2.3. The latter is recovered by taking A := I (or C := I) above.

324 B. Jacobs et al.

7 Returning to the Smoking Scenario

We now return to the smoking sce-
nario of Sect. 4. There, we concluded
by claiming that the introduction of
an intermediate variable T to the
observational distribution ω : I →
S⊗T ⊗C would enable us to calculate
the interventional distribution. That
is, we can calculate ω′ = F(cutS(ω))
from ω := F(ω). Thanks to Theorem
6.3, we are now able to perform that
calculation. We first observe that our
assumed causal structure for ω fits
the form of Theorem6.3, where g is
t and f is a 2-comb containing every-
thing else, as in the diagram on the
side.

ω

S T C

=

s

S C

c

h

H

t

T

f

g

Hence, f and g are computable from ω. If we plug them back together as in
(12), we will get ω back. However, if we insert a ‘cut’ between f and g:

s

S C

c

h

H
t

T

=

S C

c

h

H
t

T

f

S T C

g
= (13)

we obtain ω′ = F(cutS(ω)).
We now consider a concrete example. Fix interpretations S = T = C = {0, 1}

and let ω : I → S ⊗ T ⊗ C be the stochastic matrix:

ω :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.5
0.1
0.01
0.02
0.1
0.05
0.02
0.2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← P (S = 0, T = 0, C = 0)
← P (S = 0, T = 0, C = 1)
← P (S = 0, T = 1, C = 0)
← P (S = 0, T = 1, C = 1)
← P (S = 1, T = 0, C = 0)
← P (S = 1, T = 0, C = 1)
← P (S = 1, T = 1, C = 0)
← P (S = 1, T = 1, C = 1)

Causal Inference by String Diagram Surgery 325

Now, disintegrating ω:

=
T CS

ω

c

s

S C

gives c ≈
(

0.81 0.32
0.19 0.68

)

The bottom-left element of c is P (C = 1|S = 0), whereas the bottom-right
is P (C = 1|S = 1), so this suggests that patients are ≈3.5 times as likely to
get cancer if they smoke (68% vs. 19%). However, comb-disintegrating ω using
Theorem 6.3 gives g : S → T and a comb f : T → S ⊗ C with the following
stochastic matrices:

f ≈

⎛

⎜
⎜
⎝

0.53 0.21
0.11 0.42
0.25 0.03
0.12 0.34

⎞

⎟
⎟
⎠ g ≈

(
0.95 0.41
0.05 0.59

)

Recomposing these with a ‘cut’ in between, as in the left-hand side of (13), gives
the interventional distribution ω′ ≈ (0.38, 0.11, 0.01, 0.02, 0.16, 0.05, 0.07, 0.22).
Disintegrating:

=
T CS

ω′
c′

s′

S C

gives c′ ≈
(

0.75 0.46
0.25 0.54

)

.

From the interventional distribution, we conclude that, in a (hypothotetical)
clinical trial, patients are about twice as likely to get cancer if they smoke (54%
vs. 25%). So, since 54 < 68, there was some confounding influence between S
and C in our observational data, but after removing it via comb disintegration,
we see there is still a significant causal link between smoking and cancer.

Note this conclusion depends totally on the particular observational data
that we picked. For a different interpretation of ω in Stoch, one might conclude
that there is no causal connection, or even that smoking decreases the chance of
getting cancer. Interestingly, all three cases can arise even when a näıve analysis
of the data shows a strong direct correlation between S and C. To see and/or
experiment with these cases, we have provided the Python code2 used to perform
these calculations. See also [19] for a pedagocical overview of this example (using
traditional Bayesian network language) with some sample calculations.

8 The General Case for a Single Intervention

While we applied the comb decomposition to a particular example, this technique
applies essentially unmodified to many examples where we intervene at a single
variable (called X below) within an arbitrary causal structure.
2 https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6.

https://gist.github.com/akissinger/aeec1751792a208253bda491ead587b6

326 B. Jacobs et al.

Theorem 8.1. Let G be a dag with a fixed node X that has corresponding gen-
erator x : Y1 ⊗ . . . ⊗ Yn → X in SynG. Then, suppose ω is a morphism in SynG

of the following form:

ω

A B C

=
X

X C

g

A B

x

f1

f2

(14)

for some morphisms f1, f2 and g in SynG not containing x as a subdiagram.
Then the interventional distribution ω′ := F(cutX(ω)) is computable from the
observational distribution ω = F(ω).

Proof. The proof is very close to the example in the previous section. Interpret-
ing ω into Stoch, we get a diagram of stochastic maps, which we can comb-
disintegrate, then recompose with ◦ to produce the interventional distri-
bution:

X C

g

A B

x

f1

f2

f

�

X C

g

A B

x

f1

f2

f

=

X C

g

A B

f1

f2

(3)

The RHS above is then F(cutX(ω)). �

This is general enough to cover several well-known sufficient conditions from
the causality literature, including single-variable versions of the so-called front-
door and back-door criteria, as well as the sufficient condition based on confound-
ing paths given by Pearl and Tian [26]. As the latter subsumes the other two, we
will say a few words about the relationship between the Pearl/Tian condition
and Theorem 8.1. In [26], the authors focus on semi-Markovian models, where
the only latent variables have exactly two observed children and no parents.
Suppose we write A ↔ B if two observed variables are connected by a latent
common cause, then one can characterise confounding paths as the transitive clo-
sure of ↔. They go on to show that the interventional distribution corresponding
cutting X is computable whenever there are no confounding paths connecting
X to one of its children.

Causal Inference by String Diagram Surgery 327

We can compare this to the form of expression ω in Eq. (14). First, note this
factorisation implies that all boxes which take X as an input must occur as sub-
diagrams of g. Hence, any ‘confounding path’ connecting X to its children would
yield at least one (un-copied) wire from f1 to g, hence it cannot be factored as
(14). Conversely, if there are no confounding paths from X to its children, then
we can we can place the boxes involved in any other confounding path either
entirely inside of g or entirely outside of g and obtain factorisation (14). Hence,
restricting to semi-Markovian models, the no- confounding-path condition from
[26] is equivalent to ours. However, Theorem 8.1 is slightly more general: its
formulation doesn’t rely on the causal structure ω being semi-Markovian.

9 Conclusion and Future Work

This paper takes a fresh, systematic look at the problem of causal identifiability.
By clearly distinguishing syntax (string diagram surgery and identification of
comb shapes) and semantics (comb-disintegration of joint states) we obtain a
clear methodology for computing interventional distributions, and hence causal
effects, from observational data.

A natural next step is moving beyond single-variable interventions to the gen-
eral case, i.e. situations where we allow interventions on multiple variables which
may have some arbitrary causal relationships connecting them. This would mean
extending the comb factorisation Theorem 6.3 from a 2-comb and a channel to
arbitrary n-combs. This seems to be straightforward, via an inductive exten-
sion of the proof of Theorem6.3. A more substantial direction of future work
will be the strengthening of Theorem 8.1 from sufficient conditions for causal
identifiability to a full characterisation. Indeed, the related condition based on
confounding paths from [26] is a necessary and sufficient condition for computing
the interventional distribution on a single variable. Hence, it will be interesting
to formalise this necessity proof (and more general versions, e.g. [10]) within our
framework and investigate, for example, the extent to which it holds beyond the
semi-Markovian case.

While we focus exclusively on the case of taking models in Stoch in this paper,
the techniques we gave are posed at an abstract level in terms of composition
and factorisation. Hence, we are optimistic about their prospects to generalise to
other probabilistic (e.g. infinite discrete and continuous variables) and quantum
settings. In the latter case, this could provide insights into the emerging field
of quantum causal structures [6,9,18,22,23], which attempts in part to replay
some of the results coming from statistical causal reasoning, but where quantum
processes play a role analogous to stochastic ones. A key difficulty in applying
our framework to a category of quantum processes, rather than Stoch, is the
unavailability of ‘copy’ morphisms due to the quantum no-cloning theorem [27].
However, a recent proposal for the formulation of ‘quantum common causes’ [1]
suggests a (partially-defined) analogue to the role played by ‘copy’ in our for-
mulation constructed via multiplication of certain commuting Choi matrices.
Hence, it may yet be possible to import results from classical causal reasoning
into the quantum case just by changing the category of models.

328 B. Jacobs et al.

Acknowledgements. FZ acknowledges support from EPSRC grant EP/R020604/1.
AK would like to thank Tom Claassen for useful discussions on causal identification
criteria.

References

1. Allen, J.-M.A., Barrett, J., Horsman, D.C., Lee, C.M., Spekkens, R.W.: Quantum
common causes and quantum causal models. Phys. Rev. X 7, 031021 (2017)

2. Bonchi, F., Sobociński, P., Zanasi, F.: Deconstructing Lawvere with distributive
laws. J. Log. Algebr. Meth. Program. 95, 128–146 (2018)

3. Chiribella, G., D’Ariano, G.M., Perinotti, P.: Quantum circuit architecture. Phys.
Rev. Lett. 101, 060401 (2008)

4. Cho, K., Jacobs, B.: Disintegration and Bayesian inversion, both abstractly and
concretely (2017). arxiv.org/abs/1709.00322

5. Clerc, F., Danos, V., Dahlqvist, F., Garnier, I.: Pointless learning. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 355–369. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 21

6. Costa, F., Shrapnel, S.: Quantum causal modelling. New J. Phys. 18(6), 063032
(2016)

7. Fong, B.: Causal theories: a categorical perspective on Bayesian networks. Master’s
thesis, University of Oxford (2012). arxiv.org/abs/1301.6201

8. Gutoski, G., Watrous, J.: Toward a general theory of quantum games. In: Proceed-
ings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp.
565–574. ACM (2007)

9. Henson, J., Lal, R., Pusey, M.F.: Theory-independent limits on correlations from
generalized Bayesian networks. New J. Phys. 16(11), 113043 (2014)

10. Huang, Y., Valtorta, M.: On the completeness of an identifiability algorithm for
semi-Markovian models. Ann. Math. Artif. Intell. 54(4), 363–408 (2008)

11. Huang, Y., Valtorta, M.: Pearl’s calculus of intervention is complete. CoRR,
abs/1206.6831 (2012)

12. Jacobs, B., Kissinger, A., Zanasi, F.: Causal inference by string diagram surgery.
CoRR, abs/1811.08338 (2018)

13. Jacobs, B., Zanasi, F.: A predicate/state transformer semantics for Bayesian learn-
ing. Electr. Notes Theor. Comput. Sci. 325, 185–200 (2016)

14. Jacobs, B., Zanasi, F.: The logical essentials of Bayesian reasoning. CoRR,
abs/1804.01193 (2018)

15. Kissinger, A., Uijlen, S.: A categorical semantics for causal structure. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reyk-
javik, Iceland, 20–23 June 2017, pp. 1–12 (2017)

16. Lawvere, F.W.: Ordinal sums and equational doctrines. In: Eckmann, B. (ed.)
Seminar on Triples and Categorical Homology Theory. LNM, vol. 80, pp. 141–155.
Springer, Heidelberg (1969). https://doi.org/10.1007/BFb0083085

17. Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci.
U.S.A. 50(5), 869 (1963)

18. Leifer, M.S., Spekkens, R.W.: Towards a formulation of quantum theory as a
causally neutral theory of Bayesian inference. Phys. Rev. A 88, 052130 (2013)

19. Nielsen, M.: If correlation doesn’t imply causation, then what does? http://www.
michaelnielsen.org/ddi/if-correlation-doesnt-imply-causation-then-what-does.
Accessed 15 Nov 2018

http://arxiv.org/abs/1709.00322
https://doi.org/10.1007/978-3-662-54458-7_21
http://arxiv.org/abs/1301.6201
https://doi.org/10.1007/BFb0083085
http://www.michaelnielsen.org/ddi/if-correlation-doesnt-imply-causation-then-what-does
http://www.michaelnielsen.org/ddi/if-correlation-doesnt-imply-causation-then-what-does

Causal Inference by String Diagram Surgery 329

20. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press,
Cambridge (2000)

21. Perinotti, P.: Causal structures and the classification of higher order quantum
computations (2016)

22. Pienaar, J., Brukner, Č.: A graph-separation theorem for quantum causal models.
New J. Phys. 17(7), 073020 (2015)

23. Ried, K., Agnew, M., Vermeyden, L., Janzing, D., Spekkens, R.W., Resch, K.J.: A
quantum advantage for inferring causal structure. Nat. Phys. 11, 1745–2473 (2015)

24. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke,
B. (ed.) New Structures for Physics. LNP, vol. 813. Springer, Heidelberg (2011)

25. Shpitser, I., Pearl, J.: Identification of joint interventional distributions in recursive
semi-Markovian causal models. In: Proceedings of the National Conference on Arti-
ficial Intelligence, vol. 21, p. 1219. AAAI Press/MIT Press, Menlo Park/Cambridge
(1999/2006)

26. Tian, J., Pearl, J.: A general identification condition for causal effects. In: Proceed-
ings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence, 28 July–1 August
2002, Edmonton, Alberta, Canada, pp. 567–573 (2002)

27. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature
299(5886), 802–803 (1982)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Higher-Order Distributions
for Differential Linear Logic

Marie Kerjean1(B) and Jean-Simon Pacaud Lemay2

1 Équipe Gallinette, Inria, LS2N, Nantes, France
marie.kerjean@inria.fr

2 University of Oxford, Oxford, UK
jean-simon.lemay@kellogg.ox.ac.uk

Abstract. Linear Logic was introduced as the computational counter-
part of the algebraic notion of linearity. Differential Linear Logic refines
Linear Logic with a proof-theoretical interpretation of the geometrical
process of differentiation. In this article, we construct a polarized model
of Differential Linear Logic satisfying computational constraints such as
an interpretation for higher-order functions, as well as constraints inher-
ited from physics such as a continuous interpretation for spaces. This
extends what was done previously by Kerjean for first order Differential
Linear Logic without promotion. Concretely, we follow the previous idea
of interpreting the exponential of Differential Linear Logic as a space of
higher-order distributions with compact-support, which is constructed
as an inductive limit of spaces of distributions on Euclidean spaces. We
prove that this exponential is endowed with a co-monadic like structure,
with the notable exception that it is functorial only on isomorphisms.
Interestingly, as previously argued by Ehrhard, this still allows the inter-
pretation of differential linear logic without promotion.

Keywords: Differential Linear Logic · Categorical semantics ·
Topological vector spaces

1 Introduction

Denotational semantics interprets programs as functions which focuses not
on how data from these programs are computed, but rather focusing on the
input/output of programs and on data computed from other data [19]. Through
the Curry-Howard-Lambek correspondence, this approach refines into the cat-
egorical semantics of type systems. In particular, a study of the denotational
model of the λ-calculus for coherent spaces led Girard to Linear Logic [9] and
the understanding of the use of resources as the computational counterpart of

Marie Kerjean was supported by the ANR Rapido, and would like to thanks Tom
Hirschowitz for many comments and discussions on this work. Jean-Simon Pacaud
Lemay would like to thank Kellogg College, the Clarendon Fund, and the Oxford-
Google DeepMind Graduate Scholarship for financial support.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 330–347, 2019.
https://doi.org/10.1007/978-3-030-17127-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_19

Higher-Order Distributions for Differential Linear Logic 331

linearity in algebra. Differential Linear Logic (DiLL) [7] is a refinement of Linear
Logic which allows for a notion of linear approximation of non-linear proofs. As
a proof-net calculus, DiLL originated from studying vectorial models of Linear
Logic which in general are based on spaces of sequences, such as Köthe spaces
and finiteness spaces [5].

Recently the first author argued in [14] that as a sequent calculus DiLL has a
“smooth” semantical interpretation where the exponential ! (the central object
of Linear Logic) is interpreted as a space of distributions with compact sup-
port [18]. This semantical interpretation of DiLL (along with the Linear Logic
typed phenomena of duality and interaction) provides a strong argument that
DiLL should be considered as a foundation for a type theory of differential equa-
tions, whose semantics would be based on structures developed for mathematical
physics. However one of the many divergences between the theoretical study of
physical systems and the theoretical study of programming languages lies in
the treatment of input data. In the study of differential equations, one gener-
ally only accepts a finite number of parameters: typically time and space [1].
While one of the fundamental aspects of the semantics of functional program-
ming languages is the concept of higher-order types [4], which in particular
allows programs to take other programs as inputs. Linking these two concepts
together requires that when mathematical physics studies functions with finite
dimensional domains, the denotational semantical counterpart will be studying
functions whose codomains are spaces of functions (which are in general far from
being finite dimensional).

This article gives a higher-order notion of distributions with compact support,
following the model without higher order constructed by the first author in [14].
Indeed, only functions whose domains are finite dimensional were defined in
[14], while no interpretation was given for functions whose domains are spaces of
smooth functions. This latter notion relies on the basic intuition that even with
a continuous and infinite set of input data, a program will at each computation
use only a finite amount of data.

Content and Related Work. In this paper, we interpret the exponential as
an inductive limit of spaces of distributions with compact support (Definition 7).
Non-linear proofs are thus interpreted as elements of a projective limit of spaces of
smooth functions. In [3], Blute, Cockett, and Seely construct a general interpreta-
tion of an exponential as a projective limit of more basic spaces. In [13], Kriegl and
Michor construct the free C∞-ring over a set X (thus a space of smooth functions)
as a projective limit of spaces of smooth functions between Euclidean spaces. Our
work thus differs on the fact that we reverse the use of projective and inductive
limits for defining the exponential and that we use a finer indexation than the
indexation used in [3,13]. The reverse use of limits compared to the literature is
motivated by the fact that we are cautious about polarities [16], while the finer
indexing is for topological considerations. Indeed, we need to carefully consider
the functoriality of the exponential and the topology on the objects.

332 M. Kerjean and J.-S. Pacaud Lemay

Context. Differential Linear Logic (DiLL) is a sequent calculus enriching Lin-
ear Logic (LL) with the possibility of linearizing proofs. This linearization is
semantically understood as the differentiation at 0. Motivated by the need to
explore the similarities between the differential structures inherited from logic
and those inherited from physics, one would like to interpret formulas of DiLL
by general topological vector spaces and non-linear proofs by smooth functions.
The interpretation of the involutive linear negation of DiLL leads to the require-
ment of reflexive topological vector spaces, that is, topological vector spaces
E such that L(L(E,R),R) � E, otherwise expressed as E′′ � E. In [14], the
first author argued that in a classical smooth-linear setting, the exponential !
should be interpreted as a space of distributions with compact support [18], that
is, !E := C∞(E,R)′. The first author also showed that this defines a strong
monoidal functor ! from the category of Euclidean vector spaces to the category
of reflexive locally convex and Hausdorff vector spaces. As reflexive spaces typi-
cally do not form a ∗-autonomous category (or even a monoidal closed category),
in [14] the first author constructs a polarized model of DiLL structured as chi-
rality [17]. This polarized structure is also necessary here. In Sect. 5, formulas
of DiLL0 are interpreted in two different categories, depending on whether they
interpret a positive or a negative formula.

Main Content. In this paper we construct an interpretation for the exponen-
tial ! (Definition 10) which is strong monoidal (Theorem 3). The exponential
constructed in this paper is a generalization of the compact-support exponential
from [14]. Explicitly, for a reflexive space E, the exponential !E is defined as
the inductive limit of spaces C∞(Rn,R)′, indexed by linear continuous functions
f : Rn � E (Definition 7),

!E := lim−→
f :Rn�E

C∞(Rn,R)′.

We also consider the “why not” connective ? (Definition 9) where for a reflex-
ive space E, ?E is interpreted as the space of smooth scalar functions on E,
C∞(E,R). Explicitly, being the dual of !E, ?E is the projective limit of spaces
C∞(Rn,R), indexed by the injective linear continuous functions f : Rn � E′

(Proposition 4),

?E := lim←−
f :Rn�E′

C∞(Rn,R).

An important drawback of this work is that the functoriality of ! is ensured
only on isomorphisms, that is, ! is an endofunctor on the category Refliso of
reflexive spaces and isomorphisms between them. We use a technique developed
by Ehrhard in [6] to show that this still provides a model of finitary Differential
linear logic (DiLL0), that is, DiLL without the promotion rule. We also discuss
how this construction also leads to a polarized model of DiLL0 (Sect. 5).

Organization of the Paper. Section 2 gives an overview of the development
in DiLL which led to this paper and gives some background in functional anal-
ysis. In Sect. 3 we discuss higher-order functions and distributions, and prove

Higher-Order Distributions for Differential Linear Logic 333

strong monoidality. Section 4 provides the interpretation of the dereliction and
codereliction and the bialgebraic structure of the exponential. Finally in Sect. 5
we discuss the polarized interpretation of formulas.

Notation. In this article, we borrow notation from Linear Logic. In particular,
we use � to distinguish between linear functions and non-linear ones, for exam-
ple, f : E � F would be linear continuous while g : E �� F would only be
smooth. We also denote elements of !E and ?E, which are index by linear con-
tinuous injective indexes f : Rn ↪→ E, in bold with their indexing in subscript:
gf ∈ !E or ff ∈ ?E.

2 Preliminaries

2.1 Differential Linear Logic and Its Semantics

Linear Logic [9] refines Intuitionistic Logic with a linear negation, (−)⊥, and a
notion of linearity of proofs, �. More precisely, Linear Logic introduces the fun-
damental isomorphism between A ⇒ B, proofs of B from A, and !A � B, linear
proofs of B from !A the exponential of A. In particular, Linear Logic features a
dereliction rule d, which allows one to consider linear proofs as particular cases
of non-linear proofs:

A⊥ � Γ
d

!(A⊥) � Γ

Differential Linear Logic (DiLL) brings a notion differentiation to the picture
by introducing a codereliction rule d̄. By cut-elimination, the codereliction rule
allows one to linearize a non-linear proof:

� Γ,A
d̄� Γ, !A

In Linear Logic, the exponential group also features weakening and contrac-
tion rules. While DiLL adds co-weakening and co-contraction rules, which in
the context of this paper correspond respectively as integration and convolu-
tion (see [15] for more details). DiLL without promotion, or finitary Differential
Linear Logic, is denoted DiLL0 and is the original version of Differential Linear
Logic by Ehrhard and Regnier [7]. Its exponential rules for {?, !} can be found
in Fig. 1. The other rules of DiLL0 correspond to the usual ones for the MALL
group {⊗,`,⊕,×}. Non-finitary DiLL can be constructed by adding the promo-
tion rule to DiLL0, which in particular requires functoriality of the exponential.
Cut-elimination in DiLL and DiLL0 generates sums of proofs [7], and therefore
the categorical interpretation of proofs must be done in a category enriched over
commutative monoids.

334 M. Kerjean and J.-S. Pacaud Lemay

Fig. 1. Exponential rules of DiLL0

Following Fiore’s definition in [8], a categorical model of DiLL is an exten-
sion of Seely’s axiomatization of categorical models of Linear Logic [20]. Explic-
itly a model of DiLL consists of a ∗-autonomous category (L,⊗, 1, ()∗) with a
finite biproduct structure × with zero object 0, a strong monoidal comonad
! : (L,×, 0) �� (L,⊗, 1), and a natural transformation d̄ : idL ⇒ !, called
the codereliction operator, which interprets differentiation at zero. A particu-
lar important coherence for the codereliction is that composing the co-unit of
the co-monad d : ! ⇒ idL with d̄ results in the identity (the top left triangle of
Definition 1). Intuitively, this means that differentiating a linear map results in
the same linear map.

Working Without Promotion. The special particularity of our work is that
we do not interpret promotion and thus only obtain a denotational model of
DiLL0 but not of DiLL. The main reason for this is that in the formula

E ′(E) := lim−→
f :Rn�E

E ′
f (Rn),

injectivity of the indexes f : R
n � E is needed to have a well-defined order

to properly define an inductive limit (Definition 6). Therefore the exponential
constructed in this paper cannot be functorial with respect to every linear con-
tinuous morphism in TopVec. In the construction of the exponential, one needs
to compose injective indexes f with maps � of the category (resp. their dual �′),
and these composition � ◦ f (resp. �′ ◦ g) are required to again be injective. As
shown by Treves [21, Chapter 23.2], �′ is injective if and only if � has a dense
image. Therefore we have no choice but to ask for isomorphisms and thus we
obtain an endofunctor on Refliso, the category of reflexive spaces and linear
continuous isomorphisms between them.

Models of DiLL0 in which promotion is not necessarily interpreted were stud-
ied by Ehrhard in his survey on Differential Linear Logic [6]. He introduces
exponential structures which provides a categorical setting which differs from
the traditional axiomatization of Seely’s models.

Definition 1 [6, Section 2.5]. Let L be pre-additive ∗-autonomous category (i.e.
a commutative monoid enriched ∗-autonomous category [6, Sect. 2.4]) and let
Liso be the wide subcategory of L with only isomorphisms as morphisms. An

Higher-Order Distributions for Differential Linear Logic 335

exponential structure on a L is as tuple (!, w, c, w̄, c̄, d, d̄) consisting of an
endofunctor ! : Liso

��Liso, and families of morphisms of L (not necessarily of
Liso) indexed by the objects of L:

wA : !A �� 1 cA : !A �� !A ⊗ !A w̄A : 1 �� !A c̄A : !A ⊗ !A �� !A

dA : !A �� A d̄A : A �� !A

which are natural for morphisms of Liso, and such that for each object A,
(!A,wA, cA, w̄A, c̄A) is a commutative bialgebra in L, and that the following dia-
grams to commute:

E

!E

E

d̄

d

Id

E

!E

1

d̄

w

0

E

!E

!E⊗!E

d̄

c

d̄ ⊗ w̄ + w̄ ⊗ d̄

E

!E

1

d

w̄

0

!E⊗!E

!E

E

c̄

d

d ⊗ w + w ⊗ d

The above commutative diagrams allow for a direct interpretation of the cut-
elimination process of DiLL0. Ehrhard shows in particular that the interpretation
of the structural and co-structural rules of DiLL0 only needs the functoriality of
the exponential on the isomorphisms [6, Sect. 2.5]. Indeed, in a classical model
of DiLL (that is a model in which the interpretation of the linear negation
is involutive) functoriality on isomorphisms is needed to guaranty the duality
between ? and !. Otherwise, the structural exponential rules are interpreted by
natural transformations c, c̄, w, w̄, d, and d̄. These natural transformations can
be constructed as in [8], following a co-monadic structure (!A,wA, μA) on each
object !A [7, Sect. 2.6]. To sum up:

Functorality of the exponential on isomorphisms is needed for duality but is not
needed to interpret finitary proofs as morphisms of a category.

That we have a model of DiLL0 and not of DiLL fits well with our motivation,
as we are looking for the computational counterpart of type theories modeled
by analysis. DiLL0 is indeed the sequent calculus which is refined into an under-
standing of Linear Partial Differential Equations in [14] and the meaning of
promotion with respect to differential equations remains unclear. However, we
are still able to construct a natural promotion-like morphism for our exponential
(Definition 13).

336 M. Kerjean and J.-S. Pacaud Lemay

2.2 Reflexive Spaces and Distributions

In this paper, we study and use the theory of locally convex topological vector
spaces [12] to give concrete models of DiLL. Topological vector spaces are a gen-
eralization of normed spaces or metric spaces, in which continuity is only charac-
terized by a collection of open sets (which may not necessarily come from a metric
or a norm). In this section, we highlight some key concepts which hopefully will
give the reader a better understanding of the difficulties of constructing models
of DiLL using smooth spaces. We refer respectively to [12] or [18] for details on
topological vector spaces or distribution theory.

By a locally convex topological vector space (lcs), we mean a locally con-
vex and Hausdorff topological vector space on R. Briefly, these are vector space
endowed with a topology generated by convex open subsets such that the scalar
multiplication and the addition are both continuous. For the rest of the section,
we consider E and F two lcs.

Definition 2. Denote E ∼ F for a linear isomorphism between E and F as
R-vector spaces, and E � F for a linear homeomorphism between E and F as
topological vector spaces.

Definition 3. Denote Lb(E,F) as the lcs of all linear continuous functions
between E and F , which is endowed with the topology of uniform convergence
on bounded subsets [12] of E. When F = R, we denote E′ = Lb(E,R) and is
called the strong dual of E.

Definition 4. Let δ : E �� E′′ be the transpose of the evaluation map in E′,
which is explicitly defined as follows:

δ :
{

E �� E′′

x
→ δx : (f �� f(x))

A lcs E is said to be semi-reflexive if δ is a linear isomorphism, that is, E ∼
E′′. A semi-reflexive lcs E is reflexive when δ is a linear homeomorphism, that
is, E � E′′.

The following proposition is crucial to the constructions of this paper. In
terms of polarization, it shows how semi-reflexivity is a negative construction,
while reflexivity mixes positives and negative requirements.

Proposition 1 [12, Chapter 11.4].

– Semi-reflexivity is preserved by projective limits, that is, the projective limit
of semi-reflexive lcs is a semi-reflexive lcs.

– A lcs E is reflexive if and only if it is semi-reflexive and barrelled, mean-
ing that every convex, balanced, absorbing and closed subspace of E is a 0-
neighbourhood.

– Barrelled spaces are preserved by inductive limits, that is, the inductive limit
of barrelled spaces is a barrelled space.

Next we briefly recall a few facts about distributions.

Higher-Order Distributions for Differential Linear Logic 337

Definition 5. For each n ∈ N, a function f : Rn �� R is said to be smooth
if it is infinitely differentiable. Let E(Rn) = C∞(Rn,R) denote the space of all
smooth functions f : Rn ��R, and which is endowed with the topology of uniform
convergence of all differentials on all compact subsets of Rn [12]. The strong dual
of E(Rn), E ′(Rn), is called the space of distributions with compact support.

We now recall the famous Schwartz kernel theorem, which states that the con-
struction of a kernel of f ⊗ g ∈ E (Rn) ⊗ E (Rm)
→ f · g ∈ E (Rn+m) is in fact an
isomorphism on the completed tensor product E (Rn)⊗̂E (Rm):

Theorem 1 ([18]). For any n,m ∈ N, we have the following:

E ′(Rm)⊗̂πE ′(Rm) � E ′(Rn+m) � Lb(E ′(Rm), E(Rn))

Theorem 2 ([14]). There is a first-order polarized denotational model of DiLL0

in which the exponential is interpreted as a space of distributions: !(Rn) :=
E ′(Rn).

This interpretation did not generalize to higher-order as we were unable
to define !E for an infinite dimensional space E, even for those sharing the
topological properties of spaces of smooth functions1. For example, the definition
of !!R is in no way obvious. This is the problem we tackle in the following sections.

3 Higher-Order Distributions and Kernel

In this section we define spaces of higher-order functions and distributions,
we prove that they are reflexive (Proposition 2) and verify a kernel theorem
(Theorem 3).

Definition 6. Let E be a lcs and f : Rn ↪→ E and g : Rm ↪→ E be two linear
continuous injective functions. We say that f � g when n � m and f = g|Rn ,
that is, f = g ◦ ιn,m where ιn,m : Rn �� Rm is the canonical injection.

The ordering � in the above definition provides an order on the set of depen-
dent pairs (n, f) where n ∈ N and f : RN ↪→ E is linear injective. This will allow
us to construct an inductive limit (a categorical colimit) of lcs.

Definition 7. Let E any lcs.

1. For every linear continuous injective function f : R
n � E, define the lcs

E ′
f (Rn) as follows:

E ′
f (Rn) := C∞(Rn)′

1 These spaces are in particular nuclear (F)-spaces, see [14].

338 M. Kerjean and J.-S. Pacaud Lemay

2. Define E ′(E), the space of distributions on E, as follows:

E ′(E) := lim−→
f :Rn�E

E ′
f (Rn)

that is, the inductive limit [12, Chapter4.5] (or colimit) in the category
TopVec of the family of lcs {E ′

f (Rn)|f : Rn � E linear continuous inje-
ctive} directed under the inclusion maps defined as

Sf,g : E ′
g(R

n) �� E ′
f (Rm), φ
→ (h
→ φ(h ◦ ιn,m))

when f � g.

Intuitively this definition of E ′(E) says that distributions with compact
support on E are the distributions with a finite dimensional compact support
K ⊂ R

n.

Proposition 2. For any lcs E, E ′(E) is a reflexive lcs.

The following proposition justifies the notation of E ′(Rn) from Definition 5.

Proposition 3. If E � R
n for some n ∈ N, then E ′(E) � C∞(Rn)′.

As E ′(E) is reflexive, we give a special (yet obvious) notation for the strong
dual of E ′(E).

Definition 8. For a reflexive lcs E, let E (E) denote the strong dual of E ′(E).

Since the strong dual of a reflexive lcs is again reflexive [12], it follows by
Proposition 3 that for any reflexive lcs E, E (E) is also reflexive.

The strong dual of a projective limit is linearly isomorphic to the inductive
limit of the duals, however as noted in [12, Chapter 8.8.12], the topologies may
not coincide. When E is endowed with its Mackey topology (which is the case
in particular when E is reflexive), then the topologies do coincide.

Proposition 4. Let E be a reflexive lcs. For every linear continuous injective
function f : R

n � E, define the lcs Ef (Rn) := C∞(Rn). Then we have the
following linear homeomorphism:

E (E) � lim←−
f :Rn�E

Ef (Rn)

where the lcs on the right is the projective limit [12, Chapter 2.6] in TopVec
of the family of lcs {Ef (Rn)| f : R

n � E linear continuous injective} with
projections defined as:

Tg,f = S′
f,g : Eg(Rm) �� Ef (Rn), g
→ g ◦ ιn,m

when f � g.

Higher-Order Distributions for Differential Linear Logic 339

The elements of f ∈ E (E) are families f := (ff)f :Rn�E such that if f � g, we
have that ff = fg ◦ ιn,m. The intuition here is that distributions of a reflexive lcs
E are in fact distributions with compact support on a finite dimensional space,
or equivalently that smooth functions E �� R are functions which are smooth
when restricted to R

n (viewed as a finite dimensional subspace of E). This makes
it possible to define multinomials on E in the following way:

P (x ∈ R
k) =

∑
I⊂[|1,n|]

aαxα1

1 . . . x
αI

n
n

where we either embedded or projected R
k into R

n in the canonical way.
It also seems possible to provide a setting restricted specifically to higher

order spaces of distributions and not to every reflexive space. Indeed, we would
like to describe smooth scalar functions on E (Rn) as

h ∈ E (Rn)
→ h(0)2

taking into account that we have as inputs non-linear functions. This seem to indi-
cate another direction of research, where we would construct smooth functions
indexed by Dirac functions δ : Rn � E′ = E ′(Rn) as defined in Definition 4.

The Kernel Theorem. We now provide the Kernel theorem for spaces E (E).
Indeed, the spaces of functions are the one which can be described as projective
limits, and projective limits are the ones which commute with the completed
projective tensor product ⊗̂π. While we do not provide a proof here, we would
like to highlight that the proof of this theorem depends heavily on the fact that
the considered spaces of functions are nuclear spaces [12].

Theorem 3. For every lcs E and F , we have a linear homeomorphism:

E (E)⊗̂πE (F) � E (E ⊕ F).

We now give the definitions of functors ? and !, both of which agree with
the previous characterization described by the first author in [14] on Euclidean
spaces R

n. However, as discussed in the introduction, while these functors can
be defined properly on all objects, they will only be defined on isomorphisms.
So let Refliso denote the category of reflexive lcs and linear homeomorphism
between them.

Definition 9. Define the endofunctor ? : Refliso
��Refliso as follows:

? :

⎧⎪⎨
⎪⎩

Refliso
��Refliso

E
→ E (E′)
� : E �� F
→ ?� : E (E′) �� E (F ′)

(1)

where for f ∈ E (E′), the g : Rm � F ′ component of ?�(f) ∈ E (F ′) is defined
as:

?�(f)g = f�′◦g

where �′ : F ′ � E′ denotes the transpose of �.

340 M. Kerjean and J.-S. Pacaud Lemay

Note that ?� : E (E′) �� E (F ′) is defined by the universal property of the
projective limit, that is, ?� is uniquely defined by post-composing by the projec-
tions πg : E (F ′) ��E (Rn) for each linear continuous injective function g :� F ′.
We also note that f�′◦g is well-defined since �′ is injective and therefore so is �′◦g.
The universality of the projective limit also insures that ?� is an isomorphism
and that ? is functorial.

Definition 10. Define the functor ! : Refliso
��Refliso on objects as !E :=

(?E′)′ and on isomorphisms as !� = (?�′)′. Explicitly, ! is defined as follows:

! :

⎧⎪⎨
⎪⎩

Refliso
��Refliso

E
→ E ′(E)
� : E �� F
→ !� ∈ E (F ′)

(2)

where for the f : Rn � E component of f ∈ E ′(E), !�(ff) ∈ E ′(F) is defined
as:

!�(ff) = f�◦f :Rn�F

As before, !� is defined by the co-universal property of the inductive limit,
that is, !� is defined by pre-composition with the injections ιf : E ′

f (Rn) ↪→ E ′(E)
for every linear continuous injective function f : R � E. Functoriality of ! is
ensured by functoriality of ? and reflexivity of the objects.

4 Structural Morphisms on the Exponential

We consider the exponential from the DiLL model of convenient vector spaces
in [2] as a guideline for defining the structural morphisms on !E. In that set-
ting, structural operations can be defined on Dirac operations. For example, the
codereliction dconv maps δx to x. Here the mapping δx must be understood as the
linear continuous function which maps x ∈ E to

(
(ff)f ∈ E (E′)
→ f(f−1(x)

) ∈
E ′(E), which we show is well defined below.

4.1 Dereliction and Co-dereliction

Definition 11. For a reflexive lcs E, define the following linear continuous mor-
phism:

dE :

{
!(E) �� E′′ � E

φ
→ (� ∈ E′
→ φ((� ◦ f)f :Rn�E ∈ E (E))
(3)

We stress that dE is a map in Refl and not a map in Refliso (though
sufficient for Definition 1). The map dE is well defined as � ◦ f is a linear contin-
uous injective function R

n � R, and thus is smooth and belongs in particular
to E (Rn). Also, as we are working with reflexive spaces, dE could have been
described equivalently as a map of the following type:

E �� ?(E)
x
→ (evx ◦ f ∈ L(Rn,R))f :Rn�E′

(4)

Higher-Order Distributions for Differential Linear Logic 341

Lemma 1. The morphisms dE are natural with respect to linear homeomor-
phisms, that is, maps of Refliso. Explicitly, if � : E �� F ∈ Refliso then
dF ◦ !� = � ◦ dE.

We now study the interpretation of the codereliction d̄. Let D0 :
C∞(Rn) �� (Rn)′ denote the operator which maps a function to its differen-
tial at 0.

D0 :

⎧⎪⎨
⎪⎩

C∞(Rn) �� (Rn)′

f
→
(

v ∈ R
n
→ lim

t �� 0

f(tx) − f(0)
t

=
n∑

i=1

∂f

∂xi
(0)vi

)

The operator D0 is linear in f ∈ C∞(Rn). It is continuous: the reciprocal
image by D0 of the polar B0,1 is the set of all functions f ∈ C∞(Rn) whose
partial derivatives of order one have maximal value 1 on the compact {0}. This
contains the set {f |∀i, | ∂f

∂xi
(0)| < 1}, which is open in the topology described in

Definition 5.

Definition 12. For a reflexive lcs E, define the following linear continuous
morphism:

d̄E :

⎧⎪⎨
⎪⎩

E �� !E � (E (E))′

x
→ (ff ∈ C∞
f (Rn,R))f :Rn�E′
→ D0ff (f−1(x))

where f is injective such that x ∈ Im(f).

(5)

We should explain why the choice of f−1(x) does not matter. Here f−1(x)
is the linear argument of the differentiation. Indeed suppose that f � g, that is,
f = g ◦ ιn,m. Thus by definition of the projective limit we have ff = fg ◦ ιn,m

and:

D0ff (f−1(x)) = D0(fg ◦ ιn,m)((g ◦ ιn,m)−1(x))

= D0fg(D0ιn,m(ι−1
n,m(g−1(x))))

= D0fg(ιn,m(ι−1
n,m(g−1(x))) (as ιn,m is linear)

= D0fg(g−1(x)))

As any pair of of linear functions f : Rn � E and g : Rm �� E is bounded
by f × g : Rn+m �� E, we obtain the required uniqueness.

Similar to the dereliction, the codereliction could alternatively have been
described as a map of the following type:

E (E′) �� E′′ � E

(ff)f :Rn�E′
→ (� ∈ E′
→ D0ff (f−1(�))
(6)

We again stress that d̄E is not a map in Refliso.

342 M. Kerjean and J.-S. Pacaud Lemay

Lemma 2. The morphisms d̄E are natural with respect to linear homeomor-
phisms, that is, maps of Refliso. Explicitly, if � : E �� F ∈ Refliso then
d̄F ◦ � = !� ◦ d̄E.

Finally, we observe that dE and d̄E satisfy the all-important coherence con-
dition between derelictions and coderelictions.

Proposition 5. For a reflexive lcs E, dE ◦ d̄E = IdE.

4.2 (Co-)contraction and (Co-)weakening

In this section, we define the interpretation of the other exponential rules: weak-
ening w, co-weakening w̄, contraction c, and co-contraction c̄, which will be
generalized from [14]. We start with weakening and co-weakening, which are
fairly straightforward.

w :
{

!E �� R
φ
→ ∑

f φf (1) w̄ :
{
R �� !E
1
→ δ0 : ((ff)f ∈ E(E)
→ f(0)) for any f

According to [8], the rules c and c̄ are interpreted respectively via the kernel
theorem and pre-composition with the diagonal E �� E × E and co-diagonal
E × E �� E maps of the biproduct. This is however not defined in a context
where ! is functorial only on isomorphisms. Thus we give a direct, component-
wise interpretation of contraction and co-contraction.

c :
{

!E �� !(E × E) � !E ⊗ !E
φ
→ (gg)g:Rn↪→E×E
→ φ((g(x∈Rn �→(f(x),f(x))))f :Rn↪→E)

c̄ :
{

!E ⊗ !E �� !E
φ ⊗ ψ
→ (ff)f :Rn↪→E
→ φ ((x ∈ R

n
→ ψ ((y ∈ R
m
→ ff (x) + ff ′(y))f ′))f)

where f : Rn ↪→ E and f ′ : Rm ↪→ E.

Theorem 4. The morphisms (w, w̄, c, c̄, d, d̄) satisfy the coherences of exponen-
tial structure on !E, as detailed in Definition 1.

We note that this does not give an exponential structure per say since Refl
is not a monoidal category, as we will explain in Sect. 5. That said, in Sect. 5 we
are still able to construct a polarized model of DiLL0.

4.3 Co-multiplication

The categorical interpretation of the exponential rules of linear logic requires a
co-monad ! : L �� L. However in the case of this paper, the exponential ! is
functorial only on isomorphisms. As such, one cannot interpret the promotion
rule of Linear Logic, as this requires functoriality of ! on the interpretation of
any proof (and typically on linear continuous maps which are not isomorphisms).

Higher-Order Distributions for Differential Linear Logic 343

That said, functoriality is the only missing ingredient, and one can still define
natural transformations of the same type as the co-multiplication and co-unit
of the co-monad. This section details this point, leaving the exploration of a
functorial ! for future work.

Definition 13. For a reflexive lcs E, define the following linear continuous mor-
phism:

μE :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

!E �� !!E

φ
→
(

(gg)g ∈ E (!E) � lim−→
g

C∞
g (Rm)

)

→ gg(g−1(φ))

when φ ∈ Im(g) and g is injective

(7)

This is well defined, as we can show as for the codereliction (5) that the
term gg(g−1(φ)) is unique when g : Rm �� !E linear and gg ∈ C∞

g (Rm) varies.
Moreover there is at least one linear function g : Rm �� !E which has φ in its
image.

Lemma 3. The morphisms μE are natural with respect to linear homeomor-
phisms, that is, maps of Refliso. Explicitly, if � : E �� F ∈ Refliso then
μF ◦ !!� = !� ◦ μE.

Proposition 6. For any reflexive lcs E, d!E ◦ μE = Id!E

The identity of Proposition 6 is one of the identities of a comonad. The other
comonad identities require applying ! to μ and d, which we cannot do in our
context as ! is only defined on isomorphisms.

5 A Model of DiLL0

In Sect. 4 we defined the structural morphisms on the exponential and proved
the equations allowing to interpret proofs of DiLL0 by morphisms in Refl,
independent of cut-elimination. We now detail which categories allow to interpret
formulas of MALL. This will be done in a polarized setting generalizing the one
of [14].

Polarization. So far we have constructed an exponential ! : Refliso
��Refliso

which is strong monoidal. However, the category of reflexive spaces is too big to
give us a model of DiLL0. Interpreting the multiplicative connective requires a
monoidal setting, and reflexive spaces are not stable by topological tensor prod-
ucts. If we study more closely the definition of spaces of higher-order smooth
functions, we see that their reflexivity follows from a more restrictive class of
spaces. These spaces are however not stable by duality, thus resulting in a polar-
ized model of DiLL0.

In this section we briefly show how the techniques develop above constructs
a polarized model of DiLL0. The syntax of polarized (Differential) Linear Logic

344 M. Kerjean and J.-S. Pacaud Lemay

[16] is recalled below. A distinction is made between positive formulas (preserved
by ⊗ and ⊕) and negative formulas (preserved by ` and &). The same deduction
rule apply.

Negative Formulas: N,M := ⊥|1||?P |N ` M |N × M |P⊥

Positive Formulas: P,Q := �|0|!N |P ⊗ Q|P ⊕ Q|N⊥

Models of polarized linear logic are axiomatized categorically as an adjunction
between a category of positives and a category of negative, where two interpre-
tations for negation play the role of adjoint functors. These categories obey the
axiomatic of chiralities [17].

Additives. Interpreting the additive connectives of linear logic is straightfor-
ward. The product × and coproduct ⊕ of lcs are linearly homeomorphic on
finite indexes and therefore give biproducts, which leads to the usual commuta-
tive monoid enrichment as described in [8].

Multiplicatives. When sticking to finite dimensional spaces or normed spaces,
duality is pretty straightforward in the sense that the dual of a normed space is
still normed. This, however, is no longer the case when one generalizes to metric
spaces. Indeed, the dual of a metric space may not be endowed with a metric. A
Fréchet space, or (F)-space, is a complete and metrizable lcs. The duals of these
spaces are not metrizable in general, but they are (DF)-spaces (see [10] for the
definition):

Proposition 7 ([11] IV.3.1).

– If E is metrizable, then its strong dual E′ is a (DF)-space.
– If E is a (DF)-space, then E′ is an (F)-space.

Typical examples of nuclear (F)-spaces are the spaces of smooth functions
E (Rn), while typical examples of nuclear (DF)-spaces are the spaces of distribu-
tions with compact support E ′(Rn). In particular, all these spaces are reflexive.
In [14], the first author interpreted positive formulas as Nuclear (DF)-spaces,
while negative formulas were interpreted as (F)-spaces. Following the construc-
tion of Sect. 3, we will consider respectively inductive limits and projective lim-
its.

Definition 14. A lcs is said to be a Lnf-space if it is a regular projective limit
of nuclear Fréchet spaces. The category of Lnf-spaces and linear continuous
injective maps is denoted LNF. A lcs E is said to be a Lndf-space if it is an
inductive limit of nuclear complete (DF)-spaces.

Proposition 8. 1. A Lnf-space E is reflexive.
2. The dual of a Lnf-space is a Lndf-space.

The above proposition can be proven using the same techniques as computing
the dual of E (E).

The difficulty of constructing a model of MLL in topological vector spaces
is choosing the topology which will make the tensor product associative and

Higher-Order Distributions for Differential Linear Logic 345

commutative on the already chosen category of lcs. Contrary to what happens
in a purely algebraic setting, the definition of a topological tensor product is not
straightforward and several topologies can be defined, with each corresponding
to a different notion of continuity for bilinear maps [10]. On nuclear spaces,
such as E (Rn) and E ′(Rn), most of these tensor product coincide with one
another. In [14], both multiplicative connectors (⊗ and `) were interpreted as
the completed projective (equivalently injective) tensor product ⊗̂π (see [12, 15.1
and 21.2]) This property is lost when working with limits. However, there is still
a good interpretation of ` for Lnf spaces (which are thus the interpretation
of negatives formulas). Indeed, the completed injective tensor product ⊗̂ε of a
projective limit of lcs is the projective limit of the completed injective tensor
products [12, 16.3.2]. Taking the duals of Theorem 3 applied to E′ and F ′ gives
the following:

Proposition 9. For any reflexive spaces E and F we have a linear homeomor-
phism:

?E⊗̂ε?F � ?(E ⊕ F).

and shows that ` is interpreted by ⊗̂ε. The multiplicative conjunction ⊗ is
interpreted as the dual of ⊗̂ε, which may not be necessarily linearly homeomor-
phic to ⊗̂π.

6 Conclusion

In this paper, we extended the polarized model of DiLL without higher order
constructed in [14] to a higher-order polarized model of DiLL0. The motivating
idea was that computation on spaces of functions used only a finite number of
arguments. This lead to constructing an exponential on a reflexive lcs as an
inductive limit of exponentials of finite dimensional vector spaces. While this
exponential is only functorial for linear homeomorphisms we were still able to
provide structural morphisms interpreting (co)weakening, (co)contraction, and
(co)dereliction, and hints of a co-monad.

The next step would be to extend the definition of the exponential in this
paper to an interpretation of the promotion rule and thus of LL – this could
be done through epi-mono decomposition of arrows in Refl. Another task is to
properly work out which tensor product of reflexive space will provide a model
of DiLL. Such a model should use chiralities [17], and underline the similarities
between shifts and (co-)dereliction.

More generally, this works highlights again that the interpretation of the
exponential in lcs relies on a computing principle. Indeed, it always requires find-
ing a higher-order extension of distributions. While what we have constructed
here relies on a finitary principle, the construction of a free exponential in [3]
relies on the principle that higher-order operations are computed on Dirac dis-
tributions δx. That is, the exponential is constructed following a discretization
scheme. The appearance of such numerical methods in a semantic study of DiLL

346 M. Kerjean and J.-S. Pacaud Lemay

provides another link between theoretical computer science and mathematical
physics. This opens the door to studying relating numerical schemes of numerical
analysis and the theoretical study of programming language.

References

1. Blass, A.: A game semantics for linear logic. Ann. Pure Appl. Logic 56(1), 183–220
(1992). https://doi.org/10.1016/0168-0072(92)90073-9

2. Blute, R., Ehrhard, T., Tasson, C.: A convenient differential category. Cah. Topol.
Géom. Différ. Catég. (2012)

3. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Math. Struct.
Comput. Sci. 16, 6 (2006). https://doi.org/10.1017/S0960129506005676

4. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940)

5. Ehrhard, T.: On Köthe sequence spaces and linear logic. Math. Struct. Comput.
Sci. 12(5), 579–623 (2002)

6. Ehrhard, T.: An introduction to differential linear logic: proof-nets, models and
antiderivatives. Math. Struct. Comput. Sci. 28(7), 995–1060 (2018). https://doi.
org/10.1017/S0960129516000372

7. Ehrhard, T., Regnier, L.: Differential interaction nets. Theor. Comput. Sci. 364(2),
166–195 (2006)

8. Fiore, M.: Differential structure in models of multiplicative biadditive intuitionistic
linear logic. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 163–177.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73228-0 13

9. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50(1), 1–101 (1987). https://doi.
org/10.1016/0304-3975(87)90045-4

10. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Memoirs
of the AMS, 16 (1966)

11. Grothendieck, A.: Topological vector spaces. Gordon and Breach Science Publish-
ers (1973). Traducteur: O. Chaljub

12. Jarchow, H.: Locally Convex Spaces. B. G. Teubner, Berlin (1981)
13. Kainz, G., Kriegl, A., Michor, P.: C∞-algebras from the functional analytic view

point. J. Pure Appl. Algebra 46(1), 89–107 (1987)
14. Kerjean, M.: A logical account for linear partial differential equations. In: Proceed-

ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS. ACM (2018). https://doi.org/10.1145/3209108

15. Kerjean, M.: Reflexive spaces of smooth functions: a logical account for linear
partial differential equations. Ph.D. thesis, Université Paris Diderot, October 2018

16. Laurent, O.: Etude de la polarisation en logique. Thèse de doctorat, Université
Aix-Marseille II (2002)

17. Melliès, P.A.: Dialogue categories and chiralities. Publ. Res. Inst. Math. Sci. 52(4),
359–412 (2016)

18. Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique
de l’Université de Strasbourg, No. IX-X, Hermann, Paris (1966)

19. Scott, D., Strachey, C.: Towards a mathematical semantics for programming lan-
guages (1971)

20. Seely, R.: Linear logic, *-autonomous categories and cofree coalgebras. In: Cate-
gories in Computer Science and Logic. American Mathematical Society (1989)

21. Trèves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press,
New York, London (1967)

https://doi.org/10.1016/0168-0072(92)90073-9
https://doi.org/10.1017/S0960129506005676
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1007/978-3-540-73228-0_13
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3209108

Higher-Order Distributions for Differential Linear Logic 347

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Languages Ordered by the Subword Order

Dietrich Kuske1(B) and Georg Zetzsche2

1 Technische Universität Ilmenau, Ilmenau, Germany
dietrich.kuske@tu-ilmenau.de

2 Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
georg@mpi-sws.org

Abstract. We consider a language together with the subword relation,
the cover relation, and regular predicates. For such structures, we con-
sider the extension of first-order logic by threshold- and modulo-counting
quantifiers. Depending on the language, the used predicates, and the
fragment of the logic, we determine four new combinations that yield
decidable theories. These results extend earlier ones where only the lan-
guage of all words without the cover relation and fragments of first-order
logic were considered.

Keywords: Subword order · First-order logic · Counting quantifiers ·
Decidable theories

1 Introduction

The subword relation (sometimes called scattered subword relation) is a simple
example of a well-quasi ordering [7]. This property allows its prominent use in the
verification of infinite-state systems [4]. The subword relation can be understood
as embeddability of one word into another. This embeddability relation has been
considered for other classes of structures like trees, posets, semilattices, lattices,
graphs etc. [8–11,14–16,22,23].

We are interested in logics over the subword order. Prior work on this has
concentrated on first-order logic where the universe consists of all words over
some alphabet. In this setting, we already have a rather precise picture about the
border between decidability and undecidability: For the subword order alone, the
∃∗-theory is decidable [17] and the ∃∗∀∗-theory is undecidable [6,12]. If we add
constants to the signature, already the ∃∗-theory becomes undecidable [6]. With
regular predicates, the two-variable theory is decidable, but the three-variable
theory is undecidable [12].

Thus, the decidable theories identified so far leave little room to express
natural properties. First, the universe is confined to the set of all words and

Part of the results were obtained when the second author was affiliated with the Labo-
ratoire Spécification et Vérification (ENS Paris-Saclay) and supported by a fellowship
within the Postdoc-Program of the German Academic Exchange Service (DAAD) and
by Labex DigiCosme, Université Paris-Saclay, project VERICONISS.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 348–364, 2019.
https://doi.org/10.1007/978-3-030-17127-8_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_20&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_20

Languages Ordered by the Subword Order 349

predicates for subsets quickly incur undecidability. Moreover, neither in the ∃∗-,
nor in the two-variable fragment of first-order logic, one can express the cover
relation �· (i.e., “u is a proper subword of v and there is no word properly between
these two”). As another example, one cannot express threshold properties like
“there are at most k subwords with a given property” in any of these two logics.

In this paper, we aim to identify decidable logics that are more expressive.
To that end, we consider four additions to the expressivity of the logic:

– Instead of all words over some alphabet, the universe is a language L.
– We add regular predicates or constants to the structure.
– Besides the subword order, we also consider the cover relation �·.
– We add threshold and modulo counting quantifiers to the logic.

Formally, this means we consider structures of the form

(L,�,�·, (K ∩ L)K regular, (w)w∈L),

where the universe is a language L ⊆ Σ∗, � is the subword ordering, �· is the
cover relation, there is a predicate K∩L for each regular K ⊆ Σ∗, and a constant
symbol for each w ∈ L. Moreover, we consider fragments of the logic C+MOD,
which extends first-order logic by threshold- and modulo-counting quantifiers.

The key idea of this paper is to find decidable theories by varying the uni-
verse L and thereby either (i) simplify the structure (L,�) enough to obtain
decidability even with the extensions above or (ii) generalize existing results
that currently only apply to L = Σ∗. This leads to the following results.

1. First, we require L to be bounded. This means, we have L ⊆ w∗
1 · · · w∗

m

for some words w1, . . . , wm ∈ Σ∗. Then, as soon as L is context-free, the
C+MOD-theory of the whole structure is decidable (Theorem 3.4).

2. To lift the boundedness restriction, we show that if L is regular, we still
obtain decidability for the whole structure if we stay within the two-variable
fragment C+MOD2 (Corollary 4.8). This generalizes the decidability of the
FO2-theory without the cover relation as shown in [12, Theorem 5.5].

3. Moreover, we consider a regular universe, but lift the two-variable
requirement. To get decidability, we restrict quantifiers and available pred-
icates: We show that for regular L, the Σ1-theory of the structure (L,�)
is decidable (Theorem 5.1). In the case L = Σ∗, this had been shown in
[17, Prop. 2.2].

4. Finally, we place a further restriction on L, but in return obtain decidability
with constants. We show that if L is regular and every letter is “frequent” in L
(see Sect. 6), then the Σ1-theory of the structure (L,�, (w)w∈L) is decidable
(Theorem 6.2). Note that, by [6, Theorem 3.3], this theory is undecidable if
L = Σ∗.

Our first result is shown by a first-order interpretation of the structure in
(N,+). Since L ⊆ w∗

1 · · · w∗
n, instead of words, one can argue about vectors

(x1, . . . , xn) ∈ N
n for which wx1

1 · · · wxn
n ∈ L. For the interpretation, we use

the fact that semilinearity of context-free languages yields a Presburger formula

350 D. Kuske and G. Zetzsche

expressing wx1
1 · · · wxn

n ∈ L for (x1, . . . , xn) ∈ N
n. Moreover, Presburger defin-

ability of wx1
1 · · · wxn

n � wy1
1 · · · wyn

n for (x1, . . . , xn) ∈ N
n and (y1, . . . , yn) ∈ N

n is
a simple consequence of the subword relation being rational, which was observed
in [12]. The first-order interpretation of our structure in (N,+) then enables us
to employ decidability of the C+MOD-theory of the latter structure [1,5,21].
(Note that this decidability does not follow directly from Presburger’s result
since in first-order logic, one cannot make statements like “the number of wit-
nesses x ∈ N satisfying . . . is even”). A similar interpretation in (N,+) was used
in [6] for various algorithms concerning (Σ∗,�, (w)w∈Σ∗) for fragments of FO
related to bounded languages.

Our second result extends an approach from [12] for decidability of the FO2-
theory of the structure (Σ∗,�, (L)L regular). The authors of [12] provide a quan-
tifier elimination procedure showing that every unary relation FO2-definable in
this structure is regular. Our extended quantifier-elimination procedure uses the
same invariant, now relying on the following two properties:

– The class of regular languages is closed under counting images under unam-
biguous rational relations.
This can be shown either directly or (as we do here) using weighted
automata [20].

– The proper subword, the cover, and the incomparability relation are unam-
biguous rational.

Our third result extends the decidability of the Σ1-theory of (Σ∗,�)
from [17]. In [17], decidability is a consequence of the fact that every finite
partial order can be embedded into (Σ∗,�) if |Σ| ≥ 2. This certainly fails for
general regular languages: (a∗,�) can only accomodate linear orders. However,
we can distinguish two cases: If L is a bounded language, then decidability of
the Σ1-theory of (L,�) follows from our first result. If L is not bounded, then
we show that again every finite partial order embeds into (L,�). To this end,
we first extend a well-known property of unbounded regular languages, namely
that there are x, u, v, y ∈ Σ∗ with x{u, v}∗y ⊆ L such that |u| = |v| and u 	= v.
We show that here, u, v can be chosen so that uv is a primitive word. We then
observe that for large enough n, any embedding of the word (uv)n−1 into (uv)n

must hit either the left-most position or the right-most position in (uv)n. This
enables us to argue that for large enough n, sending a tuple (t1, . . . , tm) ∈ {0, 1}m

to xvt1(uv)n · · · vtm(uv)ny is in fact an embedding of ({0, 1}m,≤) into (L,�),
where ≤ denotes coordinate-wise comparison. Since any partial order with ≤ m
elements embeds into ({0, 1}m,≤), this completes the proof.

Regarding our fourth result, we know from [6] that decidability of the
Σ1-theory of (L,�, (w)w∈L) does not hold for every regular L: Undecidability
holds already for L = {a, b}∗. Therefore, we require that every letter is frequent
in L, meaning that in some automaton for L, every letter occurs in every cycle.
In case L is bounded, we can again invoke our first result. If L is not bounded,
we deduce from the frequency condition that for every w ∈ Σ∗, there are only
finitely many words in L that do not have w as a subword. Removing those
finitely many words preserves unboundedness, so that every finite partial order

Languages Ordered by the Subword Order 351

embeds in L above w. We then proceed to show that for such languages, any
Σ1-sentence is effectively equivalent to a sentence where constants are only used
to express that all variables take values above a certain word w. Since every
finite partial order embeds above w, this implies decidability.

The full version of this work is available as [18].

2 Preliminaries

Throughout this paper, let Σ be some finite alphabet. A word u = a1a2 . . . am

with a1, a2, . . . , am ∈ Σ is a subword of a word v ∈ Σ∗ if there are words
v0, v1, . . . , vm ∈ Σ∗ with v = v0a1v1a2v2 · · · amvm. In that case, we write u � v;
if, in addition, u 	= v, then we write u � v and call u a proper subword of v. If
u,w ∈ Σ∗ such that u � w and there is no word v with u � v � w, then we say
that w is a cover of u and write u �· w. This is equivalent to saying u � w and
|u| + 1 = |w| where |u| is the length of the word u. If neither u is a subword of
v nor vice versa, then the words u and v are incomparable and we write u ‖ v.
For instance, aa � babbba, aa �· aba, and aba ‖ aabb.

Let S = (L, (Ri)i∈I , (wj)j∈J) be a structure, i.e., L is a set, Ri ⊆ Lni is a
relation of arity ni (for all i ∈ I), and wj ∈ L for all j ∈ J . Then, formulas ϕ of
the logic C+MOD are defined by the following grammar:

ϕ :: = (s = t) | Ri(s1, . . . , sni
) | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃≥kx ϕ | ∃p mod qx ϕ

where s, t, s1, . . . , sni
are variables or constants wj with j ∈ J , i ∈ I, k ∈ N, and

p, q ∈ N with p < q. We call ∃≥k a threshold counting quantifier and ∃p mod q

a modulo counting quantifier. The semantics of these quantifiers is defined as
follows:

– S |= ∃≥kx α iff |{w ∈ L | S |= α(w)}| ≥ k
– S |= ∃p mod qx α iff |{w ∈ L | S |= α(w)}| ∈ p + qN

For instance, ∃0 mod 2x α expresses that the number of elements of the structure
satisfying α is even. Then

(∃0 mod 2x α
)∨(∃1 mod 2x α

)
holds iff only finitely many

elements of the structure satisfy α. The fragment FO+MOD of C+MOD com-
prises all formulas not containing any threshold counting quantifier. First-order
logic FO is the set of formulas from C+MOD not mentioning any counting quan-
tifier. Let Σ1 denote the set of first-order formulas of the form ∃x1 ∃x2 . . . ∃xn : ψ
where ψ is quantifier-free; these formulas are also called existential.

The threshold quantifier ∃≥k can be expressed using the existential quantifier,
only. Consequently, the logics FO+MOD and C+MOD are equally expressive.
The situation changes when we restrict the number of variables that can be
used in a formula: Let FO+MOD2 and C+MOD2 denote the set of formulas
from FO+MOD and C+MOD, respectively, that use the variables x and y, only.
Then, the existence of ≥3 elements in the structure is expressible in C+MOD2,
but not in FO+MOD2.

352 D. Kuske and G. Zetzsche

In this paper, we will consider the following structures:

– The largest one is (L,�,�·, (K ∩ L)K regular, (w)w∈L) for some L ⊆ Σ∗. The
universe of this structure is the language L, we have two binary predicates
(� and �·), a unary predicate K ∩ L for every regular language K, and we
can use every word from L as a constant.

– The other extreme is the structure (L,�) for some L ⊆ Σ∗ where we consider
only the binary predicate �.

– Finally, we will also prove results on the intermediate structure (L,�, (w)w∈L)
that has a binary relation and any word from the language as a constant.

For any structure S and any of the logics L, the L-theory of S is the set of
sentences from L that hold in S.

A non-deterministic finite automaton is called non-degenerate if every state
lies on a path from an initial to a final state. A language L ⊆ Σ∗ is bounded
if there are a number n ∈ N and words w1, w2, . . . , wn ∈ Σ∗ such that L ⊆
w∗

1 w∗
2 · · · w∗

n. Otherwise, it is unbounded.
For a monoid M , a subset S ⊆ M is called rational if it is a homomorphic

image of a regular language. In other words, there exists an alphabet Δ, a regular
R ⊆ Δ∗, and a homomorphism h : Δ∗ → M with S = h(R). In particular, if
Σ1, Σ2 are alphabets and M = Σ∗

1 × Σ∗
2 , then a subset S ⊆ Σ∗

1 × Σ∗
2 is rational

iff there is an alphabet Δ, a regular R ⊆ Δ∗, and homomorphisms hi : Δ∗ → Σ∗
i

with S = {(h1(w), h2(w)) | w ∈ R}. This fact is known as Nivat’s theorem [2].
For an alphabet Γ , a word w ∈ Γ ∗, and a letter a ∈ Γ , let |w|a denote the

number of occurrences of the letter a in the word w. The Parikh vector of w is
the tuple ΨΓ (w) = (|w|a)a∈Γ ∈ N

Γ . Note that ΨΓ is a homomorphism from the
free monoid Γ ∗ onto the additive monoid (NΓ ,+).

3 The FO+MOD-Theory with Regular Predicates

The aim of this section is to prove that the full FO+MOD-theory of the structure

(L,�,�·, (K ∩ L)K regular, (w)w∈L)

is decidable for L bounded and context-free. This is achieved by interpreting
this structure in (N,+), i.e., in Presburger arithmetic whose FO+MOD-theory
is known to be decidable [1,5,21]. We start with three preparatory lemmas.

Lemma 3.1. Let K ⊆ Σ∗ be context-free, w1, . . . , wn ∈ Σ∗, and g : Nn → Σ∗

be defined by g(m) = wm1
1 wm2

2 · · · wmn
n for all m = (m1,m2, . . . , mn) ∈ N

n. The
set g−1(K) = {m ∈ N

n | g(m) ∈ K} is effectively semilinear.

Proof. Let Γ = {a1, a2, . . . , an} be an alphabet and define the monoid homo-
morphism f : Γ ∗ → Σ∗ by f(ai) = wi for all i ∈ [1, n].

Since the class of context-free languages is effectively closed under inverse
homomorphisms and under intersections with regular languages, the language

L = f−1(K) ∩ a∗
1a

∗
2 · · · a∗

n = {u ∈ a∗
1a

∗
2 · · · a∗

n | f(u) ∈ K}

Languages Ordered by the Subword Order 353

is effectively context-free. Its Parikh image ΨΓ (L) ⊆ N
n is effectively semilin-

ear [19]. Moreover, ΨΓ (L) equals the set g−1(K) from the lemma. ��
Lemma 3.2. Let w1, . . . , wn ∈ Σ∗ and g : Nn → Σ∗ be defined by g(m) =
wm1

1 wm2
2 · · · wmn

n for all m = (m1,m2, . . . , mn) ∈ N
n. The set {(m,n) ∈ N

n ×
N

n | g(m) � g(n)} is semilinear.

Proof. Let Γ = {a1, a2, . . . , an} be an alphabet and define the monoid homo-
morphism f : Γ ∗ → Σ∗ by f(ai) = wi for all i ∈ [1, n]. One first shows that

S2 = {(u, v) | u, v ∈ a∗
1a

∗
2 . . . a∗

n, f(v) � f(v)}

is rational. We now employ Nivat’s theorem. It tells us that there are a regular
language R over some alphabet Δ and two homomorphisms h1, h2 : Δ∗ → Γ ∗

so that we can write S2 = {(
h1(w), h2(w)

) | w ∈ R}. Since R is regular, its
Parikh-image ΨΔ(R) = {ΨΔ(w) | w ∈ R} is semilinear [19]. There are monoid
homomorphisms p1, p2 : NΔ → N

n with ΨΓ (hi(w)) = pi(ΨΔ(w)) for all i ∈ {1, 2}
and w ∈ Δ∗. With these, the image H = {(p1(ΨΔ(w)), p2(ΨΔ(w))

) | w ∈ R}
of the set ΨΔ(R) under the monoid homomorphism (p1, p2) : NΔ → N

n × N
n is

semilinear. It turns out that this set equals the set from the lemma. ��
Lemma 3.3. Let w1, w2, . . . , wn ∈ Σ∗, L ⊆ w∗

1w
∗
2 · · · w∗

n be context-free, and
g : Nn → Σ∗ be defined by g(m) = wm1

1 wm2
2 · · · wmn

n for every tuple m =
(m1,m2, . . . , mn) ∈ N

n. Then there exists a semilinear set U ⊆ N
n such that g

maps U bijectively onto L.

Proof. The set U contains, for each u ∈ L, the lexicographically minimal tuple
m ∈ N

n with g(m) = u. Then, Lemmas 3.1 and 3.2 and the closure of the class
of semilinear sets under first-order definitions imply the required properties. ��

Now we can prove the main result of this section.

Theorem 3.4. Let L ⊆ Σ∗ be context-free and bounded. Then the FO+MOD-
theory of (L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable.

Proof. It suffices to prove the decidability for the structure S = (L,�, (K ∩
L)K regular) since the theory of the structure from the theorem can be reduced
to that of S (x �· y gets replaced by its definition and xθw by ∃y : y ∈ {w} ∧ xθy
where θ is any binary relation symbol).

Since L is bounded, there are words w1, w2, . . . , wn ∈ Σ∗ such that L is
included in w∗

1 w∗
2 · · · w∗

n. For an n-tuple m = (m1,m2, . . . , mn) ∈ N
n we define

g(m) = wm1
1 wm2

2 · · · wmn
n ∈ Σ∗.

1. By Lemma 3.3, there is a semilinear set U ⊆ N
n that is mapped by g bijec-

tively onto L.
2. The set {(m,n) | g(m) � g(n)} is semilinear by Lemma 3.2.
3. For any regular language K ⊆ Σ∗ the set {m ∈ N

n | g(m) ∈ K} ⊆ N
n is

effectively semilinear by Lemma 3.1.

354 D. Kuske and G. Zetzsche

From these semilinear sets, we obtain first-order formulas λ(x), σ(x, y), and
κK(x) in the language of (N,+) such that, for any m,n ∈ N

n, we have

1. (N,+) |= λ(m) ⇐⇒ m ∈ U ,
2. (N,+) |= σ(m,n) ⇐⇒ g(m) � g(n), and
3. (N,+) |= κK(m) ⇐⇒ g(m) ∈ K.

One then defines, from an FO+MOD-formula ϕ(x1, . . . , xk) in the language of
S, an FO+MOD-formula ϕ′(x1, . . . , xk) in the language of (N,+) such that

(N,+) |= ϕ′(m1, . . . ,mk) ⇐⇒ S |= ϕ(g(m1), . . . , g(mk)).

(This construction can be found in the full version [18] and increases the formula
size at least exponentially.)

Consequently, any sentence ϕ from FO+MOD in the language of S is trans-
lated into an equivalent sentence ϕ′ in the language of (N,+). By [1,5,21], valid-
ity of the sentence ϕ′ in (N,+) is decidable. ��

4 The C+MOD2-Theory with Regular Predicates

It is the aim of this section to show that the C+MOD2-theory of the structure
(L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable for any regular language L. To
this aim, we first show that the C+MOD2-theory of

S = (Σ∗,�,�·, (L)L regular)

is decidable. This decidability proof extends the proof from [12] for the decidabil-
ity of the FO2-theory of (Σ∗,�, (L)L regular). It provides a quantifier-elimination
procedure (see Sect. 4.3) that relies on the following two properties:

1. The class of regular languages is closed under counting images under unam-
biguous rational relations (Sect. 4.2) and

2. the proper subword, the cover, and the incomparability relation are unam-
biguous rational (Sect. 4.1).

4.1 Unambiguous Rational Relations

Recall that, by Nivat’s theorem, a relation R ⊆ Σ∗ ×Σ∗ is rational if there exist
an alphabet Γ , a homomorphism h : Γ ∗ → Σ∗ × Σ∗, and a regular language
S ⊆ Γ ∗ such that h maps S surjectively onto R. We call R an unambiguous
rational relation if, in addition, h maps S injectively (and therefore bijectively)
onto R. Note that these are precisely the relations accepted by unambiguous
2-tape-automata.

While the class of rational relations is closed under unions, this is not the
case for unambiguous rational relations (e.g., R = {(amban, am) | m,n ∈ N} ∪
{(amban, an) | m,n ∈ N} is the union of unambiguous rational relations but not
unambiguous). But it is closed under disjoint unions.

Languages Ordered by the Subword Order 355

Lemma 4.1. For any alphabet Σ, the cover relation �· and the relation � \�·
are unambiguous rational.

Proof. For i ∈ {1, 2}, let Σi = Σ × {i} and Γ = Σ1 ∪ Σ2. Furthermore, let the
homomorphism proji : Γ ∗ → Σ∗ be defined by proji(a, i) = a and proji(a, 3−i) =
ε for all a ∈ Σ. Finally, let the homomorphism proj : Γ ∗ → Σ∗ × Σ∗ be defined
by proj(w) = (proj1(w),proj2(w)).

– The regular language

Sub =

(
⋃

a∈Σ

((
Σ2 \ {(a, 2)})∗ (a, 2) (a, 1)

)
)∗

Σ2
∗.

is mapped bijectively onto the subword relation.
– Let S be the regular language of words from Sub with precisely one more

occurrence of letters from Σ2 than from Σ1. Then S is mapped bijectively
onto the relation �·, hence this relation is unambiguous rational.

– Similarly, let S′ denote the regular language of all words from Sub with at
least two more occurrences of letters from Σ2 than from Σ1. It is mapped
bijectively onto the relation � \�·, i.e., � \�· is unambiguous rational. ��

Lemma 4.2. For any alphabet Σ, the incomparability relation

‖ = {(u, v) ∈ Σ∗ × Σ∗ | neither u � v nor v � u}
is unambiguous rational.

Proof. We will show that the following three relations are unambiguous rational:

1. R1 = {(u, v) | |u| < |v| and not u � v},
2. R2 = {(u, v) | |u| = |v| and u 	= v}, and
3. R3 = {(u, v) | |u| > |v| and not v � u}.

The result follows since ‖ is the disjoint union of these relations. Let Σi, Γ , proji,
and proj be defined as in the previous proof. First, the regular language

Inc2 = (Σ2Σ1)∗ · {(a, 2)(b, 1) | a, b ∈ Σ, a 	= b} · (Σ2Σ1)∗.

is mapped by proj bijectively onto R2.
From [12, Lemma 5.2], we learn that (u, v) ∈ R1 ∪ R2 if, and only if,

– u = a1a2 . . . a�u
′ for some � ≥ 1, a1, . . . , a� ∈ Σ, u′ ∈ Σ∗, and

– v ∈ (Σ \ {a1})∗a1 (Σ \ {a2})∗a2 · · · (Σ \ {a�−1})∗a�−1 (Σ \ {a�})+v′ for some
word v′ ∈ Σ∗ with |u′| = |v′|.

Consequently, proj maps the following language bijectively onto R1 ∪ R2:

Inc1,2 =

(⋃
a∈Σ

((
Σ2 \ {(a, 2)})∗

(a, 2)(a, 1)
))∗

·
⋃

a∈Σ

((
Σ2 \ {(a, 2)})+(a, 1)

)
· (Σ2Σ1)

∗

and since Inc2 ⊆ Inc1,2, proj maps Inc1 = Inc1,2 \ Inc2 bijectively onto R1. The
claim regarding R3 follows analogously. ��

356 D. Kuske and G. Zetzsche

4.2 Closure Properties of the Class of Regular Languages

Let R ⊆ Σ∗ × Σ∗ be an unambiguous rational relation and L ⊆ Σ∗ a regular
language. We want to show that the languages of all words u ∈ Σ∗

with |{v ∈ L | (u, v) ∈ R}| ≥ k (1)
(with |{v ∈ L | (u, v) ∈ R}| ∈ p + qN, respectively) (2)

are effectively regular for all k ∈ N and all 0 ≤ p < q, respectively (this does
not hold for arbitrary rational relations). It is straightforward to work out direct
automata constructions for this. However, the full details of this are somewhat
cumbersome. Instead, we provide a proof via weighted automata, which enables
us to split the two constructions into several simple steps.

Let S be a semiring. A function r : Σ∗ → S is realizable over S if there
are n ∈ N, λ ∈ S1×n, a homomorphism μ : Σ∗ → Sn×n, and ν ∈ Sn×1 with
r(w) = λ · μ(w) · ν for all w ∈ Σ∗. The triple (λ, μ, ν) is a presentation of
dimension n or a weighted automaton for r.

In the following, we consider the semiring N
∞, i.e., the set N∪{∞} together

with the commutative operations + and · (with x+∞ = ∞ for all x ∈ N∪{∞},
x · ∞ = ∞ for all x ∈ (N∪ {∞}) \ {0}, and 0 · ∞ = 0). Sometimes, we will argue
about sums of infinitely many elements from N

∞, which are defined as expected.

Proposition 4.3. Let Γ and Σ be alphabets, f : Γ ∗ → Σ∗ a homomorphism,
and χ : Γ ∗ → N

∞ a realizable function over N
∞. Then the following function r

is effectively realizable over N
∞:

r = χ ◦ f−1 : Σ∗ → N
∞ : u �→

∑

w∈Γ ∗
f(w)=u

χ(w)

Proof. The homomorphism f can be written as f = f2 ◦ f1 where f1 : Γ ∗ → Γ ∗

is non-expanding (i.e., f1(a) ∈ Γ ∪ {ε} for all a ∈ Γ) and f2 : Γ ∗ → Σ∗ is
non-erasing (i.e., f2(a) ∈ Σ+ for all a ∈ Γ). Then r = (χ ◦ f−1

1) ◦ f−1
2 . Then

χ′ = χ ◦ f−1
1 is effectively realizable by [3, Lemma 2.2(b)].

Let (λ, μ, ν) be a presentation of dimension n for χ′. For σ ∈ Σ ∪ {ε}, set
Γσ = {b ∈ Γ | f2(b) = σ}. Furthermore, define the matrix M ∈ (N∞)n×n by

Mij =

{
∞ if there is w ∈ Γ ∗

ε with n < |w| ≤ 2n and μ(w)ij > 0
∑

w∈Γ
≤n
ε

μ(w)ij otherwise.

Then Mij =
∑

w∈Γ ∗
ε

μ(w)ij for all i, j ∈ [1, n]. Setting λ′ = λ · M and

μ′(a) =
∑

b∈Γa

(
μ(b) · M

)
for all a ∈ Σ

defines the presentation (λ′, μ′, ν) for the function r = χ′ ◦ f−1
2 . ��

Languages Ordered by the Subword Order 357

Lemma 4.4. Let R ⊆ Σ∗×Σ∗ be an unambiguous rational relation and L ⊆ Σ∗

be regular. Then the following function r is effectively realizable over N
∞:

r : Σ∗ → N
∞ : u �→ |{v ∈ L | (u, v) ∈ R}|

Proof. Since R is unambiguous rational, so is R ∩ (Σ∗ × L), i.e., there are an
alphabet Γ , homomorphisms f, g : Γ ∗ → Σ∗, and a regular language SL ⊆ Γ ∗

such that
(f, g) : Γ ∗ → Σ∗ × Σ∗ : w �→ (

f(w), g(w)
)

maps SL bijectively onto R ∩ (Σ∗ × L). Since SL is regular, its characteristic
function χ is effectively realizable by [20, Prop. 3.12]. One then shows that r is
the function χ ◦ f−1 as in Proposition 4.3. ��

We now come to the main result of this section.

Proposition 4.5. Let R ⊆ Σ∗ × Σ∗ be an unambiguous rational relation and
L ⊆ Σ∗ be regular. Then, for k ∈ N and for p, q ∈ N with p < q, the set H of
words w satisfying (1) and (2), respectively, is effectively regular.

Let R denote the rational relation mentioned before Lemma4.1. Then a word
amban has ≥2 “R-partners” iff it has an even number of “R-partners” iff m 	= n.
Hence, the above proposition does not hold for arbitrary rational relations.

Proof. Let r be the function from Lemma 4.4. Setting x ≡ y iff x = y or k ≤
x, y < ∞ defines a congruence ≡ on N

∞. Then S∞
k = N

∞/≡ is a finite semiring
and the function s : Σ∗ → S∞

k : u �→ [r(u)] is effectively realizable. Since the
semiring S∞

k is finite, the “level sets” s−1([i]) = {u ∈ Σ∗ | s(u) ≡ i} are
effectively regular by [20, Prop. 4.5]. Since s−1([k])∪s−1([∞]) is the language of
words u satisfying (1), the first result follows.

For the second language, we consider the congruence ≡ ⊆ N
∞ × N

∞ with
x ≡ y iff x = y or q ≤ x, y < ∞ and x − y ∈ qN. ��

4.3 Quantifier Elimination for C+MOD2

Our decision algorithm employs a quantifier alternation procedure, i.e., we will
transform an arbitrary formula into an equivalent one that is quantifier-free.
As usual, the heart of this procedure handles formulas ψ = Qy ϕ where Q is
a quantifier and ϕ is quantifier-free. Since the logic C+MOD2 has only two
variables, any such formula ψ has at most one free variable. In other words, it
defines a language K. The following lemma shows that this language is effectively
regular, such that ψ is equivalent to the quantifier-free formula x ∈ K.

Lemma 4.6. Let ϕ(x, y) be a quantifier-free formula from C+MOD2 in the lan-
guage of the structure S = (Σ∗,�,�·, (L)L regular). Then the sets

{x ∈ Σ∗ | S |= ∃≥ky ϕ} and {x ∈ Σ∗ | S |= ∃p mod qy ϕ}
are effectively regular for all k ∈ N and all p, q ∈ N with p < q.

358 D. Kuske and G. Zetzsche

Proof. Since ϕ is quantifier-free, we can rewrite it into a Boolean combination
of formulas of the form x ∈ K and y ∈ L for some regular languages K and L,
x � y and y � x, and x �· y and y �· x.

There are six possible relations between the two variables x and y in the
partial order: we can have x = y, x�·y or vice versa, x � y∧¬x�·y or vice versa,
or x ‖ y. Let θi(x, y) for 1 ≤ i ≤ 6 be formulas describing these relations.

Hence ϕ is equivalent to
∨

1≤i≤6

(
θi ∧ ϕ). In this formula, any occurrence of

ϕ appears in conjunction with precisely one of the formulas θi. Depending on
this formula θi (i.e., the relation between x and y), we can simplify ϕ to ϕi by
replacing the atomic subformulas that compare x and y by true or false. As a
result, the formula ϕ is equivalent to

∨
1≤i≤6

(
θi ∧ ϕi) where the formulas ϕi are

Boolean combinations of formulas of the form x ∈ K and y ∈ L for some regular
languages K and L.

Now let k ∈ N. Since the formulas θi are mutually exclusive, we get

∃≥ky ϕ ≡ ∃≥ky
∨

1≤i≤6

(θi ∧ ϕi) ≡
∨

(∗)

∧

1≤i≤6

∃≥kiy (θi ∧ ϕi)

where the disjunction (∗) extends over all (k1, . . . , k6) ∈ N
6 with

∑
1≤i≤6 ki = k.

Hence it suffices to show that

{x ∈ Σ∗ | ∃≥ky (θi ∧ ϕ)} (3)

is effectively regular for all 1 ≤ i ≤ 6, all k ∈ N, and all Boolean combinations
ϕ of formulas of the form x ∈ K and y ∈ L where K and L are regular lan-
guages. We can find regular languages KM and LM and a finite set I such that
ϕ is equivalent to

∨
M∈I (x ∈ KM ∧ y ∈ LM) and such that this disjunction is

exclusive. Hence the set from (3) equals the union of the sets

{x ∈ Σ∗ | ∃≥ky (θi ∧ x ∈ KM ∧ y ∈ LM)} = KM ∩ {x ∈ Σ∗ | ∃≥ky ∈ LM : θi}︸ ︷︷ ︸
HM

for M ∈ I. The set HM is effectively regular by Proposition 4.5 and Lemmas 4.1
and 4.2. Since the language in the claim of the lemma is a Boolean combination
of such sets, the first claim is demonstrated; the second follows similarly. ��

The only atomic formulas with a single variable x are x ∈ L with L regular,
x = x, x � x (which are equivalent to x ∈ Σ∗), and x �· x (which is equivalent
to x ∈ ∅). Hence, any quantifier-free formula with a single free variable x is a
Boolean combination of statements of the form x ∈ L. Lemma 4.6 thus implies:

Theorem 4.7. Let S = (Σ∗,�,�·, (L)L regular). Let ϕ(x) be a formula from
C+MOD2. Then the set {x ∈ Σ∗ | S |= ϕ} is effectively regular.

Corollary 4.8. Let L ⊆ Σ∗ be a regular language. Then the C+MOD2-theory
of the structure SL = (L,�,�·, (K ∩ L)K regular, (w)w∈L) is decidable.

Languages Ordered by the Subword Order 359

Proof. Let ϕ ∈ C+MOD2 be a sentence. We build ϕL by (1) restricting all
quantifications to L, (2) replace xθw by ∃y : y ∈ {w} ∧ xθy, and dually for yθw
for all w ∈ L and all binary relations θ.

With S the structure from Theorem 4.7, we obtain S |= ϕL ⇐⇒ SL |= ϕ.
By Theorem 4.7, the language {x | S |= ϕL} is regular (since ϕL is a sentence,
it is ∅ or Σ∗). Hence ϕL holds iff this set is nonempty, which is decidable. ��

5 The Σ1-Theory

In this section, we study for which regular languages L the Σ1-theory of the
structure (L,�) is decidable. If L is bounded, then decidability follows from
Theorem 3.4. In the case of (Σ∗,�), decidability is known as well [17]. Here, we
prove decidability for every regular language L. Note that in terms of quantifier
block alternation, this is optimal: The Σ2-theory is undecidable already in the
simple case of ({a, b}∗,�) [6].

Theorem 5.1. For every regular L ⊆ Σ∗, the Σ1-theory of (L,�) is decidable.

Observe that very generally, the Σ1-theory of a partially ordered set (P,≤) is
decidable if every finite partial order embeds into (P,≤): In that case, a formula
with n variables is satisfied in (P,≤) if and only if it is satisfied for some finite
partial order with at most n elements. This is used to obtain decidability for the
case L = Σ∗ with |Σ| ≥ 2 in [17].

As mentioned above, if L is bounded, decidability follows from Theorem3.4.
If L is unbounded, it is well-known that there is a subset x{p, q}∗y ⊆ L such that
|p| = |q| and p 	= q (see Lemma 5.2). Since in that case, the monoids ({a, b}∗, ·)
and ({p, q}∗, ·) are isomorphic, it is tempting to assume that ({a, b}∗,�) embeds
into ({p, q}∗,�) and thus into (x{p, q}∗y,�). However, that is not the case. If
L = {ab, ba}∗, then the downward closure of any infinite subset of L includes
all of L. Since, on the other hand, ({a, b}∗,�) has infinite downward closed
strict subsets such as a∗, it cannot embed into (L,�). Nevertheless, the rest
of this section demonstrates that every finite partial order embeds into (L,�)
whenever L is an unbounded regular language. By the previous paragraph, this
implies Theorem 5.1.

We recall a well-known property of unbounded regular languages.

Lemma 5.2. If L ⊆ Σ∗ is not bounded, then there are x, y, p, q ∈ Σ∗ such that
|p| = |q|, p 	= q, and x{p, q}∗y ⊆ L.

Proof. Let A be any non-degenerate deterministic finite automaton accepting
L. Then at least one strongly connected component of A is not a cycle since
otherwise, L would be bounded. Hence, there is a state s and prefix-incomparable
words u, v, each of which is read on a cycle starting in s. Since u and v are prefix-
incomparable, the words p = uv and q = vu are distinct, but equally long. Since
A is non-degenerate, there are words x, y ∈ Σ∗ with x{p, q}∗y ⊆ L. ��

360 D. Kuske and G. Zetzsche

To have some control over how words can embed, we prove a stronger version
of Lemma 5.2. Two words p, q ∈ Σ∗ are conjugate if there are x, y ∈ Σ∗ with
p = xy and q = yx. A word p ∈ Σ∗ is primitive if there is no q ∈ Σ∗ with
p ∈ qq+.

Proposition 5.3. For every unbounded regular language L ⊆ Σ∗, there are
x, u, v, y ∈ Σ∗ such that |u| = |v|, the word uv is primitive, and x{u, v}∗y ⊆ L.

Proof. Since L is unbounded and regular, Lemma5.2 yields words x, y, p, q ∈ Σ∗

with |p| = |q|, p 	= q, and x{p, q}∗y ⊆ L. Then the words r = pq and s = pp
are not conjugate, because every conjugate of a square is a square. Moreover,
|r| = |s|, and x{r, s}∗y ⊆ x{p, q}∗y ⊆ L. Let n = |r|, u = rsn−1, and v = sn.
Towards a contradiction, suppose uv = rs2n−1 is not primitive. Then there is a
word w ∈ Σ∗ with rs2n−1 ∈ ww+. Depending on whether |w| ≥ n or |w| < n,
we have n ≤ |wt| ≤ n2 either for t = 1 or for t = n. It follows that r is a prefix
of wt and that wt is a suffix of sn, implying that r is a factor of sn. Since r and
s are not conjugate, this is impossible. ��

We are now ready to describe how to embed a finite partial order into (L,�).
Observe that every finite partial order with m elements embeds into ({0, 1}m,≤)
where ≤ is the componentwise order. Hence, it suffices to embed this partial order
into ({u, v}∗,�). We do this as follows. Let n = |uv| + m + 3 and define, for a
tuple t = (t1, . . . , tm) ∈ {0, 1}m,

ϕm(t1, . . . , tm) = vt1(uv)n · · · vtm(uv)n.

Then, clearly, s ≤ t implies ϕm(s) � ϕm(t). The converse requires a careful
analysis of how prefixes of ϕm(s) can embed into prefixes of ϕm(t). For x, y ∈ Σ∗,
we write x ↪→ y if x, but no word xa with a ∈ Σ is a subword of y. In other
words, x ↪→ y if x is a prefix-maximal subword of y. This gives us a criterion for
non-embeddability: If x has a strict prefix x0 with x0 ↪→ y, then certainly x 	� y.
In this case, the word x1 with x = x0x1 is called residue. We show the following:

Lemma 5.4. Let u, v ∈ Σ∗ be words such that |u| = |v| and uv is primitive.
Then, for all �, n ∈ N with n > |uv| + � + 2, we have

(i) (uv)n ↪→ v(uv)n,
(ii) (uv)�v(uv)n−�−1 ↪→ (uv)n, and
(iii) (uv)1+�v(uv)n−�−2 ↪→ v(uv)n.

For this lemma, it is crucial to observe that for a primitive word w and n > |w|+1,
any embedding of wn−1 into wn must either hit the left-most or the right-most
position in wn. To conclude that s 	≤ t implies ϕm(s) 	� ϕm(t), we argue about
prefixes of the form pi = vs1(uv)n · · · vsi(uv)n and qi = vt1(uv)n · · · vti(uv)n for
i ∈ [1,m]. If s 	≤ t, let i ∈ [1,m] be the index with si = 1, ti = 0 and sj ≤ tj
for all j ∈ [1, i − 1]. Then clearly pi−1 � qi−1. In fact, Lemma 5.4 (i) implies
that even pi−1 ↪→ qi−1, since x ↪→ y and x′ ↪→ y′ imply xy ↪→ x′y′. Then, by

Languages Ordered by the Subword Order 361

Lemma 5.4 (ii), pi = pi−1v(uv)n−1(uv) has a residue of uv in qi = qi−1(uv)n.
To conclude ϕm(s) 	� ϕm(t), it remains to be shown that this can never be
rectified when considering prefixes pj and qj for j = i + 1, . . . , m. To this end,
Lemma 5.4 (ii) and (iii) tell us that if pj has a residue of (uv)� in qj , then the
word pj+1 has a residue of (uv)� or even (uv)�+1 in qj+1.

6 The Σ1-Theory with Constants

In this section, we study for which languages L the structure (L,�, (w)w∈L) has
a decidable Σ1-theory. From Theorem 3.4, we know that this is the case whenever
L is bounded. However, there are very simple languages for which decidability
is lost: If |Σ| ≥ 2, then the Σ1-theory of (Σ∗,�, (w)w∈Σ∗) is undecidable [6].
Here, we present a sufficient condition for the Σ1-theory of (L,�, (w)w∈Σ∗) to
be decidable.

Let L ⊆ Σ∗. We say that a letter a ∈ Σ is frequent in L if there is a real
constant δ > 0 so that |w|a ≥ δ · |w| for all but finitely many w ∈ L. Our
sufficient condition requires that all letters be frequent in L. If L is regular, this
is equivalent to saying that in every non-degenerate automaton for L, every cycle
contains every letter. An example of such a language is {ab, ba}∗.

We shall prove that this condition implies decidability of the Σ1-theory of
(L,�, (w)w∈Σ∗). If L is bounded, decidability already follows from Theorem3.4.
In case L is unbounded, we employ our results from Sect. 5 to show another
embeddability result. For w ∈ Σ∗, let w↑ = {u ∈ Σ∗ | w � u} denote the
upward closure of {w} in (Σ∗,�). We will show that if L is unbounded, then for
each w ∈ Σ∗, the decomposition of L = (L \ w↑) ∪ (L ∩ w↑) yields two simple
parts: The set L \ w↑ is finite and the set L ∩ w↑ embeds every finite partial
order. This simplifies the conditions under which a Σ1-sentence is satisfied.

Lemma 6.1. Let L ⊆ Σ∗ be an unbounded regular language where every letter
is frequent. For every w ∈ Σ∗, the set L \ w↑ is finite and L ∩ w↑ is unbounded.

Proof. In a non-degenerate automaton A for L, every cycle must contain every
letter. Therefore, if A has n states and v ∈ L has |v| > n·|w|, then a computation
for v must contain some state more than |w| times, which implies w � v and
hence v /∈ L\w↑. Therefore, L\w↑ is finite. This implies that L∩w↑ is unbounded:
Otherwise L = (L ∩ w↑) ∪ (L \ w↑) would be bounded as well. ��
Theorem 6.2. Let L ⊆ Σ∗ be an unbounded regular language where every letter
is frequent. Then the Σ1-theory of (L,�, (w)w∈L) is decidable.

Proof. For decidability, we may assume that we are given a formula ϕ that is a
disjunction of conjunctions of literals of the following forms (where x and y are
arbitrary variables and w an arbitrary word from L):

(i) x � w
(ii) x 	� w

(iii) w � x
(iv) w 	� x

(v) x � y
(vi) x 	� y

362 D. Kuske and G. Zetzsche

Step 1. We first show that literals of types (i) and (iv) can be eliminated. To
this end, we observe that for each w ∈ L, both of the sets {u ∈ L | u � w}, and
{u ∈ L | w 	� u} are finite (in the latter case, this follows from Lemma6.1). Thus,
every conjunction that contains a literal x � w or w 	� x, constrains x to finitely
many values. Therefore, we can replace this conjunction with a disjunction of
conjunctions that result from replacing x by one of these values. (Here, we might
obtain literals u � v or u 	� v, but those can be replaced by other equivalent
formulas). We repeat this until there are no more literals of the form (i) and (iv).
Step 2. We now eliminate literals of the form (ii). Note that the language {u ∈
L | u 	� w} is upward closed in (L,�). Since L is regular, we can compute the
finite set of minimal elements of this set. Thus, x 	� w is equivalent to a finite
disjunction of literals of the form w′ � x. The resulting formula ψ is a disjunction
of conjunction of literals of the form (iii), (v), (vi).
Step 3. To check satisfiability, we may assume that ψ is a conjunction of literals
of the form (iii), (v), (vi). We can write ψ as γ1∧γ2, where γ1 is a conjunction of
literals of the form (iii) and γ2 is a conjunction of literals of the form (v) and (vi).
We claim that ψ is satisfiable if and only if γ2 is satisfiable in some partial order.
The “only if” direction is trivial, so suppose γ2 is satisfied by some finite partial
order (P,≤) and let w ∈ Σ∗ be a concatenation of all words occurring in γ1. By
Lemma 6.1, L ∩ w↑ is unbounded, which implies that (P,≤) can be embedded
into (L ∩ w↑,�) (see Sect. 5). This means, there exists a satisfying assignment
where even w � x for every variable x. In particular, it satisfies ψ = γ1 ∧ γ2. ��

Open Questions

We did not consider complexity issues. In particular, from [13], we know that
the FO2-theory of the structure (Σ∗,�, (w)w∈Σ∗) can be decided in elementary
time. We are currently working out the details for the extension of this result
to the C+MOD2-theory of the structure (L,�, (w)w∈L) for regular languages L.
We reduced the FO+MOD-theory of the full structure (for L context-free and
bounded) to the FO+MOD-theory of (N,+), which is known to be decidable in
elementary time [5]. Our reduction increases the formula exponentially due to
the need of handling statements of the form “there is an even number of pairs
(x, y) ∈ N

2 such that ...” It should be checked whether the proof from [5] can be
extended to handle such statements in FO+MOD for (N,+) directly.

Finally, our results raise an interesting question: For which regular languages
L does the structure (L,�, (w)w∈L) have a decidable Σ1-theory? If every letter
is frequent in L, we have decidability. For example, this applies to L = {ab, ba}∗

or L = {ab, baa}∗ ∪ bb{abb}∗. If L = Σ∗ for |Σ| ≥ 2, we have undecidability [6].

Languages Ordered by the Subword Order 363

References

1. Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen
Arithmetik verwandten Systeme. Z. Math. Logik Grundlagen Math. 12, 131–168
(1966)

2. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbücher,
Stuttgart (1979)

3. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste, M.,
Kuich, W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 176–211.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5 5

4. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!
Theor. Comput. Sci. 256, 63–92 (2001)

5. Habermehl, P., Kuske, D.: On Presburger arithmetic extended with modulo count-
ing quantifiers. In: Pitts, A. (ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 375–389.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46678-0 24

6. Halfon, S., Schnoebelen, Ph., Zetzsche, G.: Decidability, complexity, and expres-
siveness of first-order logic over the subword ordering. In: Proceedings of the
Thirty-Second Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS 2017), pp. 1–12. IEEE Computer Society (2017)

7. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
2, 326–336 (1952)

8. Ježek, J., McKenzie, R.: Definability in substructure orderings. I: finite semilattices.
Algebra Univers. 61(1), 59–75 (2009)

9. Ježek, J., McKenzie, R.: Definability in substructure orderings. III: finite distribu-
tive lattices. Algebra Univers. 61(3–4), 283–300 (2009)

10. Ježek, J., McKenzie, R.: Definability in substructure orderings. IV: finite lattices.
Algebra Univers. 61(3–4), 301–312 (2009)

11. Ježek, J., McKenzie, R.: Definability in substructure orderings. II: finite ordered
sets. Order 27(2), 115–145 (2010)

12. Karandikar, P., Schnoebelen, Ph.: Decidability in the logic of subsequences and
supersequences. In: Harsha, P., Ramalingam, G. (eds.) Proceedings of the 35th
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2015). Leibniz International Proceedings in Informatics, vol. 45, pp.
84–97. Leibniz-Zentrum für Informatik (2015)

13. Karandikar, P., Schnoebelen, Ph.: The height of piecewise-testable languages with
applications in logical complexity. In: Talbot, J.-M., Regnier, L. (eds.) Proceedings
of the 25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Leibniz International Proceedings in Informatics, vol. 62, pp. 37:1–37:22 (2016)

14. Kudinov, O.V., Selivanov, V.L.: Undecidability in the homomorphic quasiorder of
finite labelled forests. J. Log. Comput. 17(6), 1135–1151 (2007)

15. Kudinov, O.V., Selivanov, V.L., Yartseva, L.V.: Definability in the subword order.
In: Ferreira, F., Löwe, B., Mayordomo, E., Mendes Gomes, L. (eds.) CiE 2010.
LNCS, vol. 6158, pp. 246–255. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13962-8 28

16. Kudinov, O.V., Selivanov, V.L., Zhukov, A.V.: Definability in the h-quasiorder of
labeled forests. Ann. Pure Appl. Logic 159(3), 318–332 (2009)

17. Kuske, D.: Theories of orders on the set of words. Theor. Inf. Appl. 40, 53–74
(2006)

18. Kuske, D., Zetzsche, G.: Languages ordered by the subword order. CoRR,
abs/1901.02194 (2019)

https://doi.org/10.1007/978-3-642-01492-5_5
https://doi.org/10.1007/978-3-662-46678-0_24
https://doi.org/10.1007/978-3-642-13962-8_28
https://doi.org/10.1007/978-3-642-13962-8_28

364 D. Kuske and G. Zetzsche

19. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
20. Sakarovitch, J.: Rational and recognisable power series. In: Droste, M., Kuich,

W., Vogler, H. (eds.) Handbook of Weighted Automata, pp. 105–174. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01492-5 4

21. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM
Trans. Comput. Log. 6(3), 634–671 (2005)

22. Thinniyam, R.S.: Definability of recursive predicates in the induced subgraph
order. In: Ghosh, S., Prasad, S. (eds.) ICLA 2017. LNCS, vol. 10119, pp. 211–
223. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54069-5 16

23. Thinniyam, R.S.: Defining recursive predicates in graph orders. Logical Methods
Comput. Sci. 14(3:21), 1–38 (2018)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-01492-5_4
https://doi.org/10.1007/978-3-662-54069-5_16
http://creativecommons.org/licenses/by/4.0/

Strong Adequacy and Untyped
Full-Abstraction for Probabilistic

Coherence Spaces

Thomas Leventis1,2(B) and Michele Pagani1

1 IRIF UMR 8243, Université Paris Diderot,
Sorbonne Paris Cité, CNRS, Paris, France

{leventis,pagani}@irif.fr
2 University of Bologna, Bologna, Italy

Abstract. We consider the probabilistic untyped lambda-calculus and
prove a stronger form of the adequacy property for probabilistic coher-
ence spaces (PCoh), showing how the denotation of a term statistically
distributes over the denotations of its head-normal forms.

We use this result to state a precise correspondence between PCoh and
a notion of probabilistic Nakajima trees, recently introduced by Leventis
in order to prove a separation theorem. As a consequence, we get full
abstraction for PCoh. This latter result has already been mentioned as a
corollary of Clairambault and Paquet’s full abstraction theorem for prob-
abilistic concurrent games. Our approach allows to prove the property
directly, without the need of a third model.

Keywords: Lambda-Calculus · Denotational semantics ·
Probabilistic functional programming

1 Introduction

Full abstraction for the maximal consistent sensible λ-theory H� [1] is a crucial
property for a model of the untyped λ-calculus, stating that two terms M,N have
the same denotation in the model iff for every context C[] the head-reduction
sequences of C[M] and C[N] either both terminate or both diverge. The first
such result was obtained for Scott’s model D∞ by Hyland [10] and Wadsworth
[15]. More recently, Manzonetto developed a general technique for achieving
full abstraction for a large class of models, decomposing it into the adequacy
property and a notion of well-stratification [13]. An adequacy property states
that the semantics of a λ-term is different from the bottom element iff its head-
reduction terminates. Well-stratification is more technical, basically it means
that the semantics of a λ-term can be stratified into different levels, expressing in
the model the nesting of the head-normal forms defining the interaction between
a λ-term and a context.

Our paper reconsiders these results in the setting of the probabilistic untyped
λ-calculus Λ+. The language extends the untyped λ-calculus with a barycentric
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 365–381, 2019.
https://doi.org/10.1007/978-3-030-17127-8_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_21&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_21

366 T. Leventis and M. Pagani

sum constructor allowing for terms like M +p N , with p ∈ [0, 1], reducing to
M with probability p and to N with probability 1 − p. In recent years there
has been a renewed interest in Λ+ as a core language for (untyped) discrete
probabilistic functional programming. In particular, Leventis proves in [12] a
separation property for Λ+ based on a probabilistic version of Nakajima trees,
the latter describing a nesting of sub-probability distributions of infinitary η-long
head-normal forms (see Sect. 5 and the examples in Fig. 2).

We consider the semantics of Λ+ given by the probabilistic coherence space
D defined by Danos and Ehrhard in [5] and proved to be adequate in [6]. We
show that the denotation �M� in D of a Λ+ term M enjoys a kind of stratifica-
tion property (Theorem1, called here strong adequacy) and we use this property
to prove that �M� is a faithful description of the probabilistic Nakajima tree
of M (Corollary 1). As a consequence of this result and the previously men-
tioned separation theorem, we achieve full abstraction for D (Theorem 2), thus
reconstructing in this setting Manzonetto’s reasoning for classical λ-calculus.

Very recently, and independently from this work, Clairambault and Paquet
also prove full abstraction for D [2]. Their proof uses a game semantics model
representing in an abstract way the probabilistic Nakajima trees and a faithful
functor from this game semantics to the weighted relational semantics of [11].
The latter provides a model having the same equational theory over Λ+ as the
probabilistic coherence space D, so full abstraction for D follows immediately. By
the way, let us emphasise that all results in our paper can be transferred as they
are to the weighted relational semantics of [11]. We decided however to consider
the probabilistic coherence space model in order to highlight the correspondence
between the definition of D (Eq. (11)) and the definition of the logical relation
(Eq. (13)) which is the key ingredient in the proof of our notion of stratification.

Let us give some more intuitions on this latter notion, which has an interest in
its own. The model D is defined as the limit of a chain of probabilistic coherence
spaces (D�)�∈N approximating more and more the denotation of Λ+ terms. The
adequacy property proven in [6] states that the probability of a term M to
converge to a head-normal form is given by the mass of the semantics �M�
restricted to the subspace D2 [6, Theorem 22]. The natural question is then
to understand which kind of operational meaning carries the rest of the mass
of �M�, i.e. the points of order greater than 2. Our Theorem 1 answers this
question, showing that the semantics �M� distributes over the semantics of its
head-normal forms according to the operational semantics of Λ+. By iterating
this reasoning one gets a stratification of �M� into a nesting of (η-expanded)
head-normal forms which is the key ingredient linking �M� and the probabilistic
Nakajima trees (Corollary 1).

The fact that our proof of full abstraction is based on the notion of strong
adequacy makes very plausible that the proof can be adapted to a more general
class of models than only probabilistic coherence spaces and weighted seman-
tics. In particular, we would like to stress that we did not use the property of
analyticity of term denotations, which is instead at the core of the proof of full
abstraction for probabilistic PCF-like languages [7,8].

Adequacy and Full-Abstraction for Pcoh! 367

Notational convention. We write N for the set of natural numbers and R≥0 for
the set of non-negative real numbers. Given any set X we write Mf(X) for the
set of finite multisets of X: an element m ∈ Mf(X) is a function X → N

such that the support of m Supp (m) = {x ∈ X | m(x) > 0} is finite. We write
[x1, . . . , xn] for the multiset m such that m(x) = number of indices i s.t.x = xi,
so [] is the empty multiset and � the disjoint union. The Kronecker delta over
a set X is defined for x, y ∈ X by: δx,y = 1 if x = y, and δx,y = 0 otherwise.

2 The Probabilistic Language Λ+

We recall the call-by-name untyped probabilistic λ-calculus, following [6]. The
set Λ+ of terms over a set V of variables is defined inductively by:

M,N ∈ Λ+ ::=x | λx.M | MN | M +p N, (1)

where x ranges over V and p ranges over [0, 1]. Note that we consider probabilities
over the whole interval [0, 1] but our proofs still hold if we restrict them to ratio-
nal numbers. We use the λ-calculus terminology and notations as in [1]: terms are
considered modulo α-equivalence, i.e. variable renaming; we write FV(M) for the
set of free variables of a term M . For any finite list of variables Γ = x1, . . . , xn we
write Λ+

Γ for the set of terms M ∈ Λ+ such that FV(M) ⊆ {x1, . . . , xn}. Given
two terms M,N ∈ Λ+ and x ∈ V we write M{N/x} for the term obtained by
substituting N for the free occurrences of x in M , subject to the usual proviso
of renaming bound variables of M to avoid capture of free variables in N .

Example 1. Some terms useful in giving examples: the duplicator δ = λx.xx,
the Turing fixed point combinator Θ = (λxy.y(xxy))(λxy.y(xxy)) and Ω = δδ.

A context C[] is a term containing a single occurrence of a distinguished
variable denoted [] and called hole. A head-context is of the form E[] =
λx1 . . . xn.[]M1 . . . Mk, for n, k ≥ 0 and Mi ∈ Λ+. Given M ∈ Λ+, we write C[M]
for the term obtained by replacing M for the hole in C[] possibly with capture
of free variables. The operational semantics is given by a Markov chain over
Λ+, mixing together the standard head-reduction of untyped λ-calculus with the
probabilistic choice +p. Precisely, this system is given by the transition matrix
Red in Eq. (2). It is well known that any Λ+-term M can be uniquely decomposed
into E[R] for E[] a head-context and R either a β-redex, or a +p-redex (for some
p ∈ [0, 1]) or a variable in V. This gives the following cases:

RedE[R],N ::=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if R = (λx.M ′)M ′′ and N = E[M ′{M ′′/x}]
p if R = M ′ +p M ′′,M ′ �= M ′′ and N = E[M ′]
1 − p if R = M ′ +p M ′′,M ′ �= M ′′ and N = E[M ′′]
1 if R = M ′ +p M ′ and N = E[M ′]
1 if R ∈ V and N = E[R]
0 otherwise

(2)

368 T. Leventis and M. Pagani

This matrix is stochastic, i.e. for any term M ,
∑

N RedM,N = 1. A head-normal
form is a term of the form E[y], with y ∈ V called its head-variable. We write
HNF for the set of all head-normal forms. Following [5,6], we consider the head-
normal forms as absorbing states of the process. Hence the n-th power Redn of
the matrix Red describes the process of performing exactly n steps: Redn

M,N is
the probability that after n process steps M will reach state N .

Example 2. Let L = (x +p y), we have RedδL,LL = 1, and Redn
δL,xL = p,

Redn
δL,yL = 1 − p for all n ≥ 2. In fact both xL and yL are head-normal forms,

so absorbing states. The term Ω β-reduces to itself, so Redn
Ω,Ω = 1 for any n,

giving an example of absorbing state which is not a head-normal form.
The Turing fixed point combinator needs two β-steps to unfold its argument,

so, for any term M , Red2
ΘM,M(ΘM) = 1. In the case M is a probabilistic function

like M = λf.(f +p y), we get Red4n
ΘM,ΘM = pn and Red4n

ΘM,y = 1 − pn, for

any n. In the case M = λf.(yf +p y), we get: Red4(n+1)
ΘM,yn(ΘM) = pn+1 and

Red4(n+1)
ΘM,yn(y) = (1−p)pn, where yn(...) denotes the n-fold application y(. . . y(...)).

Notice that for h ∈ HNF and M ∈ Λ+, the sequence
(
Redn

M,h

)

n∈N
is mono-

tone increasing and bounded by 1, so it converges. We define its limit by:

∀M ∈ Λ+,∀h ∈ HNF, Red∞
M,h ::= sup

n∈N

(
Redn

M,h

)
∈ [0, 1]. (3)

This quantity gives the total probability of M to reduce to the head-normal form
h in any number (possibly infinitely many) of finite reduction sequences.

Example 3. Recall the terms in Example 2. We have Red∞
δL,xL = p and

Red∞
δL,yL = 1 − p. For any h ∈ HNF and n ∈ N we have Redn

Ω,h = 0 so
Red∞

Ω,h = 0. The quantity Red∞
Θ(λf.(f+py)),y is the first example of limit, being

equal to 1 whereas Redn
Θ(λf.(f+py)),y < 1 for all n ∈ N. Operationally this means

that the term Θ(λf.(f +p y)) reduces to y with probability 1 but the length
of these reductions is not bounded. Finally, Red∞

Θ(λf.(yf+py)),yn(y) = (1 − p)pn,
this means that Θ(λf.(yf +p y)) converges with probability 1 but it can reach
infinitely many different head-normal forms.

Given M,N ∈ Λ+, we say that M is contextually equivalent to N if, and
only if, ∀C[],

∑
h∈HNF Red∞

C[M],h =
∑

h∈HNF Red∞
C[N],h.

An important property in the following is extensionality, meaning invari-
ance under η-equivalence. The η-equivalence is the smallest congruence such
that, for any M ∈ Λ+ and x /∈ FV(M) we have M =η λx.Mx. Notice that the
contextual equivalence is extensional (see [1] for the classical λ-calculus).

3 Probabilistic Coherence Spaces

Girard introduced probabilistic coherence spaces (PCS) as a “quantitative refine-
ment” of coherence spaces [9]. Danos and Ehrhard considered then the category

Adequacy and Full-Abstraction for Pcoh! 369

Pcoh of linear and Scott-continuous functions between PCS as a model of linear
logic and the cartesian closed category Pcoh! of entire functions between PCS as
the Kleisli category associated with the comonad of Pcoh modelling the expo-
nential modality [5]. They proved also that Pcoh! provides an adequate model
of probabilistic PCF and the reflexive object D which is our object of study.

The two categories Pcoh and Pcoh! have been then studied in various
papers. In particular, Pcoh! is proved to be fully abstract for the call-by-name
probabilistic PCF [7]. This result has been also extended to richer languages,
e.g. call-by-push-value probabilistic PCF [8]. The untyped model D is proven
adequate for Λ+ [6]. This paper is the continuation of the latter result, showing
full abstraction for D as a consequence of a stronger form of adequacy.

We briefly recall here the cartesian closed category Pcoh! and the reflexive
object D. Because of space we omit to consider the linear logic model Pcoh,
from which Pcoh! is derived. We refer the reader to [5,6] for more details.

Probabilistic coherence spaces and entire functions. A probabilistic coherence
space, or PCS for short, is a pair X = (|X | ,P(X)) where |X | is a countable
set called the web of X and P(X) is a subset of the semi-module (R≥0)|X | such
that the following three conditions hold: (i) closedness: P(X)⊥⊥ = P(X), where,
given a set P ⊆ (R≥0)|X |, the dual of P is defined as P⊥ ::= {y ∈ (R≥0)|X | |
∀x ∈ P

∑
a∈|X| xaya ≤ 1}; (ii) boundedness: ∀a ∈ |X |, ∃μ > 0, ∀x ∈ P(X),

xa ≤ μ; (iii) completeness: ∀a ∈ |X |, ∃x ∈ P(X), xa > 0.
Given x, y ∈ P(X), we write x ≤ y for the order defined pointwise, i.e. for

every a ∈ |X |, xa ≤ ya. The closedness condition is equivalent to require that
P(X) is convex and Scott-closed, as stated below.

Proposition 1 (e.g. [4]). Given an index set I and a subset P ⊂ (R≥0)I which
is bounded and complete, we have P = P⊥⊥ iff the following two conditions hold:
(i) P is convex, i.e. for every x, y ∈ P and λ ∈ [0, 1], λx + (1 − λ)y ∈ P ; (ii) P
is Scott-closed, i.e. for every x ≤ y ∈ P , x ∈ P and for every increasing chain
{xi}i∈N ⊆ P , supi xi ∈ P .

A data-type is denoted by a PCS X and its data by vectors in P(X): convexity
allows for probabilistic superposition and Scott-closedness for recursion.

Example 4. A simple example of PCS is U = (|U| ,P(U)) with |U| a singleton set
and P(U) = [0, 1]. Notice P(U)⊥ = P(U). This PCS gives the flat interpretation
of the unit type in a typed language. The boolean type is denoted by the two
dimensional PCS B ::= ({t, f}, {(ρt, ρf) | ρt + ρf ≤ 1}). Notice that P(B) can
be seen as the set of the probabilistic sub-distributions of the boolean values.

As soon as one consider functional types, the intuitive notion of (discrete)
sub-probabilistic distribution is lost. In particular, the reflexive object D defined
below is an example of an infinite dimensional PCS where scalars arbitrarily big
may appear in P(D). One can think of PCS’s as a generalisation of the notion
of discrete sub-probabilistic distributions allowing a cartesian closed category.

370 T. Leventis and M. Pagani

An entire function from X to Y is a matrix f ∈ R≥0
Mf(|X |)×|Y| such that

for any x ∈ P(X), the image f(x) under f belongs to P(Y), where f(x) is

f(x) ::=
(

∑

m∈Mf(|X |)
fm,bx

m

)

b∈|Y|
where xm ::=

∏

a∈Supp(m)

xm(a)
a (4)

Notice that the condition f(x) ∈ P(Y) requires that the possibly infinite sum in
the previous equation must converge. Recently, Crubillé proves that the entire
maps can be characterised independently from their matrix representation as
the absolutely monotonic and Scott-continuous maps between PCS’s, see [3].

The cartesian closed category. The Kleisli category Pcoh! has PCS’s as objects
and entire maps as morphisms. Given f ∈ Pcoh!(X ,Y) and g ∈ Pcoh!(Y,Z),
the composition g ◦ f is the usual functional composition, whose matrix can
be explicitly given by, for m ∈ Mf(|X |) , c ∈ |Z|:

(g ◦ f)m,c ::=
∑

p∈Mf(|Y|)
gp,cf

(m,p) where f (m,[b1,...,bn]) ::=
∑

(m1,...,mn)
s.t. m=

⊎
mi

n∏

i=1

fmi,bi
(5)

The boundedness condition over Z and the completeness condition over X ensure
that the possibly infinite sum over p ∈ Mf(|Y|) in Eq. (5) converges. The iden-
tity is the matrix idX

m,a = δ[a],a, where δ is the Kronecker delta.
The cartesian product of any countable family (Xi)i∈I of PCS’s is:

∣
∣
∏

i∈I Xi

∣
∣ ::=

⋃
i∈I{i} × |Xi| ,

P
(∏

i∈I Xi

)
::= {x ∈ (R≥0)|

∏
i∈I Xi| | ∀i ∈ I, πi(x) ∈ P(Xi)},

(6)

where πi(x) is the vector in (R≥0)|Xi| denoting the i-th component of x, i.e.
πi(x)a ::= x(i,a). This means that P

(∏
i∈I Xi

)
can be seen as the set-theoretical

product
∏

i∈I P(Xi), by mapping x ∈ P
(∏

i∈I Xi

)
to the sequence (πi(x))i∈I .

The j-th projection prj ∈ Pcoh!(
∏

i∈I Xi,Xj) is defined by prj
m,b ::= δm,[(j,b)]. If

all components of a product are equal to a PCS X we can use the exponential
notation X I . Binary products can be written as X ×Y. In the following, we will
often denote the finite multisets in Mf

(∣
∣
∏

i∈I Xi

∣
∣
)

as I-families of finite multisets
almost everywhere empty, using the set-theoretical isomorphism:1

Mf

(∣
∣
∣
∣
∣

∏

i∈I

Xi

∣
∣
∣
∣
∣

)

 {m ∈
∏

i∈I

Mf(|Xi|) | Supp (m) finite}. (7)

For example, the multi-set [(0, a), (0, a′), (1, b)] ∈ Mf(|X × Y|) will be denoted
as the pair ([a, a′], [b]), or the multiset [(2, a), (4, a′), (4, a′′)] ∈ Mf

(∣
∣
∏

n∈N
Xn

∣
∣
)

as the almost everywhere empty sequence ([], [], [a], [], [a′, a′′], [], . . .).
1 In fact, this isomorphism corresponds, for I finite, to the fundamental exponential
isomorphism !(A & B) � !A ⊗ !B of linear logic.

Adequacy and Full-Abstraction for Pcoh! 371

The object of morphisms from X to Y is Pcoh!(X ,Y) itself, i.e.:

|X ⇒ Y| ::=Mf(|X |) × |Y| , P(X ⇒ Y) ::=Pcoh!(X ,Y). (8)

The proof that P(X ⇒ Y) so defined enjoys the closedness, completeness and
boundedness conditions of the definition of a PCS is not trivial and it is argued
by the fact that Pcoh! is the Kleisli category associated with the exponential
comonad of the linear logic model Pcoh mentioned in the introduction.

The evaluation EvX ,Y ∈ Pcoh!((X ⇒ Y) × X ,Y) and the curryfication
CurX ,Z,Y(v) ∈ Pcoh!(Z,X ⇒ Y) of a morphism v ∈ Pcoh!(X × Z,Y) are:

EvX ,Y
(m,p),a ::= δm,[(p,a)], CurX ,Z,Y(v)m,(p,a) ::= v(p,m),a. (9)

The reflexive object D. We set X ⊆ Y whenever |X | ⊆ |Y| and P(X) =
{v||X | s.t. v ∈ P(Y)}, where v||X | is the vector in R

|X |
≥0 obtained by restrict-

ing v ∈ R
|Y|
≥0 to the indexes in |X | ⊆ |Y|. This defines a complete order over

PCS’s. The model D of Λ+ is then given by the least fix-point of the Scott-
continuous functor X �→ XN ⇒ U (where U is the one-dimensional PCS defined
in Example 4). We do not detail here its definition, but we give explicitly the
chain D0 = (∅,0), D�+1 = DN

� ⇒ U whose (co)limit is the least fix-point D of
X �→ XN ⇒ U by the Knaster-Tarski theorem. We refer to [5, Sect. 2] for details.

The webs of these spaces are given by:

|D0| ::= ∅, |D�+1| ::= Mf(|D�|)(ω)
, |D| ::=

⋃

�∈N

|D�| (10)

where Mf(|D�|)(ω) denotes the set of infinite sequences of multisets of |D�| that
are almost everywhere empty (notice we are using the isomorphism mentioned in
Eq. (7)). The set |D1| is the singleton containing the infinite sequence ([],[],[]. . .)
of empty multisets, which we denote by �. Given a multiset m ∈ Mf(|D�|) and
a sequence d ∈ Mf(|D�+1|), we denote by m :: d the element of |D�+1| having at
first position m and then all the multisets of d shifted by one position. Notice
that any element of |D�+1| can be written as m1 :: . . . mn :: � for an n sufficiently
large and m1, . . . ,mn ∈ Mf(|D�|). In particular, [] :: � = �.2

The sets of vectors P(D�) and P(D) completing the definition of a PCS are:

P(D0) ::=0

P(D�+1) ::=

⎧
⎪⎨

⎪⎩
v ∈ (R≥0)|D�+1| s.t.

∀n ∈ N,∀u1, . . . , un ∈ P(D�)∑

m1,...,mn∈
Mf(|D�|)

vm1::... mn::�u
m1
1 . . . umn

n ≤ 1

⎫
⎪⎬

⎪⎭

P(D) ::=
{
v ∈ (R≥0)|D| s.t. ∀� ∈ N, v||D�| ∈ P(D�)

}

(11)

The above definition of P(D�+1) is actually equivalent to the standard one
inferred from the definition of the countable product DN, which would require
2 The elements of |D| can be seen as intersection types generated from the constant

�, the :: operation being the arrow and multisets non-idempotent intersections.

372 T. Leventis and M. Pagani

Fig. 1. Explicit definition of the denotation of a term in Λ+
Γ as a matrix in P

(DΓ ⇒ D)
.

Recall Eq. (5) for the notation (�N�Γ)m 2,m.

to apply v to a countable family (ui)i∈N of vectors in P(D�). The two definitions
are equivalent because of the continuity of the scalar multiplication and the sum.

It happens that any solution of X = XN ⇒ U gives also a solution (although
not minimal) to X = X ⇒ X and hence a reflexive object of Pcoh!. The
isomorphism pair λ ∈ Pcoh!(D ⇒ D,D) and app ∈ Pcoh!(D,D ⇒ D) is given
by, for any p ∈ Mf(|D ⇒ D|), m, q ∈ Mf(|D|), and d ∈ |D|,

λp,m::d ::= δp,[(m,d)], appq,(m,d) ::= δq,[m::d]. (12)

It is easy to check that app ◦ λ = idD⇒D and λ ◦ app = idD, so (D, λ, app) yields
an extensional model of untyped λ-calculus, i.e. �M� = �N� whenever M =η N .

Interpretation of the Terms of Λ+. Given a term M and a list Γ of pairwise differ-
ent variables containing FV(M), the interpretation of M is a morphism �M�Γ ∈
Pcoh!(DΓ ,D), i.e. a matrix in R

Mf(|DΓ |)×|D|
≥0 = R

Mf(|D|)Γ ×|D|
≥0 . The definition of

�M�Γ is the standard one determined by the cartesian closed structure of Pcoh!

and the reflexive object (D, λ, app): �x�Γ is the x-th projection of the prod-
uct DΓ , �λx.M�Γ = λ ◦ Cur

(
�M�x,Γ

)
and �MN�Γ = Ev ◦ 〈app ◦ �M�Γ , �N�Γ 〉,

where 〈 , 〉 is the cartesian product of two morphisms. Figure 1 makes explicit
the coefficients of the matrix �M�Γ by structural induction on M . The only non-
standard operation is the barycentric sum �M +p N� which is still a morphism
of Pcoh! by the convexity of P

(
DΓ ⇒ D

)
(Proposition 1).

Proposition 2 (Soundness, [5,6]). For every term M ∈ Λ+ and sequence
Γ ⊇ FV(M): �M�Γ =

∑
N∈Λ+ RedM,N �N�Γ .

4 Strong Adequacy

In this section we state and prove Theorem 1, enhancing the Pcoh! adequacy
property given in [6]. This latter explains the computational meaning of the mass
of �M� restricted to D2 ⊆ D, while our generalisation considers the whole �M�,
showing that it encodes the way the operational semantics dispatches the mass

Adequacy and Full-Abstraction for Pcoh! 373

into the denotation of the head-normal forms. As in [6], the proof of Theorem1
adapts a method introduced by Pitts [14], consisting in building a recursively
specified relation of formal approximation � (Proposition 3) which satisfies the
same recursive equation as D. However, our generalisation requires a subtler
definition of � with respect to [6]. In particular, we must consider open terms
in order to prove Lemma 7.

The approximation relation. Let us introduce some convenient notation, extend-
ing the definition of λ-abstraction and application to general morphisms.

Definition 1. Given v ∈ P
(
Dx,Γ ⇒ D

)
, let Λ(v) be the vector λ ◦ Cur(v) ∈

P
(
DΓ ⇒ D

)
. Given v, u ∈ P

(
DΓ ⇒ D

)
let v @ u be the vector Ev ◦ 〈app ◦ v, u〉 ∈

P
(
DΓ ⇒ D

)
. Finally, given a finite sequence u1, . . . , un ∈ P

(
DΓ ⇒ D

)
, for n ∈

N, we denote by v @ u1 . . . un the vector (v @u1) @ . . . un.

Lemma 1. The map v �→ Λ(v) is linear, i.e. for any vectors v, v′ and scalars
p, p′ ∈ [0, 1] such that p + p′ ≤ 1, we have Λ(pv + p′v′) = pΛ(v) + p′Λ(v′), and
Scott-continuous, i.e. for any countable increasing chain (vn)n∈N, Λ(supn(vn)) =
supn(Λ(vn)). The map (v, u1, . . . , un) �→ v @u1 . . . un is Scott-continuous on all
of its arguments but linear only on its first argument v.

Proof. Scott-continuity is because the scalar multiplication and the sum are
Scott-continuous. The linearity is because the matrices app, λ are associated with
linear maps (namely, they have non-zero coefficients only on singleton multisets,
see (12)) as well as the left-most component of Ev, see (9). ��

For any Γ ⊆ Δ there exists the projection pr : P(D)Δ → P(D)Γ . Then,
given a matrix v ∈ P

(
DΓ ⇒ D

)
we denote by v↑Δ∈ P

(
DΔ ⇒ D

)
the matrix

corresponding to the pre-composition of the morphism associated with v with
pr. This can be explicitly defined by, for m ∈ Mf(|D|)Δ, d ∈ |D|,

(
v↑Δ

)

m ,d
=

v(m x)x∈Γ ,d if ∀y ∈ Δ \ Γ,my = [], and
(
v↑Δ

)

m ,d
= 0 otherwise.

We define an operation φ acting on the relations R ⊆ ⋃
Γ

(
P

(DΓ ⇒ D) × Λ+
Γ

)
.

Each component φΓ (R) ⊆
(
P

(
DΓ ⇒ D

))
× Λ+

Γ is given by:

(v,M) ∈ φΓ (R) iff ∀Δ ⊇ Γ,∀n ∈ N,∀u1, . . . , un ∈ P
(
DΔ ⇒ D

)

∀N1, . . . , Nn ∈ Λ+
Δ, s.t. (ui, Ni) ∈ R for all i ≤ n,

v↑Δ @u1 . . . un ≤
∑

h∈HNFΔ
Red∞

M N1 ... Nn,h�h�Δ.
(13)

The above definition is similar to Eq. (11), giving D�+1 from D�. In the following
we look for a fixed-point of φ (Proposition 3). Its quest is not simple because φ is
not monotone. We derive then from φ a monotone operator ψ on a larger space,
and we compute its fixed-point by using Tarski’s Theorem (Lemma 3).

Given (R+, R−) ∈ P
(⋃

Γ

(
P

(
DΓ ⇒ D

)
× Λ+

Γ

))2
, we define ψ(R+, R−) =

(φ(R−), φ(R+)). Given two such pairs (R+
1 , R−

1), (R+
2 , R−

2), we define (R+
1 , R−

1)
� (R+

2 , R−
2) iff R+

1 ⊆ R+
2 and R−

1 ⊇ R−
2 .

374 T. Leventis and M. Pagani

Lemma 2. The relation � is an order relation giving a complete lattice on
P

(⋃
Γ

(
P

(
DΓ ⇒ D

)
× Λ+

Γ

))2
.

Thanks to the previous lemma, we set (�+,�−) as the glb of the set {(R+, R−) |
ψ(R+, R−) � (R+, R−)} of the pre-fixed points of ψ.

Lemma 3. ψ(�+,�−) = (�+,�−), so �+ = φ(�−) and �− = φ(�+).

Proof. One can check that ψ is monotone increasing wrt �, so the result follows
from Tarski’s Theorem on fixed points. ��

Lemma 4. For any R ⊆
⋃

Γ

(
P

(
DΓ ⇒ D

)
× Λ+

Γ

)
and M ∈ Λ+

Γ , the set {v ∈
P

(
DΓ ⇒ D

)
| (v,M) ∈ φΓ (R)} contains 0, is downward closed and chain closed.

Proof. Consequence of the fact that the application v @ u1 . . . un and the lifting
v↑Δ are Scott-continuous (Lemma 1). Also, v↑Δ is linear as well as v @u1 . . . un

on its left argument v (always Lemma 1), so 0↑Δ @u1 . . . un = 0. ��

Proposition 3. We have �+ = �−. From now on we denote it simply by �.
We note �Γ its component on

(
P

(
DΓ ⇒ D

))
× Λ+

Γ .

Proof. First (�−,�+) is a (pre-)fixed point of ψ so (�+,�−) � (�−,�+), i.e.
�+ ⊆ �−. To prove the converse, we reason by induction on |D|. For v ∈
P

(
DΓ ⇒ D

)
and � ∈ N, we note v|� its restriction to

∣
∣DΓ ⇒ D�

∣
∣, i.e.: (v|�)m ,d =

vm ,d if d ∈ |D�|, and (v|�)m ,d = 0 otherwise. Notice that v|� is a morphism
P

(
DΓ ⇒ D

)
, since v|� ≤ v ∈ P

(
DΓ ⇒ D

)
. We prove by induction on � that:

∀v ∈ P
(
DΓ ⇒ D

)
,∀M ∈ Λ+

Γ , (v,M) ∈ �− implies (v|�,M) ∈ �+.

For � = 0 we have v|0 = 0 so by Lemma 4 (v|0,M) ∈ �+ = φ(�−). At level
� + 1 we want to prove (v|�+1,M) ∈ �+ = φ(�−). Let Δ ⊇ Γ , u1, . . . , un ∈
P

(
DΔ ⇒ D

)
, N1, . . . , Nn ∈ Λ+

Δ such that for all i ≤ n, (ui, Ni) ∈ �−. By induc-
tion hypothesis we have ((ui)|�, Ni) ∈ �+ for all i ≤ n. Besides by hypothesis
(v,M) ∈ �− = φ(�+) and we have v|�+1 ≤ v so Lemma 4 gives (v|�+1,M) ∈
φ(�+). Hence v|�+1↑Δ @ (u1)|� . . . (un)|� ≤

∑
h∈HNFΔ

Red∞
MN1...Nn,h�h�Δ. We

conclude by observing that v|�+1↑Δ @(u1)|� . . . (un)|� = v|�+1↑Δ @ u1 . . . un.
Now if (v,M) ∈ �− then for all � ∈ N, (v|�,M) ∈ �+, but we have v =

sup�∈N
v|� so Lemma 4 gives (v,M) ∈ �+. ��

The key lemma. Lemma 9 is the so-called key-lemma for the relation �. The
reasoning is standard, except for the proof of Lemma8 allowing strong adequacy.

Lemma 5. For M ∈ Λ+
x,Γ , N ∈ Λ+

Γ , (v, (λx.M)N)∈�Γ iff (v,M{N/x})∈�Γ .

Proof. Observe that for all n ∈ N, N1, . . . , Nn ∈ Λ+ and h ∈ HNF we have
Red∞

(λx.M)NN1...Nn,h = Red∞
M{N/x}N1...Nn,h. ��

Lemma 6. Let (v,M) and (r, L) in �Γ , then (pv + (1 − p)r,M +p L) ∈ �Γ .

Adequacy and Full-Abstraction for Pcoh! 375

Proof. Simply observe that for all h ∈ HNF and N1, . . . , Nn ∈ Λ+ we have
Red∞

(M+pL)N1...Nn,h = pRed∞
MN1...Nn,h + (1 − p)Red∞

LN1...Nn,h. ��

Lemma 7. For all x ∈ Γ , (prΓ
x , x) ∈ �Γ .

Proof. Given any Δ ⊇ Γ , n ∈ N and (u1, N1), . . . , (un, Nn) ∈ �Δ, we have:
∑

h∈HNFΔ

Red∞
xN1...Nn,h�h�Δ = �xN1 . . . Nn�Δ = prΔ

x @ �N1�
Δ . . . �Nn�Δ

Besides for all i ≤ n, as (ui, Ni) ∈ �Δ we have ui ≤
∑

h∈HNFΔ
Red∞

Ni,h�h�Δ ≤
�Ni�

Δ. The latter inequality is because Proposition 2 implies that for all k ∈ N,∑
h∈HNFΔ

Redk
Ni,h�h� ≤ �Ni�. The application @ being increasing in both its

arguments we have prΓ
x↑Δ @u1 . . . un ≤ prΔ

x @ �N1�
Δ . . . �Nn�Δ. ��

Lemma 8. Let (v,M) ∈
(
P

(
DΓ ⇒ D

))
× Λ+

Γ , we have (v,M) ∈ �Γ iff for all
(r, L) ∈ �Δ with Δ ⊇ Γ , (v↑Δ @ r,ML) ∈ �Δ.

Proof. If (v,M) ∈ �Γ = φΓ (�) and (r, L) ∈ �Δ then using the definition of φ
it is easy to check that (v↑Δ @ r,ML) ∈ �Δ. Conversely if for all (r, L) ∈ �Δ

we have (v↑Δ @ r,ML) ∈ �Δ and we want to prove that (v,M) ∈ φΓ (�) then
the conditions of Eq. (13) trivially holds whenever n ≥ 1, so we need to consider
only the case for n = 0.

Suppose that for all (r, L) ∈ �Δ, (v↑Δ @ r,ML) ∈ �Δ, let us prove that
v ≤

∑
h∈HNFΓ

Red∞
M,h�h�Γ . Let x be a fresh variable, according to Lemma 7 we

have (prx,Γ
x , x) ∈ �x,Γ so v↑x,Γ @prx,Γ

x ≤
∑

h∈HNFx,Γ
Red∞

Mx,h�h�x,Γ . Then:

v = Λ(v↑x,Γ @ prx,Γ
x) extensionality ofD

≤ Λ(
∑

h∈HNFx,Γ

Red∞
Mx,h�h�x,Γ) monotonicity Λ(),Lemma 1

=
∑

h∈HNFx,Γ

Red∞
Mx,hΛ(�h�x,Γ) linearity and contin.Λ(),Lemma 1

=
∑

h∈HNFx,Γ

Red∞
Mx,h�λx.h�Γ def. of Λ().

One can check that for h ∈ HNFx,Γ , Red∞
Mx,h =

∑
h0∈HNFΓ

Red∞
M,h0

Red∞
h0x,h

(recall that x is not free in M). If h0 is a head-normal form yP1 . . . Pm then
Red∞

h0x,h �= 0 only if h = yP1 . . . Pmx with x /∈ FV(yP1 . . . Pm) (and Red∞
h0x,h =

1). If h0 = λx0.h
′ then Red∞

h0x,h �= 0 only if h = h′{x/x0} (and Red∞
h0x,h = 1).

In the first case we have �λx.h�Γ = �λx.(h0x)�Γ = �h0�
Γ . In the second case

we have λx.h = h0 modulo α-equivalence and �λx.h�Γ = �h0�
Γ . Therefore:

v ≤
∑

h0∈HNFΓ
Red∞

M,h0
�h0�

Γ . ��

Lemma 9 (Key Lemma). For all M ∈ Λ+
Γ with Γ = {y1, . . . , yn}, for all Δ ⊇

Γ , for all u1,. . . ,un in P
(
DΔ ⇒ D

)
and N1,. . . ,Nn in Λ+

Δ with (ui, Ni) ∈ �Δ,

�M�Γ ◦ (u1, . . . , un) �Δ M{N1/y1, . . . , Nn/yn}

376 T. Leventis and M. Pagani

Proof. The proof is by induction on M . The abstraction uses Lemmas 5 and 8,
the application uses Lemma 8 and the barycentric sum Lemma 6. ��

Theorem 1 (Strong adequacy). For all M ∈ Λ+
Γ we have:

�M�Γ =
∑

h∈HNFΓ

Red∞
M,h�h�Γ .

Proof. The invariance of the interpretation by reduction (Proposition 2) gives
that for all n ∈ N, �M�Γ =

∑
N∈Λ+

Γ
Redn

M,N �N�Γ ≥
∑

h∈HNFΓ
Redn�h�Γ . When

n → ∞ we get �M�Γ ≥
∑

h∈HNFΓ
Red∞

M,h�h�Γ .
Conversely using Lemma 9 with Δ = Γ and (ui, Ni) = (πΓ

yi
, yi), which is in

�Γ thanks to Lemma 7, we get (�M�Γ ,M) ∈ �Γ . The definition of � = φ(�)
with Δ = Γ and n = 0 gives �M�Γ ≤

∑
h∈HNFΓ

Red∞
M,h�h�Γ . ��

5 Nakajima Trees and Full Abstraction

We apply our strong adequacy to infer full abstraction (Theorem 2). As men-
tioned in the Introduction, the bridge linking syntax and semantics is given by
the notion of probabilistic Nakajima tree defined by Leventis [12] (here Defini-
tions 2 and 3) in order to prove a separation theorem for Λ+. Lemma 11 shows
that the equality of Nakajima trees implies the denotational equality. The proof
of this lemma uses the strong adequacy property.

Definition 2. The set PT η
� of Nakajima trees with depth at most � ∈ N is

the set of subprobability distributions over value Nakajima trees VT η
� . These

sets are defined by mutual recursion as follows:

VT η
0 = ∅, VT η

�+1 =
{

λx.y T | x ∈ VN, y ∈ V,T ∈ (PT η
�)N

}
,

PT η
0 = {⊥}, PT η

�+1 =
{

T ∈ [0, 1]VT η
�+1 |

∑

t∈VT η
�+1

T (t) ≤ 1
}

.

The notation ⊥ represents the empty function (i.e. the distribution with empty
support), encoding undefinedness and allowing directed sets of approximants.

Value Nakajima trees represent infinitary η-long head-normal forms: up to
η-equivalence every head-normal form h = λx1 . . . xn.y M1 . . . Mm is equal to
λx1 . . . xn+k.y M1 . . . Mm xn+1 . . . xn+k for any k ∈ N and xn+1,. . . ,xn+k fresh,
and value Nakajima trees are infinitary variants of such η-expansions.

Definition 3. By mutual recursion we associate value trees VT η with head-
normal forms and general trees PT η with general Λ+ terms:

VT η
�+1(λx1 . . . xn.y M1 . . . Mm)

= λx1 . . . xnxn+1y PT η
� (M1) . . . PT η

� (Mm)PT η
� (xn+1) . . .

Adequacy and Full-Abstraction for Pcoh! 377

where the xis are pairwise distinct variables and, for i > m, the xi’s are fresh;

PT η
0(M) = ⊥, PT η

�+1(M) = t �→
∑

h∈(VTη
�+1)

−1(t)

Red∞
M,h

Remark 1. In [12], following the definition of deterministic Nakajima trees in [1],
the value tree VT η

�+1(λx1 . . . xn.y M1 . . . Mm) includes explicitly the difference
n − m. This yields a heavier but somewhat more convenient definition, as then
Lemma 10 also holds for � = 1. In this paper we chose to use the lighter definition.
This choice does not influence the Nakajima tree equality by Lemma 10.

Example 5. Figure 2(a) depicts some examples of value Nakajima trees asso-
ciated with the head-normal form λx1.y(Ωx1)x1. Notice that these trees are
equivalent to the Nakajima trees associated with y(Ωx1) as well as yΩ. In fact,
all these terms are contextually equivalent.

Figure 2(b) shows the Nakajima tree of depth 2 associated with the term
y(u +q v) +p (y′ +p′ Ω). Notice that the two sums +p and +p′ contribute to the
same subprobability distribution, whereas they are kept distinct from the sum
+q on the argument side of an application.

Figure 2(c) gives some examples of the Nakajima trees associated with the
term Θ(λf.(y+p y(f)), discussed also in Examples 2 and 3. Notice that the more
the depth � increases, the more the top-level distribution’s support grows.

It is clear that the family
(
PT η

� (M)
)

�∈N
converges to a limit, but we do not

need to make it explicit for our purposes, so we avoid defining the topology over⋃
� PT η

� yielding the convergence of
(
PT η

� (M)
)

�∈N
.

The next lemma shows that the first levels of a VT η of a head-normal form
h give a lot of information about the shape of h.

Lemma 10. Given two head-normal forms h = λx1 . . . xn.yM1 . . . Mm and h′ =
λx1 . . . xn′ .y′M ′

1 . . . M ′
m′ and any � ≥ 2, if VT η

� (h) = VT η
� (h′), then y = y′ and

n − m = n′ − m′.

Proof. The fact y = y′ follows immediately from the definition of VT η. Con-
cerning the second equality, one can assume n = n′ by η-expanding one of the
two terms, in fact VT η is invariant under η-expansion. Modulo α-equivalence,
we can then restrict ourselves to consider the case of h = λx1 . . . xn.yM1 . . . Mm

and h′ = λx1 . . . xn.yM ′
1 . . . M ′

m′ .
Suppose, by the sake of contradiction, that m > m′. Then we should have

PT η
�−1(Mm′+1) = PT η

�−1(xn+1), where xn+1 is a fresh variable, in particular
xn+1 /∈ FV(Mm′+1). Since �−1 > 0, we have that PT η

�−1(xn+1)(t) = 1 only if t is
equal to λz1z2xn+1PT η

�−2(z1)PT η
�−2(z2) . . . , otherwise PT η

�−1(xn+1)(t) = 0.
So, PT η

�−1(Mm′+1) = PT η
�−1(xn+1) implies that Red∞

Mm′+1,h > 0 for some h

having xn+1 as free variable, which is impossible since xn+1 /∈ FV(Mm′+1). ��

Thanks to the strong adequacy property we can prove that for M ∈ Λ+
Γ each

coefficient of �M�Γ is entirely defined by PT η
� (M) for � large enough. To do so

we define the following size on |D|, Mf(|D|) and Mf(|D|)Γ × |D|:

378 T. Leventis and M. Pagani

� = 1

λx1x2y

⊥ ⊥ ⊥
. . .

� = 2

λx1x2y

+ +

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

(a) VT η
� (λx1.y(Ωx1)x1) for some �, also equal to VT η

� (yΩ).

+

λx.y

+

λz.u

⊥ ⊥
. . .

q

λz.v

⊥ ⊥
. . .

1 − q
+

λz.x1

⊥ ⊥
. . .

1

. . .

p

λx.y′

+

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

(1 − p)p′

(b) PT η
2(y(u +q v) +p (y′ +p′ Ω)). Notice the layers of distributions.

� = 1
+

λx.y

⊥ ⊥
. . .

1

� = 2

+

λx.y

+

λz.x1

⊥ ⊥
. . .

1

+

λz.x2

⊥ ⊥
. . .

1

. . .

p

λx.y

+

λz.y

⊥ ⊥
. . .

1

+

λz.x1

⊥ ⊥
. . .

1

. . .

1 − p

(c) PT η
� (Θ(λf.(y +p y(f))) for some �

Fig. 2. Examples of Nakajima trees. Distributions are represented by barycentric sums,
depicted as + nodes whose outgoing edges are weighted by probabilities.

Adequacy and Full-Abstraction for Pcoh! 379

– #(�) = 0 for the base element,
– #(m :: d) = #(m) + #(d) for m ∈ Mf(|D|) and d ∈ |D|,
– #([d1, . . . , dn]) = n +

∑n
i=1 #(di) for d1, . . . , dn ∈ |D|,

– #(m, d) = #(d) +
∑

x∈Γ (#(mx)) for m ∈ Mf(|D|)Γ and d ∈ |D|.

Lemma 11. Given � ∈ N and M,N ∈ Λ+
Γ , if PT η

� (M) = PT η
� (N) then for any

(m, d) ∈ Mf(|D|)Γ × |D| with #(m, d) < �, we have �M�Γ
m ,d = �N�Γ

m ,d.

Proof. We do induction on �. If � ≤ 1, then #(m, d) = 0 implies d = � and
for every x ∈ Γ , mx = []. In this case we remark that both �M�Γ

m ,d, �N�Γ
m ,d

are null. This in fact can be easily checked by inspecting the rules of Fig. 1,
computing the matrix denoting a term by structural induction over the term.

Otherwise, by Theorem 1, we have: �M�Γ
m ,d =

∑
h∈HNFΓ

Red∞
M,h�h�Γ

m ,d. This
last sum can be refactored as

∑
t∈VTη

�

∑
h∈(VTη

�)
−1(t) Red∞

M,h�h�Γ
m ,d. A similar

reasoning for N gives �N�Γ
m ,d =

∑
t∈VTη

�

∑
h∈(VTη

�)
−1(t) Red∞

N,h�h�Γ
m ,d.

Let us fix a t ∈ VT η
� and (m, d) ∈ Mf(|D|)Γ × |D| with #(m, d) < �. Let us

prove that:

� for any h, h′ ∈ (VT η
�)−1(t), we have �h�Γ

m ,d = �h′�Γ
m ,d.

Notice that � implies �M�Γ
m ,d = �N�Γ

m ,d, since the hypothesis PT η
� (M) =

PT η
� (N) gives

∑
h∈(VTη

�)
−1(t) Red∞

M,h =
∑

h∈(VTη
�)

−1(t) Red∞
N,h, for any t ∈ VT η

� .
Let then h = λx1 . . . xn.yM1 . . . Mk and h′ = λx1 . . . xn′ .y′M ′

1 . . . M ′
k′ . Since

� ≥ 2, VT η
� (h) = VT η

� (h′) implies by Lemma 10 that y = y′ and n− k = n′ − k′.
Since D is extensional (see Sect. 3), by η-expanding one of the two terms, we can
suppose n = n′ and, then, k = k′. Besides if n > 0 let us write d = m :: d′, we
have �h�Γ

m ,d = �λx2 . . . xn.yM1 . . . Mk�x1,Γ
(m,m),d′ with #((m,m), d′) = #(m, d),

and similarly for �h′�Γ
m ,d. So, we can reduce to consider the case: h = yM1 . . . Mk

and h′ = yM ′
1 . . . M ′

k. If k = 0 the claim � is trivial, otherwise by unfolding the
applications of h using the applicative case in Fig. 1, we have that:

�h�Γ
m ,d =

∑

(m 0,...,m k)
s.t. m=

⊎
i m i

∑

m1,...,mk

∈Mf(|D|)

�y�Γ
m0,m1::···::mk::d

(�M1�
Γ)m 1,m1 . . . (�Mk�Γ)m k,mk

and the same for h′, replacing each Mi with M ′
i . Notice that �y�Γ

m0,m1::···::mk::d
�=

0 implies (m0)y = [m1 :: · · · ::mk :: d], hence #(mi) < #(m0) for any i ≤ k, thus
#(mi,mi) < #(mi) + #(m0) ≤ #(m) ≤ #(m, d) < � and #(mi,mi) < � − 1.
Moreover, the hypothesis VT η

� (h) = VT η
� (h′), implies PT η

�−1(Mi) = PT η
�−1(M

′
i)

for any i ≤ k, so we conclude by induction hypothesis on each term in the sums
appearing in (�Mi�

Γ)m i,mi and (�M ′
i�

Γ)m i,mi . ��

Corollary 1. Let M,N ∈Λ+
Γ , ∀�∈N,PT η

� (M)=PT η
� (N) implies �M�Γ =�N�Γ .

380 T. Leventis and M. Pagani

Theorem 2. For any two terms M,N ∈ λ+
Γ , the following are equivalent:

1. M and N are contextually equivalent;
2. M and N have the same Nakajima trees;
3. M and N have the same interpretation in D.

Proof. (1) to (2) is given by [12, Theorem 10.1]. From (2) and Corollary 1, we get
(3). Finally, (3) implies (1) by the adequacy of probabilistic coherence spaces,
proven in [6, Corollary 25]. ��

References

1. Barendregt, H.: The Lambda-Calculus: Its Syntax and Semantics. Studies in Logic
and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984)

2. Clairambault, P., Paquet, H.: Fully abstract models of the probabilistic lambda-
calculus. In: Ghica, D.R., Jung, A. (eds.) 27th EACSL Annual Conference on
Computer Science Logic, CSL 2018, 4–7 September 2018, LIPIcs, Birmingham,
UK, vol. 119, pp. 16:1–16:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2018). https://doi.org/10.4230/LIPIcs.CSL.2018.16

3. Crubillé, R.: Probabilistic stable functions on discrete cones are power series. In:
Dawar, A., Grädel, E. (eds.) Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, LICS 2018, Oxford, UK, 09–12 July 2018, pp.
275–284. ACM (2018). https://doi.org/10.1145/3209108.3209198, http://doi.acm.
org/10.1145/3209108.3209198

4. Crubillé, R., Ehrhard, T., Pagani, M., Tasson, C.: The free exponential modality
of probabilistic coherence spaces. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS
2017. LNCS, vol. 10203, pp. 20–35. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54458-7 2

5. Danos, V., Ehrhard, T.: Probabilistic coherence spaces as a model of higher-order
probabilistic computation. Inf. Comput. 209(6), 966–991 (2011)

6. Ehrhard, T., Pagani, M., Tasson, C.: The computational meaning of probabilistic
coherence spaces. In: Grohe, M. (ed.) Proceedings of the 26th Annual IEEE Sym-
posium on Logic in Computer Science (LICS 2011), pp. 87–96. IEEE Computer
Society Press (2011)

7. Ehrhard, T., Pagani, M., Tasson, C.: Probabilistic coherence spaces are fully
abstract for probabilistic PCF. In: Sewell, P. (ed.) The 41th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2014, San Diego, USA. ACM (2014)

8. Ehrhard, T., Tasson, C.: Probabilistic call by push value (2016). http://arxiv.org/
abs/1607.04690

9. Girard, J.Y.: Between logic and quantic: a tract. In: Ehrhard, T., Girard, J.Y.,
Ruet, P., Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical
Society Lecture Note Series, vol. 316. CUP, Cambridge (2004)

10. Hyland, M.: A syntactic characterization of the equality in some models for the
lambda calculus. J. London Math. Soc. 12, 361–370 (1976)

11. Laird, J., Manzonetto, G., McCusker, G., Pagani, M.: Weighted relational models
of typed lambda-calculi. In: 28th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2013, New Orleans, LA, USA, 25–28 June 2013. IEEE
Computer Society, June 2013

https://doi.org/10.4230/LIPIcs.CSL.2018.16
https://doi.org/10.1145/3209108.3209198
http://doi.acm.org/10.1145/3209108.3209198
http://doi.acm.org/10.1145/3209108.3209198
https://doi.org/10.1007/978-3-662-54458-7_2
https://doi.org/10.1007/978-3-662-54458-7_2
http://arxiv.org/abs/1607.04690
http://arxiv.org/abs/1607.04690

Adequacy and Full-Abstraction for Pcoh! 381

12. Leventis, T.: Probabilistic Böhm trees and probabilistic separation. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, 09–12 July 2018, pp. 649–658 (2018). https://doi.org/10.1145/
3209108.3209126

13. Manzonetto, G.: A general class of models of H∗. In: Královič, R., Niwiński, D.
(eds.) MFCS 2009. LNCS, vol. 5734, pp. 574–586. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03816-7 49

14. Pitts, A.M.: Computational adequacy via ‘mixed’ inductive definitions. In:
Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993.
LNCS, vol. 802, pp. 72–82. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-58027-1 3

15. Wadsworth, C.P.: The relation between computational and denotational properties
for scott’s D∞-models of the lambda-calculus. SIAM J. Comput. 5, 488–521 (1976)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/3209108.3209126
https://doi.org/10.1145/3209108.3209126
https://doi.org/10.1007/978-3-642-03816-7_49
https://doi.org/10.1007/3-540-58027-1_3
https://doi.org/10.1007/3-540-58027-1_3
http://creativecommons.org/licenses/by/4.0/

A Sound and Complete Logic
for Algebraic Effects

Cristina Matache(B) and Sam Staton

University of Oxford, Oxford, UK
cristina.matache@balliol.ox.ac.uk

Abstract. This work investigates three notions of program equivalence
for a higher-order functional language with recursion and general alge-
braic effects, in which programs are written in continuation-passing style.
Our main contribution is the following: we define a logic whose formu-
las express program properties and show that, under certain conditions
which we identify, the induced program equivalence coincides with a
contextual equivalence. Moreover, we show that this logical equivalence
also coincides with an applicative bisimilarity. We exemplify our general
results with the nondeterminism, probabilistic choice, global store and
I/O effects.

1 Introduction

Logic is a fundamental tool for specifying the behaviour of programs. A general
approach is to consider that a logical formula φ encodes a program property, and
the satisfaction relation of the logic, t |= φ, asserts that program t enjoys prop-
erty φ. An example is Hennessy-Milner logic [12] used to model concurrency and
nondeterminism. Other program logics include Hoare logic [13], which describes
imperative programs with state, and more recently separation logic [28]. Both
state and nondeterminism are examples of computational effects [25], which rep-
resent impure behaviour in a functional programming language. The logics men-
tioned so far concern languages with first-order functions, so as a natural exten-
sion, we are interested in finding a logic which describes higher-order programs
with general effects.

The particular flavour of effects we consider is that of algebraic effects devel-
oped by Plotkin and Power [32–34]. This is a unified framework in which effectful
computation is triggered by a set of operations whose behaviour is axiomatized
by a set of equations. For example, nondeterminism is given by a binary choice
operation or(−,−) that satisfies the equations of a semilattice. Thus, general
effectful programs have multiple possible execution paths, which can be visual-
ized as an (effect) tree, with effect operations labelling the nodes. Consider the
following function or suc which has three possible return values, and the effect
tree of (or suc 2):

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 382–399, 2019.
https://doi.org/10.1007/978-3-030-17127-8_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_22&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_22

A Sound and Complete Logic for Algebraic Effects 383

or suc = λx:nat.
or(x, or(x + 1, x + 2))

or
2 or

3 4

(or suc 2)

Apart from state and nondeterminism, examples of algebraic effects include prob-
abilistic choice and input and output operations.

Apart from providing a specification language for programs, a logic can also
be used to compare two different programs. This leads to a notion of program
equivalence: two programs are equivalent when they satisfy exactly the same
formulas in the logic.

Many other definitions of program equivalence for higher-order languages
exist. An early notion is contextual equivalence [26], which asserts that two pro-
grams are equivalent if they have the same observable behaviour in all program
contexts. However, this is hard to establish in practice due to the quantification
over all contexts. Another approach, which relies on the existence of a suitable
denotational model of the language, is checking equality of denotations. Yet
another notion, meant to address the shortcomings of the previous two, is that
of applicative bisimilarity [1].

Given the wide range of definitions of program equivalence, comparing them
is an interesting question. For example, the equivalence induced by Hennessy-
Milner logic is known to coincide with bisimilarity for CCS. Thus, we not only
aim to find a logic describing general algebraic effects, but also to compare it to
existing notions of program equivalence.

Program equivalence for general algebraic effects has been studied by Johann,
Simpson and Voigtländer [17] who define a notion of contextual equivalence and
a corresponding logical relation. Dal Lago, Gavazzo and Levy [7] provide an
abstract treatment of applicative bisimilarity in the presence of algebraic effects.
Working in a typed, call-by-value setting, Simpson and Voorneveld [38] propose a
modal logic for effectful programs whose induced program equivalence coincides
with applicative bisimilarity, but not with contextual equivalence (see counter-
example in Sect. 5). Dal Lago, Gavazzo and Tanaka [8] propose a notion of
applicative similarity that coincides with contextual equivalence for an untyped,
call-by-name effectful calculus.

These papers provide the main starting point for our work. Our goal is to
find a logic of program properties which characterizes contextual equivalence for
a higher-order language with algebraic effects. We study a typed call-by-value
language in which programs are written in continuation-passing style (CPS).
CPS is known to simplify contextual equivalence, through the addition of control
operators (e.g. [5]), but it also implies that all notions of program equivalence we
define can only use continuations to test return values. Contextual equivalence
and bisimilarity for lambda-calculi with control, but without general effects, have
been studied extensively (e.g. [4,15,23,41]).

In CPS, functions receive as argument the continuation (which is itself a
function) to which they pass their return value. Consider the function that adds
two natural numbers. This usually has type nat → nat → nat, but its CPS
version is defined as: addk = λ(n:nat,m:nat, k:nat→R). k (n + m) for some
fixed return type R. The function or suc becomes in CPS:

384 C. Matache and S. Staton

or succ = λ(x:nat, k:nat→R). or(k x, or(addk (x, 1, k), addk (x, 2, k))).

A general translation of direct-style functions into CPS can be found in Sect. 5.
We fix a calculus named ECPS (Sect. 2), in which programs are not expected

to return, except through a call to the continuation. Contextual equivalence
is defined using a custom set of observations P, where the elements of P are
sets of effect trees. We consider a logic F whose formulas express properties of
ECPS programs (Sect. 3). For example, or succ satisfies the following formula:
φ = ({2}, ({3} ∨ {4}) �→ �) �→ ♦.

Here, ♦ is the set of all effect trees for which at least one execution path
succeeds and � is the set of trees that always succeed. So or succ |=F φ says
that, when given arguments 2 and a continuation that always succeeds for input
3 or 4, then or succ may succeed. In other words, or succ may ‘return’ 3 or 4
to the continuation. In contrast, or succ |=F φ′ = ({2}, ({3} ∨ {4}) �→ �) �→ �
says that the program or succ must return 3 or 4 to the continuation. Thus
or succ �|=F φ′ because the continuation k might diverge on 2.

Another example can be obtained by generalizing the or succ function to
take a function as a parameter, rather than using addk:

or succ’ = λ(x : nat, k : nat→R, f : (nat, nat, nat→R)→R).
or(k x, or(f (x, 1, k), f (x, 2, k)))

|=F
(
{2}, {4} �→ ♦,

(
({2}, {2}, {4} �→ ♦) �→ ♦

)) �→ ♦.

The formula above says that or succ’ may call f with arguments 2, 2 and k.
The main theorem concerning the logic F (Theorem 1) is that, under certain

restrictions on the observations in P, logical equivalence coincides with con-
textual equivalence. In other words, F is sound and complete with respect to
contextual equivalence. The proof of this theorem, outlined in Sect. 4, involves
applicative bisimilarity as an intermediate step. Thus, we show in fact that three
notions of program equivalence for ECPS are the same: logical equivalence, con-
textual equivalence and applicative bisimilarity. Due to space constraints, proofs
are omitted but they can be found in [21].

2 Programming Language – ECPS

We consider a simply-typed functional programming language with general
recursion, a datatype of natural numbers and general algebraic effects as intro-
duced by Plotkin and Power [32]. We will refer to this language as ECPS because
programs are written in continuation-passing style.

ECPS distinguishes between terms which can reduce further, named compu-
tations, and values, which cannot reduce. ECPS is a variant of both Plotkin’s
PCF [31] and Levy’s Jump-With-Argument language [20], extended with alge-
braic effects. A fragment of ECPS is discussed in [18] in connection with logic.

Types A,A1, B := (A1, . . . , An)→R | nat (n ≥ 0)
Typing contexts Γ := ∅ | Γ, x : A.

A Sound and Complete Logic for Algebraic Effects 385

The only base type in ECPS is nat. The return type of functions, R, is
fixed and is not a first-class type. Intuitively, we consider that functions are
not expected to return. A type in direct style A → B becomes in ECPS:
(A,B→R)→R. In the typing context (Γ, x : A), the free variable x does not
appear in Γ .

First, consider the pure fragment of ECPS, without effects, named CPS:

Values v, w := zero | succ(v) | λ(x1:A1, . . . , xn:An).t | x (n ≥ 0)
Computations s, t := v(w1, . . . , wn) | case v of {zero ⇒ s, succ(x) ⇒ t} |

(rec x.v)(w1, . . . , wn).

Variables, natural numbers and lambdas are values. Computations include func-
tion application and an eliminator for natural numbers. The expression rec x.v
is a recursive definition of the function v, which must be applied. If exactly
one argument appears in a lambda abstraction or an application term, we will
sometimes omit the parentheses around that argument.

There are two typing relations in CPS, one for values Γ 	 v : A, which says
that value v has type A in the context Γ , and one for computations Γ 	 t : R.
This says that t is well-formed given the context Γ . All computations have the
same return type R. We also define the order of a type recursively, which roughly
speaking counts the number of function arrows → in a type.

Γ, x : A 	 x : A

Γ,
−−−→
x : A 	 t : R

Γ 	 λ(
−−→
x:A).t : (

−→
A)→R Γ 	 zero : nat

Γ 	 v : nat
Γ 	 succ(v) : nat

Γ 	 v : (
−→
A)→R (Γ 	 wi : Ai)i

Γ 	 v (−→w) : R
Γ, x : (

−→
A)→R 	 v : (

−→
A)→R (Γ 	 wi : Ai)i

Γ 	 (rec x.v)(−→w) : R

Γ 	 v : nat Γ 	 t : R Γ, x : nat 	 s : R
Γ 	 case v of {zero ⇒ t, succ(x) ⇒ s} : R

ord(nat) = 0 ord(()→R) = 1
ord((A1, . . . , An)→R) = max1≤i≤n(ord(Ai)) + 1 (if n > 0)

To introduce algebraic effects into our language, we consider a new kind
of context Σ, disjoint from Γ , which we call an effect context. The symbols σ
appearing in Σ stand for effect operations and their type must have either order 1
or 2. For example, the binary choice operation or : (()→R, ()→R)→R expects two
thunked computations. The output operation output : (nat, ()→R)→R expects
a parameter and a continuation. An operation signifying success, which takes no
arguments, is ↓ : ()→R. Roughly, Σ could be regarded as a countable algebraic
signature.

We extend the syntax of CPS with effectful computations. The typing rela-
tions now carry a Σ context: Γ 	Σ v : A and Γ 	Σ t : R. Otherwise, the typing
judgements remain unchanged; we have a new rule for typing effect operations:

386 C. Matache and S. Staton

s, t := . . . | σ(−→v ,
−→
k)

σ : (
−→
A,

−→
B)→R ∈ Σ (Γ 	Σ vi : Ai)i (Γ 	Σ kj : Bj)j

Γ 	Σ σ(−→v ,
−→
k) : R

In ECPS, the only type with order 0 is nat, so in fact Ai = nat for all i. Notice
that the grammar does not allow function abstraction over a symbol from Σ
and that σ is not a first-class term. So we can assume that Σ is fixed, as in the
examples from Sect. 2.1.

As usual, we identify terms up to alpha-equivalence. Substitution of values
for free variables that are not operations, v [w/x] and t [w/x], is defined in the
standard way by induction on the structure of v and t. We use n to denote the
term succn(zero). Let (Σ) be the set of well-formed closed computations and
(Σ A) the set of closed values of type A.

2.1 Operational Semantics

We define a family of relations on closed computation terms (−→) ⊆ (Σ)×(Σ)
for any effect context Σ:

(λ(
−−→
x:A).t) (−→w) −→ t[−→w/−→x]

(rec x.v) (−→w) −→ (v[(λ(
−→
y:A).(rec x.v)(−→y))/x]) (−→w)

case zero of {zero ⇒ s, succ(x) ⇒ t} −→ s
case succ(v) of {zero ⇒ s, succ(x) ⇒ t} −→ t[v/x].

Observe that the reduction given by −→ can either run forever or terminate
with an effect operation. If the effect operation does not take any arguments
of order 1 (i.e. continuations), the computation stops. If the reduction reaches
σ(−→v ,

−→
k), the intuition is that any continuation ki may be chosen, and executed

with the results of operation σ. Thus, repeatedly evaluating effect operations
leads to the construction of an infinitely branching tree (similar to that in [32]),
as we now explain, which we call an effect tree. A path in the tree represents a
possible execution path of the program.

An effect tree, of possibly infinite depth and width, can contain:

– leaves labelled ⊥, which signifies nontermination of −→;
– leaves labelled σ−→v , where σ : (

−→
A)→R ∈ Σ and (Σ vi : Ai)i;

– nodes labelled σ−→v , where σ : (
−→
A,

−→
B)→R ∈ Σ and each 	Σ vi : Ai; such a

node has an infinite number of children t0, t1,

Denote the set of all effect trees by TreesΣ . This set has a partial order: tr1 ≤ tr2
if and only if tr1 can be obtained by replacing subtrees of tr2 by ⊥. Every
ascending chain t1 ≤ t2 ≤ . . . has a least upper bound

⊔
n tn. In fact TreesΣ is

the free pointed Σ-algebra [2] and therefore also has a coinductive property [9].
Next, we define a sequence of effect trees associated with each well-formed

closed computation. Each element in the sequence can be seen as evaluating the
computation one step further. Let �−�(−) : (Σ) × N −→ TreesΣ :

A Sound and Complete Logic for Algebraic Effects 387

�t�0 = ⊥

�t�m+1 =

{
�s�m if t −→ s

σ−→v (
((

�ki (n1, . . . , npi
)�m

)
n1,...,npi

∈N

)
i
) if t = σ(−→v ,

−→
k)

These are all the cases since well-formed computations do not get stuck. We
define the function �−� : (Σ) −→ TreesΣ as the least upper bound of the chain
{�tn�}n∈N: �t� =

⊔
n∈N

�t�n.
We now give examples of effect contexts Σ for different algebraic effects, and

of some computations and their associated effect trees.

Example 1 (Pure functional computation). Σ = {↓ : ()→R}. Intuitively, ↓ is a
top-level success flag, analogous to a ‘barb’ in process algebra. This is to ensure
a reasonable contextual equivalence for CPS programs, which never actually
return results. For example, loop = (rec f.λ().(f x)) () runs forever, and

test zero = λ(y:nat). case y of {zero ⇒ ↓ (), succ(x) ⇒ loop}
is a continuation that succeeds just when it is passed zero. Generally, an effect
tree for a pure computation is either ↓ if it succeeds or ⊥ otherwise.

Example 2 (Nondeterminism). Σ = {or : (()→R, ()→R)→R, ↓ : ()→R}. Intu-
itively, or(k1, k2) performs a nondeterministic choice between computations k1 ()
and k2 (). Consider a continuation test 3 : nat→R that diverges on 3 and suc-
ceeds otherwise. The program or succ from the introduction is in ECPS:

or succ = λ(x:nat, k:nat→R). or(λ(). k x,

λ(). or(λ().k (succ(x)),
λ().k (succ(succ(x)))))

or
↓ or

�or succ (2, test 3)� =

Example 3 (Probabilistic choice). Σ = {p-or : (()→R, ()→R)→R, ↓ : ()→R}.
Intuitively, the operation p-or(k1, k2) chooses between k1 () and k2 () with prob-
ability 0.5. Consider the following term which encodes the geometric distribution:

geom = λk:nat→R.(
rec f. λ(n:nat, k′:nat→R).p-or(λ().k′ n, λ().f (succ(n), k′))

)
(1, k).

The probability that geom passes a number n > 0 to its continuation is 2−n. To
test it, consider k = (λx:nat. ↓ ()); then �geom k� is an infinite tree:

p-or

↓ �geom k�

�geom k� =

Example 4 (Global store). L is a finite set of locations storing natural numbers
and Σ = {lookupl : (nat→R)→R, updatel : (nat, ()→R)→R | l ∈ L}∪{↓ : ()→R}.
Intuitively, lookupl(k) looks up the value at storage location l, if this is n it

388 C. Matache and S. Staton

continues with k (n). For updatel(v, k) the intuition is: write the number v in
location l then continue with the computation k (). For example:

updatel0(1, λ().lookupl0(λx:nat.case x

of zero (), succ(y) loop)) =

updatel0,1

lookupl0

. . .

Only the second branch of lookupl0 can occur. The other branches are still
present in the tree because �−� treats effect operations as uninterpreted syntax.

Example 5 (Interactive input/output). Σ = {↓ : ()→R, output : (nat, ()→R)→R,
input : (nat→R)→R}. Intuitively, the computation input(k) accepts number n
from the input channel and continues with k (n). The computation output(v, k)
writes v to the output channel then continues with computation k (). Below is a
computation that inputs a number n then outputs it immediately, and repeats.

�echo� = � rec f. λ().

input(λx:nat. output(x, λ().f ())) () =

input

output0

echo

output1

echo

output2

echo

. . .

2.2 Contextual Equivalence

Informally, two terms are contextually equivalent if they have the same observ-
able behaviour in all program contexts. The definition of observable behaviour
depends on the programming language under consideration. In ECPS, we can
observe effectful behaviour such as interactive output values or the probability
with which a computation succeeds. This behaviour is encoded by the effect tree
of a computation. Therefore, we represent an ECPS observation as a set of effect
trees P . A computation t exhibits observation P if �t� ∈ P .

For a fixed set of effect operations Σ, we define the set P of possible observa-
tions. The elements of P are subsets of TreesΣ . Observations play a similar role
to the modalities from [38]. For our running examples of effects, P is defined as
follows:

Example 6 (Pure functional computation). Define P = {⇓} where ⇓ = {↓}.
There are no effect operations so the ⇓ observation only checks for success.

Example 7 (Nondeterminism). Define P = {♦,�} where:

♦ = {tr ∈ TreesΣ | at least one of the paths in tr has a ↓ leaf}
� = {tr ∈ TreesΣ | the paths in tr are all finite and finish with a ↓}.

The intuition is that, if �t� ∈ ♦, then computation t may succeed, whereas if
�t� ∈ �, then t must succeed.

A Sound and Complete Logic for Algebraic Effects 389

Example 8 (Probabilistic choice). Define P : TreesΣ −→ [0, 1] to be the least
function, by the pointwise order, such that:

P(↓) = 1 P(p-or(tr0, tr1)) =
1
2
P(tr0) +

1
2
P(tr1).

Notice that P(⊥) = 0. Then observations are defined as:

P>q = {tr ∈ TreesΣ | P(tr) > q} P = {P>q | q ∈ Q, 0 ≤ q < 1}.

This means that �t� ∈ P>q if the probability that t succeeds is greater than q.

Example 9 (Global store). Define the set of states as the set of functions from
storage locations to natural numbers: State = L −→ N. Given a state S, we
write [S↓] ⊆ TreesΣ for the set of effect trees that terminate when starting in
state S. More precisely, [−] is the least State-indexed family of sets satisfying
the following:

−
↓ ∈ [S↓]

l ∈ L trS(l) ∈ [S↓]
lookupl(tr0, tr1, tr2, . . .) ∈ [S↓]

l ∈ L tr ∈ [S[l := n]↓]
updatel,n(tr) ∈ [S↓]

The set of observations is: P = {[S↓] | S ∈ State}.

Example 10 (Interactive input/output). An I/O-trace is a finite word w over the
alphabet {?n | n ∈ N} ∪ {!n | n ∈ N}. For example, ?1 !1 ?2 !2 ?3 !3. The set of
observations is: P = {〈W 〉..., 〈W 〉↓ | W an I/O-trace}. Observations are defined
as the least sets satisfying the following rules:

−
tr ∈ 〈ε〉...

tr = ↓
tr ∈ 〈ε〉↓

trn ∈ 〈W 〉...

input(tr0, tr1, . . .) ∈ 〈(?n)W 〉...

tr′ ∈ 〈W 〉...

outputn(tr′) ∈ 〈(!n)W 〉...

and the analogous rules for 〈(?n)W 〉↓ and 〈(!n)W 〉↓. Thus, �t� ∈ 〈W 〉... if com-
putation t produces I/O trace W , and �t� ∈ 〈W 〉↓ if additionally t succeeds
immediately after producing W .

Using the set of observations P, we can now define contextual equivalence
as the greatest compatible and adequate equivalence relation between possibly
open terms of the same type. Adequacy specifies a necessary condition for two
closed computations to be related, namely producing the same observations.

Definition 1. A well-typed relation R = (Rv
A,Rc) (i.e. a family of relations

indexed by ECPS types where Rc relates computations) on possibly open terms
is adequate if:

∀s, t. 	Σ s Rc t =⇒ ∀P ∈ P. �s� ∈ P ⇐⇒ �t� ∈ P.

Relation R is compatible if it is closed under the rules in [21, Page 57]. As an
example, the rules for application and lambda abstraction are:

Γ 	Σ v Rv

(
−→
A)→R

v′ (Γ 	Σ wi Rv
Ai

w′
i)i

Γ 	Σ v(−→w) Rc v′(
−→
w′)

Γ,
−−−→
x : A 	Σ s Rc t

Γ 	Σ λ(
−−→
x:A).s Rv

(
−→
A)→R

λ(
−−→
x:A).t

390 C. Matache and S. Staton

Definition 2 (Contextual equivalence). Let CA be the set of well-typed rela-
tions on possibly open terms that are both compatible and adequate. Define con-
textual equivalence ≡ctx to be

⋃
CA.

Proposition 1. Contextual equivalence ≡ctx is an equivalence relation, and is
moreover compatible and adequate.

This definition of contextual equivalence, originally proposed in [11,19], can
be easily proved equivalent to the traditional definition involving program con-
texts (see [21, §7]). As Pitts observes [30], reasoning about program contexts
directly is inconvenient because they cannot be defined up to alpha-equivalence,
hence we prefer using Definition 2.

For example, in the pure setting (Example 1), we have 0 �≡ctx 1, because
test zero(0) �≡ctx test zero(1); they are distinguished by the observation ⇓.
In the state example, lookupl1(k) �≡ctx lookupl2(k), because they are distin-
guished by the context (λk:nat→R. [−]) (test zero) and the observation [S↓]
where S(l1) = 0 and S(l2) = 1. In the case of probabilistic choice (Example 3),
geom (λx:nat. ↓ ()) ≡ctx ↓ () because (geom (λx:nat. ↓ ())) succeeds with prob-
ability 1 (‘almost surely’).

3 A Program Logic for ECPS – F
This section contains the main contribution of the paper: a logic F of program
properties for ECPS which characterizes contextual equivalence. Crucially, the
logic makes use of the observations in P to express properties of computations.

In F , there is a distinction between formulas that describe values and those
that describe computations. Each value formula is associated an ECPS type A.
Value formulas are constructed from the basic formulas (φ1, . . . , φn) �→ P and
φ = {n}, where n ∈ N and P ∈ P, as below. The indexing set I can be infinite,
even uncountable. Computation formulas are simply the elements of P.

n ∈ N

{n} : nat

(val)

φ1 : A1 . . . φn : An P ∈ P

(φ1, . . . , φn) �→ P : (A1, . . . , An)→R

(φi : A)i∈I

∨i∈Iφi : A

(φi : A)i∈I

∧i∈Iφi : A

φ : A

¬φ : A

The satisfaction relation |=F relates a closed value 	Σ v : A to a value
formula φ : A of the same type, or a closed computation t to an observation P .
Relation t |=F P tests the shape of the effect tree of t.

v |=F {n} ⇐⇒ v = n

v |=F (φ1, . . . , φn) �→ P ⇐⇒ for all closed values w1, . . . , wn such that
∀i. wi |=F φi then v(w1, . . . , wn) |=F P

v |=F ∨i∈Iφi ⇐⇒ there exists j ∈ I such that v |=F φj

v |=F ∧i∈Iφi ⇐⇒ for all j ∈ I, v |=F φj

v |=F ¬φ ⇐⇒ it is false that v |=F φ

t |=F P ⇐⇒ �t� ∈ P.

A Sound and Complete Logic for Algebraic Effects 391

Example 11. Consider the following formulas, where only φ3 and φ4 refer to the
same effect context:

φ1 =
(
({3} �→ ♦) �→ ♦

) ∧ (
({4} �→ ♦) �→ ♦

) ∧ (
({3} �→ � ∧ {4} �→ �) �→ �

)

φ2 = ((∨n>1{n}) �→ P>q) �→ P>q/2

φ3 = ∧S∈State

(
({S(l)} �→ [S↓]) �→ [S↓]

)

φ4 = ∧S∈State ∧n∈N

(
({n}, () �→ [S[l0 := n, l1 := n + 1]↓]) �→ [S[l0 := n]↓]

)

φ5 = ∧k∈N ∨n1,...,nk∈N (() �→ 〈?n1!n1?n2!n2 . . . ?nk!nk〉...).

Given a function v : (nat→R)→R, v |=F φ1 means that v is guaranteed to call
its argument only with 3 or 4. The function geom from Example 3 satisfies φ2

because with probability 1/2 it passes to the continuation a number n > 1.
For example, the following satisfactions hold: λk:nat→R. lookupl(k) |=F φ3

and f = λ(x:nat, k:()→R). updatel1(succ(x), k) |=F φ4. The latter formula says
that, either f always succeeds, or f evaluated with n changes the state from
S[l0 := n] to S[l0 := n, l1 := n + 1] before calling its continuation. This is similar
to a total correctness assertion [S[l0 := n]](−)[S[l0 := n, l1 := n + 1]] from Hoare
logic, for a direct style program. Formula φ5 is satisfied by λ().echo, where echo
is the computation defined in Example 5.

Even though the indexing set I in ∧i∈I and ∨i∈I may be uncountable, the sets
of values and computations are countable. Since logical formulas are interpreted
over values and computations, all conjunctions and disjunctions are logically
equivalent to countable ones.

Definition 3 (Logical equivalence). For any closed values 	Σ v1 : A and
	Σ v2 : A, and for any closed computations 	Σ s1 and 	Σ s2:

v1 ≡F v2 ⇐⇒ ∀φ : A in F . (v1 |=F φ ⇐⇒ v2 |=F φ)
s1 ≡F s2 ⇐⇒ ∀P in F . (s1 |=F P ⇐⇒ s2 |=F P).

To facilitate equational reasoning, logical equivalence should be compatible, a
property proved in the next section (Proposition 3). Compatibility allows sub-
stitution of related programs for a free variable that appears on both sides of a
program equation. Notice that logical equivalence would not be changed if we
added conjunction, disjunction and negation at the level of computation formu-
las. We have omitted such connectives for simplicity.

To state our main theorem, first define the open extension of a well-typed
relation R on closed terms as:

−−−→
x : A 	Σ t R◦ s if and only if for any closed values

(Σ vi : Ai)i, t[
−−→
v/x] R s[

−−→
v/x]. Three sufficient conditions that we impose on the

set of observations P are defined below. The first one, consistency, ensures that
contextual equivalence can distinguish at least two programs.

Definition 4 (Consistency). A set of observations P is consistent if there
exists at least one observation P0 ∈ P such that:

392 C. Matache and S. Staton

1. P0 �= TreesΣ and
2. there exists at least one computation t0 such that �t0� ∈ P0.

Definition 5 (Scott-openness). A set of trees X is Scott-open if:

1. It is upwards closed, that is: tr ∈ X and tr ≤ tr′ imply tr′ ∈ X.
2. Whenever tr1 ≤ tr2 ≤ . . . is an ascending chain with least upper bound

⊔
tri ∈

X, then trj ∈ X for some j.

Definition 6 (Decomposability). The set of observations P is decomposable
if for any P ∈ P, and for any tr ∈ P :

∀σ ∈ Σ.
(
tr =σ−→v (

−→
tr′) =⇒

∃−→
P ′ ∈ P ∪ {TreesΣ}.

−→
tr′ ∈ −→

P ′ and ∀−→
p′ ∈ −→

P ′. σ−→v (
−→
p′) ∈ P

)
.

Theorem 1 (Soundness and Completeness of F). For a decomposable set
of Scott-open observations P that is consistent, the open extension of F-logical
equivalence coincides with contextual equivalence: (≡◦

F) = (≡ctx).

The proof of this theorem is outlined in Sect. 4. It is easy to see that for all
running examples of effects the set P is consistent. The proof that each P ∈ P
is Scott-open is similar to that for modalities from [38]. It remains to show
that for all our examples P is decomposable. Intuitively, decomposability can
be understood as saying that logical equivalence is a congruence for the effect
context Σ.

Example 12 (Pure functional computation). The only observation is ⇓ = {↓}.
There are no trees in ⇓ whose root has children, so decomposability is satisfied.

Example 13 (Nondeterminism). Consider tr ∈ ♦. Either tr = ↓, in which case
we are done, or tr = or(tr′

0, tr
′
1). It must be the case that either tr′

0 or tr′
1 have

a ↓-leaf. Without loss of generality, assume this is the case for tr′
0. Then we

know tr′
0 ∈ ♦ so we can choose P ′

0 = ♦, P ′
1 = TreesΣ . For any

−→
p′ ∈ −→

P ′ we know
or(

−→
p′) ∈ ♦ because p′

0 has a ↓-leaf, so decomposability holds. The argument for
tr ∈ � is analogous: P ′

0 = P ′
1 = �.

Example 14 (Probabilistic choice). Consider tr = p-or(tr′
0, tr

′
1) ∈ P>q. Choose:

q0 = P(tr′
0)

P(tr′
0)+P(tr′

1)
·2q and q1 = P(tr′

1)
P(tr′

0)+P(tr′
1)

·2q. From P(tr) = 1
2 (P(tr′

0)+P(tr′
1)) >

q we can deduce that: 1 ≥ P(tr′
0) > q0 and 1 ≥ P(tr′

1) > q1. So we can choose
P ′
0 = P>q0 , P

′
1 = P>q1 to satisfy decomposability.

Example 15 (Global store). Consider a tree tr = σ−→v (tr′
0, tr

′
1, tr

′
2, . . .) ∈ [S↓]. If

σ = lookupl, then we know tr′
S(l) ∈ [S↓]. In the definition of decomposability,

choose P ′
S(l) = [S↓] and P ′

k �=S(l) = TreesΣ and we are done. If σ−→v = updatel,n,
then tr′

0 ∈ [S[l := n]↓]. Choose P ′
0 = [S[l := n]↓].

A Sound and Complete Logic for Algebraic Effects 393

Example 16 (Interactive input/output). Consider an I/O trace W �= ε and a
tree tr = σ−→v (tr′

0, tr
′
1, tr

′
2, . . .) ∈ 〈W 〉.... If σ = input, it must be the case that

W = (?k)W ′ and tr′
k ∈ 〈W ′〉.... We can choose P ′

k = 〈W ′〉... and P ′
m �=k = 〈ε〉...

and we are done. If σ−→v = outputn, then W = (!n)W ′ and tr′
0 ∈ 〈W ′〉.... Choose

P ′
0 = 〈W ′〉... and we are done. The proof for 〈W 〉↓ is analogous.

4 Soundness and Completeness of the Logic F
This section outlines the proof of Theorem 1, which says that F-logical equiva-
lence coincides with contextual equivalence. The full proof can be found in [21].
First, we define applicative bisimilarity for ECPS, similarly to the way Simpson
and Voorneveld [38] define it for PCF with algebraic effects. Then, we prove
in turn that F-logical equivalence coincides with applicative bisimilarity, and
that applicative bisimilarity coincides with contextual equivalence. Thus, three
notions of program equivalence for ECPS are in fact the same.

Definition 7 (Applicative P-bisimilarity). A collection of relations Rv
A ⊆

(Σ A)2 for each type A and Rc ⊆ (Σ)2 is an applicative P-simulation if:

1. v Rv
nat w =⇒ v = w.

2. s Rc t =⇒ ∀P ∈ P. (�s� ∈ P =⇒ �t� ∈ P).
3. v Rv

(
−→
A)→R

u =⇒ ∀(Σ wi : Ai)i. v(−→w) Rc u(−→w).

An applicative P-bisimulation is a symmetric simulation. Bisimilarity, denoted
by ∼, is the union of all bisimulations. Therefore, it is the greatest applicative
P-bisimulation.

Notice that applicative bisimilarity uses the set of observations P to relate
computations, just as contextual and logical equivalence do. It is easy to show
that bisimilarity is an equivalence relation.

Proposition 2. Given a decomposable set of Scott-open observations P, the
open extension of applicative P-bisimilarity, ∼◦, is compatible.

Proof (notes). This is proved using Howe’s method [14], following the structure
of the corresponding proof from [38]. Scott-openness is used to show that the
observations P interact well with the sequence of trees �−�(−) associated with
each computation. For details see [21, §5.4]. ��
Proposition 3. Given a decomposable set of Scott-open observations P,
applicative P-bisimilarity ∼ coincides with F-logical equivalence ≡F . Hence, the
open extension of F-logical equivalence ≡◦

F is compatible.

Proof (sketch). We define a new logic V which is almost the same as F except
that the (val) rule is replaced by:

	Σ w1 : A1 . . . 	Σ wn : An P ∈ P

(w1, . . . , wn) �→ P : (A1, . . . , An)→R
v |=V (−→w) �→ P ⇐⇒ v(−→w) |=V P.

394 C. Matache and S. Staton

That is, formulas of function type are now constructed using ECPS values. It
is relatively straightforward to show that V-logical equivalence coincides with
applicative P-bisimilarity [21, Prop. 6.3.1]. However, we do not know of a sim-
ilar direct proof for the logic F . From Proposition 2, we deduce that V-logical
equivalence is compatible.

Next, we prove that the logics F and V are in fact equi-expressive, so
they induce the same relation of logical equivalence on ECPS programs [21,
Prop. 6.3.4]. Define a translation of formulas from F to V, (−)�, and one from V
to F , (−)�. The most interesting cases are those for formulas of function type:

((φ1, . . . , φn) �→ P)� =
∧{

(w1, . . . , wn) �→ P
∣∣ w1 |=V φ�

1, . . . , wn |=V φ�
n

}

((w1, . . . , wn) �→ P)� = (χw1 , . . . , χwn
) �→ P

where χwi
is the characteristic formula of wi, that is χwi

=
∧ {φ | wi |=F φ}.

Equi-expressivity means that the satisfaction relation remains unchanged under
both translations, for example v |=V φ ⇐⇒ v |=F φ�. Most importantly, the
proof of equi-expressivity makes use of compatibility of ≡V , which we established
previously. For a full proof see [21, Prop. 6.2.3]). ��

Finally, to prove Theorem 1 we show that applicative P-bisimilarity coincides
with contextual equivalence [21, Prop. 7.2.2]:

Proposition 4. Consider a decomposable set P of Scott-open observations that
is consistent. The open extension of applicative P-bisimilarity ∼◦ coincides with
contextual equivalence ≡ctx.

Proof (sketch). Prove (≡ctx) ⊆ (∼◦) in two stages: first we show it holds for
closed terms by showing ≡ctx for them is a bisimulation; we make use of consis-
tency of P in the case of natural numbers. Then we extend to open terms using
compatibility of ≡ctx. The opposite inclusion follows immediately by compati-
bility and adequacy of ∼◦. ��

5 Related Work

The work closest to ours is that by Simpson and Voorneveld [38]. In the context
of a direct-style language with algebraic effects, EPCF, they propose a modal
logic which characterizes applicative bisimilarity but not contextual equivalence.
Consider the following example from [19] (we use simplified EPCF syntax):

M = λ().?nat N = let y ⇒ ?nat in λ().min(?nat, y) (1)

where ?nat is a computation, defined using or, which returns a natural number
nondeterministically. Term M satisfies the formula Φ = ♦(true �→ ∧n∈N♦{n})
in the logic of [38], which says that M may return a function which in turn may
return any natural number. However, N does not satisfy Φ because it always
returns a bounded number generator G. The bound on G is arbitrarily high

A Sound and Complete Logic for Algebraic Effects 395

so M and N are contextually equivalent, since a context can only test a finite
number of outcomes of G.

EPCF can be translated into ECPS via a continuation-passing translation
that preserves the shape of computation trees. The translation maps a value
Γ 	 V : τ to a value Γ ∗ 	 V ∗ : τ∗. An EPCF computation Γ 	 M : τ becomes
an ECPS value Γ ∗ 	 M∗ : (τ∗→R)→R, which intuitively is waiting for a contin-
uation k to pass its return result to (see [21, §4]). As an example, consider the
cases for functions and application, where k stands for a continuation:

(Γ 	 λx:τ.M : τ → ρ)∗ = Γ ∗ 	 λ(x:τ∗, k:ρ∗→R). (M∗ k) : (τ∗, (ρ∗→R))→R

(Γ 	 V W : ρ)∗ = Γ ∗ 	 λk:ρ∗→R. V ∗ (W ∗, k) : (ρ∗→R)→R.

This translation suggests that ECPS functions of type (A1, . . . , An)→R can be
regarded as continuations that never return. In EPCF the CPS-style algebraic
operations can be replaced by direct-style generic effects [34], e.g. input() : nat.

One way to understand this CPS translation is that it arises from the fact
that ((−)→R)→R is a monad on the multicategory of values (in a suitable sense,
e.g. [40]), which means that we can use the standard monadic interpretation of
a call-by-value language. As usual, the algebraic structure on the return type R
induces an algebraic structure on the entire monad (see e.g. [16], [24, §8]). We
have not taken a denotational perspective in this paper, but for the reader with
this perspective, a first step is to note that the quotient set Q

def= (TreesΣ)/≡P
is a

Σ-algebra, where (tr ≡P tr ′) if ∀P ∈ P, (tr ∈ P ⇐⇒ tr ′ ∈ P); decomposability
implies that (≡P) is a Σ-congruence. This thus induces a CPS monad Q(Q−) on
the category of cpos.

Note that the terms in (1) above are an example of programs that are not bisim-
ilar in EPCF but become bisimilar when translated to ECPS. This is because in
ECPS bisimilarity, like contextual and logical equivalence, uses continuations to
test return results. Therefore, in ECPS we cannot test for all natural numbers, like
formula Φ does. This example provides an intuition of why we were able to show
that all three notions of equivalence coincide, while [38] was not.

The modalities in Simpson’s and Voorneveld’s logic are similar to the obser-
vations from P, because they also specify shapes of effect trees. Since EPCF
computations have a return value, a modality is used to lift a formula about the
return values to a computation formula. In contrast, in the logic F observations
alone suffice to specify properties of computations. From this point of view, our
use of observations is closer to that found in the work of Johann et al. [17].
This use of observations also leads to a much simpler notion of decomposability
(Definition 6) than that found in [38].

It can easily be shown that for the running examples of effects, F-logical
equivalence induces the program equations which are usually used to axiomatize
algebraic effects, for example the equations for global store from [33]. Thus our
choice of observations is justified further.

A different logic for algebraic effects was proposed by Plotkin and Pret-
nar [35]. It has a modality for each effect operation, whereas observations in P
are determined by the behaviour of effects, rather than by the syntax of their

396 C. Matache and S. Staton

operations. Plotkin and Pretnar prove that their logic is sound for establishing
several notions of program equivalence, but not complete in general. Refinement
types are yet another approach to specifying the behaviour of algebraic effects,
(e.g. [3]). Several monadic-based logics for computational effects have been pro-
posed, such as [10], [29], although without the focus on contextual equivalence.

A logic describing a higher-order language with local store is the Hoare logic
of Yoshida, Honda and Berger [42]. Hoare logic has also been integrated into a
type system for a higher-order functional language with dependent types, in the
form of Hoare type theory [27]. Although we do not yet know how to deal with
local state or dependent types in the logic F , an advantage of our logic over the
previous two is that we describe different algebraic effects in a uniform manner.

Another aspect worth noticing is that some (non-trivial) F-formulas are not
inhabited by any program. For example, there is no function v : (()→R)→R
satisfying: ψ = (() �→ 〈!0〉...) �→ 〈!1〉... ∧ (() �→ 〈!1〉...) �→ 〈!0〉....

Formula ψ says that, if the first operation of a continuation is output(0), this
is replaced by output(1) and vice-versa. But in ECPS, one cannot check whether
an argument outputs something without also causing the output observation,
and so the formula is never satisfied.

However, ψ could be inhabited if we extended ECPS to allow λ-abstraction
over the symbols in the effect context Σ, and allowed such symbols to be captured
during substitution (dynamic scoping). Consider the following example in an
imaginary extended ECPS where we abstract over output:

h = λ(x:nat, k:()→R). case x of {zero ⇒ output(1, k), succ(y) ⇒
case y of {zero ⇒ output(0, k), succ(z) ⇒ k ()}}

v = λf :()→R.
(
(λoutput:(nat, ()→R)→R. (f ())) h

)
.

The idea is that during reduction of (v f), the output operations in f are captured
by λoutput. Thus, output(0) operations from (f ()) are replaced by output(1)
and vice-versa, and all other writes are skipped; so in particular v |=F ψ. This
behaviour is similar to that of effect handlers [36]: computation (f ()) is being
handled by handler h. We leave for future work the study of handlers in ECPS
and of their corresponding logic.

6 Concluding Remarks

To summarize, we have studied program equivalence for a higher-order CPS lan-
guage with general algebraic effects and general recursion (Sect. 2). Our main
contribution is a logic F of program properties (Sect. 3) whose induced pro-
gram equivalence coincides with contextual equivalence (Theorem 1; Sect. 4).
Previous work on algebraic effects concentrated on logics that are sound for con-
textual equivalence, but not complete [35,38]. Moreover, F-logical equivalence
also coincides with applicative bisimilarity for our language. We exemplified our
results for nondeterminism, probabilistic choice, global store and I/O. A next
step would be to consider local effects (e.g. [22,33,37,39]) or normal form bisim-
ulation (e.g. [6]).

A Sound and Complete Logic for Algebraic Effects 397

Acknowledgements. This research was supported by an EPSRC studentship, a Bal-
liol College Jowett scholarship, and the Royal Society. We would like to thank Niels
Voorneveld for pointing out example (1), Alex Simpson and Ohad Kammar for useful
discussions, and the anonymous reviewers for comments and suggestions.

References

1. Abramsky, S.: The lazy λ-calculus. In: Turner, D. (ed.) Research Topics in Func-
tional Programming. Chapter 4, pp. 65–117. Addison Wesley, Boston (1990)

2. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Chap. 1, vol.
3, pp. 1–168. Oxford University Press, Oxford (1994)

3. Ahman, D., Plotkin, G.: Refinement types for algebraic effects. In: TYPES (2015)
4. Biernacki, D., Lenglet, S.: Applicative bisimulations for delimited-control opera-

tors. In: Birkedal, L. (ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 119–134. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28729-9 8

5. Cartwright, R., Curien, P., Felleisen, M.: Fully abstract semantics for observably
sequential languages. Inf. Comput. 111(2), 297–401 (1994)

6. Dal Lago, U., Gavazzo, F.: Effectful normal form bisimulation. In: Proceedings of
ESOP 2019 (2019)

7. Dal Lago, U., Gavazzo, F., Levy, P.: Effectful applicative bisimilarity: monads,
relators, and Howe’s method. In: LICS (2017)

8. Dal Lago, U., Gavazzo, F., Tanaka, R.: Effectful applicative similarity for call-by-
name lambda calculi. In: ICTCS/CILC (2017)

9. Freyd, P.: Algebraically complete categories. In: Carboni, A., Pedicchio, M.C.,
Rosolini, G. (eds.) Category Theory. LNM, vol. 1488, pp. 95–104. Springer,
Heidelberg (1991). https://doi.org/10.1007/BFb0084215

10. Goncharov, S., Schröder, L.: A relatively complete generic Hoare logic for order-
enriched effects. In: LICS (2013)

11. Gordon, A.: Operational equivalences for untyped and polymorphic object calculi.
In: Gordon, A., Pitts, A. (eds.) Higher Order Operational Techniques in Semantics,
pp. 9–54. Cambridge University Press, Cambridge (1998)

12. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
ACM 32(1), 137–161 (1985)

13. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

14. Howe, D.: Proving congruence of bisimulation in functional programming lan-
guages. Inf. Comput. 124(2), 103–112 (1996)

15. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: A logical step forward in parametric
bisimulations. Technical report MPI-SWS-2014-003, January 2014

16. Hyland, M., Levy, P.B., Plotkin, G., Power, J.: Combining algebraic effects with
continuations. Theoret. Comput. Sci. 375, 20–40 (2007)

17. Johann, P., Simpson, A., Voigtländer, J.: A generic operational metatheory for
algebraic effects. In: LICS (2010)

18. Lafont, Y., Reus, B., Streicher, T.: Continuations semantics or expressing
implication by negation. Technical report 9321, Ludwig-Maximilians-Universität,
München (1993)

19. Lassen, S.: Relational reasoning about functions and nondeterminism. Ph.D. thesis,
University of Aarhus, BRICS, December 1998

https://doi.org/10.1007/978-3-642-28729-9_8
https://doi.org/10.1007/BFb0084215

398 C. Matache and S. Staton

20. Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Duparc, J.,
Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 283–297. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8 23

21. Matache, C.: Program equivalence for algebraic effects via modalities. Master’s
thesis, University of Oxford, September 2018. https://arxiv.org/abs/1902.04645

22. Melliès, P.-A.: Local states in string diagrams. In: Dowek, G. (ed.) RTA 2014.
LNCS, vol. 8560, pp. 334–348. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08918-8 23

23. Merro, M.: On the observational theory of the CPS-calculus. Acta Inf. 47(2), 111–
132 (2010)

24. Møgelberg, R.E., Staton, S.: Linear usage of state. Log. Meth. Comput. Sci. 10
(2014)

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
26. Morris, J.: Lambda calculus models of programming languages. Ph.D. thesis, MIT

(1969)
27. Nanevski, A., Morrisett, J., Birkedal, L.: Hoare type theory, polymorphism and

separation. J. Funct. Program. 18(5–6), 865–911 (2008)
28. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter

data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 1

29. Pitts, A.: Evaluation logic. In: Birtwistle, G. (ed.) IVth Higher Order Work-
shop, Banff 1990. Springer, Heidelberg (1991). https://doi.org/10.1007/978-1-
4471-3182-3 11

30. Pitts, A.: Howe’s method for higher-order languages. In: Sangiorgi, D., Rutten, J.
(eds.) Advanced Topics in Bisimulation and Coinduction. Chapter 5, pp. 197–232.
Cambridge University Press, Cambridge (2011)

31. Plotkin, G.: LCF considered as a programming language. Theor. Comput. Sci.
5(3), 223–255 (1977)

32. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6 1

33. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

34. Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Categ.
Struct. 11(1), 69–94 (2003)

35. Plotkin, G., Pretnar, M.: A logic for algebraic effects. In: LICS (2008)
36. Plotkin, G., Pretnar, M.: Handling Algebraic Effects. Log. Methods Comput. Sci.

9(4) (2013)
37. Power, J.: Indexed Lawvere theories for local state. In: Models, Logics and Higher-

Dimensional Categories, pp. 268–282. AMS (2011)
38. Simpson, A., Voorneveld, N.: Behavioural equivalence via modalities for algebraic

effects. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol. 10801, pp. 300–326. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89884-1 11

39. Staton, S.: Instances of computational effects. In: Proceedings of LICS 2013 (2013)
40. Staton, S., Levy, P.B.: Universal properties for impure programming languages. In:

Proceedings of POPL 2013 (2013)

https://doi.org/10.1007/978-3-540-74915-8_23
https://arxiv.org/abs/1902.04645
https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1007/978-3-319-08918-8_23
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-1-4471-3182-3_11
https://doi.org/10.1007/978-1-4471-3182-3_11
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/978-3-319-89884-1_11

A Sound and Complete Logic for Algebraic Effects 399

41. Yachi, T., Sumii, E.: A sound and complete bisimulation for contextual equivalence
in λ-calculus with call/cc. In: Igarashi, A. (ed.) APLAS 2016. LNCS, vol. 10017, pp.
171–186. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-47958-
3 10

42. Yoshida, N., Honda, K., Berger, M.: Logical reasoning for higher-order functions
with local state. Log. Methods Comput. Sci. 4(4) (2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-47958-3_10
https://doi.org/10.1007/978-3-319-47958-3_10
http://creativecommons.org/licenses/by/4.0/

Equational Axiomatization of Algebras
with Structure

Stefan Milius and Henning Urbat(B)

Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
henning.urbat@fau.de

Abstract. This paper proposes a new category theoretic account of
equationally axiomatizable classes of algebras. Our approach is well-
suited for the treatment of algebras equipped with additional compu-
tationally relevant structure, such as ordered algebras, continuous alge-
bras, quantitative algebras, nominal algebras, or profinite algebras. Our
main contributions are a generic HSP theorem and a sound and com-
plete equational logic, which are shown to encompass numerous flavors
of equational axiomizations studied in the literature.

1 Introduction

A key tool in the algebraic theory of data structures is their specification by
operations (constructors) and equations that they ought to satisfy. Hence, the
study of models of equational specifications has been of long standing interest
both in mathematics and computer science. The seminal result in this field is
Birkhoff’s celebrated HSP theorem [7]. It states that a class of algebras over a
signature Σ is a variety (i.e. closed under homomorphic images, subalgebras, and
products) iff it is axiomatizable by equations s = t between Σ-terms. Birkhoff
also introduced a complete deduction system for reasoning about equations.

In algebraic approaches to the semantics of programming languages and
computational effects, it is often natural to study algebras whose underlying
sets are equipped with additional computationally relevant structure and whose
operations preserve that structure. An important line of research thus concerns
extensions of Birkhoff’s theory of equational axiomatization beyond ordinary Σ-
algebras. On the syntactic level, this requires to enrich Birkhoff’s notion of an
equation in ways that reflect the extra structure. Let us mention a few examples:

(1) Ordered algebras (given by a poset and monotone operations) and continuous
algebras (given by a complete partial order and continuous operations) were
identified by the ADJ group [14] as an important tool in denotational seman-
tics. Subsequently, Bloom [8] and Adámek, Nelson, and Reiterman [2,3]

S. Milius—Supported by Deutsche Forschungsgemeinschaft (DFG) under project
MI 717/5-1.
H. Urbat—Supported by Deutsche Forschungsgemeinschaft (DFG) under project
SCHR 1118/8-2.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 400–417, 2019.
https://doi.org/10.1007/978-3-030-17127-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_23&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_23

Equational Axiomatization of Algebras with Structure 401

established ordered versions of the HSP theorem along with complete deduc-
tion systems. Here, the role of equations s = t is taken over by inequations
s ≤ t.

(2) Quantitative algebras (given by an extended metric space and nonexpansive
operations) naturally arise as semantic domains in the theory of probabilis-
tic computation. In recent work, Mardare, Panangaden, and Plotkin [18,19]
presented an HSP theorem for quantitative algebras and a complete deduc-
tion system. In the quantitative setting, equations s =ε t are equipped
with a non-negative real number ε, interpreted as “s and t have distance at
most ε”.

(3) Nominal algebras (given by a nominal set and equivariant operations) are
used in the theory of name binding [24] and have proven useful for charac-
terizing logics for data languages [9,11]. Varieties of nominal algebras were
studied by Gabbay [13] and Kurz and Petrişan [16]. Here, the appropriate
syntactic concept involves equations s = t with constraints on the support
of their variables.

(4) Profinite algebras (given by a profinite topological space and continuous
operations) play a central role in the algebraic theory of formal languages
[22]. They serve as a technical tool in the investigation of pseudovarieties
(i.e. classes of finite algebras closed under homomorphic images, subalge-
bras, and finite products). As shown by Reiterman [25] and Eilenberg and
Schützenberger [12], pseudovarieties can be axiomatized by profinite equa-
tions (formed over free profinite algebras) or, equivalently, by sequences of
ordinary equations (si = ti)i<ω, interpreted as “all but finitely many of the
equations si = ti hold”.

The present paper proposes a general category theoretic framework that allows
to study classes of algebras with extra structure in a systematic way. Our overall
goal is to isolate the domain-specific part of any theory of equational axiom-
atization from its generic core. Our framework is parametric in the following
data:

– a category A with a factorization system (E ,M);
– a full subcategory A0 ⊆ A ;
– a class Λ of cardinal numbers;
– a class X ⊆ A of objects.

Here, A is the category of algebras under consideration (e.g. ordered algebras,
quantitative algebras, nominal algebras). Varieties are formed within A0, and
the cardinal numbers in Λ determine the arities of products under which the
varieties are closed. Thus, the choice A0 = finite algebras and Λ = finite cardinals
corresponds to pseudovarieties, and A0 = A and Λ = all cardinals to varieties.
The crucial ingredient of our setting is the parameter X , which is the class of
objects over which equations are formed; thus, typically, X is chosen to be some
class of freely generated algebras in A . Equations are modeled as E-quotients
e : X � E (more generally, filters of such quotients) with domain X ∈ X .

The choice of X reflects the desired expressivity of equations in a given set-
ting. Furthermore, it determines the type of quotients under which equationally

402 S. Milius and H. Urbat

axiomatizable classes are closed. More precisely, in our general framework a vari-
ety is defined to be a subclass of A0 closed under EX -quotients, M-subobjects,
and Λ-products, where EX is a subclass of E derived from X . Due to its para-
metric nature, this concept of a variety is widely applicable and turns out to
specialize to many interesting cases. The main result of our paper is the

General HSP Theorem. A subclass of A0 forms a variety if and only if it is
axiomatizable by equations.

In addition, we introduce a generic deduction system for equations, based on
two simple proof rules (see Sect. 4), and establish a

General Completeness Theorem. The generic deduction system for equa-
tions is sound and complete.

The above two theorems can be seen as the generic building blocks of the model
theory of algebras with structure. They form the common core of numerous
Birkhoff-type results and give rise to a systematic recipe for deriving concrete
HSP and completeness theorems in settings such as (1)–(4). In fact, all that needs
to be done is to translate our abstract notion of equation and equational deduc-
tion, which involves (filters of) quotients, into an appropriate syntactic concept.
This is the domain-specific task to fulfill, and usually amounts to identifying
an “exactness” property for the category A . Subsequently, one can apply our
general results to obtain HSP and completeness theorems for the type of alge-
bras under consideration. Several instances of this approach are shown in Sect. 5.
Omitted proofs and details for the examples can be found in [20].

Related work. Generic approaches to universal algebra have a long tradition in
category theory. They aim to replace syntactic notions like terms and equations
by suitable categorical abstractions, most prominently Lawvere theories and
monads [4,17]. Our present work draws much of its inspiration from the classical
paper of Banaschewski and Herrlich [6] on HSP classes in (E ,M)-structured cat-
egories. These authors were the first to model equations as quotients e : X � E.
However, their approach does not feature the parameter X and assumes that
equations are formed over E-projective objects X. This limits the scope of their
results to categories with enough projectives, a property that typically fails in cat-
egories of algebras with structure (including continuous, quantitative or nominal
algebras). The identification of the parameter X and of the derived parameter
EX as a key concept is thus a crucial step towards a categorical view of such
structures.

Equational logics on the level of abstraction of Banaschewski and Herrlich’s
work were studied by Roşu [26,27] and Adámek, Hébert, and Sousa [1]. These
authors work under assumptions on the category A different from our framework,
e.g. they require existence of pushouts. Hence, the proof rules and completeness
results in loc. cit. are not directly comparable to our approach in Sect. 4.

In the present paper, we model equations as filters of quotients rather than
single quotients, which allows us to encompass several HSP theorems for finite
algebras [12,23,25]. The first categorical generalization of such results was given

Equational Axiomatization of Algebras with Structure 403

by Adámek, Chen, Milius, and Urbat [10,29] who considered algebras for a
monad T on an algebraic category and modeled equations as filters of finite
quotients of free T-algebras (equivalently, as profinite quotients of free profinite
T-algebras). This idea was generalized by Salamánca [28] to monads on concrete
categories. However, again, this work only applies to categories with enough
projectives.

2 Preliminaries

We start by recalling some notions from category theory. A factorization system
(E ,M) in a category A consists of two classes E ,M of morphisms in A such that
(1) both E and M contain all isomorphisms and are closed under composition,
(2) every morphism f has a factorization f = m · e with e ∈ E and m ∈ M, and
(3) the diagonal fill-in property holds: for every commutative square g ·e = m ·f
with e ∈ E and m ∈ M, there exists a unique d with m ·d = g and d · e = f . The
morphisms m and e in (2) are unique up to isomorphism and are called the image
and coimage of f , resp. The factorization system is proper if all morphisms in E
are epic and all morphisms in M are monic. From now on, we will assume that
A is a category equipped with a proper factorization system (E ,M). Quotients
and subobjects in A are taken with respect to E and M. That is, a quotient of
an object X is represented by a morphism e : X � E in E and a subobject by
a morphism m : M � X in M. The quotients of X are ordered by e ≤ e′ iff e′

factorizes through e, i.e. there exists a morphism h with e′ = h · e. Identifying
quotients e and e′ which are isomorphic (i.e. e ≤ e′ and e′ ≤ e), this makes the
quotients of X a partially ordered class. Given a full subcategory A0 ⊆ A we
denote by X �A0 the class of all quotients of X represented by E-morphisms with
codomain in A0. The category A is E-co-wellpowered if for every object X ∈ A
there is only a set of quotients with domain X. In particular, X �A0 is then a
poset. Finally, an object X ∈ A is called projective w.r.t. a morphism e : A → B
if for every h : X → B, there exists a morphism g : X → A with h = e · g.

3 The Generalized Variety Theorem

In this section, we introduce our categorical notions of equation and variety, and
derive the HSP theorem. Fix a category A with a proper factorization system
(E ,M), a full subcategory A0 ⊆ A , a class Λ of cardinal numbers, and a class
X ⊆ A of objects. An object of A is called X -generated if it is a quotient of
some object in X . A key role will be played by the subclass EX ⊆ E defined by

EX = {e ∈ E : every X ∈ X is projective w.r.t. e}.

Note that X ⊆ X ′ implies EX ′ ⊆ EX . The choice of X is a trade-off between
“having enough equations” (that is, X needs to be rich enough to make equations
sufficiently expressive) and “having enough projectives” (cf. (3) below).

Assumptions 3.1. Our data is required to satisfy the following properties:

404 S. Milius and H. Urbat

(1) A has Λ-products, i.e. for every λ ∈ Λ and every family (Ai)i<λ of objects
in A , the product

∏
i<λ Ai exists.

(2) A0 is closed under isomorphisms, Λ-products and X -generated subobjects.
The last statement means that for every subobject m : A � B in M where
B ∈ A0 and A is X -generated, one has A ∈ A0.

(3) Every object of A0 is an EX -quotient of some object of X , that is, for every
object A ∈ A0 there exists some e : X � A in EX with domain X ∈ X .

Example 3.2. Throughout this section, we will use the following three running
examples to illustrate our concepts. For further applications, see Sect. 5.

(1) Classical Σ-algebras. The setting of Birkhoff’s seminal work [7] in general
algebra is that of algebras for a signature. Recall that a (finitary) signature
is a set Σ of operation symbols each with a prescribed finite arity, and a Σ-
algebra is a set A equipped with operations σ : An → A for each n-ary σ ∈ Σ.
A morphism of Σ-algebras (or a Σ-homomorphism) is a map preserving all
Σ-operations. The forgetful functor from the category Alg(Σ) of Σ-algebras
and Σ-homomorphisms to Set has a left adjoint assigning to each set X the
free Σ-algebra TΣX, carried by the set of all Σ-terms in variables from X.
To treat Birkhoff’s results in our categorical setting, we choose the following
parameters:
– A = A0 = Alg(Σ);
– (E ,M) = (surjective morphisms, injective morphisms);
– Λ = all cardinal numbers;
– X = all free Σ-algebras TΣX with X ∈ Set.
One easily verifies that EX consists of all surjective morphisms, that is,
EX = E .

(2) Finite Σ-algebras. Eilenberg and Schützenberger [12] considered classes of
finite Σ-algebras, where Σ is assumed to be a signature with only finitely
many operation symbols. In our framework, this amounts to choosing
– A = Alg(Σ) and A0 = Algf(Σ), the full subcategory of finite Σ-

algebras;
– (E ,M) = (surjective morphisms, injective morphisms);
– Λ = all finite cardinal numbers;
– X = all free Σ-algebras TΣX with X ∈ Setf .
As in (1), the class EX consists of all surjective morphisms.

(3) Quantitative Σ-algebras. In recent work, Mardare, Panangaden, and Plotkin
[18,19] extended Birkhoff’s theory to algebras endowed with a metric. Recall
that an extended metric space is a set A with a map dA : A × A → [0,∞]
(assigning to any two points a possibly infinite distance), subject to the
axioms (i) dA(a, b) = 0 iff a = b, (ii) dA(a, b) = dA(b, a), and (iii) dA(a, c) ≤
dA(a, b) + dA(b, c) for all a, b, c ∈ A. A map h : A → B between extended
metric spaces is nonexpansive if dB(h(a), h(a′)) ≤ dA(a, a′) for a, a′ ∈ A.
Let Met∞ denote the category of extended metric spaces and nonexpansive
maps. Fix a, not necessarily finitary, signature Σ, that is, the arity of an
operation symbol σ ∈ Σ is any cardinal number. A quantitative Σ-algebra

Equational Axiomatization of Algebras with Structure 405

is a Σ-algebra A endowed with an extended metric dA such that all Σ-
operations σ : An → A are nonexpansive. Here, the product An is equipped
with the sup-metric dAn((ai)i<n, (bi)i<n) = supi<n dA(ai, bi). The forgetful
functor from the category QAlg(Σ) of quantitative Σ-algebras and nonex-
pansive Σ-homomorphisms to Met∞ has a left adjoint assigning to each
space X the free quantitative Σ-algebra TΣX. The latter is carried by the
set of all Σ-terms (equivalently, well-founded Σ-trees) over X, with met-
ric inherited from X as follows: if s and t are Σ-terms of the same shape,
i.e. they differ only in the variables, their distance is the supremum of the
distances of the variables in corresponding positions of s and t; otherwise,
it is ∞.

We aim to derive the HSP theorem for quantitative algebras proved by
Mardare et al. as an instance of our general results. The theorem is para-
metric in a regular cardinal number c > 1. In the following, an extended
metric space is called c-clustered if it is a coproduct of spaces of size < c.
Note that coproducts in Met∞ are formed on the level of underlying sets.
Choose the parameters
– A = A0 = QAlg(Σ);
– (E ,M) given by morphisms carried by surjections and subspaces, resp.;
– Λ = all cardinal numbers;
– X = all free algebras TΣX with X ∈ Met∞ a c-clustered space.
One can verify that a quotient e : A � B belongs to EX if and only if
for each subset B0 ⊆ B of cardinality < c there exists a subset A0 ⊆ A
such that e[A0] = B0 and the restriction e : A0 → B0 is isometric (that
is, dB(e(a), e(a′)) = dA(a, a′) for a, a′ ∈ A0). Following the terminology of
Mardare et al., such a quotient is called c-reflexive. Note that for c = 2 every
quotient is c-reflexive, so EX = E . If c is infinite, EX is a proper subclass
of E .

Definition 3.3. An equation over X ∈ X is a class TX ⊆ X �A0 that is

(1) Λ-codirected: every subset F ⊆ TX with |F | ∈ Λ has a lower bound in F ;
(2) closed under EX -quotients: for every e : X � E in TX and q : E � E′ in

EX with E′ ∈ A0, one has q · e ∈ TX .

An object A ∈ A satisfies the equation TX if every morphism h : X → A
factorizes through some e ∈ TX . In this case, we write

A |= TX .

Remark 3.4. In many of our applications, one can simplify the above definition
and replace classes of quotients by single quotients. Specifically, if A is E-co-
wellpowered (so that every equation is a set, not a class) and Λ = all cardinal
numbers, then every equation TX ⊆ X �A0 contains a least element eX : X �
EX , viz. the lower bound of all elements in TX . Then an object A satisfies
TX iff it satisfies eX , in the sense that every morphism h : X → A factorizes
through eX . Therefore, in this case, one may equivalently define an equation to
be a morphism eX : X � EX with X ∈ X . This is the concept of equation
investigated by Banaschewski and Herrlich [6].

406 S. Milius and H. Urbat

Example 3.5. In our running examples, we obtain the following concepts:

(1) Classical Σ-algebras. By Remark 3.4, an equation corresponds to a quotient
eX : TΣX � EX in Alg(Σ), where X is a set of variables.

(2) Finite Σ-algebras. An equation TX over a finite set X is precisely a filter
(i.e. a codirected and upwards closed subset) in the poset TΣX �Algf(Σ).

(3) Quantitative Σ-algebras. By Remark 3.4, an equation can be presented as a
quotient eX : TΣX � EX in QAlg(Σ), where X is a c-clustered space.

We shall demonstrate in Sect. 5 how to interpret the above abstract notions of
equations, i.e. (filters of) quotients of free algebras, in terms of concrete syntax.

Definition 3.6. A variety is a full subcategory V ⊆ A0 closed under EX -
quotients, subobjects, and Λ-products. More precisely,

(1) for every EX -quotient e : A � B in A0 with A ∈ V one has B ∈ V,
(2) for every M-morphism m : A � B in A0 with B ∈ V one has A ∈ V, and
(3) for every family of objects Ai (i < λ) in V with λ ∈ Λ one has

∏
i<λ Ai ∈ V.

Example 3.7. In our examples, we obtain the following notions of varieties:

(1) Classical Σ-algebras. A variety of Σ-algebras is a class of Σ-algebras closed
under quotient algebras, subalgebras, and products. This is Birkhoff’s orig-
inal concept [7].

(2) Finite Σ-algebras. A pseudovariety of Σ-algebras is a class of finite Σ-
algebras closed under quotient algebras, subalgebras, and finite products.
This concept was studied by Eilenberg and Schützenberger [12].

(3) Quantitative Σ-algebras. For any regular cardinal number c > 1, a c-variety
of quantitative Σ-algebras is a class of quantitative Σ-algebras closed under
c-reflexive quotients, subalgebras, and products. This notion of a variety was
introduced by Mardare et al. [19].

Construction 3.8. Given a class E of equations, put

V(E) = {A ∈ A0 : A |= TX for each TX ∈ E}.

A subclass V ⊆ A0 is called equationally presentable if V = V(E) for some E.

We aim to show that varieties coincide with the equationally presentable classes
(see Theorem 3.16 below). The “easy” part of the correspondence is established
by the following lemma, which is proved by a straightforward verification.

Lemma 3.9. For every class E of equations, V(E) is a variety.

As a technical tool for establishing the general HSP theorem and the correspond-
ing sound and complete equational logic, we introduce the following concept:

Definition 3.10. An equational theory is a family of equations

T = (TX ⊆ X �A0)X∈X

Equational Axiomatization of Algebras with Structure 407

with the following two properties (illustrated by the diagrams below):

(1) Substitution invariance. For every morphism h : X → Y with X,Y ∈ X
and every eY : Y � EY in TY , the coimage eX : X � EX of eY · h lies in
TX .

(2) EX -completeness. For every Y ∈ X and every quotient e : Y � EY in TY ,
there exists an X ∈ X and a quotient eX : X � EX in TX ∩ EX with
EX = EY .

X
∀h ��

eX
����

Y

∀eY
����

EX
�� �� EY

X

∃eX
����

Y

∀eY
����

EX EY

Remark 3.11. In many settings, the slightly technical concept of an equational
theory can be simplified. First, note that EX -completeness is trivially satisfied
whenever EX = E . If, additionally, every equation contains a least element
(e.g. in the setting of Remark 3.4), an equational theory corresponds exactly
to a family of quotients (eX : X � EX)X∈X such that EX ∈ A0 for all X ∈ X ,
and for every h : X → Y with X,Y ∈ X the morphism eY ·h factorizes through
eX .

Example 3.12 (Classical Σ-algebras). Recall that a congruence on a Σ-
algebra A is an equivalence relation ≡ ⊆ A × A that forms a subalgebra of
A × A. It is well-known that there is an isomorphism of complete lattices

quotient algebras of A ∼= congruences on A (3.1)

assigning to a quotient e : A � B its kernel, given by a ≡e a′ iff e(a) = e(a′).
Consequently, in the setting of Example 3.2(1), an equational theory – presented
as a family of single quotients as in Remark 3.11 – corresponds precisely to a
family of congruences (≡X ⊆ TΣX × TΣX)X∈Set closed under substitution,
that is, for every s, t ∈ TΣX and every morphism h : TΣX → TΣY in Alg(Σ),

s ≡X t implies h(s) ≡Y h(t).

We saw in Lemma 3.9 that every class of equations, so in particular every
equational theory T , yields a variety V(T) consisting of all objects of A0 that
satisfy every equation in T . Conversely, to every variety one can associate an
equational theory as follows:

Construction 3.13. Given a variety V, form the family of equations

T (V) = (TX ⊆ X �A0)X∈X ,

where TX consists of all quotients eX : X � EX with codomain EX ∈ V.

Lemma 3.14. For every variety V, the family T (V) is an equational theory.

408 S. Milius and H. Urbat

We are ready to state the first main result of our paper, the HSP Theorem. Given
two equations TX and T ′

X over X ∈ X , we put TX ≤ T ′
X if every quotient in

T ′
X factorizes through some quotient in TX . Theories form a poset with respect

to the order T ≤ T ′ iff TX ≤ T ′
X for all X ∈ X . Similarly, varieties form a

poset (in fact, a complete lattice) ordered by inclusion.

Theorem 3.15 (HSP Theorem). The complete lattices of equational theories
and varieties are dually isomorphic. The isomorphism is given by

V
→ T (V) and T
→ V(T).

One can recast the HSP Theorem into a more familiar form, using equations in
lieu of equational theories:

Theorem 3.16 (HSP Theorem, equational version). A class V ⊆ A0 is
equationally presentable if and only if it forms a variety.

Proof. By Lemma 3.9, every equationally presentable class V(E) is a variety. Con-
versely, for every variety V one has V = V(T (V)) by Theorem 3.15, so V is
presented by the equations E = {TX : X ∈ X } where T = T (V). ��

4 Equational Logic

The correspondence between theories and varieties gives rise to the second main
result of our paper, a generic sound and complete deduction system for reasoning
about equations. The corresponding semantic concept is the following:

Definition 4.1. An equation TX ⊆ X �A0 semantically entails the equation
T ′

Y ⊆ Y �A0 if every A0-object satisfying TX also satisfies T ′
Y (that is, if

V(TX) ⊆ V(TY)). In this case, we write TX |= T ′
Y .

The key to our proof system is a categorical formulation of term substitution:

Definition 4.2. Let TX ⊆ X �A0 be an equation over X ∈ X . The substitution
closure of TX is the smallest theory T = (T Y)Y ∈X such that TX ≤ T X .

The substitution closure of an equation can be computed as follows:

Lemma 4.3. For every equation TX ⊆ X �A0 one has T = T (V(TX)).

The deduction system for semantic entailment consists of two proof rules:

(Weakening) TX
 T ′
X for all equations T ′

X ≤ TX over X ∈ X .
(Substitution) TX
 T Y for all equations TX over X ∈ X and all Y ∈ X .

Given equations TX and T ′
Y over X and Y , respectively, we write TX
 T ′

Y if
T ′

Y arises from TX by a finite chain of applications of the above rules.

Theorem 4.4 (Completeness Theorem). The deduction system for seman-
tic entailment is sound and complete: for every pair of equations TX and T ′

Y ,

TX |= T ′
Y iff TX
 T ′

Y .

Equational Axiomatization of Algebras with Structure 409

5 Applications

In this section, we present some of the applications of our categorical results
(see [20] for full details). Transferring the general HSP theorem of Sect. 3 into a
concrete setting requires to perform the following four-step procedure:

Step 1. Instantiate the parameters A , (E ,M), A0, Λ and X of our categor-
ical framework, and characterize the quotients in EX .
Step 2. Establish an exactness property for the category A , i.e. a corre-
spondence between quotients e : A � B in A and suitable relations between
elements of A.
Step 3. Infer a suitable syntactic notion of equation, and prove it to be
expressively equivalent to the categorical notion of equation given by Defini-
tion 3.3.
Step 4. Invoke Theorem 3.15 to deduce an HSP theorem.

The details of Steps 2 and 3 are application-specific, but typically straightfor-
ward. In each case, the bulk of the usual work required for establishing the HSP
theorem is moved to our general categorical results and thus comes for free.

Similarly, to obtain a complete deduction system in a concrete application, it
suffices to phrase the two proof rules of our generic equational logic in syntactic
terms, using the correspondence of quotients and relations from Step 2; then
Theorem 4.4 gives the completeness result.

5.1 Classical Σ-Algebras

The classical Birkhoff theorem emerges from our general results as follows.

Step 1. Choose the parameters of Example 3.2(1), and recall that EX = E .
Step 2. The exactness property of Alg(Σ) is given by the correspondence
(3.1).
Step 3. Recall from Example 3.5(1) that equations can be presented as single
quotients e : TΣX � EX . The exactness property (3.1) leads to the following
classical syntactic concept: a term equation over a set X of variables is a pair
(s, t) ∈ TΣX × TΣX, denoted as s = t. It is satisfied by a Σ-algebra A if for
every map h : X → A we have h�(s) = h�(t). Here, h� : TΣX → A denotes the
unique extension of h to a Σ-homomorphism. Equations and term equations
are expressively equivalent in the following sense:
(1) For every equation e : TΣX � EX , the kernel ≡e ⊆ TΣX ×TΣX is a set

of term equations equivalent to e, that is, a Σ-algebra satisfies the equa-
tion e iff it satisfies all term equations in ≡e. This follows immediately
from (3.1).

(2) Conversely, given a term equation (s, t) ∈ TΣX×TΣX, form the smallest
congruence ≡ on TΣX with s ≡ t (viz. the intersection of all such con-
gruences) and let e : TΣX � EX be the corresponding quotient. Then
a Σ-algebra satisfies s = t iff it satisfies e. Again, this is a consequence
of (3.1).

410 S. Milius and H. Urbat

Step 4. From Theorem 3.16 and Example 3.7(1), we deduce the classical

Theorem 5.1 (Birkhoff [7]). A class of Σ-algebras is a variety (i.e. closed
under quotients, subalgebras, products) iff it is axiomatizable by term equations.

Similarly, one can obtain Birkhoff’s complete deduction system for term equa-
tions as an instance of Theorem 4.4; see [20, Section B.1] for details.

5.2 Finite Σ-Algebras

Next, we derive Eilenberg and Schützenberger’s equational characterization of
pseudovarieties of algebras over a finite signature Σ using our four-step plan:

Step 1. Choose the parameters of Example 3.2(2), and recall that EX = E .
Step 2. The exactness property of Alg(Σ) is given by (3.1).
Step 3. By Example 3.2(2), an equational theory is given by a family of filters
Tn ⊆ TΣn �Algf(Σ) (n < ω). The corresponding syntactic concept involves
sequences (si = ti)i<ω of term equations. We say that a finite Σ-algebra A
eventually satisfies such a sequence if there exists i0 < ω such that A satisfies
all equations si = ti with i ≥ i0. Equational theories and sequences of term
equations are expressively equivalent:
(1) Let T = (Tn)n<ω be a theory. Since Σ is a finite signature, for each

finite quotient e : TΣn � E the kernel ≡e is a finitely generated con-
gruence [12, Prop. 2]. Consequently, for each n < ω the algebra TΣn
has only countably many finite quotients. In particular, the codirected
poset Tn is countable, so it contains an ωop-chain en

0 ≥ en
1 ≥ en

2 ≥ · · ·
that is cofinal, i.e., each e ∈ Tn is above some en

i . The en
i can be cho-

sen in such a way that, for each m > n and q : m → n, the morphism
en
i · TΣq factorizes through em

i . For each n < ω, choose a finite subset
Wn ⊆ TΣn × TΣn generating the kernel of en

n. Let (si = ti)i<ω be a
sequence of term equations where (si, ti) ranges over

⋃
n<ω Wn. One

can verify that a finite Σ-algebra lies in V(T) iff it eventually satisfies
(si = ti)i<ω.

(2) Conversely, given a sequence of term equations (si = ti)i<ω with
(si, ti) ∈ TΣmi×TΣmi, form the theory T = (Tn)n<ω where Tn consists
of all finite quotients e : TΣn � E with the following property:

∃i0 < ω : ∀i ≥ i0 : ∀(g : TΣmi → TΣn) : e · g(si) = e · g(ti).

Then a finite Σ-algebra eventually satisfies (si = ti)i<ω iff it lies in
V(T).

Step 4. The theory version of our HSP theorem (Theorem3.16) now implies:

Theorem 5.2 (Eilenberg-Schützenberger [12]). A class of finite Σ-algebras
is a pseudovariety (i.e. closed under quotients, subalgebras, and finite products)
iff it is axiomatizable by a sequence of term equations.

In an alternative characterization of pseudovarieties due to Reiterman [25], where
the restriction to finite signatures Σ can be dropped, sequences of term equations
are replaced by the topological concept of a profinite equation. This result can
also be derived from our general HSP theorem, see [20, Section B.4].

Equational Axiomatization of Algebras with Structure 411

5.3 Quantitative Algebras

In this section, we derive an HSP theorem for quantitative algebras.

Step 1. Choose the parameters of Example 3.2(3). Recall that we work with
fixed regular cardinal c > 1 and that EX consists of all c-reflexive quotients.
Step 2. To state the exactness property of QAlg(Σ), recall that an (extended)
pseudometric on a set A is a map p : A×A → [0,∞] satisfying all axioms of an
extended metric except possibly the implication p(a, b) = 0 ⇒ a = b. Given
a quantitative Σ-algebra A, a pseudometric p on A is called a congruence if
(i) p(a, a′) ≤ dA(a, a′) for all a, a′ ∈ A, and (ii) every Σ-operation σ : An →
A (σ ∈ Σ) is nonexpansive w.r.t. p. Congruences are ordered by p ≤ q iff
p(a, a′) ≤ q(a, a′) for all a, a′ ∈ A. There is a dual isomorphism of complete
lattices

quotient algebras of A ∼= congruences on A (5.1)

mapping e : A � B to the congruence pe on A given by pe(a, b) =
dB(e(a), e(b)).
Step 3. By Example 3.5(3), equations can be presented as single quotients
e : TΣX � E, where X is a c-clustered space. The exactness property (5.1)
suggests to replace equations by the following syntactic concept. A c-clustered
equation over the set X of variables is an expression

xi =εi
yi (i ∈ I)
 s =ε t (5.2)

where (i) I is a set, (ii) xi, yi ∈ X for all i ∈ I, (iii) s and t are Σ-terms over X,
(iv) εi, ε ∈ [0,∞], and (v) the equivalence relation on X generated by the pairs
(xi, yi) (i ∈ I) has all equivalence classes of cardinality < c. In other words,
the set of variables can be partitioned into subsets of size < c such that only
relations between variables in the same subset appear on the left-hand side of
(5.2). A quantitative Σ-algebra A satisfies (5.2) if for every map h : X → A
with dA(h(xi), h(yi)) ≤ εi for all i ∈ I, one has dA(h�(s), h�(t)) ≤ ε. Here
h� : TΣX → A denotes the unique Σ-homomorphism extending h.

Equations and c-clustered equations are expressively equivalent:
(1) Let X be a c-clustered space, i.e. X =

∐
j∈J Xj with |Xj | < c. Every

equation e : TΣX � E induces a set of c-clustered equations over X
given by

x =εx,y
y (j ∈ J, x, y ∈ Xj)
 s =εs,t

t (s, t ∈ TΣX), (5.3)

with εx,y = dX(x, y) and εs,t = dE(e(s), e(t)). It is not difficult to show
that e and (5.3) are equivalent: an algebra satisfies e iff it satisfies all
equations (5.3).

(2) Conversely, to every c-clustered equation (5.2) over a set X of variables,
we associate an equation in two steps:

– Let p the largest pseudometric on X with p(xi, yi) ≤ εi for all i
(that is, the pointwise supremum of all such pseudometrics). Form
the corresponding quotient ep : X � Xp, see (5.1). It is easy to see
that Xp is c-clustered.

412 S. Milius and H. Urbat

– Let q be the largest congruence on TΣ(Xp) with q(TΣep(s), TΣ

ep(t)) ≤ ε (that is, the pointwise supremum of all such congruences).
Form the corresponding quotient eq : TΣ(Xp) � Eq.

A routine verification shows that (5.2) and eq are expressively equivalent,
i.e. satisfied by the same quantitative Σ-algebras.

Step 4. From Theorem 3.16 and Example 3.7(3), we deduce the following

Theorem 5.3 (Quantitative HSP Theorem). A class of quantitative Σ-
algebras is a c-variety (i.e. closed under c-reflexive quotients, subalgebras, and
products) iff it is axiomatizable by c-clustered equations.

The above theorem generalizes a recent result of Mardare, Panangaden, and
Plotkin [19] who considered only signatures Σ with operations of finite or count-
ably infinite arity and cardinal numbers c ≤ ℵ1. Theorem 5.3 holds without any
restrictions on Σ and c. In addition to the quantitative HSP theorem, one can
also derive the completeness of quantitative equational logic [18] from our general
completeness theorem, see [20, Section B.5] for details.

5.4 Nominal Algebras

In this section, we derive an HSP theorem for algebras in the category Nom of
nominal sets and equivariant maps; see Pitts [24] for the required terminology.
We denote by A the countably infinite set of atoms, by Perm(A) the group of
finite permutations of A, and by suppX(x) the least support of an element x of
a nominal set X. Recall that X is strong if, for all x ∈ X and π ∈ Perm(A),

[∀a ∈ suppX(x) : π(a) = a] ⇐⇒ π · x = x.

A supported set is a set X equipped with a map suppX : X → Pf (A). A morphism
f : X → Y of supported sets is a function with suppY (f(x)) ⊆ suppX(x) for all
x ∈ X. Every nominal set X is a supported set w.r.t. its least-support map suppX .
The following lemma, whose first part is a reformulation of [21, Prop. 5.10], gives
a useful description of strong nominal sets in terms of supported sets.

Lemma 5.4. The forgetful functor from Nom to SuppSet has a left adjoint
F : SuppSet → Nom. The nominal sets of the form FY (Y ∈ SuppSet) are
up to isomorphism exactly the strong nominal sets.

Fix a finitary signature Σ. A nominal Σ-algebra is a Σ-algebra A carrying the
structure of a nominal set such that all Σ-operations σ : An → A are equivariant.
The forgetful functor from the category NomAlg(Σ) of nominal Σ-algebras
and equivariant Σ-homomorphisms to Nom has a left adjoint assigning to each
nominal set X the free nominal Σ-algebra TΣX, carried by the set of Σ-terms
and with group action inherited from X. To derive a nominal HSP theorem from
our general categorical results, we proceed as follows.

Equational Axiomatization of Algebras with Structure 413

Step 1. Choose the parameters of our setting as follows:
– A = A0 = NomAlg(Σ);
– (E ,M) = (surjective morphisms, injective morphisms);
– Λ = all cardinal numbers;
– X = {TΣX : X is a strong nominal set}.

One can show that a quotient e : A � B belongs to EX iff it is support-
reflecting : for every b ∈ B there exists a ∈ A with e(a) = b and suppA(a) =
suppB(b).
Step 2. A nominal congruence on a nominal Σ-algebra A is a Σ-algebra
congruence ≡ ⊆ A×A that forms an equivariant subset of A×A. In analogy
to (3.1), there is an isomorphism of complete lattices

quotient algebras of A ∼= nominal congruences on A. (5.4)

Step 3. By Remark 3.4, an equation can be presented as a single quotient
e : TΣX � E, where X is a strong nominal set. Equations can be described
by syntactic means as follows. A nominal Σ-term over a set Y of variables
is an element of TΣ(Perm(A) × Y). Every map h : Y → A into a nominal
Σ-algebra A extends to the Σ-homomorphism

ĥ = (TΣ(Perm(A) × Y)
TΣ(Perm(A)×h)−−−−−−−−−−→ TΣ(Perm(A) × A)

TΣ(−·−)−−−−−−→ TΣA
id�−−→ A)

where id � is the unique Σ-homomorphism extending the identity map
id : A → A. A nominal equation over Y is an expression of the form

suppY
 s = t, (5.5)

where suppY : Y → Pf (A) is a function and s and t are nominal Σ-terms
over Y . A nominal Σ-algebra A satisfies the equation suppY
 s = t if for
every map h : Y → A with suppA(h(y)) ⊆ suppY (y) for all y ∈ Y one has
ĥ(s) = ĥ(t). Equations and nominal equations are expressively equivalent:
(1) Given an equation e : TΣX � E with X a strong nominal set, choose

a supported set Y with X = FY , and denote by ηY : Y → FY the
universal map (see Lemma 5.4). Form the nominal equations over Y
given by

suppY � s = t (s, t ∈ TΣ(Perm(A) × Y) and e · TΣm(s) = e · TΣm(t)) (5.6)

where m is the composite Perm(A)×Y
Perm(A)×ηY−−−−−−−−→ Perm(A)×X

−·−−−−→
X. It is not difficult to see that a nominal Σ-algebra satisfies e iff it
satisfies (5.6).

(2) Conversely, given a nominal equation (5.5) over the set Y , let X = FY
and form the nominal congruence on TΣX generated by the pair
(TΣm(s), TΣm(t)), with m defined as above. Let e : TΣX � E be the cor-
responding quotient, see (5.4). One can show that a nominal Σ-algebra
satisfies e iff it satisfies (5.5).

Step 4. We thus deduce the following result as an instance of Theorem3.16:

414 S. Milius and H. Urbat

Theorem 5.5 (Kurz and Petrişan [16]). A class of nominal Σ-algebras is a
variety (i.e. closed under support-reflecting quotients, subalgebras, and products)
iff it is axiomatizable by nominal equations.

For brevity and simplicity, in this section we restricted ourselves to algebras for
a signature. Kurz and Petrişan proved a more general HSP theorem for algebras
over an endofunctor on Nom with a suitable finitary presentation. This extra
generality allows to incorporate, for instance, algebras for binding signatures.

5.5 Further Applications

Let us briefly mention some additional instances of our framework, all of which
are given a detailed treatment in the full arXiv paper [20].

Ordered Algebras. Bloom [8] proved an HSP theorem for Σ-algebras in the
category of posets: a class of such algebras is closed under homomorphic images,
subalgebras, and products, iff it is axiomatizable by inequations s ≤ t between
Σ-terms. This result can be derived much like the unordered case in Sect. 5.1.

Continuous Algebras. A more intricate ordered version of Birkhoff’s theorem
concerns continuous algebras, i.e. Σ-algebras with an ω-cpo structure on their
underlying set and continuous Σ-operations. Adámek, Nelson, and Reiterman [3]
proved that a class of continuous algebras is closed under homomorphic images,
subalgebras, and products, iff it axiomatizable by inequations between terms
with formal suprema (e.g. σ(x) ≤ ∨i<ω ci). This result again emerges as an
instance of our general HSP theorem. A somewhat curious feature of this appli-
cation is that the appropriate factorization system (E ,M) takes as E the class
of dense morphisms, i.e. morphisms of E are not necessarily surjective. However,
one has EX = surjections, so homomorphic images are formed in the usual sense.

Abstract HSP Theorems. Our results subsume several existing categorical
generalizations of Birkhoff’s theorem. For instance, Theorem 3.15 yields Manes’
[17] correspondence between quotient monads T � T

′ and varieties of T-algebras
for any monad T on Set. Similarly, Banaschewski and Herrlich’s [6] HSP theorem
for objects in categories with enough projectives is a special case of Theorem 3.16.

6 Conclusions and Future Work

We have presented a categorical approach to the model theory of algebras with
additional structure. Our framework applies to a broad range of different settings
and greatly simplifies the derivation of HSP-type theorems and completeness
results for equational deduction systems, as the generic part of such derivations
now comes for free using our Theorems 3.15, 3.16 and 4.4. There remain a number
of interesting directions and open questions for future work.

Equational Axiomatization of Algebras with Structure 415

As shown in Sect. 5, the key to arrive at a syntactic notion of equation lies
in identifying a correspondence between quotients and suitable relations, which
we informally coined “exactness”. The similarity of these correspondences in our
applications suggests that there should be a (possibly enriched) notion of exact
category that covers our examples; cf. Kurz and Velebil’s [15] 2-categorical view
of ordered algebras. This would allow to move more work to the generic theory.

Theorem 4.4 can be used to recover several known sound and complete equa-
tional logics, but it also applies to settings where no such logic is known, for
instance, a logic of profinite equations (however, cf. recent work of Almeida and
Kĺıma [5]). In each case, the challenge is to translate our two abstract proof rules
into concrete syntax, which requires the identification of a syntactic equivalent of
the two properties of an equational theory. While substitution invariance always
translates into a syntactic substitution rule in a straightforward manner, EX -
completeness does not appear to have an obvious syntactic counterpart. In most
of the cases where a concrete equational logic is known, this issue is obfuscated
by the fact that one has EX = E , so EX -completeness becomes a trivial prop-
erty. Finding a syntactic account of EX -completeness remains an open problem.
One notable case where EX �= E is the one of nominal algebras. Gabbay’s work
[13] does provide an HSP theorem and a sound and complete equational logic
in a setting slightly different from Sect. 5.4, and it should be interesting to see
whether this can be obtained as an instance of our framework.

Finally, in previous work [29] we have introduced the notion of a profinite the-
ory (a special case of the equational theories in the present paper) and shown how
the dual concept can be used to derive Eilenberg-type correspondences between
varieties of languages and pseudovarieties of finite algebras. Our present results
pave the way to an extension of this method to new settings, such as nominal
sets. Indeed, a simple modification of the parameters in Sect. 5.4 yields a new
HSP theorem for orbit-finite nominal Σ-algebras. We expect that a dualization
of this result in the spirit of loc. cit. leads to a correspondence between varieties
of data languages and varieties of orbit-finite nominal monoids, an important
step towards an algebraic theory of data languages.

Acknowledgement. The authors would like to thank Thorsten Wißmann for insight-
ful discussions on nominal sets.

References

1. Adámek, J., Hébert, M., Sousa, L.: A logic of injectivity. J. Homotopy Relat. Struct.
2(2), 13–47 (2007)

2. Adámek, J., Mekler, A.H., Nelson, E., Reiterman, J.: On the logic of continuous
algebras. Notre Dame J. Formal Logic 29(3), 365–380 (1988)

3. Adámek, J., Nelson, E., Reiterman, J.: The Birkhoff variety theorem for continuous
algebras. Algebra Univers. 20(3), 328–350 (1985)

4. Adámek, J., Rosický, J., Vitale, E.M.: Algebraic Theories: A Categorical Introduc-
tion to General Algebra. Cambridge Tracts in Mathematics. Cambridge University
Press, Cambridge (2010)

416 S. Milius and H. Urbat

5. Almeida, J., Kĺıma, O.: Towards a pseudoequational proof theory. arXiv preprint
arXiv:1708.09681 (2017)

6. Banaschewski, B., Herrlich, H.: Subcategories defined by implications. Houston J.
Math. 2(2), 149–171 (1976)

7. Birkhoff, G.: On the structure of abstract algebras. Proc. Camb. Philos. Soc. 10,
433–454 (1935)

8. Bloom, S.L.: Varieties of ordered algebras. J. Comput. Syst. Sci. 2(13), 200–212
(1976)

9. Bojańczyk, M.: Nominal monoids. Theory Comput. Syst. 53(2), 194–222 (2013)
10. Chen, L.-T., Adámek, J., Milius, S., Urbat, H.: Profinite monads, profinite equa-

tions, and Reiterman’s theorem. In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016.
LNCS, vol. 9634, pp. 531–547. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49630-5 31

11. Colcombet, T., Ley, C., Puppis, G.: Logics with rigidly guarded data tests. Log.
Methods Comput. Sci. 11(3) (2015)

12. Eilenberg, S., Schützenberger, M.P.: On pseudovarieties. Adv. Math. 10, 413–418
(1976)

13. Gabbay, M.J.: Nominal algebra and the HSP theorem. J. Logic Comput. 19, 341–
367 (2009)

14. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-
tics and continuous algebras. J. ACM 24(1), 68–95 (1977)

15. Kurz, A., Velebil, J.: Quasivarieties and varieties of ordered algebras: regularity
and exactness. Math. Struct. Comput. Sci. 27, 1153–1194 (2017)

16. Kurz, A., Petrisan, D.: On universal algebra over nominal sets. Math. Struct. Com-
put. Sci. 20(2), 285–318 (2010)

17. Manes, E.G.: Algebraic Theories. Graduate Texts in Mathematics, vol. 26. Springer,
New York (1976). https://doi.org/10.1007/978-1-4612-9860-1

18. Mardare, R., Panangaden, P., Plotkin, G.: Quantitative algebraic reasoning. In:
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2016, pp. 700–709. ACM (2016)

19. Mardare, R., Panangaden, P., Plotkin, G.: On the axiomatizability of quantitative
algebras. In: 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society
(2017). https://doi.org/10.1109/LICS.2017.8005102

20. Milius, S., Urbat, H.: Equational axiomatization of algebras with structure. CoRR
abs/1812.02016 (2018). http://arxiv.org/abs/1812.02016

21. Milius, S., Schröder, L., Wißmann, T.: Regular behaviours with names. Appl. Cat-
egorical Struct. 24(5), 663–701 (2016)

22. Pin, J.É.: Profinite methods in automata theory. In: Albers, S., Marion, J.Y. (eds.)
26th International Symposium on Theoretical Aspects of Computer Science STACS
2009, pp. 31–50. IBFI Schloss Dagstuhl (2009)

23. Pin, J.É., Weil, P.: A Reiterman theorem for pseudovarieties of finite first-order
structures. Algebra Univers. 35, 577–595 (1996)

24. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, Cambridge (2013)

25. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1),
1–10 (1982)

26. Roşu, G.: Complete categorical equational deduction. In: Fribourg, L. (ed.) CSL
2001. LNCS, vol. 2142, pp. 528–538. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44802-0 37

http://arxiv.org/abs/1708.09681
https://doi.org/10.1007/978-3-662-49630-5_31
https://doi.org/10.1007/978-3-662-49630-5_31
https://doi.org/10.1007/978-1-4612-9860-1
https://doi.org/10.1109/LICS.2017.8005102
http://arxiv.org/abs/1812.02016
https://doi.org/10.1007/3-540-44802-0_37
https://doi.org/10.1007/3-540-44802-0_37

Equational Axiomatization of Algebras with Structure 417

27. Roşu, G.: Complete categorical deduction for satisfaction as injectivity. In: Futat-
sugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computa-
tion. LNCS, vol. 4060, pp. 157–172. Springer, Heidelberg (2006). https://doi.org/
10.1007/11780274 9

28. Salamánca, J.: Unveiling Eilenberg-type Correspondences: Birkhoff’s Theorem for
(finite) Algebras + Duality (2017). https://arxiv.org/abs/1702.02822

29. Urbat, H., Adámek, J., Chen, L., Milius, S.: Eilenberg theorems for free. CoRR
abs/1602.05831 (2017). http://arxiv.org/abs/1602.05831

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11780274_9
https://doi.org/10.1007/11780274_9
https://arxiv.org/abs/1702.02822
http://arxiv.org/abs/1602.05831
http://creativecommons.org/licenses/by/4.0/

Towards a Structural Proof Theory
of Probabilistic µ-Calculi

Christophe Lucas1(B) and Matteo Mio2(B)

1 ENS–Lyon, Lyon, France
christophe.lucas@ens-lyon.fr

2 CNRS and ENS–Lyon, Lyon, France
matteo.mio@ens-lyon.fr

Abstract. We present a structural proof system, based on the machin-
ery of hypersequent calculi, for a simple probabilistic modal logic under-
lying very expressive probabilistic µ-calculi. We prove the soundness and
completeness of the proof system with respect to an equational axioma-
tisation and the fundamental cut-elimination theorem.

1 Introduction

Modal and temporal logics are formalisms designed to express properties of
mathematical structures representing the behaviour of computing systems, such
as, e.g., Kripke frames, trees and labeled transition systems. A fundamental
problem regarding such logics is the equivalence problem: given two formulas φ
and ψ, establish whether φ and ψ are semantically equivalent. For many tem-
poral logics, including the basic modal logic K (see, e.g., [BdRV02]) and its
many extensions such as the modal μ-calculus [Koz83], the equivalence problem
is decidable and can be answered automatically. This is, of course, a very desir-
able fact. However, a fully automatic approach is not always viable due to the
high complexity of the algorithms involved. An alternative and complementary
approach is to use human-aided proof systems for constructing formal proofs of
the desired equalities. As a concrete example, the well-known equational axioms
of Boolean algebras together with two axioms for the ♦ modality:

♦⊥ = ⊥ ♦(x ∨ y) = ♦(x) ∨ ♦(y)

can be used to construct formal proofs of all valid equalities between formu-
las of modal logic using the familiar deductive rules of equational logic (see
Definition 3). The simplicity of equational logic is a great feature of this kind of
system but sometimes comes at a cost because even seemingly trivial equalities
often require significant human ingenuity to be proved.1 The problem lies in
1 Example: the law of idempotence x∨x = x can be derived from the standard axioms

of Boolean algebras (i.e., complemented distributive lattices) as: x∨x = (x∨x)∧� =
(x ∨ x) ∧ (x ∨ ¬x) = x ∨ (x ∧ ¬x) = x ∨ ⊥ = x.

The authors were supported by the French project ANR-16-CE25-0011 REPAS.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 418–435, 2019.
https://doi.org/10.1007/978-3-030-17127-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_24&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_24

Towards a Structural Proof Theory of Probabilistic µ-Calculi 419

the transitivity rule (a = b & b = c ⇒ a = c) which requires to guess, among
infinitely many possibilities, an interpolant formula b to prove the equality a = c.

The field of structural proof theory (see [Bus98]), originated with the seminal
work of Gentzen on his sequent calculus proof system LK for classical propo-
sitional (first-order) logic [Gen34], investigates proof systems which, roughly
speaking, require less human ingenuity. The key technical result regarding the
sequent calculus, the cut-elimination theorem, implies that when searching for a
proof of a statement, only certain formulas need to be considered: the so-called
sub-formula property. This simplifies significantly, in practice, the proof search
endeavour. The original system LK of Gentzen has been extensively investi-
gated and generalised and, for example, it can be extended with rules for the
♦ modality and becomes a convenient proof system for modal logic [Wan96].
Furthermore, it is possible to extend it with rules for dealing with (co)inductive
definitions and it becomes a proof system for the modal μ-calculus (see, e.g.,
[Stu07]). Research on the structural proof theory of the modal μ-calculus is an
active area of research (see, e.g., recent [Dou17]).

Probabilistic Logics and the Riesz Modal Logic. Probabilistic logics are temporal
logics specifically designed to express properties of mathematical structures (e.g.,
Markov chains and Markov decision processes) representing the behaviour of
computing systems using probabilistic features such as random bit generation.
Unlike the non-probabilistic case, the equivalence problem for most expressive
probabilistic logics (e.g., pCTL [LS82,HJ94], see also [BK08,BBLM17]) is not
known to be decidable. Hence, human-aided proof systems are currently the only
viable approach to establish equalities of formulas of expressive probabilistic
logics. To the best of our knowledge, however, all the proof systems proposed
in the literature (see, e.g., [DFHM16] for the logic pCTL, [BGZB09,Hsu17] for
pRHL and [Koz85] for pPDL) are not entirely satisfactory because they include
rules, such as the transitivity rule discussed above, violating the sub-formula
property.

Another line of work on probabilistic logics has focused on probabilistic μ-
calculi ([MM07,HK97,DGJP00,dA03,MS17,Mio11,Mio12a,Mio14]). These logi-
cal formalisms are, similarly to Kozen’s modal μ-calculus, obtained by extending
a base real-valued modal logic with (co)inductively defined operators. Recently,
in [MFM17], a base real-valued modal logic called Riesz modal logic (R) has been
defined and a sound and complete equational axiomatisation has been obtained
(see Definition 2). Importantly, the logic R extended with (co)inductively defined
operators is sufficiently expressive to interpret most other probabilistic logics,
including pCTL [Mio12b,Mio18,MS13a]. Hence, the Riesz modal logic appears
to be a convenient base for developing the theory of probabilistic μ-calculi and,
more generally, probabilistic logics.

Contributions of This Work. This work is a first step towards the development of
the structural proof theory of probabilistic μ-calculi. We introduce a hypersequent
calculus called MGA (read modal GA) for a version of the Riesz modal logic (the

420 C. Lucas and M. Mio

scalar-free fragment, see Sect. 2 for details) and by proving the cut-elimination
theorem. Formally we prove:

Theorem 1. The hypersequent calculus MGA is sound and complete with
respect to the equational axioms of Fig. 1 and the CUT rule is eliminable.

The machinery of hypersequent calculi has been introduced by Avron in
[Avr87] and, independently, by Pottinger in [Pot83]. Our calculus extends the
hypersequent calculus GA of Metcalfe, Olivetti and Gabbay [MOG05] (see also
the book [MOG09] and the related [CM03] and [DMS18]) which is a sound and
complete structural proof system for the equational theory of lattice-ordered
abelian groups (axioms (1) in Fig. 1, see [Vul67] for an overview). The main
contributions of this work are:

1. The careful extension of the system GA of [MOG05] with appropriate proof
rules for the modality (♦) and the proof of soundness and completeness.

2. The non-trivial adaptation of the proof-technique used in [MOG09, §5.2] to
prove the cut-elimination theorem for GA.

3. The formalisation using the theorem prover Agda of our key technical results:
Theorems 4 and 9. The code is freely available at [Agd].

In particular, the last point above guarantees the correctness of the proofs of
all our novel technical results which, as it is often the case in proof theory,
involve complex and long induction arguments. Given the availability of for-
malised proofs, in this work we focus on illustrating the main ideas behind our
arguments rather than spelling out all technical details.

Organisation of the Paper. In Sect. 2 we provide the necessary definitions about
the Riesz modal logic from [MFM17,Mio18] and about the hypersequent calculus
GA of [MOG05,MOG09]. In Sect. 3 we present our hypersequent calculus MGA
and state the main theorems. In Sect. 4 we sketch the main ideas behind our
proof of cut-elimination. Lastly, in Sect. 5 we discuss some directions for future
work.

2 Technical Background

2.1 The Riesz Modal Logic and Its Scalar-free Fragment

The Riesz modal logic R introduced in [MFM17] is a probabilistic logic for
expressing properties of discrete or continuous Markov chains. We refer to
[MFM17] for a detailed introduction. Here we just restrict ourselves to the purely
syntactical aspects of this logic: its syntax and its axiomatisation.

Definition 1 (Syntax). The set of formulas of the Riesz modal logic is gener-
ated by the following grammar: φ, ψ ::= x | 0 | 1 | φ + ψ | rφ | φ � ψ | φ � ψ | ♦φ
where r, called a scalar, ranges over the set R of real numbers. We just write
−φ in place of (−1)φ.

A main result of [MFM17] is that two formulas φ and ψ are semantically
equivalent if and only if the identity φ = ψ holds in all modal Riesz spaces.

Towards a Structural Proof Theory of Probabilistic µ-Calculi 421

Definition 2. A modal Riesz space is an algebraic structure R over the signa-
ture Σ = {0, 1,+, r,�,�,♦}r∈R such that the following set R of axioms hold:

1. {R, 0,+, r,�,�}r∈R is a Riesz space (see, e.g., [LZ71]), i.e.,
– (R, 0,+, r)r∈R is an R-vector space,
– (R,�,�) is a lattice,
– the lattice order (x ≤ y ⇔ x � y = x) is compatible with addition, i.e.:

(a) x ≤ y implies x+ z ≤ y + z (i.e., (x� y)+ z = ((x� y)+ z)� (y + z)),
(b) x ≥ 0 implies rx ≥ 0 (i.e., 0 = 0 � r(x � 0)) for every r ∈ R≥0,

2. 0 ≤ 1 (i.e., 0 = 0 � 1),
3. the ♦ operation is linear, positive and 1-decreasing, i.e.:

– ♦(x + y) = ♦(x) + ♦(y) and ♦(rx) = r♦(x),
– if x ≥ 0 then ♦(x) ≥ 0 (i.e., 0 = 0 � ♦(x � 0)),
– ♦(1) ≤ 1 (i.e., ♦1 = ♦1 � 1).

Note that the definition of modal Riesz spaces is purely equational: all axioms
of Riesz spaces (1) can be expressed equationally and so can the axioms (2)
and (3). This means, by Birkoff completeness theorem, that two formulas are
semantically equivalent if and only if the identity φ = ψ can be derived using
the familiar deductive rules of equational logic, written as R � φ = ψ.

Definition 3 (Deductive Rules of Equational Logic). Rules for deriving
identities from a set A of equational axioms:

(t1 = t2) ∈ A
A � t1 = t2

Ax A � t = t
refl

A � t2 = t1
A � t1 = t2

sym A � t1 = t2
A � C[t1] = C[t2]

ctxt

A � t1 = t2 A � t2 = t3
A � t1 = t3

trans
A � f(s, x,u) = g(w, x,z)
A � f(s, t,u) = g(w, t,z) subst

where C[·] is a context and f, g are function symbols of the fixed signature.

In what follows we denote with R � φ ≤ ψ the judgment R � φ = φ � ψ.
The following elementary facts from the theory of Riesz spaces (see, e.g., [LZ71,
§2.12]) will be useful.

Proposition 1. The following assertions hold:

– R � φ = ψ iff R � φ − ψ = 0,
– R � φ = ψ iff

(R � φ ≤ ψ and R � ψ ≤ φ
)
.

– R � r(x � y) = rx � ry, R � r(x � y) = rx � ry.

The first point says that an equality φ = ψ can always be expressed
as an identity with 0. The second point says that we can express equali-
ties with inequalities and vice versa. The third point, together will the other
axioms, implies that scalar multiplication distributes over all other operations
{+,�,�,♦}.

For most practical purposes (when expressing properties of probabilistic mod-
els) the scalars in the Riesz modal logic can be restricted to be rational numbers.

422 C. Lucas and M. Mio

Definition 4 (Rational and Scalar-free formulas). A formula φ is rational
if all its scalars are rational numbers. Similarly, φ is scalar-free if its scalars are
all equal to (−1). Equivalently, the set of scalar-free formulas is generated by the
following grammar: A,B ::= x | 0 | 1 | A + B | −A | A � B | A � B | ♦(A).

Note how we have switched to the letters A and B to range over scalar-free
formulas to highlight this distinction.

Proposition 2. Let φ be a rational formula. Then there exists a scalar-free
formula A such that R � φ = 0 iff R � A = 0.

Proof. Let {ri}i∈I be the list of rational scalars in φ, with ri = ni

mi
and let d =∏

i mi be the product of all denominators. Since scalar multiplication distributes
with all operations it is easy to show that R � dφ = ψ, for a formula ψ whose
scalars are all integers. We can then obtain A from ψ by inductively replacing
any sub-formula of ψ the form nB with (B + B + · · · + B) (n times) if n is
positive, with −(B + B + · · · + B) if n is negative and with 0 if n = 0. ��

For this reason in this work we restrict attention to scalar-free formulas and
we consider the restricted set of axioms T of Fig. 1. The axioms of Riesz spaces,
when scalar multiplication is omitted, reduce to the axioms of lattice ordered
abelian groups (see, e.g., [Vul67]). The axiom 0 ≤ 1 is unaltered and the axioms
for the ♦ modality are naturally adapted. For these reasons we refer to these
axioms as of those of lattice-ordered modal abelian groups.

Fig. 1. Set of axioms T of lattice-ordered modal Abelian groups.

Remark 1. Note that from the previous discussion it does not follow directly that
R � A = B implies T � A = B. We indeed conjecture that R is a conservative
extension of T but we have not proved this fact so far. In any case, this is not
required for results of this work.

The main contribution of this work is the design of a sound and complete
hypersequent calculus for the theory T and the proof of cut-elimination.

Towards a Structural Proof Theory of Probabilistic µ-Calculi 423

2.2 The Hypersequent Calculus GA

Our starting point is the hypersequent calculus GA of [MOG05,MOG09] for the
theory of lattice-ordered abelian groups (set of axioms (1) in Fig. 1).

Definition 5 (Formulas, Sequents and hypersequents). A formula A is
a term built from a set of variables (ranged over by x, y, z) over the signature
{0,+,−,�,�}. A sequent S is a pair of two (possibly empty) multisets of for-
mulas Γ = A0, . . . , An and Δ = B0, . . . , Bm, denoted as Γ � Δ. A hypersequent
G is a nonempty multiset S1, . . . , Sn of sequents, denoted as S1| . . . |Sn.

Following [MOG05,MOG09], with some abuse of notation, we denote with
S both the sequent and the hypersequent consisting of only the sequent S. The
system GA is a deductive system for deriving hypersequents consisting of the
rules of Fig. 2. The system GA without the CUT rule is denoted by GA∗.

Another convention we adopt from [MOG05,MOG09] is to write d �GA G
to express the fact that d is a valid GA-derivation of the hypersequent G. We
write �GA G to express the existence of a GA-derivation d such that d �GA G.
Similarly, we write d �GA∗ G and �GA∗ G when referring to the subsystem GA∗.

Fig. 2. Inference rules of the hypersequent system GA of [MOG05].

424 C. Lucas and M. Mio

Multisets of formulas, sequents and hypersequents are interpreted as a single
formula as follows:

Definition 6 (Interpretation). A multiset of formulas Γ = φ1, . . . , φn is
interpreted as the formula �Γ � = φ1 + φ1 + · · · + φn if n ≥ 1 and as �Γ � = 0 if
Γ = ∅. A sequent S = Γ � Δ is interpreted as the formula �S� = �Δ� − �Γ �.
Finally, a hypersequent G = S0 | · · · | Sn is interpreted as the formula
�G� = �S0� � · · · � �Sn�.

Example 1. Consider the hypersequent G =
(
0�x, y � y

) | (− y �)
consisting

of two sequents. Then �G� =
(
y − (

(0 � x) + y
)) � (

0 − (−y)
)
.

The soundness and completeness of the hypersequent system GA with respect
to the theory of lattice-ordered abelian groups (axioms (1) of Fig. 1, written as
T(1)) is expressed by the following theorem.

Theorem 2 ([MOG05]). For all formulas A and hypersequents G:

Soundness: if �GA G then T(1) � �G� ≥ 0.
Completeness: if T(1) � A ≥ 0 then �GA (� A)

Proof. The proofs presented in [MOG05] exploit the following well-known fact
(see, e.g., [Vul67]): the equality A = B holds in all lattice-ordered abelian groups
if and only if it holds in (R, 0,+,−,max,min) under any interpretation of the
variables as real numbers. In other words, R generates the variety of lattice-
ordered abelian groups. ��

The main result of [MOG05] regarding GA is that the CUT rule is eliminable.

Theorem 3 (Cut-elimination [MOG05]). Any GA-derivation of a hyperse-
quent G can be effectively transformed into a GA∗-derivation of G.

3 The Hypersequent System MGA

In this section we introduce our hypersequent calculus system MGA, a modal
extension of the GA system of [MOG05]. The system MGA deals with formu-
las over the signature of modal lattice-ordered abelian groups (see Fig. 1) thus
including the constant 1 and the unary modality ♦.

Definition 7 (Formulas of MGA). A formula A is a term built from a set
of variables (ranged over by x, y, z) over the signature {0, 1,+,−,�,�,♦}.

The definitions of sequents and hypersequents are given exactly as for the
system GA in Definition 5 of Sect. 2.2. Similarly, multisets of formulas, sequents
and hypersequents are interpreted as formulas exactly as already specified in
Definition 6 of Sect. 2.2 for the system GA. Before presenting the deduction rules
of MGA, it is useful to introduce the following abbreviations.

Towards a Structural Proof Theory of Probabilistic µ-Calculi 425

– For n ∈ N≥0, we denote with nF the multiset of formulas F, F, . . . , F .
So for example we write 2A, 1B � 0C,D to denote the sequent A,A,B � D.

– Given a multiset of formulas Γ = F0, . . . , Fk and n ∈ N≥0 we denote with nΓ
the multiset of formulas nF0, . . . , nFk. If Γ = ∅ then also nΓ = ∅.

– Given a multiset of formulas Γ = F0, . . . , Fn we denote with ♦Γ the multiset
of formulas ♦F0, . . . ,♦Fn. Consistently, if Γ = ∅ then also ♦Γ = ∅.

The rules of the system MGA consist of all rules of GA (see Fig. 2) together
with the additional rules of Fig. 3.

Fig. 3. Additional inference rules of the hypersequent system MGA

The axiom (1-ax) for the constant 1 is straightforward and it simply expresses
the axiom 0 ≤ 1 from Fig. 1 (i.e., T � �� 1� ≥ 0).

The rule (♦-rule) for the modality is more subtle as it imposes strong con-
straints on the shape of its premise and conclusion. First, both the conclusion and
the premise are required to be hypersequents consisting of exactly one sequent.
Furthermore, in the conclusion, all formulas, except those of the form 1 on the
right side, need to be of the form ♦C for some C.

The following is an illustrative example of derivation in the system MGA:

1 � 1 ID-ax
A � A

ID-ax

A, 1 � 1, A
M

A, 1,−(A)−(A)−(A) � 1
−L

A,1 − A1 − A1 − A � 1
+L

A,A � 1A,A � 1A,A � 1 | A, 1 − A � 1 W

A,A � (1 − A)A � (1 − A)A � (1 − A) � 1
�L

A,A � (1 − A) � 1 | 1 − A,A � (1 − A) � 11 − A,A � (1 − A) � 11 − A,A � (1 − A) � 1
W

A � (1 − A)A � (1 − A)A � (1 − A), A � (1 − A) � 1
�L

♦((A � (1 − A))),♦((A � (1 − A))) � 1
♦-rule

♦((A � (1 − A))) + ♦((A � (1 − A)))♦((A � (1 − A))) + ♦((A � (1 − A)))♦((A � (1 − A))) + ♦((A � (1 − A))) � 1
+L

Our first theorem regarding MGA states its soundness and completeness with
respect to the theory of modal lattice-ordered abelian groups (see Fig. 1). The
proof of [MOG05] of Theorem 2 cannot be directly adapted here because, unlike
the case for lattice-ordered abelian groups and R, we are not aware of any simple
modal lattice-order abelian group which generates the whole variety.

Theorem 4. For all formulas A and hypersequents G:

Soundness: if �MGA G then T � �G� ≥ 0.

Completeness: if T � A ≥ 0 then �MGA (� A).

426 C. Lucas and M. Mio

Proof. Soundness is proven by translating every MGA derivation d of G to a
derivation in equational logic π of �G� ≥ 0. This is done by induction on the
complexity of d. The difficult cases correspond to when d ends by applications of
either the S-rule, the M-rule or the �L rule. The formalised proof is implemented
in the agda file Syntax/Agda/MGA-Cut/Soundness.agda in [Agd] and the type
of the function is: soundness : (G : HSeq) → (MGA G) → botAG ≤S � G � .

Conversely, completeness is proven by translating every equational logic
derivation π of A = B to the MGA derivations d1 and d2 of the (hyper)sequents
A � B and B � A respectively. The proof goes by induction on π. First, MGA
derivations are obtained for all axioms of Fig. 1. For example, for the axiom
♦(x+y) = ♦(x)+♦(y) we can derive the (hyper)sequent ♦(x+y) � ♦(x)+♦(y)
as showed below (left-side). Translating applications of the rules refl and sym is
simple. Translating applications of the trans rules is immediate using the CUT
rule of MGA. To translate applications of the ctxt rule, it is sufficient to prove
(by induction) a simple context-lemma that states that if A � B is MGA deriv-
able then also C[A] � C[B] is MGA derivable. Similarly, to translate applications
of the subst rule, it is sufficient to prove (by induction) a simple substitution-
lemma stating that if G is MGA derivable then G[A/x] is also derivable, where
G[A/x] is the hypersequent where every occurrence of x is replaced by A.

Note that T � A ≥ 0 means that T � 0 = 0 � A. By the translation method
outlined above, the (hyper)sequent 0 � 0 � A is MGA derivable. We can then
get a MGA derivation of � A as follows (right-side):

x � x
ID-ax

y � y
ID-ax

x, y � x, y
M

x + y � x, y
+L

♦(x + y) � ♦(x),♦(y)
♦

♦(x + y) � ♦(x) + ♦(y)
+R

A � A
ID-ax

0 � A | A � A
W

0 � A � A
�L

0 � 0 � A
� Δ-ax

� 0
0R

� 0 � A
cut

� A
cut

The file Syntax/Agda/MGA-Cut/Completeness.agda in [Agd] contains the
formalised proof and the type of the function is: completeness : (A : Term) →
botAG ≤S A → MGA (head ([], [] :: A)). ��
Remark 2. The following natural looking variant of the (♦-rule), allowing hyper-
sequents with more than one component, is unsound:

G | Γ � Δ,n1
G | ♦Γ � ♦Δ,n1

Our main theorem regarding the system MGA is the cut-elimination theorem.
We denote with MGA∗ the system without the CUT rule.

Theorem 5 (Cut-elimination). Any MGA-derivation of a hypersequent G
can be effectively transformed into a MGA∗-derivation of G.

Theorems 4 and 5 imply the statement of Theorem 1 in the Introduction.

Towards a Structural Proof Theory of Probabilistic µ-Calculi 427

4 Overview of the Proof of the Cut-Elimination Theorem

In this section we illustrate the structure of our proof of the cut-elimination
theorem. We first explain the main ideas behind the proof of cut-elimination for
GA of [MOG09, §5.2]. We then explain why these idea are not directly applicable
to the system MGA. Lastly, we discuss our key technical contribution which
makes it possible to adapt the proof method of [MOG09, §5.2] to prove the
cut-elimination theorem for the MGA system.

4.1 The CAN-Elimination Theorem for the System GA

A key idea of [MOG09, §5.2] is to replace the CUT rule with an easier to handle
rule called cancellation (CAN) rule. The CAN rule can derive the CUT rule in
the basic cut-free system GA∗ as follows (right-side):

G|Γ,A � A,Δ

G|Γ � Δ
CAN

d1
G|Γ1, A � Δ1

d2
G|Γ2 � A,Δ2

G|Γ1, Γ2, A � A,Δ1,Δ2
M

G|Γ1, Γ2 � Δ1,Δ2
CAN

The cut-elimination theorem is obtained in [MOG09, §5.2] by proving a CAN-
elimination theorem expressed as: if �GA∗ G|Γ,A � A,Δ then �GA∗ G|Γ � Δ.

The CAN-elimination theorem for the system GA is proved in three steps:

Step A: proving the invertibility of all the logical rules ([MOG09, Lemma 5.18]).
The invertibility states that if the conclusion of a logical rule (for instance,
G|Γ,A+B � Δ for the +L rule) is derivable without the CAN-rule, then all the
premises (in this case G|Γ,A,B � Δ) are derivable too without the CAN-rule.

Step B: proving the atomic CAN-elimination theorem ([MOG09, Lemma 5.17]).
This theorem deals with the special case of A being a variable and states that if
d �GA∗ G|Γ, x � x,Δ then �GA∗ G|Γ � Δ. This theorem is proven by induction
on d and is mostly straightforward: the only difficult case is when d finishes
with an application of the M-rule. A separate technical result ([MOG09, Lemma
5.16]) is used to take care of this difficult case.

Step C: proving the CAN-elimination theorem ([MOG09, Theorem 5.19]). The
CAN-elimination theorem states that if �GA∗ G|Γ,A � A,Δ then �GA∗ G|Γ �
Δ. This proof is by induction on A:

– If A is a variable, we can conclude with the atomic CAN-elimination theorem.
– Otherwise we use the invertibility of the logical rules and we can conclude with

the induction hypothesis. For instance, if A = B + C, then by invertibility of
the +L and +R rules we have a GA∗-derivation of �GA∗ G|Γ,B,C � Δ,B,C
and, from it, we can obtain a GA∗-derivation of G|Γ � Δ by using twice the
induction hypothesis, first on B then on C.

428 C. Lucas and M. Mio

4.2 Issues in Adapting the Proof for the System MGA

The proofs of [MOG09] can be adapted to the context of MGA without much
difficulty to perform the first two steps:

Theorem 6 (Invertibility of the logical rules). All logical rules (including
the ♦-rule) are invertible in the system MGA∗.

Proof. The same proof technique used in [MOG09] works. The main idea is, in
order to deal easily with the (S) and the (C) rules, to prove a slightly stronger
statement about the invertibility of more general rules. For instance, the gener-
alisation of the rule +L is:

[Γi, niA,niB � Δi]
k
i=1

[Γi, ni(A + B) � Δi]
n
i=1

��
Theorem 7 (Atomic CAN-elimination theorem). If �MGA∗ Γ, x � x,Δ
then �MGA∗ Γ � Δ.

The complication comes from the third and last Step C. We want to prove
that if �MGA∗ G|Γ,A � A,Δ then �MGA∗ G|Γ � Δ. An ordinary proof by
induction on A could get stuck when A = ♦B. For instance, if the hypersequent
is x,♦B � ♦B, x, the invertibility of the ♦-rule can not be used because of the
syntactic constraints the ♦-rule imposes on its conclusion. Indeed the invertibility
of the ♦-rule states that if �MGA∗ ♦Γ � ♦Δ then �MGA∗ Γ � Δ, but x,♦A �
♦A, x is not of this form because it contains the variable x.

For this reason, we deal with the case A = ♦B in a different way, using
an induction argument on the derivation of G|Γ,A � A,Δ. In this argument,
however, the M-rule is hard to deal with (as already remarked it is a main source
of complications also on the proof of atomic CAN-elimination of [MOG09, §5.2]).

Our main technical result is that the M -rule can be eliminated from a simple
variant of the system MGA called MGA-SR (which stands MGA with scalar
rules). The system MGA-SR is obtained by modifying MGA as follows:

– The logical left-rules and right-rules for the connectives {0,−,+,�,�} are
generalised to deal with scalar coefficients (syntactic sugaring introduced in
Sect. 3). For instance, the rules +L and �L become:

G | Γ, nA, nB � Δ

G | Γ, n(A + B) � Δ
+L

G|Γ, nA � Δ G|Γ, nB � Δ

G|Γ, n(A � B) � Δ
�L

– The axioms ID-ax and 1-ax are replaced by the rules

G|Γ � Δ

G|Γ, nA � nA,Δ
ID-rule

G | Γ � Δ

G | Γ � Δ,n1 1-rule

– All structural rules (C, W, S, M), the ♦-rule and the CAN rule remain exactly
as in MGA (see Fig. 2).

Towards a Structural Proof Theory of Probabilistic µ-Calculi 429

It is possible to verify that MGR and MGR-SR are equivalent, i.e., they can
derive exactly the same hypersequents (Theorem 8 below). The first modification
(scalar rules) is technically motivated because it simplifies several proofs: in fact
scalar rules are also implicitly considered in several of the proofs of [MOG09]
for the system GA. The second modification (ID-rule and 1-rule) is essential.
Indeed in the system MGA (and also in GA) the (hyper)sequent x, y � x, y
is not derivable without applying the M-rule. Hence M -elimination in MGA is
impossible. On the other hand the (hyper)sequent x, y � x, y is easily derivable
in MGA-SR without requiring applications of the M rule

� Δ-ax

y � y
ID-rule

x, y � x, y
ID-rule

and, as we will prove (Theorem 12), it is indeed possible to eliminate all appli-
cations of the M-rule from MGA-SR.

As outlined above, the presence of the M-rule was the main source of com-
plications in adapting Step C. Once the equivalence between MGA-SR and
MGA-SR without the M-rule is established, most complications disappear and
the CAN-elimination proof can be obtained by performing Steps A–B–C for the
system MGA-SR.

4.3 The System MGA-SR and the M-Elimination Theorem

In this subsection we introduce the system MGA-SR (MGA with scalar rules)
for which we will prove the M-elimination theorem.

Definition 8 (MGA-SR). The inference rules of MGA-SR are the rules of
MGA modified as discussed previously. We denote by MGA-SR∗, MGA-SR† and
MGA-SR†∗ the systems without the CUT rule, the M-rule and both the CUT and
M-rules, respectively.

Theorem 8. The two systems MGA and MGA-SR are equivalent: �MGA G if
and only if �MGA−SR G.

The two systems MGA∗ and MGA-SR∗ are equivalent: �MGA∗ G if and only
if �MGA−SR∗ G.

Proof. Translating MGA proofs to MGA-SR proofs is straightforward. All rules
of MGA are specific instances of the scalar rules of MGA-SR (taking the scalar
n = 1) and the the axioms 1-Axiom and ID-axioms are easily derivable in MGA-
SR (without the need of the CAN rule) by using the id-rule and 1-rule (again,
using the scalar n = 1). Translating MGA-SR to MGA is also mostly straight-
forward. Some care is needed to translate instances of the scalar-rules �L and
�R from MGA-SR to MGA. This can be done by induction on the scalar n using
the fact that the two premises G|Γ, nA,B � Δ and G|Γ, nB,A � Δ are derivable
from G|Γ, (n + 1)A � Δ and G|Γ, (n + 1)B � Δ. We remark that this derivation
may require the usage of the M rule. ��

430 C. Lucas and M. Mio

We now state our main technical contribution: the M-elimination theorem
for the system MGA-SR.

Theorem 9 (M-elimination). If d1 �MGA-SR† G1 | Γ � Δ and d2 �MGA-SR†

G2 | Σ � Π then �MGA-SR† G1 | G2 | Γ,Σ � Δ,Π.
If d1 �MGA-SR†∗ G1 | Γ � Δ and d2 �MGA-SR†∗ G2 | Σ � Π then �MGA-SR†∗

G1 | G2 | Γ,Σ � Δ,Π.

We now give a sketch of our proof argument. A formalised proof in Agda
is available in [Agd] and is contained in the files Syntax/MGA-SR/M-Elim.agda
and Syntax/MGA-SR-CAN/M-Elim-CAN.agda.

The general idea is to combine the derivations d1 and d2 in a sequential way.
We first consider the case when no applications of the ♦-rule appear in d1 nor
d2. First the proof d1 is transformed into a pre-proof (i.e., where the derivation
is left incomplete at some leaves) d′

1 of G1 | G2 | Γ,Σ � Δ,Π. The pre-proof d′
1

is structurally identically to d1 and it essentially just ignores the G2, Σ and Π
components of the hypersequent. While the leaves of d1 are all of the form (�)
because Δ-ax is the only axiom of MGA-SR, the leaves of the pre-proof d′

1 are
of the form G2 | nΣ � nΠ (the ignored part carried out until the end, which can
get multiplied by applications of the C and S rules). We can now proceed with
the second step and provide derivations for these leaves using (easily modified
versions of) the proof d2.

When occurrences of the ♦-rule appear in d1 or d2 the argument requires
more care. Indeed an application of the ♦-rule on d1 acting on some hypersequent
(necessarily) of the form:

♦Γ1 � ♦Δ1, k1

cannot turned into an application of ♦-rule on:

G2 | Σ,♦Γ1 � ♦Δ1, k1,Π

because this hypersequent violates the structural constraints of the ♦-rule. For
this reason, we stop the construction of d′

1 at these points and, as a results, the
leaves of the pre-proof d′

1 are generally of the form: G2 | nΣ,♦Γ1 � ♦Δ1, k1, nΠ,
for some Γ1,Δ1 and scalars n, k.

The idea now is, following the same kind of procedure, to modify the proof
d2 and turn it to a pre-proof d′

2 of G2 | nΣ,♦Γ1 � ♦Δ1, k1, nΠ. Crucially, the
previous issue disappears. Indeed proof steps in d2 acting on hypersequents of
the form:

♦Σ1 � ♦Π1,m1

using the ♦-rule, can be turned into valid ♦-rule steps for the extended hyper-
sequent:

♦Σ1,♦Γ1 � ♦Δ1, k1,♦Π1,m11

because the shape of the sequent is compatible with the constraint of the ♦
rule. Note that the hypersequent resulting from the application of the ♦-rule
is Σ1, Γ1 � Γ1, k11,Π1,m11 and has a lower modal-depth than the starting
one. Hence an inductive argument on modal-complexity can be arranged to

Towards a Structural Proof Theory of Probabilistic µ-Calculi 431

recursively reduce the general M-elimination procedure to the simpler case where
d1 and d2 do not have occurrences of the ♦-rule (Fig. 4).

G1 | Γ � Δ

d1

Γ1 � Δ1, k11
♦Γ1 � ♦Δ1, k11

♦
...

G2 | Σ � Π

d2

Σ1 � Π1, m11
♦Σ1 � ♦Π1, m11

♦
...

G1 | G2 | Γ, Σ � Δ, Π

G2 | n1Σ, ♦Γ1 � ♦Δ1, k11, n1Π ...

d′
1

G2 | n1Σ, ♦Γ1 � ♦Δ1, k1, n1Π

Σ1, n
′
1Γi � n′

1Δi, n
′
1.k11, Π1, m11

♦Σ1, n
′
1♦Γi � n′

1♦Δi, n
′
1.k11, ♦Π1, m11

♦ ...

d′
2

Fig. 4. Sequentially composing d1 and d2 in the M-elimination proof.

The following is a direct consequence Theorems 8 and 9.

Corollary 1. The two systems MGA and MGA-SR† are equivalent: �MGA G if
and only if �MGA−SR† G.

The two systems MGA∗ and MGA-SR†∗ are equivalent: �MGA∗ G if and only
if �MGA−SR†∗ G.

4.4 Cut-Elimination Theorem for the System MGA

We have already remarked that the cut-elimination theorem for the system MGA
follows from the CAN-elimination theorem. By Corollary 1, the CAN-elimination
theorem for the system MGA-SR† implies the CAN-elimination for MGA. Since
there is no M-rule in MGA-SR†, the proof of CAN-elimination can follow the
three Steps A–B–C outlined in Subsect. 4.1. As for Step A, we need to prove the
invertibility of the logical rules in the system MGA-SR†∗.

Theorem 10 (Invertibility of the logical rules). The logical rules of the
system MGA-SR†∗, {0L, 0R,+L,+R,�L,�R,�L,�R}, are invertible.

Remark 3. We note that, just as in [MOG09, §5.2], it is in fact possible and
indeed technically useful to prove the invertibility of generalised scalar rules
dealing with scalar rules, as in the proof of Theorem6.

As for Step B we prove the atomic CAN-elimination theorem. Following the
previous remark, we prove the following stronger version of the statement.

432 C. Lucas and M. Mio

Theorem 11 (Atomic CAN-elimination). If �MGA-SR†∗ [Γi, kix � kix,
Δi]

n
i=1 then �MGA-SR†∗ [Γi � Δi]

n
i=1.

Since we removed the M-rule, there are no significant difficulties in the induc-
tion arguments, and the proof is quite straightforward.

We also need a technical lemma regarding the constant formula 1 which is
provable by a simple induction on the length of derivations.

Lemma 1. If �MGA-SR†∗ [Γi, ni1 � ni1,Δi]
n
i=1 then �MGA-SR†∗ [Γi � Δi]

n
i=1.

We can now prove the CAN-elimination theorem for MGA-SR†. This,
together with Corollary 1 implies the cut-elimination (Theorem 5) for MGA.

Theorem 12 (CAN-elimination). If d �MGA-SR†∗ G | Γ,A � A,Δ then
�MGA-SR†∗ G | Γ � Δ.

Proof. Again, it is convenient to prove the stronger statement: If d �MGA-SR†∗

[Γi, kiA �, kiA,Δi]
n
i=1 then �MGA-SR†∗ [Γi � Δi]

n
i=1. This is done by induction

on the (lexicographical) complexity of the pair (A, d):

– If A is a variable, we can conclude with Theorem 11.
– If A = 1, we can conclude with Lemma 1.
– If A = ♦B, we look at d.

• If d finished with the ♦-rule, then the end hypersequent is necessarily
of the form: [Γi, kiA �, kiA,Δi]

n
i=1 = ♦Γ1, n1♦B � n1♦B,♦Δ1, k1, and

is derived from the hypersequent �MGA-SR†∗ Γ1, n1B � n1B,Δ1, k1. By
induction hypotheses (B has smaller complexity than A), we have that
�MGA-SR†∗ Γ1 � Δ1, k1. Hence we can derive �MGA-SR†∗ ♦Γ1 � ♦Δ1, k1
by application of the ♦-rule.

• Otherwise, the hypersequent is derived by application of some other rule
(not active on A = ♦B) from some premises. In this case, we simply apply
the inductive hypothesis on the premises (the formula A is unchanged but
the complexity of the premise derivation has decreased) and use the same
rule to construct a derivation of the desired hypersequent.

– Otherwise, using the same argument of [MOG09, §5.2] discussed in Sect. 4.1,
we make progress in the inductive proof (reducing the complexity of A) by
using the invertibility of the logical rules (Theorem10). ��

5 Conclusions and Future Work

We have presented a structural proof system called MGA for the scalar-free frag-
ment of the Riesz modal logic. A natural direction of research is to extend the
system MGA to deal with the full Riesz modal logic, thus handling arbitrary
scalars r ∈ R. The (integer-)scalar rules of the system MGA-SR could be natu-
rally generalised to handle real-scalars but it is not clear, at the present moment,
if the resulting system would satisfy a reasonable formulation of the sub-formula
property. Another interesting topic of research is to consider extensions of MGA
for fixed-point extensions of the Riesz modal logic (e.g., [MS17,Mio18]). In this
direction, the machinery of cyclic proofs (see, e.g., [Stu07,MS13b,BS11,Dou17])
appears to be particularly promising.

Towards a Structural Proof Theory of Probabilistic µ-Calculi 433

References

[Agd] Repository containing the proofs formalised in Agda. https://github.com/
clucas26e4/M-elimination

[Avr87] Avron, A.: A constructive analysis of RM. J. Symbolic Logic 52(4), 939–
951 (1987)

[BBLM17] Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On the metric-based
approximate minimization of Markov chains. In: Proceedings of 44th
ICALP. LIPIcs, vol. 80, pp. 104:1–104:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

[BdRV02] Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge
(2002)

[BGZB09] Barthe, G., Grégoire, B., Zanella-Beguelin, S.: Formal certification of code-
based cryptographic proofs. In: Proceedings of POPL, pp. 90–101 (2009)

[BK08] Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press,
Cambridge (2008)

[BS11] Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite
descent. J. Log. Comput. 21(6), 1177–1216 (2011)

[Bus98] Buss, S.R.: An introduction to proof theory. In: Handbook of Proof Theory,
pp. 1–78. Elsevier (1998)

[CM03] Ciabattoni, A., Metcalfe, G.: Bounded �Lukasiewicz logics. In: Cialdea
Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS (LNAI), vol. 2796,
pp. 32–47. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45206-5 6

[dA03] Alfaro, L.: Quantitative verification and control via the µ-calculus. In:
Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp.
103–127. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45187-7 7

[DFHM16] Dimitrova, R., Ferrer Fioriti, L.M., Hermanns, H., Majumdar, R.: Prob-
abilistic CTL∗: the deductive way. In: Chechik, M., Raskin, J.-F. (eds.)
TACAS 2016. LNCS, vol. 9636, pp. 280–296. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 16

[DGJP00] Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Approximating
labelled Markov processes. In: Proceedings of LICS (2000)

[DMS18] Diaconescu, D., Metcalfe, G., Schnüriger, L.: A real-valued modal logic.
Log. Methods Comput. Sci. 14(1), 1–27 (2018)

[Dou17] Doumane, A.: On the infinitary proof theory of logics with fixed points.
Ph.D. thesis, University Paris Diderot (2017)

[Gen34] Gentzen, G.: Untersuchungen über das logische schließen. Math. Z. 39,
405–431 (1934)

[HJ94] Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability.
Form. Asp. Comput. 6, 512–535 (1994)

[HK97] Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In:
Proceedings of LICS (1997)

[Hsu17] Hsu, J.: Probabilistic couplings for probabilistic reasoning. Ph.D. thesis,
University of Pennsylvania (2017)

[Koz83] Kozen, D.: Results on the propositional µ-calculus. Theor. Comput. Sci.
27, 333–354 (1983)

https://github.com/clucas26e4/M-elimination
https://github.com/clucas26e4/M-elimination
https://doi.org/10.1007/978-3-540-45206-5_6
https://doi.org/10.1007/978-3-540-45206-5_6
https://doi.org/10.1007/978-3-540-45187-7_7
https://doi.org/10.1007/978-3-540-45187-7_7
https://doi.org/10.1007/978-3-662-49674-9_16

434 C. Lucas and M. Mio

[Koz85] Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178
(1985)

[LS82] Lehmann, D., Shelah, S.: Reasoning with time and chance. Inf. Control
53(3), 165–1983 (1982)

[LZ71] Luxemburg, W.A.J., Zaanen, A.C.: Riesz Spaces. North-Holland Mathe-
matical Library, vol. 1. Elsevier, Amsterdam (1971)

[MFM17] Mio, M., Furber, R., Mardare, R.: Riesz modal logic for Markov processes.
In: 32nd ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 1–12. IEEE (2017). https://doi.org/10.1109/LICS.2017.8005091

[Mio11] Mio, M.: Probabilistic modal µ-calculus with independent product. In: Hof-
mann, M. (ed.) FoSSaCS 2011. LNCS, vol. 6604, pp. 290–304. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19805-2 20

[Mio12a] Mio, M.: On the equivalence of denotational and game semantics for the
probabilistic µ-calculus. Log. Methods Comput. Sci. 8(2) (2012). https://
lmcs.episciences.org/787, https://doi.org/10.2168/LMCS-8(2:7)2012

[Mio12b] Mio, M.: Probabilistic modal µ-calculus with independent product.
Log. Methods Comput. Sci. 8(4) (2012). https://lmcs.episciences.org/789,
https://doi.org/10.2168/LMCS-8(4:18)2012

[Mio14] Mio, M.: Upper-expectation bisimilarity and �Lukasiewicz µ-calculus. In:
Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 335–350. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7 22

[Mio18] Mio, M.: Riesz modal logic with threshold operators. In: 33rd ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 710–719. ACM
(2018). https://doi.org/10.1145/3209108.3209118

[MM07] McIver, A., Morgan, C.: Results on the quantitative µ-calculus qMµ.
ACM Trans. Comput. Log. 8(1) (2007). https://dl.acm.org/citation.cfm?
doid=1182613.1182616

[MOG05] Metcalfe, G., Olivetti, N., Gabbay, D.M.: Sequent and hypersequent calculi
for Abelian and �Lukasiewicz logics. ACM Trans. Comput. Log. 6(3), 578–
613 (2005)

[MOG09] Metcalfe, G., Olivetti, N., Gabbay, D.M.: Proof Theory for Fuzzy Logics.
Applied Logic Series, vol. 36. Springer, Dordrecht (2009). https://doi.org/
10.1007/978-1-4020-9409-5

[MS13a] Mio, M., Simpson, A.: �Lukasiewicz µ-calculus. In: Proceedings Workshop
on Fixed Points in Computer Science, FICS. EPTCS, vol. 126, pp. 87–104
(2013). https://doi.org/10.4204/EPTCS.126.7

[MS13b] Mio, M., Simpson, A.: A proof system for compositional verification of
probabilistic concurrent processes. In: Pfenning, F. (ed.) FoSSaCS 2013.
LNCS, vol. 7794, pp. 161–176. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37075-5 11

[MS17] Mio, M., Simpson, A.: �Lukasiewicz µ-calculus. Fundam. Informaticae
150(3–4), 317–346 (2017). https://doi.org/10.3233/FI-2017-1472

[Pot83] Pottinger, G.: Uniform, cut-free formulations of T, S4 and S5 (abstract).
J. Symbolic Logic 48(3), 898–910 (1983)

[Stu07] Studer, T.: On the proof theory of the modal µ-calculus. Stud. Logica.
89(3), 343–363 (2007)

[Vul67] Vulikh, B.Z.: Introduction to the Theory of Partially Ordered Spaces.
Wolters-Noordhoff Scientific Publications LTD., Groningen (1967)

[Wan96] Wansing, H. (ed.): Proof Theory of Modal Logic. Applied Logic Series, vol.
2. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-017-2798-3

https://doi.org/10.1109/LICS.2017.8005091
https://doi.org/10.1007/978-3-642-19805-2_20
https://lmcs.episciences.org/787
https://lmcs.episciences.org/787
https://doi.org/10.2168/LMCS-8(2:7)2012
https://lmcs.episciences.org/789
https://doi.org/10.2168/LMCS-8(4:18)2012
https://doi.org/10.1007/978-3-642-54830-7_22
https://doi.org/10.1145/3209108.3209118
https://dl.acm.org/citation.cfm?doid=1182613.1182616
https://dl.acm.org/citation.cfm?doid=1182613.1182616
https://doi.org/10.1007/978-1-4020-9409-5
https://doi.org/10.1007/978-1-4020-9409-5
https://doi.org/10.4204/EPTCS.126.7
https://doi.org/10.1007/978-3-642-37075-5_11
https://doi.org/10.1007/978-3-642-37075-5_11
https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.1007/978-94-017-2798-3

Towards a Structural Proof Theory of Probabilistic µ-Calculi 435

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Partial and Conditional Expectations
in Markov Decision Processes

with Integer Weights

Jakob Piribauer(B) and Christel Baier

Technische Universität Dresden, Dresden, Germany
{jakob.piribauer,christel.baier}@tu-dresden.de

Abstract. The paper addresses two variants of the stochastic shortest
path problem (“optimize the accumulated weight until reaching a goal
state”) in Markov decision processes (MDPs) with integer weights. The
first variant optimizes partial expected accumulated weights, where paths
not leading to a goal state are assigned weight 0, while the second variant
considers conditional expected accumulated weights, where the probabil-
ity mass is redistributed to paths reaching the goal. Both variants consti-
tute useful approaches to the analysis of systems without guarantees on
the occurrence of an event of interest (reaching a goal state), but have
only been studied in structures with non-negative weights. Our main
results are as follows. There are polynomial-time algorithms to check the
finiteness of the supremum of the partial or conditional expectations in
MDPs with arbitrary integer weights. If finite, then optimal weight-based
deterministic schedulers exist. In contrast to the setting of non-negative
weights, optimal schedulers can need infinite memory and their value can
be irrational. However, the optimal value can be approximated up to an
absolute error of ε in time exponential in the size of the MDP and poly-
nomial in log(1/ε).

1 Introduction

Stochastic shortest path (SSP) problems generalize the shortest path problem
on graphs with weighted edges. The SSP problem is formalized using finite state
Markov decision processes (MDPs), which are a prominent model combining
probabilistic and nondeterministic choices. In each state of an MDP, one is
allowed to choose nondeterministically from a set of actions, each of them is
augmented with probability distributions over the successor states and a weight
(cost or reward). The SSP problem asks for a policy to choose actions (here called
a scheduler) maximizing or minimizing the expected accumulated weight until
reaching a goal state. In the classical setting, one seeks an optimal proper sched-
uler where proper means that a goal state is reached almost surely. Polynomial-
time solutions exist exploiting the fact that optimal memoryless deterministic

The authors are supported by the DFG through the Research Training Group QuantLA
(GRK 1763), the DFG-project BA-1679/11-1, the Collaborative Research Center
HAEC (SFB 912), and the cluster of excellence CeTI.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 436–452, 2019.
https://doi.org/10.1007/978-3-030-17127-8_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_25&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_25

Partial and Conditional Expectations in Markov Decision Processes 437

schedulers exist (provided the optimal value is finite) and can be computed using
linear programming techniques, possibly in combination with model transforma-
tions (see [1,5,10]). The restriction to proper schedulers, however, is often too
restrictive. First, there are models that have no proper scheduler. Second, even if
proper schedulers exist, the expectation of the accumulated weight of schedulers
missing the goal with a positive probability should be taken into account as well.
Important such applications include the semantics of probabilistic programs (see
e.g. [4,7,12,14,16]) where no guarantee for almost sure termination can be given
and the analysis of program properties at termination time gives rise to stochas-
tic shortest (longest) path problems in which the goal (halting configuration) is
not reached almost surely. Other examples are the fault-tolerance analysis (e.g.,
expected costs of repair mechanisms) in selected error scenarios that can appear
with some positive, but small probability or the trade-off analysis with conjunc-
tions of utility and cost constraints that are achievable with positive probability,
but not almost surely (see e.g. [2]).

This motivates the switch to variants of classical SSP problems where the
restriction to proper schedulers is relaxed. One option (e.g., considered in [8])
is to seek a scheduler optimizing the expectation of the random variable that
assigns weight 0 to all paths not reaching the goal and the accumulated weight
of the shortest prefix reaching the goal to all other paths. We refer to this expec-
tation as partial expectation. Second, we consider the conditional expectation of
the accumulated weight until reaching the goal under the condition that the goal
is reached. In general, partial expectations describe situations in which some
reward (positive and negative) is accumulated but only retrieved if a certain
goal is met. In particular, partial expectations can be an appropriate replace-
ment for the classical expected weight before reaching the goal if we want to
include schedulers which miss the goal with some (possibly very small) probabil-
ity. In contrast to conditional expectations, the resulting scheduler still has an
incentive to reach the goal with a high probability, while schedulers maximiz-
ing the conditional expectation might reach the goal with a very small positive
probability.

Previous work on partial or conditional expected accumulated weights was
restricted to the case of non-negative weights. More precisely, partial expec-
tations have been studied in the setting of stochastic multiplayer games with
non-negative weights [8]. Conditional expectations in MDPs with non-negative
weights have been addressed in [3]. In both cases, optimal values are achieved
by weight-based deterministic schedulers that depend on the current state and
the weight that has been accumulated so far, while memoryless schedulers are
not sufficient. Both [8] and [3] prove the existence of a saturation point for the
accumulated weight from which on optimal schedulers behave memoryless and
maximize the probability to reach a goal state. This yields exponential-time algo-
rithms for computing optimal schedulers using an iterative linear programming
approach. Moreover, [3] proves that the threshold problem for conditional expec-
tations (“does there exist a scheduler S such that the conditional expectation
under S exceeds a given threshold?”) is PSPACE-hard even for acyclic MDPs.

438 J. Piribauer and C. Baier

The purpose of the paper is to study partial and conditional expected accu-
mulated weights for MDPs with integer weights. The switch from non-negative
to integer weights indeed causes several additional difficulties. We start with
the following observation. While optimal partial or conditional expectations in
non-negative MDPs are rational, they can be irrational in the general setting:

sinit

t

sgoal

MDP M

1/2

1/2

σ|0

τ |0

α|+ 1

α| − 2
c

t

sgoal

sinit MDP N

1/2

1/2
α|0

1/2

1/2

σ|0

τ |0

α|+ 1

α| − 2

Fig. 1. Enabled actions are denoted by Greek letters and the weight associated to
the action is stated after the bar. Probabilistic choices are marked by a bold arc and
transition probabilities are denoted next to the arrows.

Example 1. Consider the MDP M depicted on the left in Fig. 1. In the initial
state sinit , two actions are enabled. Action τ leads to goal with probability 1 and
weight 0. Action σ leads to the states s and t with probability 1/2 from where we
will return to sinit with weight −2 or +1, respectively. The scheduler choosing τ
immediately leads to an expected weight of 0 and is optimal among schedulers
reaching the goal almost surely. As long as we choose σ in sinit , the accumulated
weight follows an asymmetric random walk increasing by 1 or decreasing by 2
with probability 1/2 before we return to sinit . It is well known that the prob-
ability to ever reach accumulated weight +1 in this random walk is 1/Φ where
Φ = 1+

√
5

2 is the golden ratio. Likewise, ever reaching accumulated weight n has
probability 1/Φn for all n ∈ N. Consider the scheduler Sk choosing τ as soon
as the accumulated weight reaches k in sinit . Its partial expectation is k/Φk as
the paths which never reach weight k are assigned weight 0. The maximum is
reached at k = 2. In Sect. 4, we prove that there are optimal schedulers whose
decisions only depend on the current state and the weight accumulated so far.
With this result we can conclude that the maximal partial expectation is indeed
2/Φ2, an irrational number.

The conditional expectation of Sk in M is k as Sk reaches the goal with
accumulated weight k if it reaches the goal. So, the conditional expectation is
not bounded. If we add a new initial state making sure that the goal is reached
with positive probability as in the MDP N , we can obtain an irrational maximal
conditional expectation as well: The scheduler Tk choosing τ in c as soon as
the weight reaches k has conditional expectation k/2Φk

1/2+1/2Φk . The maximum is

obtained for k = 3; the maximal conditional expectation is 3/Φ3

1+1/Φ3 = 3
3+

√
5
.

Moreover, while the proposed algorithms of [3,8] crucially rely on the mono-
tonicity of the accumulated weights along the prefixes of paths, the accumulated

Partial and Conditional Expectations in Markov Decision Processes 439

weights of prefixes of path can oscillate when there are positive and negative
weights. As we will see later, this implies that the existence of saturation points
is no longer ensured and optimal schedulers might require infinite memory (more
precisely, a counter for the accumulated weight). These observations provide evi-
dence why linear-programming techniques as used in the case of non-negative
MDPs [3,8] cannot be expected to be applicable for the general setting.

Contributions. We study the problem of maximizing the partial and condi-
tional expected accumulated weight in MDPs with integer weights. Our first
result is that the finiteness of the supremum of partial and conditional expecta-
tions in MDPs with integer weights can be checked in polynomial time (Sect. 3).
For both variants we show that there are optimal weight-based deterministic
schedulers if the supremum is finite (Sect. 4). Although the suprema might be
irrational and optimal schedulers might need infinite memory, the suprema can
be ε-approximated in time exponential in the size of the MDP and polynomial in
log(1/ε) (Sect. 5). By duality of maximal and minimal expectations, analogous
results hold for the problem of minimizing the partial or conditional expected
accumulated weight. (Note that we can multiply all weights by −1 and then
apply the results for maximal partial resp. conditional expectations.)

Related Work. Closest to our contribution is the above mentioned work on
partial expected accumulated weights in stochastic multiplayer games with non-
negative weights in [8] and on computation schemes for maximal conditional
expected accumulated weights in non-negative MDPs [3]. Conditional expected
termination time in probabilistic push-down automata has been studied in [11],
which can be seen as analogous considerations for a class of infinite-state Markov
chains with non-negative weights. The recent work on notions of conditional
value at risk in MDPs [15] also studies conditional expectations, but the con-
sidered random variables are limit averages and a notion of (non-accumulated)
weight-bounded reachability.

2 Preliminaries

We give basic definitions and present our notation. More details can be found in
textbooks, e.g. [18].

Notations for Markov Decision Processes. A Markov decision process
(MDP) is a tuple M = (S,Act , P, sinit ,wgt) where S is a finite set of states,
Act a finite set of actions, sinit ∈ S the initial state, P : S × Act × S → [0, 1] ∩Q

is the transition probability function and wgt : S ×Act → Z the weight function.
We require that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S×Act . We write Act(s)

for the set of actions that are enabled in s, i.e., α ∈ Act(s) iff
∑

t∈S P (s, α, t) = 1.
We assume that Act(s) is non-empty for all s and that all states are reachable
from sinit . We call a state absorbing if the only enabled action leads to the
state itself with probability 1 and weight 0. The paths of M are finite or infi-
nite sequences s0 α0 s1 α1 s2 α2 . . . where states and actions alternate such that
P (si, αi, si+1) > 0 for all i ≥ 0. If π = s0 α0 s1 α1 . . . αk−1 sk is finite, then

440 J. Piribauer and C. Baier

wgt(π) = wgt(s0, α0) + . . . + wgt(sk−1, αk−1) denotes the accumulated weight of
π, P (π) = P (s0, α0, s1) · . . . · P (sk−1, αk−1, sk) its probability, and last(π) = sk

its last state. The size of M, denoted size(M), is the sum of the number of states
plus the total sum of the logarithmic lengths of the non-zero probability values
P (s, α, s′) as fractions of co-prime integers and the weight values wgt(s, α).

Scheduler. A (history-dependent, randomized) scheduler for M is a function S
that assigns to each finite path π a probability distribution over Act(last(π)).
S is called memoryless if S(π) = S(π′) for all finite paths π, π′ with last(π) =
last(π′), in which case S can be viewed as a function that assigns to each state
s a distribution over Act(s). S is called deterministic if S(π) is a Dirac dis-
tribution for each path π, in which case S can be viewed as a function that
assigns an action to each finite path π. Scheduler S is said to be weight-
based if S(π) = S(π′) for all finite paths π, π′ with wgt(π) = wgt(π′) and
last(π) = last(π′). Thus, deterministic weight-based schedulers can be viewed
as functions that assign actions to state-weight-pairs. By HRM we denote the
class of all schedulers, by WRM the class of weight-based schedulers, by WDM

the class of weight-based, deterministic schedulers, and by MDM the class of
memoryless deterministic schedulers. Given a scheduler S, ς = s0 α0 s1 α1 . . . is
a S-path iff ς is a path and S(s0 α0 s1 α1 . . . αk−1 sk)(αk) > 0 for all k ≥ 0.

Probability Measure. We write PrSM,s or briefly PrSs to denote the prob-
ability measure induced by S and s. For details, see [18]. We will use LTL-
like formulas to denote measurable sets of paths and also write ♦(wgt 	
 x) to
describe the set of infinite paths having a prefix π with wgt(π) 	
 x for x ∈ Z

and 	
 ∈ {<,≤,=,≥, >}. Given a measurable set ψ of infinite paths, we define
Prmin

M,s(ψ) = infS PrSM,s(ψ) and Prmax
M,s(ψ) = supS PrSM,s(ψ) where S ranges over

all schedulers for M. Throughout the paper, we suppose that the given MDP
has a designated state goal . Then, pmax

s and pmin
s denote the maximal resp. min-

imal probability of reaching goal from s. That is, pmax
s = supS PrSs (♦goal) and

pmin
s = infS PrSs (♦goal). Let Actmax(s) = {α ∈ Act(s)|∑t∈S P (s, α, t) · pmax

t =
pmax

s }, and Actmin(s) = {α ∈ Act(s)|∑t∈S P (s, α, t) · pmin
t = pmin

s }.

Mean Payoff. A well-known measure for the long-run behavior of a scheduler S
in an MDP M is the mean payoff. Intuitively, the mean payoff is the amount of
weight accumulated per step on average in the long run. Formally, we define the
mean payoff as the following random variable on infinite paths ζ = s0α0s1α1 . . . :
MP(ζ) := lim inf

k→∞

∑k
i=0 wgt(si,αi)

k+1 . The mean payoff of the scheduler S starting

in sinit is then defined as the expected value E
S
sinit

(MP). The maximal mean
payoff is the supremum over all schedulers which is equal to the maximum over
all MD-schedulers: Emax

sinit
(MP) = maxS∈MD E

S
sinit

(MP). In strongly connected
MDPs, the maximal mean payoff does not depend on the initial state.

End Components, MEC-Quotient. An end component of M is a strongly
connected sub-MDP. End components can be formalized as pairs E = (E,A)
where E is a nonempty subset of S and A a function that assigns to each state
s ∈ E a nonempty subset of Act(s) such that the graph induced by E is strongly

Partial and Conditional Expectations in Markov Decision Processes 441

connected. E is called maximal if there is no end component E ′ = (E′,A′) with
E �= E ′, E ⊆ E′ and A(s) ⊆ A′(s) for all s ∈ E. The MEC-quotient of an MDP M
is the MDP MEC (M) arising from M by collapsing all states that belong to the
same maximal end component E to a state sE . All actions enabled in some state
in E not belonging to E are enabled in sE . Details and the formal construction
can be found in [9]. We call an end component E positively weight-divergent if
there is a scheduler S for E such that PrSE,s(♦(wgt ≥ n)) = 1 for all s ∈ E and
n ∈ N. In [1], it is shown that the existence of positively weight-divergent end
components can be decided in polynomial time.

3 Partial and Conditional Expectations in MDPs

We define partial and conditional expectations in MDPs. We extend the definition
of [8] by introducing partial expectations with bias which are closely related to
conditional expectations. Afterwards, we sketch the computation of maximal
partial expectations in MDPs with non-negative weights and in Markov chains.

Partial and Conditional Expectation. In the sequel, let M be an MDP with
a designated absorbing goal state goal . Furthermore, we collapse all states from
which goal is not reachable to one absorbing state fail . Let b ∈ R. We define the
random variable ⊕bgoal on infinite paths ζ by

⊕bgoal(ζ) =

{
wgt(ζ) + b if ζ � ♦goal ,
0 if ζ �� ♦goal .

We call the expectation of this random variable under a scheduler S the partial
expectation with bias b of S and write PES

M,sinit
[b] := E

S
M,sinit

(⊕bgoal) as well
as PE sup

M,sinit
[b] := supS∈HRM PES

M,sinit
[b]. If b = 0, we sometimes drop the

argument b; if M is clear from the context, we drop the subscript. In order to
maximize the partial expectation, intuitively one has to find the right balance
between reaching goal with high probability and accumulating a high positive
amount of weight before reaching goal . The bias can be used to shift this balance
by additionally rewarding or penalizing a high probability to reach goal .

The conditional expectation of S is defined as the expectation of ⊕0goal under
the condition that goal is reached. It is defined if PrSM,sinit

(♦goal) > 0. We write
CES

M,sinit
:= E

S
M,sinit

(⊕0goal |♦goal) and CE sup
M,sinit

= supS CES
M,sinit

where the
supremum is taken over all schedulers S with PrSM,sinit

(♦goal) > 0. We can
express the conditional expectation as CES

M,sinit
= PES

M,sinit
/PrSM,sinit

(♦goal).
The following proposition establishes a close connection between conditional
expectations and partial expectations with bias.

Proposition 2. Let M be an MDP, S a scheduler with PrSsinit
(♦goal) > 0,

θ ∈ Q, and 	
∈ {<,≤,≥, >}. Then we have PES
sinit

[−θ] 	
 0 iff CES
sinit

	
 θ.
Further, if Prmin

sinit
(♦goal) > 0, then PE sup

sinit
[−θ] 	
 0 iff CE sup

sinit
	
 θ.

442 J. Piribauer and C. Baier

Proof. The first claim follows from PES
sinit

[−θ] = PES
sinit

[0] − PrSsinit
(♦goal) · θ.

The second claim follows by quantification over all schedulers.

In [3], it is shown that deciding whether CE sup
sinit

	
 θ for 	
∈ {<,≤,≥, >} and
θ ∈ Q is PSPACE-hard even for acyclic MDPs. We conclude:

Corollary 3. Given an MDP M, 	
∈ {<,≤,≥, >}, and θ ∈ Q, deciding
whether PE sup

M,sinit
	
 θ is PSPACE-hard.

Finiteness. We present criteria for the finiteness of PE sup
sinit

[b] and CE sup
sinit

.
Detailed proofs can be found in Appendix A.1 of [17]. By slightly modifying the
construction from [1] which removes end components only containing 0-weight
cycles, we obtain the following result.

Proposition 4. Let M be an MDP which does not contain positively weight-
divergent end components and let b ∈ Q. Then there is a polynomial time trans-
formation to an MDP N containing all states from M and possibly an additional
absorbing state fail such that

– all end components of N have negative maximal expected mean payoff,
– for any scheduler S for M there is a scheduler S′ for N with PrSM,s(♦goal) =

PrS
′

N ,s(♦goal) and PES
M,s[b] = PES′

N ,s[b] for any state s in M, and vice versa.

Hence, we can restrict ourselves to MDPs in which all end components have
negative maximal expected mean payoff if there are no positively weight diver-
gent end components. The following result is now analogous to the result in [1]
for the classical SSP problem.

Proposition 5. Let M be an MDP and b ∈ R arbitrary. The optimal par-
tial expectation PE sup

sinit
[b] is finite if and only if there are no positively weight-

divergent end components in M.

To obtain an analogous result for conditional expectations, we observe that
the finiteness of the maximal partial expectation is necessary for the finiteness
of the maximal conditional expectation. However, this is not sufficient. In [3],
a critical scheduler is defined as a scheduler S for which there is a path con-
taining a positive cycle and for which PrSsinit

(♦goal) = 0. Given a critical sched-
uler, it is easy to construct a sequence of schedulers with unbounded condi-
tional expectation (see Appendix A.1 of [17] and [3]). On the other hand, if
Prmin

M,sinit
(♦goal) > 0, then CE sup

sinit
is finite if and only if PE sup

sinit
is finite. We will

show how we can restrict ourselves to this case if there are no critical schedulers:
So, let M be an MDP with Prmin

M,sinit
(♦goal) = 0 and suppose there are

no critical schedulers for M. Let S0 be the set of all states reachable from
sinit while only choosing actions in Actmin. As there are no critical schedulers,
(S0, Actmin) does not contain positive cycles. So, there is a finite maximal weight
ws among paths leading from sinit to s in S0. Consider the following MDP N :
It contains the MDP M and a new initial state tinit . For each s ∈ S0 and each
α ∈ Act(s) \Actmin(s), N also contains a new state ts,α which is reachable from

Partial and Conditional Expectations in Markov Decision Processes 443

tinit via an action βs,α with weight ws and probability 1. In ts,α, only action α
with the same probability distribution over successors and the same weight as
in s is enabled. So in N , one has to decide immediately in which state to leave
S0 and one accumulates the maximal weight which can be accumulated in M
to reach this state in S0. In this way, we ensure that Prmin

N ,tinit (♦goal) > 0.

Proposition 6. The constructed MDP N satisfies CE sup
N ,tinit

= CE sup
M,sinit

.

We can rely on this reduction to an MDP in which goal is reached with pos-
itive probability for ε-approximations and the exact computation of the optimal
conditional expectation. In particular, the values ws for s ∈ S0 are easy to com-
pute by classical shortest path algorithms on weighted graphs. Furthermore, we
can now decide the finiteness of the maximal conditional expectation.

Proposition 7. For an arbitrary MDP M, CE sup
M,sinit

is finite if and only if there
are no positively weight-divergent end components and no critical schedulers.

Partial and Conditional Expectations in Markov Chains. Markov chains
with integer weights can be seen as MDPs with only one action α enabled in
every state. Consequently, there is only one scheduler for a Markov chain. Hence,
we drop the superscripts in pmax and PE sup.

Proposition 8. The partial and conditional expectation in a Markov chain C
are computable in polynomial time.

Proof. Let α be the only action available in C. Assume that all states from
which goal is not reachable have been collapsed to an absorbing state fail . Then
PEC,sinit

is the value of xsinit
in the unique solution to the following system of

linear equations with one variable xs for each state s:

xgoal = xfail = 0,

xs = wgt(s, α) · ps +
∑

t

P (s, α, t) · xt for s ∈ S \ {goal , fail}.

The existence of a unique solution follows from the fact that {goal} and {fail}
are the only end components (see [18]). It is straight-forward to check that
(PEC,s)s∈S is this unique solution. The conditional expectation is obtained
from the partial expectation by dividing by the probability psinit

to reach the
goal.

This result can be seen as a special case of the following result. Restricting
ourselves to schedulers which reach the goal with maximal or minimal proba-
bility in an MDP without positively weight-divergent end components, linear
programming allows us to compute the following two memoryless deterministic
schedulers (see [3,8]).

444 J. Piribauer and C. Baier

Proposition 9. Let M be an MDP without positively weight-divergent end com-
ponents. There is a scheduler Max ∈ MDM such that for each s ∈ S we have
PrMax

s (♦goal) = pmax
s and PEMax

s = supSPES
s where the supremum is taken

over all schedulers S with PrSs (♦goal) = pmax
s . Similarly, there is a scheduler

Min ∈ MDM maximizing the partial expectation among all schedulers reach-
ing the goal with minimal probability. Both these schedulers and their partial
expectations are computable in polynomial time.

These schedulers will play a crucial role for the approximation of the maximal
partial expectation and the exact computation of maximal partial expectations
in MDPs with non-negative weights.

Partial Expectations in MDPs with Non-negative Weights. In [8], the
computation of maximal partial expectations in stochastic multiplayer games
with non-negative weights is presented. We adapt this approach to MDPs with
non-negative weights. A key result is the existence of a saturation point, a bound
on the accumulated weight above which optimal schedulers do not need memory.

In the sequel, let R ∈ Q be arbitrary, let M be an MDP with non-negative
weights, PE sup

sinit
< ∞, and assume that end components have negative maximal

mean payoff (see Proposition 4). A saturation point for bias R is a natural
number p such that there is a scheduler S with PES

sinit
[R] = PE sup

sinit
[R] which is

memoryless and deterministic as soon as the accumulated weight reaches p. I.e.
for any two paths π and π′, with last(π) = last(π′) and wgt(π), wgt(π′) > p,
S(π) = S(π′).

Transferring the idea behind the saturation point for conditional expectations
given in [3], we provide the following saturation point which can be considerably
smaller than the saturation point given in [8] in stochastic multiplayer games.
Detailed proofs to this section are given in Appendix A.2 of [17].

Proposition 10. We define pmax
s,α :=

∑
t∈S P (s, α, t)·pmax

t and PEMax
s,α := pmax

s,α ·
wgt(s, α) +

∑
t∈S P (s, α, t) · PEMax

t . Then,

pR := sup

{
PEMax

s,α − PEMax
s

pmax
s − pmax

s,α

∣
∣
∣
∣
∣
s ∈ S, α ∈ Act(s) \ Actmax(s)

}

− R

is an upper saturation point for bias R in M.

The saturation point pR is chosen such that, as soon as the accumulated
weight exceeds pR, the scheduler Max is better than any scheduler deviating
from Max for only one step. So, the proposition states that Max is then also
better than any other scheduler.

As all values involved in the computation can be determined by linear pro-
gramming, the saturation point pR is computable in polynomial time. This also
means that the logarithmic length of pR is polynomial in the size of M and
hence pR itself is at most exponential in the size of M.

Proposition 11. Let R ∈ Q and let BR be the least integer greater or equal
to pR + maxs∈S,α∈Act(s) wgt(s, α) and let S′ := S \ {goal , fail}. The values

Partial and Conditional Expectations in Markov Decision Processes 445

(PE sup
sinit

[r+R])s∈S′,0≤r≤BR
form the unique solution to the following linear pro-

gram in the variables (xs,r)s∈S′,0≤r≤BR
(r ranges over integers):

Minimize
∑

s∈S′,0≤r≤BR
xs,r under the following constraints:

For r ≥ pR : xs,r = pmax
s · (r+R) + EMax

s ,

for r < pR and α ∈ Act(s) :

xs,r ≥ P (s, α, goal) · (r+R+wgt(s, α)) +
∑

t∈S′
P (s, α, t) · xt,r+wgt(s,α).

From a solution x to the linear program, we can easily extract an optimal
weight-based deterministic scheduler. This scheduler only needs finite memory
because the accumulated weight increases monotonically along paths and as soon
as the saturation point is reached Max provides the optimal decisions. As BR is
exponential in the size of M, the computation of the optimal partial expectation
via this linear program runs in time exponential in the size of M.

4 Existence of Optimal Schedulers

We prove that there are optimal weight-based deterministic schedulers for partial
and conditional expectations. After showing that, if finite, PE sup

sinit
is equal to

supS∈WDM PES
sinit

, we take an analytic approach to show that there is a weight-
based deterministic scheduler maximizing the partial expectation. We define a
metric on WDM turning it into a compact space. Then, we prove that the
function assigning the partial expectation to schedulers is upper semi-continuous.
We conclude that there is a weight-based deterministic scheduler obtaining the
maximum. Proofs to this section can be found in Appendix B of [17].

Proposition 12. Let M be an MDP with PE sup
sinit

< ∞. Then we have PE sup
sinit

=
supS∈WDM PES

sinit
.

Proof sketch. We can assume that all end components have negative maximal
expected mean payoff (see Proposition 4). Given a scheduler S ∈ HRM, we take
the expected number of times θs,w that s is visited with accumulated weight
w under S for each state-weight pair (s, w), and the expected number of times
θs,w,α that S then chooses α. These values are finite due to the negative maximal
mean payoff in end components. We define the scheduler T ∈ WRM choosing α
in s with probability θs,w,α/θs,w when weight w has been accumulated. Then,
we show by standard arguments that we can replace all probability distributions
that T chooses by Dirac distributions to obtain a scheduler T′ ∈ WDM such
that PET′

sinit
≥ PES

sinit
.

It remains to show that the supremum is obtained by a weight-based deter-
ministic scheduler. Given an MDP M with arbitrary integer weights, we define
the following metric dM on the set of weight-based deterministic schedulers,
i.e. on the set of functions from S × Z → Act: For two such schedulers S and

446 J. Piribauer and C. Baier

T, we let dM(S,T) := 2−R where R is the greatest natural number such that
S � S × {−(R−1), . . . , R−1} = T � S × {−(R−1), . . . , R−1} or ∞ if there is
no greatest such natural number.

Lemma 13. The metric space (ActS×Z, dM) is compact.

Having defined this compact space of schedulers, we can rely on the analytic
notion of upper semi-continuity.

Lemma 14 (Upper Semi-Continuity of Partial Expectations). If PE sup
sinit

is finite
in M, then the function PE : (WD , dWD) → (R∞, deuclid) assigning PES

sinit
to

a weight-based deterministic scheduler S is upper semi-continuous.

The technical proof of this lemma can be found in Appendix B of [17]. We
arrive at the main result of this section.

Theorem 15 (Existence of Optimal Schedulers for Partial Expectations). If
PE sup

sinit
is finite in an MDP M, then there is a weight-based deterministic sched-

uler S with PE sup
sinit

= PES
sinit

.

Proof. If PE sup
sinit

is finite, then the map PE : (WD , dWD) → (R∞, deuclid) is
upper semi-continuous. So, this map has a maximum because (WD , dWD) is a
compact metric space.

Corollary 16 (Existence of Optimal Schedulers for Conditional Expectations).
If CE sup

sinit
is finite in an MDP M, then there is a weight-based deterministic

scheduler S with CE sup
sinit

= CES
sinit

.

Proof. By Proposition 6, we can assume that Prmin
sinit

(♦goal) > 0. We know that
PE sup

sinit
[−CE sup

sinit
] = 0 and that there is a weight-based deterministic scheduler

S with PES
sinit

[−CE sup
sinit

] = 0. By Proposition 2, S maximizes the conditional
expectation as it reaches goal with positive probability.

sinit t goal

fail

The MDP N :

τ |+ 1 β| − 1

α|0

sinit t

q0 q1

goal

fail

The MDP M:

τ |+ 1
γ/0 δ/0

α|0

β| − 1

β| − 1

Fig. 2. All non-trivial transition probabilities are 1/2. In the MDP M, the optimal
choice to maximize the partial expectation in t depends on the parity of the accumu-
lated weight.

Partial and Conditional Expectations in Markov Decision Processes 447

In MDPs with non-negative weights, the optimal decision in a state s only
depends on s as soon as the accumulated weight exceeds a saturation point. In
MDPs with arbitrary integer weights, it is possible that the optimal choice of
action does not become stable for increasing values of accumulated weight as we
see in the following example.

Example 17. Let us first consider the MDP N depicted in Fig. 2. Let π be a
path reaching t for the first time with accumulated weight r. Consider a scheduler
which chooses β for the first k times and then α. In this situation, the partial
expectation from this point on is:

1
2k+1

(r−k) +
k∑

i=1

1
2i

(r−i) =
1

2k+1
+

k+1∑

i=1

1
2i

(r−i) =
k−r + 4

2k+1
+ r−2.

For r ≥ 2, this partial expectation has its unique maximum for the choice k =
r−2. This already shows that an optimal scheduler needs infinite memory. No
matter how much weight r has been accumulated when reaching t, the optimal
scheduler has to count the r−2 times it chooses β.

Furthermore, we can transfer the optimal scheduler for the MDP N to the
MDP M. In state t, we have to make a nondeterministic choice between two
action leading to the states q0 and q1, respectively. In both of these states, action
β is enabled which behaves like the same action in the MDP N except that it
moves between the two states if goal is not reached. So, the action α is only
enabled every other step. As in N , we want to choose α after choosing β r−2
times if we arrived in t with accumulated weight r ≥ 2. So, the choice in t
depends on the parity of r: For r = 1 or r even, we choose δ. For odd r ≥ 3, we
choose γ. This shows that the optimal scheduler in the MDP M needs specific
information about the accumulated weight, in this case the parity, no matter
how much weight has been accumulated.

In the example, the optimal scheduler has a periodic behavior when fixing
a state and looking at optimal decisions for increasing values of accumulated
weight. The question whether an optimal scheduler always has such a periodic
behavior remains open.

5 Approximation

As the optimal values for partial and conditional expectation can be irrational,
there is no hope to compute these values by linear programming as in the case of
non-negative weights. In this section, we show how we can nevertheless approx-
imate the values. The main result is the following.

Theorem 18. Let M be an MDP with PE sup
M,sinit

< ∞ and ε > 0. The maximal
partial expectation PE sup

M,sinit
can be approximated up to an absolute error of ε

in time exponential in the size of M and polynomial in log(1/ε). If further,
CE sup

M,sinit
< ∞, also CE sup

M,sinit
can be approximated up to an absolute error of ε

in time exponential in the size of M and polynomial in log(1/ε).

448 J. Piribauer and C. Baier

We first prove that upper bounds for PE sup
M,sinit

and CE sup
M,sinit

can be com-
puted in polynomial time. Then, we show that there are ε-optimal schedulers for
the partial expectation which become memoryless as soon as the accumulated
weight leaves a sufficiently large weight window around 0. We compute the opti-
mal partial expectation of such a scheduler by linear programming. The result
can then be extended to conditional expectations.

Upper Bounds. Let M be an MDP in which all end components have negative
maximal mean payoff. Let δ be the minimal non-zero transition probability in
M and W := maxs∈S,α∈Act(s) |wgt(s, α)|. Moving through the MEC-quotient,
the probability to reach an accumulated weight of |S| ·W is bounded by 1− δ|S|

as goal or fail is reached within S steps with probability at least 1 − δ|S|. It
remains to show similar bounds inside an end component.

We will use the characterization of the maximal mean payoff in terms of
super-harmonic vectors due to Hordijk and Kallenberg [13] to define a super-
martingale controlling the growth of the accumulated weight in an end compo-
nent under any scheduler. As the value vector for the maximal mean payoff in
an end component is constant and negative in our case, the results of [13] yield:

Proposition 19 (Hordijk, Kallenberg). Let E = (S,Act) be an end component
with maximal mean payoff −t for some t > 0. Then there is a vector (us)s∈S

such that −t + us ≥ wgt(s, α) +
∑

s′∈S P (s, α, s′) · us′ .
Furthermore, let v be the vector (−t, . . . ,−t) in R

S. Then, (v, u) is the solu-
tion to a linear program with 2|S| variables, 2|S||Act| inequalities, and coeffi-
cients formed from the transition probabilities and weights in E.

We will call the vector u a super-potential because the expected accumulated
weight after i steps is at most us − mint∈S ut − i · t when starting in state s. Let
S be a scheduler for E starting in some state s. We define the following random
variables on S-runs in E : let s(i) ∈ S be the state after i steps, let α(i) be the
action chosen after i steps, let w(i) be the accumulated weight after i steps, and
let π(i) be the history, i.e. the finite path after i steps.

Lemma 20. The sequence m(i) := w(i) + us(i) satisfies E(m(i + 1)|π(0), . . . ,
π(i)) ≤ m(i) − t for all i.1

Proof. By Proposition 19, E(m(i+1)|π(0), . . . , π(i))−m(i) = wgt(s(i),S(π(i)))
+

∑
s′∈S P (s(i),S(π(i)), s′) · us′ − us(i) ≤ −t.

We are going to apply the following theorem by Blackwell [6].

Theorem 21 (Blackwell [6]). Let X1,X2, . . . be random variables, and let
Sn :=

∑n
k=1 Xk. Assume that |Xi| ≤ 1 for all i and that there is a u > 0

such that E(Xn+1|X1, . . . , Xn) ≤ −u. Then, Pr(supn∈N
Sn ≥ t) ≤

(
1−u
1+u

)t

.

1 This means that m(i) + i · t is a super-martingale with respect to the history π(i).

Partial and Conditional Expectations in Markov Decision Processes 449

We denote maxs′∈S us′ −mins′∈S us′ by ‖u‖. Observe that |m(i+1)−m(i)| ≤
‖u‖ + W =: cE . We can rescale the sequence m(i) by defining m′(i) := (m(i) −
m(0))/cE . This ensures that m′(0) = 0, |m′(i + 1) − m′(i)| ≤ 1 and E(m′(i +
1)|m′(0), . . . , m′(i)) ≤ −t/cE for all i. In this way, we arrive at the following
conclusion, putting λE := 1−t/cE

1+t/cE
.

Corollary 22. For any scheduler S and any starting state s in E, we have
PrSs (♦wgt ≥ (k+1) · cE) ≤ λk

E .

Proof. By Theorem 21, PrSs (♦wgt ≥ (k + 1) · cE) ≤ PrSs (♦wgt ≥ ‖u‖ + k · cE) ≤
PrSs (∃i : m(i) − m(0) ≥ k · cE) = PrSs (supi∈N

m′(i) ≥ k) ≤
(

1−t/cE
1+t/cE

)k

.

Let MEC be the set of maximal end components in M. For each E ∈ MEC ,
let λE and cE be as in Corollary 22. Define λM := 1 − (δ|S| · ∏E∈MEC (1 − λE)),
and cM := |S| · W +

∑
E∈MEC cE . Then an accumulated weight of cM cannot

be reached with a probability greater than λM because reaching accumulated
weight cM would require reaching weight cE in some end component E or reaching
weight |S|·W in the MEC-quotient and 1−λM is a lower bound on the probability
that none of this happens (under any scheduler).

Proposition 23. Let M be an MDP with PE sup
sinit

< ∞. There is an upper bound
PEub for the partial expectation in M computable in polynomial time.

Proof. In any end component E , the maximal mean payoff −t and the super-
potential u are computable in polynomial time. Hence, cE and λE , and in turn
also cM and λM are also computable in polynomial time. When we reach accu-
mulated weight cM for the first time, the actual accumulated weight is at most
cM + W . So, we conclude that Prmax

s (♦wgt ≥ k · (cM + W)) ≤ λk
M. The

partial expectation can now be bounded by
∑∞

k=0(k + 1) · (cM + W) · λk
M =

cM+W
(1−λM)2 .

Corollary 24. Let M be an MDP with CE sup
M,sinit

< ∞. There is an upper bound
CEub for the conditional expectation in M computable in polynomial time.

Proof. By Proposition 6, we can construct an MDP N in which goal is reached
with probability q > 0 in polynomial time with CE sup

M,sinit
= CE sup

N ,sinit
. Now,

CEub := PEub/q is an upper bound for the conditional expectation in M.

Approximating Optimal Partial Expectations. The idea for the approxi-
mation is to assume that the partial expectation is PEMax

sinit
+ w · pmax

s if a high
weight w has been accumulated in state s. Similarly, for small weights w′, we
use the value PEMin

sinit
+ w · pmin

s . We will first provide a lower “saturation point”
making sure that only actions minimizing the probability to reach the goal are
used by an optimal scheduler as soon as the accumulated weight drops below
this saturation point. For the proofs to this section, see Appendix C.1 of [17].

450 J. Piribauer and C. Baier

Proposition 25. Let M be an MDP with PE sup
sinit

< ∞. Let s ∈ S and let

qs := PEub−PEMin
s

pmin
s − min

α �∈Actmin(s)
pmin

s,α
. Then any weight-based deterministic scheduler S max-

imizing the partial expectation in M satisfies S(s, w) ∈ Actmin(s) if w ≤ qs.

Let q := mins∈S qs and let D := PEub − min{PEMax
s ,PEMin

s |s ∈ S}. Given
ε > 0, we define R+

ε := (cM + W) ·
⌈
log(2D)+log(1/ε)

log(1/λM)

⌉
and R−

ε := q − R+
ε .

Theorem 26. There is a weight-based deterministic scheduler S such that the
scheduler T defined by

T(π) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(π) if any prefix π′ of π satisfies R−
ε ≤ wgt(π′) ≤ R+

ε ,

Max(π) if the shortest prefix π′ of π with wgt(π′) �∈ [R−
ε , R+

ε]
satisfies wgt(π′) > R+

ε ,

Min(π) otherwise,

satisfies PET
sinit

≥ PE sup
sinit

− ε.

This result now allows us to compute an ε-approximation and an ε-optimal
scheduler with finite memory by linear programming, similar to the case of non-
negative weights, in a linear program with R+

ε + R−
ε many variables and |Act|-

times as many inequalities.

Corollary 27. PE sup
sinit

can be approximated up to an absolute error of ε in time
exponential in the size of M and polynomial in log(1/ε).

If the logarithmic length of θ ∈ Q is polynomial in the size of M, we can
also approximate PE sup

sinit
[θ] up to an absolute error of ε in time exponential in

the size of M and polynomial in log(1/ε): We can add a new initial state s with
a transition to sinit with weight θ and approximate PE sup

s in the new MDP.

Transfer to Conditional Expectations. Let M be an MDP with CE sup
sinit

<

∞ and ε > 0. By Proposition 6, we can assume that Prmin
M,sinit

(♦goal) =: p

is positive. Clearly, CE sup
sinit

∈ [CEMax
sinit

,CEub]. We perform a binary search to
approximate CE sup

sinit
: We put A0 := CEMax

sinit
and B0 := CEub. Given Ai and Bi,

let θi := (Ai +Bi)/2. Then, we approximate PE sup
sinit

[−θi] up to an absolute error
of p·ε. Let Ei be the value of this approximation. If Ei ∈ [−2p·ε, 2p·ε], terminate
and return θi as the approximation for CE sup

sinit
. If Ei < −2p · ε, put Ai+1 := Ai

and Bi+1 := θi, and repeat. If Ei > 2p · ε, put Ai+1 := θi and Bi+1 := Bi, and
repeat.

Proposition 28. The procedure terminates after at most
log((A0−B0)/(p·ε))�
iterations and returns an 3ε-approximation of CE sup

sinit
in time exponential in the

size of M and polynomial in log(1/ε).

The proof can be found in Appendix C.2 of [17]. This finishes the proof of
Theorem 18.

Partial and Conditional Expectations in Markov Decision Processes 451

6 Conclusion

Compared to the setting of non-negative weights, the optimization of partial
and conditional expectations faces substantial new difficulties in the setting of
integer weights. The optimal values can be irrational showing that the linear
programming approaches from the setting of non-negative weights cannot be
applied for the computation of optimal values. We showed that this approach
can nevertheless be adapted for approximation algorithms. Further, we were
able to show that there are optimal weight-based deterministic schedulers. These
schedulers, however, can require infinite memory and it remains open whether
we can further restrict the class of schedulers necessary for the optimization. In
examples, we have seen that optimal schedulers can switch periodically between
actions they choose for increasing values of accumulated weight. Further insights
on the behavior of optimal schedulers would be helpful to address threshold
problems (“Is PE sup

sinit
≥ θ?”).

References

1. Baier, C., Bertrand, N., Dubslaff, C., Gburek, D., Sankur, O.: Stochastic shortest
paths and weight-bounded properties in Markov decision processes. In: Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pp. 86–94. ACM (2018)

2. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilis-
tic model checking for energy-utility analysis. In: van Breugel, F., Kashefi, E.,
Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. A Tribute to Prakash
Panangaden. LNCS, vol. 8464, pp. 96–123. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-06880-0 5

3. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Maximizing the conditional
expected reward for reaching the goal. In: Legay, A., Margaria, T. (eds.) TACAS
2017. LNCS, vol. 10206, pp. 269–285. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54580-5 16

4. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 3

5. Bertsekas, D.P., Tsitsiklis, J.N.: An analysis of stochastic shortest path problems.
Math. Oper. Res. 16(3), 580–595 (1991)

6. Blackwell, D.: On optimal systems. Ann. Math. Stat. 25, 394–397 (1954)
7. Chatterjee, K., Fu, H., Goharshady, A.K.: Termination analysis of probabilistic

programs through Positivstellensatz’s. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 3–22. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4 1

8. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic verifi-
cation of competitive stochastic systems. Formal Methods Syst. Des. 43(1), 61–92
(2013)

9. Ciesinski, F., Baier, C., Größer, M., Klein, J.: Reduction techniques for model
checking Markov decision processes. In: Proceedings of the Fifth International Con-
ference on Quantitative Evaluation of Systems (QEST), pp. 45–54. IEEE (2008)

https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1007/978-3-319-06880-0_5
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1007/978-3-662-54580-5_16
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_1
https://doi.org/10.1007/978-3-319-41528-4_1

452 J. Piribauer and C. Baier

10. de Alfaro, L.: Computing minimum and maximum reachability times in probabilis-
tic systems. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664,
pp. 66–81. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48320-9 7

11. Esparza, J., Kucera, A., Mayr, R.: Quantitative analysis of probabilistic pushdown
automata: expectations and variances. In: Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science (LICS), pp. 117–126. IEEE (2005)

12. Gretz, F., Katoen, J.-P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

13. Hordijk, A., Kallenberg, L.: Linear programming and Markov decision chains. Man-
age. Sci. 25(4), 352–362 (1979)

14. Katoen, J.-P., Gretz, F., Jansen, N., Kaminski, B.L., Olmedo, F.: Understanding
probabilistic programs. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct
System Design. LNCS, vol. 9360, pp. 15–32. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-23506-6 4

15. Kret́ınský, J., Meggendorfer, T.: Conditional value-at-risk for reachability and
mean payoff in Markov decision processes. In: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 609–618. ACM
(2018)

16. Olmedo, F., Gretz, F., Jansen, N., Kaminski, B.L., Katoen, J.-P., Mciver, A.:
Conditioning in probabilistic programming. ACM Trans. Program. Lang. Syst.
(TOPLAS) 40(1), 4:1–4:50 (2018)

17. Piribauer, J., Baier, C.: Partial and conditional expectations in Markov decision
processes with integer weights (extended version). arXiv:1902.04538 (2019)

18. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York (1994)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-48320-9_7
https://doi.org/10.1007/978-3-319-23506-6_4
https://doi.org/10.1007/978-3-319-23506-6_4
http://arxiv.org/abs/1902.04538
http://creativecommons.org/licenses/by/4.0/

Equational Theories and Monads
from Polynomial Cayley Representations

Maciej Piróg(B), Piotr Polesiuk, and Filip Sieczkowski

University of Wroc�law, Wroc�law, Poland
mpirog@cs.uni.wroc.pl

Abstract. We generalise Cayley’s theorem for monoids by providing an
explicit formula for a (multi-sorted) equational theory represented by the
type PX → X, where P is an arbitrary polynomial endofunctor with nat-
ural coefficients. From the computational perspective, examples of effects
given by such theories include backtracking nondeterminism (obtained
with the original Cayley representation X → X), finite mutable state
(obtained with n → X, for a constant n), and their different combina-
tions (via n × X → X or Xn → X). Moreover, we show that monads
induced by such theories are implementable using the type formers avail-
able in programming languages based on a polymorphic λ-calculus, both
as compositions of algebraic datatypes and as continuation-like monads.
We give a set-theoretic model of the latter in terms of Barr-dinatural
transformations. We also introduce CayMon, a tool that takes a poly-
nomial as an input and generates the corresponding equational theory
together with the two implementations of the induced monad in Haskell.

1 Introduction

The relationship between universal algebra and monads has been studied at least
since Linton [13] and Eilenberg and Moore [4], while the relationship between
monads and the general theory of computational effects (exceptions, mutable
state, nondeterminism, and such) has been observed by Moggi [14]. By transitiv-
ity, one can study computational effects using concepts from universal algebra,
which is the main theme of Plotkin and Power’s prolific research programme
(see [10,20–24] among many others).

The simplest possible case of this approach is to describe an effect via a
finitary equational theory: a finite set of operations (of finite arities), together
with a finite set of equations. One such example is the theory of monoids:

Operations: γ, ε

Equations: γ(x, ε) = x, γ(ε, x) = x, γ(γ(x, y), z) = γ(x, γ(y, z))

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 453–469, 2019.
https://doi.org/10.1007/978-3-030-17127-8_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_26&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_26

454 M. Piróg et al.

The above reads that the signature of the theory consists of two operations:
binary γ and nullary ε. The equations state that γ is associative, with ε being
its left and right unit.1 One can also read this theory as a specification of back-
tracking nondeterminism, in which the order of results matters, where γ is an
operation that creates a new computation as a choice between two subcompu-
tations, while ε denotes failure. The connection between the equational theory
and the computational effect becomes apparent when we consider the monad of
free monoids (that is, the list monad), which is in fact used to form backtracking
computations in programming; see, for example, Bird’s pearl [1].

This suggests a simple recipe for computational effects: it is enough to come
up with an equational theory, and out of the hat comes the induced monad
of free algebras that implements the corresponding effect. Such an approach
is indeed possible in the category Set, where every finitary equational theory
admits a free monad, constructed by quotienting terms over the signature by
the congruence induced by the equations. However, if we want to implement this
monad in a programming language, the situation is not so simple, since in most
programming languages (in particular, those without higher inductive types)
we cannot generally express this kind of quotients. For instance, to describe a
variant of nondeterminism that does not admit duplicate results, we may extend
the theory of monoids with an equation stating that γ is idempotent, that is,
γ(x, x) = x. But, unlike in the case of general monoids, the monad induced by
the theory of idempotent monoids seems to be no longer directly expressible
in, say, Haskell. This means that there is no implementation that satisfies all
the equations of the theory “on the nose”—one informal argument is that the
representations of γ(x, x) and x should be the same whatever the type of x, and
this would require a decidable equality test on every type, which is not possible.

Thus, both from the practical viewpoint of programming and as a question on
the general nature of equational theories, it makes sense to ask which theories
are “simple” enough to induce monads expressible using only the basic type
formers, such as (co)products, function spaces, algebraic datatypes, universal
and existential quantification. This question seems difficult in general, and to
our knowledge there is little work that addresses it. In this paper, we focus on
a small piece of this problem: we study a certain subset of such implementable
equational theories, and conjure some novel extensions.

The monads that we consider arise from Cayley representations. The over-
all idea is that if a theory has an expressible, well-behaved (in a sense that
we make precise in the paper) Cayley representation, the induced monad also
has an expressible implementation. The well-known Cayley theorem for monoids
states that every monoid with a carrier X embeds in the monoid of endofunc-
tions X → X. In this paper, we generalise this result: given a polynomial Set-
endofunctor P with natural coefficients, we provide an explicit formula for an
equational theory such that its every algebra with a carrier X embeds in a certain
algebra with the carrier given by PX → X. Then, we show that the monad of

1 Although one usually writes γ as an infix operation, we use a “functional” syntax,
since, in the following, the arity of corresponding operations may vary.

Equational Theories and Monads from Polynomial Cayley Representations 455

free algebras of such a theory can be implemented as a continuation-like monad
with the endofunctor given at a set A as:

∀X.(A → PX → X) → PX → X (1)

This type is certainly expressible in programming languages based on polymor-
phic λ-calculi, such as Haskell.

However, before we can give the details of this construction, we need to
address some technical issues. It is easy to notice that there may be more than
one “Cayley representation” of a given theory: for example, a monoid X embeds
not only in X → X, but also in a “smaller” monoid X

γ� X, by which we
mean the monoid of functions of the type X → X of the shape a �→ γ(b, a),
where b ∈ X. The same monoid X embeds also in a “bigger” monoid X2 → X,
in which we interpret the operations as γ(f, g) = (x, y) �→ f(g(x, y), y) and
ε = (x, y) �→ x. What makes X → X special is that instantiating (1) with
PX = X gives a monad that is isomorphic to the list monad (note that in this
case, the type (1) is simply the Church representation of lists). At the same time,
we cannot use X

γ� X instead of X → X, since (1) quantifies over sets, and
thus there is no natural candidate for γ. Moreover, even though we may use the
instantiation PX = X2, this choice yields a different monad (which we describe
in more detail in Sect. 5.4). To sort this out, in Sect. 2, we introduce the notion of
tight Cayley representation. This notion gives rise to the monad of the following
shape, which is a strict generalisation of (1), where R is a Set-bifunctor of mixed
variance:

∀X.(A → R(X,X)) → R(X,X) (2)

Formally, all our constructions are set-theoretic—to focus the presentation,
the connection with programming languages and type theory is left implicit.
Thus, the second issue that we discuss in Sect. 2 is the meaning of the universal
quantifier ∀ in (1). It is known [27] that polymorphic functions of this shape enjoy
a form of dinaturality proposed by Michael Barr (see Paré and Román [16]),
called by Mulry strong dinaturality [15]. We model the universally quantified
types above as collections of Barr-dinatural transformations, and prove that if
R is a tight representation, the collection (2) is always a set.

In Sect. 4, we give the formula that defines an equational theory given a
polynomial functor P . In general, the theories we construct can be multi-sorted,
which is useful for avoiding a combinatory explosion of the induced theories,
hence a brief discussion of such theories in Sect. 3. We show that PX → X is
indeed a tight representation of the generated theory. Then, in Sect. 5, we study
a number of examples in order to discover what effects are denoted by the gen-
erated theories. It turns out that each theory can be seen as a (rather complex,
for nontrivial polynomial functors) composition of backtracking nondeterminism
and finite mutable state. Moreover, in Sect. 6, we show that the corresponding
monads can be implemented not only as continuation-like monads (1), but also
in “direct style”, using algebraic datatypes.

Since they are parametrised by a polynomial, both the equational theory and
its representation consist of many indexed components, so it is not necessarily

456 M. Piróg et al.

trivial to get much intuition simply by looking at the formulas. To facilitate this,
we have implemented a tool, called CayMon, that generates the theory from a
given polynomial, and produces two implementations in Haskell: as a composi-
tion of algebraic datatypes and as a continuation-like (“Cayley”) monad (1). The
tool can be run in a web browser, and is available at http://pl-uwr.bitbucket.
io/caymon.

2 Tight Cayley Representations

In this section, we take a more abstract view on the concept of “Cayley represen-
tation”. In the literature (for example, [2,5,17,25]), authors usually define Cayley
representations of different forms of algebraic structures in terms of embeddings.
This means that given an object X, there is a homomorphism σ : X → Y to a
different object Y , and moreover σ has a retraction (not necessarily a homomor-
phism) ρ : Y → X (meaning ρ ·σ = id). One important fact, which is usually left
implicit, is that the construction of Y from X is in some sense functorial. Since
we are interested in coming up with representations for many different equational
theories, we first identify sufficient properties of such a representation needed to
carry out the construction of the monad (2) sketched in the introduction. In
particular, we introduce the notion of tight Cayley representation, which char-
acterises the functoriality and naturality conditions for the components of the
representation.

As for notation, we use A → B to denote both the type of a morphism in a
category, and the set of all functions from A to B (the exponential object in Set).
Also, for brevity, we write the application of a bifunctor to two arguments, e.g.,
G(X,Y), without parentheses, as GXY . We begin with the following definition:

Definition 1 (see [16]). Let C ,D be categories, and G,H : C op × C → D be
functors. Then, a collection of D-morphisms θX : GXX → HXX indexed by
C -objects is called a Barr-dinatural transformation if it is the case that for all
objects A in D , objects X, Y in C , morphisms f1 : A → GXX, f2 : A → GY Y
in D , and a morphism g : X → Y in C ,

if A

GXX

GY Y

GXY

f1

f2

GXg

GgY

commutes, then A

GXX

GY Y

HXX

HY Y

HXY

f1

f2

θX

θY

HXg

HgY

commutes.

An important property of Barr-dinaturality is that the component-wise com-
position gives a well-behaved notion of vertical composition of two such trans-
formations. The connection between Barr-dinatural transformations and Cayley
representations is suggested by the fact, shown by Paré and Román [16], that
the collection of such transformations of type H → H for the Set-bifunctor
H(X,Y) = X → Y is isomorphic to the set of natural numbers. The latter,

http://pl-uwr.bitbucket.io/caymon
http://pl-uwr.bitbucket.io/caymon

Equational Theories and Monads from Polynomial Cayley Representations 457

equipped with addition and zero (or the former with composition and the identity
transformation, respectively), is simply the free monoid with a single generator,
that is, an instance of (1) with PX = X and A = 1.

For the remainder of this section, assume that T is a category, while F :
Set → T is a functor with a right adjoint U : T → Set. Intuitively, T is a
category of algebras of some theory, and U is the forgetful functor. Then, the
monad generated by the theory is given by the composition UF . For a function
f : A → UX, we write ̂f = Uf ′ : UFA → UX, where f ′ : FA → X is the
contraposition of f via the adjunction (intuitively, the unique homomorphism
induced by the freeness of the algebra FA).

Definition 2. A tight Cayley representation of T with respect to F � U con-
sists of the following components:

(a) A bifunctor R : Setop × Set → Set,
(b) For each set X, an object RX in T , such that URX = RXX,
(c) For all sets A, X, Y and functions f1 : A → RXX, f2 : A → RY Y ,

g : X → Y , it is the case that

if A

RXX

RY Y

RXY

f1

f2

RXg

RgY

commutes, then UFA

RXX

RY Y

RXY

̂f1

̂f2

RXg

RgY

commutes.

(d) For each object M in T , a morphism σM : M → R(UM) in T , such that
UσM : UM → R(UM)(UM) is Barr-dinatural in M ,

(e) A Barr-dinatural transformation ρM : R(UM)(UM) → UM , such that
ρM · UσM = id,

(f) For each set X, a set of indices IX and a family of functions runX,i :
RXX → X, where i ∈ IX , such that R(RXX)runX is a jointly monic
family, and the following diagram commutes for all X and i ∈ IX :

RXX R(RXX)(RXX)

R(RXX)X

UσRX

R(RXX)runX,i
RrunX,iX

Note that the condition (c) states that the objects R are, in a sense, natu-
ral. Intuitively, understanding an object RX as an algebra, the condition states
that the algebraic structure of RX does not really depend on the set X. The
condition (f) may seem rather complicated: the intuition behind the technical
formulation is that RXY behaves like a form of a function space (after all, we
are interested in abstract Cayley representations), and runX,i is an application
to an argument specified by i, as in the example below. In such a case, the joint
monicity becomes the extensional equality of functions.

458 M. Piróg et al.

Example 3. Let us check how Cayley representation for monoids fits the defi-
nition above: (a) The bifunctor is RXY = X → Y . (b) The T -object for a
monoid M is the monoid M → M with γ(f, g) = f ◦ g and ε = id. (c) Given
some elements a, b, . . . , c ∈ A, we need to see that g ◦ f1(a) ◦ f1(b) ◦ · · · ◦ f1(c) =
f2(a)◦f2(b)◦· · ·◦f2(c)◦g. Fortunately, the assumption, which in this case becomes
g ◦ f1(a) = f2(a)◦ g for all a ∈ A, allows us to “commute” g from one side of the
chain of function compositions to the other. (d) σM (a) = b �→ γ(a, b). It is easy
to verify that it is a homomorphism. The Barr-dinaturality condition: assuming
f(m) = n for some m ∈ M and n ∈ N , and a homomorphism f : M → N ,
it is the case that, omitting the U functor, RfN(σN (n)) = RfN(σN (f(m))) =
b �→ γ(f(m), f(b)) = b �→ f(γ(m, b)) = RMf(σM (m)), where the equalities can
be explained respectively as: assumption in the definition of Barr-dinaturality,
unfolding definitions, homomorphism, unfolding definitions. (e) ρM (f) = f(ε).
It is easy to show that it is Barr-dinatural; note that we need to use the fact
that T -morphisms (that is, monoid homomorphisms) preserve ε. (f) We define
IX = X, while runX,i(f) = f(i).

The first main result of this paper states that given a tight representation
of T with respect to F � U , the monad given by the composition UF can be
alternatively defined using a continuation-like monad constructed with sets of
Barr-dinatural transformations:

Theorem 4. For a tight Cayley representation R with respect to F � U , ele-
ments of the set UFA are in 1-1 correspondence with Barr-dinatural transfor-
mations of the type (A → RXX) → RXX. In particular, this means that the
latter form a set. Moreover, this correspondence gives a monad isomorphism
between UF and the evident continuation-like structure on (2), given by the
unit (ηA(a))X(f) = f(a) and the Kleisli extension (f∗(k))X(g) = kX(a �→
(f(a))X(g)).

We denote the set of all Barr-dinatural transformations from the bifunctor
(X,Y) �→ A → RXY to R as ∀X.(A → RXX) → RXX. This gives us a
monad similar in shape to the continuation monad, or, more generally, Kock’s
codensity monad [12] embodied using the formula for right Kan extensions as
ends. One important difference with the codensity monad (except, of course,
the fact that we have bifunctors on the right-hand sides of arrows) is that we
use Barr-dinatural transformations instead of the usual dinatural transforma-
tions [3]. Indeed, if we use ends instead of ∀, the end

∫

X
(A → RXX) → RXX

is given as the collection of all dinatural transformations of the given shape. It is
known, however, that even in the simple case when A = 1 and RXY = X → Y ,
this collection is too big to be a set (see the discussion in [16]), hence such end
does not exist.

3 Multi-sorted Equational Theories with a Main Sort

The equational theories that we generate in Sect. 4 are multi-sorted, which is
useful for trimming down the combinatorial complexity of the result. This turns

Equational Theories and Monads from Polynomial Cayley Representations 459

out to be, in our view, essential in understanding what computational effects
they actually represent. In this section, we give a quick overview of what kind
of equational theories we work with, and discuss the construction of their free
algebras.

We need to discuss the free algebras here, since we want the freeness to be
with respect to a forgetful functor to Set, rather than to the usual category of
sorted sets; compare [26]. This is because we want the equational theories to
generate monads on Set, as described in the previous section. In particular, we
are interested in theories in which one of the sorts is chosen as the main one, and
work with the functor that forgets not only the structure, but also the carriers
of all the other sorts, only preserving the main one. Luckily, this functor can be
factored as a composition of two forgetful functors, each with an obvious left
adjoint.

In detail, assume a finite set of sorts S = {Ω,K1, . . . ,Kd} for some d ∈ N,
where Ω is the main sort. The category of sorted sets is simply the category
Set|S|, where |S| is the discrete category generated by the set S. More explicitly,
the objects of Set|S| are tuples of sets (one for each sort), while morphisms are
tuples of functions. Given an S-sorted finitary theory T, we denote the category
of its algebras as T-Alg. To see that the forgetful functor from T-Alg to Set has
a left adjoint, consider the following composition of adjunctions:

Set Set|S| T-Alg

X �→ (X, ∅, . . . , ∅)

(X, A1, . . . , Ad) �→ X

free

carriers

This means that the free algebra for each sort has the carrier given by the set
of terms of the given sort (with variables appearing only at positions intended
for the main sort Ω) quotiented by the congruence induced by the equations.
This kind of composition of adjunctions is similar to [18], but in this case the
compound right adjoints of the theories given in the next section are monadic.

4 Theories from Polynomial Cayley Representations

In this section, we introduce algebraic theories that are tightly Cayley-
represented by PX → X for a polynomial functor P . Notation-wise, whenever
we write i ≤ k for a fixed k ∈ N, we mean that i is a natural number in
the range 1, . . . , k, and use [xi]i≤k to denote a sequence x1, . . . , xk. The latter
notation is used also in arguments of functions and operations, so f([xi]i≤k)
means f(x1, . . . , xk), while f(x, [yi]i≤k) means f(x, y1, . . . , yk). We sometimes
use double indexing; for example, by

∏k
i=1

∏ti
j=1 Xi,j → Y for some [ti]i≤k,

we mean the type X1,1 × · · · × X1,t1 × · · · × Xk,1 × · · · × Xk,tk → Y . This
is matched by a double-nested notation in arguments, that is, f([[xj

i]j≤ti]i≤k)
means f(x1

1, . . . , x
t1
1 , . . . , x1

k, . . . , xtk
k). Also, whenever we want to repeat an argu-

ment k-times, we write [x]k; for example, f([x]3) means f(x, x, x). Because we
use a lot of sub- and superscripts as indices, we do not use the usual notation for

460 M. Piróg et al.

exponentiation. This means that xi always denotes some x at index i, while a
k-fold product of some type X, ordinarily denoted Xk, is written as

∏k
X. We

use the �-� brackets to denote the interpretation of sorts and operations in an
algebra (that is, a model of the theory). If the algebra is clear from the context,
we skip the brackets in the interpretation of operations.

For the rest of the paper, let d ∈ N (the number of monomials in the polyno-
mial) and sequences of natural numbers [ci]i≤d and [ei]i≤d (the coeffcients and
exponents respectively) define the following polynomial endofunctor on Set:

PX =
d

∑

i=1

ci × ∏ei X, (3)

where ci is an overloaded notation for the set {1, . . . , ci}. With this data, we
define the following equational theory:

Definition 5. Assuming d, [ci]i≤d, and [ei]i≤d as above, we define the following
equational theory T:

– Sorts:

Ω (main sort)
Ki, for all i ≤ d

– Operations:

cons :
∏d

i=1

∏ci Ki → Ω

πj
i : Ω → Ki, for i ≤ d and j ≤ ci

εj
i : Ki, for i ≤ d and j ≤ ei

γj
i : Kj × ∏ej Ki → Ki, for i, j ≤ d

– Equations:

πj
i (cons([[x

j
i]j≤ci]i≤d)) = xj

i (beta-π)

cons([[πj
i (x)]j≤ci]i≤d) = x (eta-π)

γj
i (εk

j , [xt]t≤ej
) = xk (beta-ε)

γi
i(x, [εj

i]j≤ei
) = x (eta-ε)

γj
i (γk

j (x, [yt]t≤ek
), [zs]s≤ej

) = γk
i (x, [γj

i (yt, [zs]s≤ej
)]t≤ek

) (assoc-γ)

Thus, in the theory T, there is a main sort Ω, which we think of as corre-
sponding to the entire functor, and one sort Ki for each “monomial”

∏ei X.
Then, we can think of Ω as a tuple containing elements of each sort, where each
sort Ki has exactly ci occurrences. The fact that Ω is a tuple, which is witnessed
by the cons and π operations equipped with the standard equations for tupling

Equational Theories and Monads from Polynomial Cayley Representations 461

and projections, is not too surprising—one should keep in mind that T is a the-
ory represented by the type PX → X, which can be equivalently given as the
product of function spaces ci × ∏ei X → X for all i ≤ d.

Each operation γj
i can be used to compose an element of Kj and ej elements

of Ki to obtain an element of Ki. The ε constants can be seen as selectors:
in (beta-ε), εk

j in the first argument of γj
i selects the k-th argument of the

sort Ki, while the (eta-ε) equation states that composing a value of Ki with the
successive selectors of Ki gives back the original value. The equation (assoc-γ)
states that the composition of values is associative in an appropriate sense. In
Sect. 5, we provide a reading of the theory T as a specification of a computational
effect for different choices of d, ci, and ei.

Remark 6. If it is the case that ei = ej for some i, j ≤ d, then the sorts Ki

and Kj are isomorphic. This means that in every algebra of such a theory, there
is an isomorphism of sorts ϕ : �Ki� → �Kj�, given by ϕ(x) = γi

j(x, [εk
j]k≤ei

). This
suggests an alternative setting, in which instead of having a single ci × ∏ei X
comoponent, we can have ci components of the shape

∏ei X. In such a setting,
the equational theory T in Definition 5 would be slightly simpler—specifically,
there would be no need for double-indexing in the types of cons and π. On
the downside, this would obfuscate the connection with computational effects
described in Sect. 5 and some conjured extensions in Sect. 7.

The theory T has a tight Cayley representation using functions from P , as
detailed in the following theorem. This gives us the second main result of this
paper: by Theorem 4, the theory T is the equational theory of the monad (1).
The notation ini means the i-th inclusion of the coproduct in the functor P .

Theorem 7. The equational theory T from Definition 5 is tightly Cayley-
represented by the following data:

– The bifunctor RXY = PX → Y ,
– For a set X, the following algebra:

• Carriers of sorts:

�Ω� = RXX

�Ki� =
∏ei X → X

• Interpretation of operations:

�cons�([[f j
k]j≤ck]k≤d)(ini(c, [xt]t≤ei

)) = fc
i ([xt]t≤ei

)

�πj
i �(f)([xt]t≤ei

) = f(ini(j, [xt]t≤ei
))

�εj
i �([xt]t≤ei

) = xj

�γj
i �(f, [gk]k≤ej

)([xt]t≤ei
) = f([gk([xt]t≤ei

)]k≤ej
)

– The homomorphism σM for the main sort and sorts Ki:

σΩ
M (m)(ini(c, [xt]t≤ei

)) = cons([[γi
k(πc

i (m), [πj
k(xt)]t≤ei

)]j≤ek
]k≤d)

σi
M (s)([xt]t≤ei

) = cons([[γi
k(s, [πj

k(xt)]t≤ei
)]j≤ek

]k≤d)

462 M. Piróg et al.

– The transformation ρM :

ρM (f) = cons([[πj
k(f(ink(j, [cons([wf

r]r<k, [εt
k]ck , [wf

r]k<r≤d)]t≤ek
)))]j≤ck]k≤d)

where wf
r = [πc

r(f(inr(c, [εj
r]j≤er

)))]c≤cr

– The set of indices IX = PX and the functions runX,i(f) = f(i).

In the representing algebra, it is the case that each �Ki� represents one mono-
mial, as mentioned in the description of T, while �Ω� is the appropriate tuple
of representations of monomials, which is encoded as a single function from a
coproduct (in our opinion, this encoding turns out to be much more readable
on paper), while cons and π are indeed given by tupling and projections. For
each i ≤ d, the function εj

i simply returns its j-th argument, while γ is inter-
preted as the usual composition of multi-argument functions.

Homomorphisms between multi-sorted algebras are defined as operation-
preserving functions for each sort, so σ is defined for the sort Ω and for each
sort Ki. In general, the point of Cayley representations is to encode an element m
of an algebra M using its possible behaviours with other elements of the algebra.
It is no different here: for each sort Ki at the c-th occurrence in the tuple, the
function σΩ packs (using cons) all possible compositions (by means of γ) of val-
ues of Ki with the “components” of m (extracted using π). The same happens
for each s ∈ �Ki� in σi

M (s), but there is no need to unpack s, as it is already a
value of a single sort.

The transformation ρM is a bit more complicated. The argument f is, in
general, a function from a coproduct to M , but we cannot simply apply f to
one value ini(. . .) for some sort Ki, as we would obviously lose the information
about the components in different sorts. This is why we need to apply f to all
possible sorts with ε in the right place to ensure that we recover the original
value. We extract the information about particular sorts from such values, and
combine them using cons. Interestingly, the elements of wf

r could actually be
replaced by any expression of the appropriate sort that is preserved by homo-
morphisms, assuming that f is also preserved. This is needed to ensure that ρ
is Barr-dinatural (the fact that f is preserved by homomorphisms is exactly the
assumption in the definition of Barr-dinaturality). For example, if er > 0 for
some r ≤ d, one can define wf

r simply as [εj
r]cr for some j ≤ er. The complicated

expression in the definition of wf
r is a way to produce values also for sorts Kr

with er = 0, which do not have any ε constants.

5 Effects Modeled by Polynomial Representations

Now we describe what kind of computational effects are captured by the theo-
ries introduced in the previous section. It turns out that they all are different
compositions of finite mutable state and backtracking nondeterminism. These
compositions include the two most basic ones: when the state is local for each
nondeterministic branch, and when it is global to the entire computation.

Equational Theories and Monads from Polynomial Cayley Representations 463

In the following, if there is only one object of a given kind, we skip the indices.
For example, if for some i, it is the case that ei = 1, we write εi instead of ε1i . If
d = 1, we skip the subscripts altogether.

5.1 Backtracking Nondeterminism via Monoids

We recover the original Cayley theorem for monoids instantiating Theorem 7
with PX = X, that is, d = 1 and c1 = e1 = 1. In this case, we obtain two sorts,
Ω and K, while the equations (beta-π) and (eta-π) instantiate respectively as
follows:

π(cons(x)) = x, cons(π(x)) = x

This means that both sorts are isomorphic, so one can think of this theory as
being single-sorted. Of course, this is always the case if d = 1 and c1 = 1.
Since e1 = 1, the operation γ is binary and there is a single ε constant. The
equations (beta-ε) and (eta-ε) say, respectively, that ε is the left and right unit
of γ, that is:

γ(ε, x) = x, γ(x, ε) = x

Interestingly, the two unit laws for monoids are symmetrical, but in general
the (beta-ε) and (eta-ε) equations are not. One should note that the symmetry
is already broken when one implements free monoids (that is, lists) in a pro-
gramming language: in the usual right-nested implementation, the “beta” rule
is part of the definition of the append function, while the “eta” rule is a theorem.
The (assoc-γ) equation instantiates as the associativity of γ:

γ(γ(x, y), z) = γ(x, γ(y, z))

5.2 Finite Mutable State

For n ∈ N, if we take PX = n, that is, d = 1, c1 = n and e1 = 0, we obtain
the equational theory of a single mutable cell in which the set of possible states
is {1, . . . , n}. There are two sorts in the theory: Ω and K. The sort K does not
have any interesting structure on its own, as there are no constants ε, and the
equation (eta-ε) instantiates to

γ(x) = x,

which means that γ is necessarily an identity. The fact that this theory is indeed
the theory of state becomes apparent when we identify Ω as a sort of compu-
tations that require some initial state to proceed, and K as computations that
produce a final state. Then, the operations πj : Ω → K (j ≤ n) are the “update”
operations, where πj sets the current state to j, while cons :

∏n
K → Ω is the

“lookup” operation, in which the j-th argument is the computation to be exe-
cuted if the current state is j. The equations (beta-π), for all j ≤ n, and (eta-π)
state respectively:

πj(cons([xi]i≤n)) = xj , cons([πi(x)]i≤n) = x

464 M. Piróg et al.

These equations embody the natural behaviour rules for this limited form of
state. The former reads that setting the current state to j and then proceeding
with the computation xi if the current state is i is the same thing as simply
proceeding with xj (note that xj is of the sort K, hence it does not use the
information that the current state has just been updated to j, so there is no
need to keep the πj operation on the right-hand side of the equation). The latter
states that if the current state is i and we set the current state to i, it is the
same thing as not changing the state at all (note that x does not depend on the
current state, as it is the same in every argument of cons).

Interestingly, the presentations of equational theories for state in the litera-
ture (for example, [7,23]) are all single-sorted. Such a setting can be recovered
by defining the following macro-operations on the sort Ω:

putj : Ω → Ω get :
∏n

Ω → Ω

putj(x) = cons([πj(x)]n) get([xi]i≤n) = cons([πi(xi)]i≤n)

The trick here is that the get operation does not change the state (by setting the
new state to the current one), while put does not depend on the current state
(by having the same computation in every argument of cons). The usual four
equations for the interaction of put and get can be obtained by unfolding the
definitions and using the (beta-π) and (eta-π) equations:

putj(putk(x)) = putk(x) putj(get([xi]i≤n)) = putj(xj)

get([get([xi]i≤n)]n) = get([xi]i≤n) get([puti(xi)]i≤n) = get([xi]i≤n)

The connection with the implementation of state in programming becomes evi-
dent when we take a closer look at the endofunctor of the induced monad from
Theorem 4. Consider the following informal calculation:

∀X.(A → n → X) → n → X
∼= ∀X.n → (A → n → X) → X (flipping the arguments)
∼= n → ∀X.(A → n → X) → X (∀ commutes with arrows)
∼= n → ∀X.(A × n → X) → X (Curry)
∼= n → A × n (Church)

This means that not only do we prove that the equational theory corresponds to
the usual state monad, but we can actually derive the implementation of state
as the endofunctor A �→ (n → A × n).

5.3 Backtracking with Local State

We obtain one way to combine nondeterminism with state using the functor
PX = n × X, for n ∈ N, that is, d = 1, c1 = n and e1 = 1. It has two sorts,
Ω and K, which play roles similar to those detailed in the previous section.
However, this time K additionally has the structure of a monoid. This gives

Equational Theories and Monads from Polynomial Cayley Representations 465

us the theory of backtracking with local state, which means that whenever we
make a choice using the γ operation, the computations in each argument carry
separate, non-interfering states. In particular, in a computation γ(x, y), both
subcomputations x and y start with the same state, which is the initial state of
the entire computation. This non-interference is guaranteed simply by the system
of sorts: the arguments of γ are of the sort K, which means that the stateful
computations inside the arguments begin with π, which sets a new state.

We can also obtain a single-sorted theory, similar to the case of the pure
state. To the put and get macro-operations, we add choice and failure as follows:

choose : Ω × Ω → Ω fail : Ω

choose(x, y) = cons([γ(πj(x), πj(y))]j≤n) fail = cons([ε]n)

Then, the locality of state can be summarised by the following equality, which
is easy to show using the (beta-π) and (eta-π) equations:

putk(choose(x, y)) = choose(putk(x), putk(y))

5.4 Backtracking with Global State

Another way to compose nondeterminism and state is by using global state,
which is obtained for n ∈ N and PX = Xn, that is, d = 1, c1 = 1, and e1 = n.
As in the case of pure backtracking nondeterminism, it means that the sorts Ω
and K are isomorphic. The intuitive understanding of the expression γ(x, [yi]i≤n)
is: first perform the computation x, and then the computation yi, where i is the
final state of the computation x. The operation εj is: fail, but set the current
state to j. In this case, the equations (beta-ε) instantiate to the following for
all j ≤ n:

γ(εj , [yi]i≤n) = yj

It states that if the first computation fails but sets the state to j, the next step
is to try the computation yj . Note that there is no other way to give a new state
than via failure, but this can be circumvented using γ(x, [εk]n) to set the state
to k after performing x. The (eta-ε) instantiates to:

γ(x, [εj]j≤n) = x

This reads that if we execute x and then set the current state to the resulting
state of x, it is the same as just executing x.

6 Direct-Style Implementation

Free algebras of the theory T from Definition 5 can also be presented as terms
of a certain shape. They are best described as terms built using the operations
from T that are well-typed according to the following typing rules, where the

466 M. Piróg et al.

types are called Ω, Ki, and Pi for i ≤ d. The type of the entire term is Ω, and
Var(x) means that x is a variable.

[[tji : Ki]j≤ci]i≤d

cons([[tji]j≤ci]i≤d) : Ω
εj

i : Ki

t : Pj [wk : Ki]k≤ej

γj
i (t, [wk]k≤ej

) : Ki

Var(x)

πj
i (x) : Pi

Note that even though variables appear as arguments to the operations π, they
are not of the type Ω. This means that the entire term cannot be a variable, as
it is always constructed with cons as the outermost operation. Each argument
of cons is a term of the type Ki for an appropriate i, which is built out of the
operations ε and γ. Note that the first argument of γ is always a variable wrapped
in π, while all the other arguments are again terms of the type Ki. Overall, such
terms can be captured as the following endofunctors on Set, where W i represents
terms of the type Ki, while WΩ represents terms of the type Ω. By μY.GY we
mean the carrier of the initial algebra of an endofunctor G.

W iX = μY.ei +
∑d

j=1 (
∑ci X) × ∏ej Y

WΩX =
∏d

i=1

∏ci W iX

Clearly, ei in the definition of W i represents the εi constants, while the second
component of the coproduct is a choice between the γi operations with appro-
priate arguments.

It is the case that every term of the sort Ω can be normalised to a term of
the type Ω by a term-rewriting system obtained by orienting the “beta” and
“assoc” equations left to right, and eta-expanding variables at the top-level:

πj
i (cons([[x

j
i]j≤ci]i≤d)) � xj

i

γj
i (εk

j , [xt]t≤ej
) � xk

γj
i (γk

j (x, [yt]t≤ek
), [zs]s≤ej

) � γk
i (x, [γj

i (yt, [zs]s≤ej
)]t≤ek

)

x � cons([[γi
i(π

j
i (x), [εk

i]k≤ei
)]j≤ci]i≤d)

This term rewriting system gives rise to a natural implementation of the monadic
structure, where the “beta” and “assoc” rules normalise the two-level term struc-
ture, thus implementing the monadic multiplication, while the eta-expansion rule
implements the monadic unit.

7 Discussion

The idea for employing Cayley representations to explore implementations of
monads induced by equational theories is inspired by Hinze [8], who suggested
a connection between codensity monads, Church representation of lists, and the
Cayley theorem for monoids. We note that Hinze’s discussion is informal, but
he suggests using ends, which, as we discuss in Sect. 2, is not sound.

Most of related work follows one of two main paths: it either concentrates
on algebraic explanation of monads already used in programming and semantics

Equational Theories and Monads from Polynomial Cayley Representations 467

(for example, [11,19,23]), or on the general connection between different kinds
of algebraic theories and computational effects, but without much interest in
whether it leads to structures implementable in a programming language. Some
exceptions are the construction of the sum of a theory and a free theory [9] or the
sum of ideal monads [6]. What we propose in Sect. 4 is a form of a “functional
combinatorics”: given a type, what kind of algebra describes the possible values?

As our approach veers off the main paths of the recent work on effects, there
are many possible directions of future work. One interesting direction would be
to generalise Set, the base category used throughout this paper, to more abstract
categories. After all, we want to talk about structures definable only in terms of
(co)products, exponentials, and quantifiers—which are all constructions whose
universal properties are singled out and explored using (co)cartesian (or even
monoidal) closed categories. However, the current development relies heavily on
the particular properties of Set, such as extensional equality of functions, which
appears in disguise in the condition (f) in Definition 2.

One can also try to extend the type used as a Cayley representation. For
example, we could consider the polynomial P in (3) to range over the space of
all sets, that is, allow the coefficients ci to vary over sets rather than natural
numbers. In the Cayley representation, it would be enough to consider functions
from ci in place of ci-fold products. We would immediately gain expressiveness,
as the obtained state monad would no longer need to be defined only for a finite
set of possible states. On the flip side, this would make the resulting theory
infinitary – which, of course, is not uncommon in the field of algebraic treatment
of computational effects. However, we decide to stick to the simplest possible
setting in this paper, which greatly simplifies the presentation, but still gives us
some novel observations, like the fact that the theory of finite state is simply
the theory of 2-sorted tuples in Sect. 5.2, or the novel theory of backtracking
nondeterminism with global state in Sect. 5.4. Other future extensions that we
believe are worth exploring include iterating the construction to obtain a from
of a distributive tensor (compare Rivas et al.’s [25] “double” representation of
near-semirings) or quantifying over more variables, leading to less interaction
between sorts.

Acknowledgements. We thank the reviewers for their insightful comments and
suggestions.

Maciej Piróg was supported by the National Science Centre,
Poland under POLONEZ 3 grant “Algebraic Effects and Continua-
tions” no. 2016/23/P/ST6/02217. This project has received funding
from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant agreement No 665778.

Piotr Polesiuk was supported by the National Science Centre,
Poland, under grant no. 2014/15/B/ST6/00619.

Filip Sieczkowski was supported by the National Science Centre, Poland,
under grant no. 2016/23/D/ST6/01387.

468 M. Piróg et al.

References

1. Bird, R.: Functional pearl: a program to solve Sudoku. J. Funct. Program. 16(6),
671–679 (2006). http://dx.doi.org/10.1017/S0956796806006058

2. Bloom, S.L., Ésik, Z., Manes, E.G.: A Cayley theorem for Boolean algebras. Am.
Math. Monthly 97(9), 831–833 (1990). http://dx.doi.org/10.2307/2324751

3. Dubuc, E., Street, R.: Dinatural transformations. In: MacLane, S., et al. (eds.)
Reports of the Midwest Category Seminar IV, pp. 126–137. Springer, Heidelberg
(1970). https://doi.org/10.1007/BFb0060443

4. Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Illinois J. Math. 9(3),
381–398 (1965). https://projecteuclid.org:443/euclid.ijm/1256068141

5. Ésik, Z.: A Cayley theorem for ternary algebras. Int. J. Algebra Comput. 8, 311–
316 (1998)

6. Ghani, N., Uustalu, T.: Coproducts of ideal monads. ITA 38(4), 321–342 (2004).
https://doi.org/10.1051/ita:2004016

7. Gibbons, J., Hinze, R.: Just do it: simple monadic equational reasoning. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIG-
PLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, 19–21 September 2011, pp. 2–14. ACM (2011). http://doi.acm.org/10.1145/
2034773.2034777

8. Hinze, R.: Kan extensions for program optimisation Or : Art and Dan explain an
old trick. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp.
324–362. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31113-
0 16

9. Hyland, M., Plotkin, G.D., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013

10. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electron. Notes Theor. Comput. Sci. 172, 437–458
(2007). https://doi.org/10.1016/j.entcs.2007.02.019

11. Jaskelioff, M., Moggi, E.: Monad transformers as monoid transformers. Theor.
Comput. Sci. 411(51–52), 4441–4466 (2010). https://doi.org/10.1016/j.tcs.2010.
09.011

12. Kock, A.: Continuous Yoneda representation of a small category (1966). Aarhus
University preprint. http://home.math.au.dk/kock/CYRSC.pdf

13. Linton, F.: Some aspects of equational categories. In: Eilenberg, S., Harrison, D.K.,
MacLane, S., Röhrl, H. (eds.) Proceedings of the Conference on Categorical Alge-
bra, pp. 84–94. Springer, Heidelberg (1966). https://doi.org/10.1007/978-3-642-
99902-4 3

14. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

15. Mulry, P.S.: Strong monads, algebras and fixed points. London Mathematical Soci-
ety Lecture Note Series, pp. 202–216. Cambridge University Press, New York (1992)

16. Paré, R., Román, L.: Dinatural numbers. J. Pure Appl. Algebra 128(1), 33–92
(1998). http://www.sciencedirect.com/science/article/pii/S0022404997000364

17. Piróg, M.: Eilenberg-Moore monoids and backtracking monad transformers. In:
Atkey, R., Krishnaswami, N.R. (eds.) Proceedings of 6th Workshop on Mathe-
matically Structured Functional Programming, MSFP@ETAPS 2016, Eindhoven,
Netherlands, 8th April 2016. EPTCS, vol. 207, pp. 23–56 (2016). https://doi.org/
10.4204/EPTCS.207.2

http://dx.doi.org/10.1017/S0956796806006058
http://dx.doi.org/10.2307/2324751
https://doi.org/10.1007/BFb0060443
https://projecteuclid.org:443/euclid.ijm/1256068141
https://doi.org/10.1051/ita:2004016
http://doi.acm.org/10.1145/2034773.2034777
http://doi.acm.org/10.1145/2034773.2034777
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1007/978-3-642-31113-0_16
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/j.entcs.2007.02.019
https://doi.org/10.1016/j.tcs.2010.09.011
https://doi.org/10.1016/j.tcs.2010.09.011
http://home.math.au.dk/kock/CYRSC.pdf
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1016/0890-5401(91)90052-4
http://www.sciencedirect.com/science/article/pii/S0022404997000364
https://doi.org/10.4204/EPTCS.207.2
https://doi.org/10.4204/EPTCS.207.2

Equational Theories and Monads from Polynomial Cayley Representations 469

18. Piróg, M., Schrijvers, T., Wu, N., Jaskelioff, M.: Syntax and semantics for oper-
ations with scopes. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science. LICS 2018, pp. 809–818. ACM, New York (2018).
http://doi.acm.org/10.1145/3209108.3209166

19. Piróg, M., Staton, S.: Backtracking with cut via a distributive law and left-
zero monoids. J. Funct. Program. 27, e17 (2017). https://doi.org/10.1017/
S0956796817000077

20. Plotkin, G.: Adequacy for algebraic effects with state. In: Fiadeiro, J.L., Harman,
N., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 51–51.
Springer, Heidelberg (2005). https://doi.org/10.1007/11548133 3

21. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6 1

22. Plotkin, G.D., Power, J.: Semantics for algebraic operations. Electron. Notes Theor.
Comput. Sci. 45, 332–345 (2001). https://doi.org/10.1016/S1571-0661(04)80970-
8

23. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

24. Plotkin, G.D., Power, J.: Computational effects and operations: an
overview. Electron. Notes Theor. Comput. Sci. 73, 149–163 (2004).
http://dx.doi.org/10.1016/j.entcs.2004.08.008

25. Rivas, E., Jaskelioff, M., Schrijvers, T.: From monoids to near-semirings: the
essence of MonadPlus and alternative. In: Falaschi, M., Albert, E. (eds.) Proceed-
ings of the 17th International Symposium on Principles and Practice of Declarative
Programming, Siena, Italy, 14–16 July 2015. pp. 196–207. ACM (2015). http://doi.
acm.org/10.1145/2790449.2790514

26. Tarlecki, A.: Some nuances of many-sorted universal algebra: a review. Bull.
EATCS 104, 89–111 (2011)

27. Vene, V., Ghani, N., Johann, P., Uustalu, T.: Parametricity and strong dinaturality
(2006). https://www.ioc.ee/∼tarmo/tday-voore/vene-slides.pdf

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://doi.acm.org/10.1145/3209108.3209166
https://doi.org/10.1017/S0956796817000077
https://doi.org/10.1017/S0956796817000077
https://doi.org/10.1007/11548133_3
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1016/S1571-0661(04)80970-8
https://doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1016/j.entcs.2004.08.008
http://doi.acm.org/10.1145/2790449.2790514
http://doi.acm.org/10.1145/2790449.2790514
https://www.ioc.ee/~tarmo/tday-voore/vene-slides.pdf
http://creativecommons.org/licenses/by/4.0/

A Dialectica-Like Interpretation
of a Linear MSO on Infinite Words

Pierre Pradic1,2 and Colin Riba1(B)

1 ENS de Lyon, Université de Lyon,
LIP, UMR 5668 CNRS ENS Lyon UCBL Inria, Lyon, France

colin.riba@ens-lyon.fr
2 Faculty of Mathematics, Informatics and Mechanics,

University of Warsaw, Warsaw, Poland

Abstract. We devise a variant of Dialectica interpretation of intuition-
istic linear logic for LMSO, a linear logic-based version MSO over infinite
words. LMSO was known to be correct and complete w.r.t. Church’s syn-
thesis, thanks to an automata-based realizability model. Invoking Büchi-
Landweber Theorem and building on a complete axiomatization of MSO
on infinite words, our interpretation provides us with a syntactic app-
roach, without any further construction of automata on infinite words.
Via Dialectica, as linear negation directly corresponds to switching play-
ers in games, we furthermore obtain a complete logic: either a closed
formula or its linear negation is provable. This completely axiomatizes
the theory of the realizability model of LMSO. Besides, this shows that
in principle, one can solve Church’s synthesis for a given ∀∃-formula by
only looking for proofs of either that formula or its linear negation.

Keywords: Linear logic · Dialectica interpretation ·
MSO on Infinite Words

1 Introduction

Monadic Second-Order Logic (MSO) over ω-words is a simple yet expressive
language for reasoning on non-terminating systems which subsumes non-trivial
logics used in verification such as LTL (see e.g. [2,30]). MSO on ω-words is decid-
able by Büchi’s Theorem [6] (see e.g. [24,29]), and can be completely axiomatized
as a subsystem of second-order Peano’s arithmetic [28]. While MSO admits an
effective translation to finite-state (Büchi) automata, it is a non-constructive
logic, in the sense that it has true (i.e.provable) ∀∃-statements which can be
witnessed by no continuous stream function.

On the other hand, Church’s synthesis [8] can be seen as a decision problem
for a strong form of constructivity in MSO. More precisely (see e.g. [12,32]),

This work was partially supported by the ANR-14-CE25-0007 - RAPIDO and Polish
National Science Centre grant no. 2014/13/B/ST6/03595.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 470–487, 2019.
https://doi.org/10.1007/978-3-030-17127-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_27&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_27

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 471

Church’s synthesis takes as input a ∀∃-formula of MSO and asks whether it
can be realized by a finite-state causal stream transducer. Church’s synthesis
is known to be decidable since Büchi-Landweber Theorem [7], which gives an
effective solution to ω-regular games on finite graphs generated by ∀∃-formulae.
In traditional (theoretical) solutions to Church’s synthesis, the game graphs are
induced from deterministic (say parity) automata obtained by McNaughton’s
Theorem [19]. Despite its long history, Church’s synthesis has not yet been
amenable to tractable solutions for the full language of MSO (see e.g. [12]).

In recent works [25,26], the authors suggested a Curry-Howard approach to
Church’s synthesis based on intuitionistic and linear variants of MSO. In partic-
ular, [26] proposed a system LMSO based on (intuitionistic) linear logic [13], in
which via a translation (−)L : MSO → LMSO, the provable ∀∃(−)L-statements
exactly correspond to the realizable instances of Church’s synthesis. Realizer
extraction for LMSO is done via an external realizability model based on alter-
nating automata, which amounts to see every formula ϕ(a) as a formula of the
form (∃u)(∀x)ϕD(u, x, a), where ϕD represents a deterministic automaton.

In this paper, we use a variant of Gödel’s “Dialectica” functional interpreta-
tion as a syntactic formulation of the automata-based realizability model of [26].
Dialectica associates to ϕ(a) a formula ϕD(a) of the form (∃u)(∀x)ϕD(u, x, a).
In usual versions formulated in higher-types arithmetic (see e.g. [1,16]), the for-
mula ϕD is quantifier-free, so that ϕD is a prenex form of ϕ. This prenex form
is constructive, and a constructive proof of ϕ can be turned to a proof of ϕD

with an explicit witness for ∃u. Even if Dialectica originally interprets intuition-
istic arithmetic, it is structurally linear, and linear versions of Dialectica were
formulated at the very beginning of linear logic [21–23] (see also [14,27]).

We show that the automata-based realizability model of [26] can be obtained
by a suitable modification of the usual linear Dialectica interpretation, in which
the formula ϕD essentially represents a deterministic automaton on ω-words
and is in general not quantifier-free, and whose realizers are exactly the finite-
state accepting strategies in the model of [26]. In addition to provide a syntactic
extraction procedure with internalized and automata-free correctness proof, this
reformulation has a striking consequence, namely that there exists an extension
LMSO(C) of LMSO which is complete in the sense that for each closed formula
ϕ, it either proves ϕ or its linear negation ϕ � ⊥. Since LMSO(C) has realizers
for all provable ∀∃(−)L-statements, its completeness contrasts with the classical
setting, in which due to provable non-constructive statements, one can not decide
Church’s synthesis by only looking for proofs of ∀∃-statements or their negations.
Besides, LMSO(C) has a linear choice axiom which is realizable in the sense of
both (−)D and [26], but whose naive MSO counterpart is false.

The paper is organized as follows. We present our basic setting in Sect. 2,
with a particular emphasis on particularities of (finite-state) causal functions to
model strategies and realizers. Our variant of Dialectica and the corresponding
linear system are discussed in Sect. 3, while Sect. 4 defines the systems LMSO
and LMSO(C) and shows the completeness of LMSO(C).

472 P. Pradic and C. Riba

2 Preliminaries

Alphabets (denoted Σ,Γ, etc) are finite non-empty sets of the form 2p for some
p ∈ N. We let 1 := 20. Note that alphabets are closed under Cartesian products
and set-theoretic function spaces. It follows that taking �o� := 2, we have an
alphabet �τ� for each simple type τ ∈ ST, where

σ, τ ∈ ST ::= 1 | o | σ × τ | σ → τ

We often write (τ)σ for the type σ → τ . Given an ω-word (or stream) B ∈ Σω

and n ∈ N, we write B�n for the finite word B(0). · · · .B(n − 1) ∈ Σ∗.

Church’s Synthesis and Causal Functions. Church’s synthesis consists in
the automatic extraction of stream functions from input-output specifications
(see e.g. [12,31]). These specifications are in general asked to be ω-regular, or
equivalently definable in MSO over ω-words. In practice, proper subsets of MSO
(and even of LTL) are assumed (see e.g. [5,11,12]). As an example, the relation

(∃∞k)B(k) ⇒ (∃∞k)C(k) resp. (∀∞k)B(k) ⇒ (∃∞k)C(k) (1)

with input B ∈ 2ω and output C ∈ 2ω specifies functions F : 2ω → 2ω such
that F (B) ∈ 2ω � P(N) is infinite whenever B ∈ 2ω � P(N) is infinite (resp.
the complement of B is finite). One may also additionally require to respect the
transitions of some automaton. For instance, following [31], in addition to either
case of (1) one can ask C ⊆ B and C not to contain two consecutive positions:

(∀n)(C(n) ⇒ B(n)) and (∀n)(C(n) ⇒ ¬C(n + 1)) (2)

In any case, the realizers must be (finite-state) causal functions. A stream
function F : Σω → Γω is causal (notation F : Σ →S Γ) if it can produce a prefix
of length n of its output from a prefix of length n of its input. Hence F is causal
if it is induced by a map f : Σ+ → Γ as follows:

F (B)(n) = f(B(0) · . . . · B(n)) (for all B ∈ Σω and all n ∈ N)

The finite-state (f.s.) causal functions are those induced by Mealy machines. A
Mealy machine M : Σ → Γ is a DFA over input alphabet Σ equipped with an
output function λ : QM × Σ → Γ (where QM is the state set of M). Writing
∂∗ : Σ∗ → QM for the iteration of the transition function ∂ of M from its initial
state, M induces a causal function via (a.a ∈ Σ+)
→ (λ(∂∗(a), a) ∈ Γ).

Causal and f.s. causal functions form categories with finite products. Let S

be the category whose objects are alphabets and whose maps from Σ to Γ are
causal functions F : Σω → Γω. Let M be the wide subcategory of S whose maps
are finite-state causal functions.1

1 A subcategory D of C is wide if D has the same objects as C.

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 473

1 0
1|0 , 0|0

0|0
1|1

1
a �→ 0

0
a �→ a

1, 0
0

1

Fig. 1. A Mealy machine (left) and an equivalent eager (Moore) machine (right).

Example 1. (a) Usual functions Σ → Γ lift to (pointwise, one-state) maps
Σ →M Γ . For instance, the identity Σ →M Σ is induced by the Mealy machine
with 〈∂, λ〉 : (−, a)
→ (−, a).

(b) Causal functions 1 →S Σ correspond exactly to ω-words B ∈ Σω.
(c) The conjunction of (2) with either side of (1) is realized by the causal

function F : 2 →M 2 induced by the machine M : 2 → 2 displayed on
Fig. 1 (left, where a transition a|b outputs b from input a), taken from [31].

Proposition 1. The Cartesian product of Σ1, . . . , Σn (for n ≥ 0) in S,M is
given by the product of sets Σ1 × · · · × Σn (so that 1 is terminal).

The Logic MSO(M). Our specification language MSO(M) is an extension of
MSO on ω-words with one function symbol for each f.s. causal function. More
precisely, MSO(M) is a many-sorted first-order logic, with one sort for each
simple type τ ∈ ST, and with one function symbol of arity (σ1, . . . , σn; τ) for each
map �σ1�×· · ·×�σn� →M �τ�. A term t of sort τ (notation tτ) with free variables
among xσ1

1 , . . . , xσn
n (we say that t is of arity (σ1, . . . , σn; τ)) thus induces a map

�t� : �σ1� × · · · × �σn� →M �τ�. Given a valuation xi
→ Bi ∈ �σi�
ω � S[1, �σi�]

for i ∈ {1, . . . , n}, we then obtain an ω-word

�t� ◦ 〈B1, . . . , Bn〉 ∈ S[1, �τ�] � �τ�ω

MSO(M) extends MSO with ∃xτ and ∀xτ ranging over S[1, �τ�] � �τ�ω and
with sorted equalities tτ .= uτ interpreted as equality over S[1, �τ�] � �τ�ω.
Write |= ϕ when ϕ holds in this model, called the standard model. The full
definition of MSO(M) is deferred to Sect. 4.1.

An instance of Church’s synthesis problem is given by a closed formula
(∀xσ)(∃uτ)ϕ(u, x). A positive solution (or realizer) of this instance is a term
t(x) of arity (σ; τ) such that (∀xσ)ϕ(t(x), x) holds.

Proposition 1 implies that MSO(M) proves the following equations:

πi(〈t1, . . . , tn〉) .=σi
ti and t

.=σ1×···×σn
〈π1(t), . . . , πn(t)〉 (3)

Hence each formula ϕ(aσ1
1 , . . . , aσn

n) can be seen as a formula ϕ(aσ1×···×σn).

Eager Functions. A causal function Σ →S Γ is eager if it can produce a prefix
of length n+1 of its output from a prefix of length n of its input. More precisely,
an eager F : Σ →S Γ is induced by a map f : Σ∗ → Γ as

F (B)(n) = f(B(0) · . . . · B(n − 1)) (for all B ∈ Σω and all n ∈ N)

474 P. Pradic and C. Riba

Finite-state eager functions are those induced by eager (Moore) machines (see
also [11]). An eager machine E : Σ → Γ is a Mealy machine Σ → Γ whose output
function λ : QE → Γ is does not depend on the current input letter. An eager
E : Σ → Γ induces an eager function via the map (a ∈ Σ∗)
→ (λE(∂∗

E(a)) ∈ Γ).
We write F : Σ →E Γ when F : Σ →S Γ is eager and F : Σ →EM Γ when F

is f.s. eager. All functions F : Σ →M 1, and more generally, constants functions
F : Σ →S Γ are eager. Note also that if F : Σ →S Γ is eager, then F : Σ →EM Γ .
On the other hand, if F : Σ →EM Γ is induced by an eager machine E then F is
finite-state causal as being induced by the Mealy machine with same states and
transitions as E , but with output function (q, a)
→ λE(q).

Eager functions do not form a category since the identity of S is not eager.
On the other hand, eager functions are closed under composition with causal
functions.

Proposition 2. If F is eager and G,H are causal then H ◦ F ◦ G is eager.

Isolating eager functions allows a proper treatment of strategies in games and
realizers w.r.t. the Dialectica interpretation. Since Σ+ → Γ � Σ∗ → ΓΣ , maps
Σ →E ΓΣ are in bijection with maps Σ →S Γ . This easily extends to machines.
Given a Mealy machine M : Σ → Γ , let Λ(M) : Σ → ΓΣ be the eager machine
defined as M but with output map taking q ∈ QM to (a
→ λM(q, a)) ∈ ΓΣ .

Example 2. Recall the Mealy machine M : 2 → 2 of Ex. 1.(c). Then Λ(M) :
2 → 22 is the eager machine displayed in Fig. 1 (right, where the output is
indicated within states).

Eager f.s. functions will often be used with the following notations. First, let
@ be the pointwise lift to M of the usual application function ΓΣ × Σ → Γ . We
often write (F)G for @(F,G). Consider a Mealy machine M : Σ → Γ and the
induced eager machine Λ(M) : Σ → ΓΣ . We have

FM(B) = @(FΛ(M)(B), B) (for all B ∈ Σω)

Given F : Γ →E ΣΓ , we write e(F) for the causal @(F (−),−) : Γ →S Σ. Given
F : Γ →S Σ, we write Λ(F) for the eager Γ →E ΣΓ such that F = e(Λ(F)).
We extend these notations to terms.

Eager functions admit fixpoints similar to those of contractive maps in the
topos of tree (see e.g. [4, Thm. 2.4]).

Proposition 3. For each F : Σ × Γ →E ΣΓ there is a fix(F) : Γ →E ΣΓ s.t.

fix(F)(C) = F
(
e(fix(F))(C) , C) (for all C ∈ Γω)

If F is induced by the eager machine E : Σ ×Γ → ΣΓ , then fix(F) is induced by
the eager H : Γ → ΣΓ defined as E but with ∂H : (q, b)
→ ∂E

(
q, ((λE(q))b, b)

)
.

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 475

Games. Traditional solutions to Church’s synthesis turn specifications to infi-
nite two-player games with ω-regular winning conditions. Consider an MSO(M)
formula ϕ(uτ , xσ) with no free variable other than u, x. We see this formula
as defining a two-player infinite game G(ϕ)(uτ , xσ) between the Proponent P
(∃löıse), playing moves in �τ� and the Opponent O (∀bélard), playing moves in
�σ�. The Proponent begins, and then the two players alternate, producing an
infinite play of the form

χ := u0x0 · · · unxn · · · � ((uk)k, (xk)k) ∈ �τ�ω × �σ�ω

The play χ is winning for P if ϕ((uk)k, (x)k) holds. Otherwise χ is winning for
O. Strategies for P resp. O in this game are functions

�σ�
∗ −→ �τ� resp. �τ�+ −→ �σ� � �τ�

∗ −→ �σ��τ�

Hence finite-state strategies are represented by f.s. eager functions. In particular,
a realizer of (∀xσ)(∃uτ)ϕ(u, x) in the sense of Church is a f.s. P-strategy in

G(
ϕ((u)x, x)

)(
u(τ)σ, xσ

)

Most approaches to Church’s synthesis reduce to Büchi-Landweber Theo-
rem [7], stating that games with ω-regular winning conditions are effectively
determined, and that the winner always has a finite-state winning strategy. We
will use Büchi-Landweber Theorem in following form. Note that an O-strategy
in the game G(ϕ)(uτ , xσ) is a P-strategy in the game G(¬ϕ(u, (x)u)

)(
x(σ)τ , uτ

)
.

Theorem 1 ([7]). Let ϕ(uτ , xσ) be an MSO(M)-formula with only u, x free.
Then either there is an eager term u(x) of arity (σ; τ) such that |= (∀x)ϕ(u(x), x)
or there is an eager term x(u) of arity (τ ; (σ)τ) such that |= (∀u)¬ϕ(u, e(x)(u)).
It is decidable which case holds and the terms are computable from ϕ.

Curry-Howard Approaches. Following the complete axiomatization of MSO
on ω-words of [28] (see also [26]), one can axiomatize MSO(M) with a deduction
system based on arithmetic (see Sect. 4.1). Consider an instance of Church’s
synthesis (∀xσ)(∃uτ)ϕ(u, x). Then we get from Theorem 1 the alternative

�MSO(M) (∀x)ϕ
(
e(u)(x), x

)
or �MSO(M) (∀u)¬ϕ

(
(u)(x(u)), x(u)

)
(4)

for an eager term u(x) or a causal term x(u). By enumerating proofs and
machines, one thus gets a (naive) syntactic algorithm for Church’s synthesis.
But it seems however unlikely to obtain a complete classical system in which the
provable ∀∃-statements do correspond to the realizable instances of Church’s
synthesis, because MSO(M) has true but unrealizable ∀∃-statements. Besides,
note that

(∀xσ)ϕ
(
e(u)(x), x

) �MSO(M) (∀xσ)(∃uτ)ϕ(u, x)
(∀u(τ)σ)¬ϕ

(
(u)(x(u)), x(u)

) �MSO(M) (∀u(τ)σ)(∃xσ)¬ϕ
(
(u)x, x

)

¬(∀xσ)(∃uτ)ϕ(u, x) �MSO(M) (∀u(τ)σ)(∃xσ)¬ϕ
(
(u)x, x

)

476 P. Pradic and C. Riba

while it is possible both for realizable and unrealizable instances to have

�MSO(M) (∀xσ)(∃uτ)ϕ(u, x) ∧ (∀u(τ)σ)(∃xσ)¬ϕ
(
(u)x, x

)
(5)

In previous works [25,26], the authors devised intuitionistic and linear vari-
ants of MSO on ω-words in which, thanks to automata-based polarity systems,
proofs of suitably polarized existential statements correspond exactly to realiz-
ers for Church’s synthesis. In particular, [26] proposed a system LMSO based
on (intuitionistic) linear logic [13], such that via a translation (−)L : MSO →
LMSO, provable ∀∃(−)L-statements exactly correspond to realizable instances
of Church’s synthesis, while (4) exactly corresponds to alternatives of the form

�LMSO (∀xσ)(∃uτ)
[
ϕ
(
(u)x, x

)]L or �LMSO (∀u(τ)σ)(∃xσ)
[¬ϕ

(
(u)x, x

)]L (6)

This paper goes further. We show that the automata-based realizability
model of [26] can be obtained in a syntactic way, thanks to a (linear) Dialectica-
like interpretation of a variant of LMSO, which turns a formula ϕ to a formula
ϕD of the form (∃u)(∀x)ϕD(u, x), where ϕD(u, x) essentially represents a deter-
ministic automaton. While the correctness of the extraction procedure of [25,26]
relied on automata-theoretic techniques, we show here that it can be performed
syntactically. Second, by extending LMSO with realizable axioms, we obtain a
system LMSO(C) in which, using an adaptation of the usual Characterization
Theorem for Dialectica stating that (see e.g. [16]), alternatives of the
form (6) imply that for a closed ϕ,

�LMSO(C) ϕ or �LMSO(C) ϕ � ⊥
where (−) � ⊥ is a linear negation. We thus get a complete linear system with
extraction of suitably polarized ∀∃-statements. Such a system can of course not
have a standard semantics, and indeed, LMSO(C) has a functional choice axiom

(∀xσ)(∃yτ)ϕ(x, y) −� (∃f (τ)σ)(∀xσ)ϕ(x, (f)x) (LAC)

which is realizable in the sense of both (−)D and [26], but whose translation to
MSO(M) (which precludes (5)) is false in the standard model.

3 A Monadic Linear Dialectica-Like Interpretation

Gödel’s “Dialectica” functional interpretation associates to ϕ(a) a formula ϕD(a)
of the form (∃uτ)(∀xσ)ϕD(u, x, a). In usual versions formulated in higher-types
arithmetic (see e.g. [1,16]), the formula ϕD is quantifier-free, so that ϕD is a
prenex form of ϕ. This prenex form is constructive, and a constructive proof of
ϕ can be turned to a proof of ϕD with an explicit (closed) witness for ∃u. We call
such witnesses realizers of ϕ. Even if Dialectica originally interprets intuitionistic
arithmetic, it is structurally linear: in general, realizers of contraction

ϕ(a) −→ ϕ(a) ∧ ϕ(a)

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 477

ϕ � ϕ

ϕ � γ, ϕ′ ψ, γ � ψ
′

ϕ, ψ � ϕ′, ψ
′

ϕ, ϕ, ψ, ψ � ϕ′

ϕ, ψ, ϕ, ψ � ϕ′
ϕ � ϕ′, ϕ, ψ, ψ

′

ϕ � ϕ′, ψ, ϕ, ψ
′

ϕ � ψ

ϕ, I � ψ � I

ϕ, ϕ0, ϕ1 � ϕ′

ϕ, ϕ0 ⊗ ϕ1 � ϕ′
ϕ � ϕ, ϕ′ ψ � ψ, ψ

′

ϕ, ψ � ϕ ⊗ ψ, ϕ′, ψ
′

ϕ, ϕ � ψ

ϕ � ϕ � ψ

⊥ �
ϕ � ψ

ϕ � ⊥, ψ

ϕ, ϕ � ϕ′ ψ, ψ � ψ
′

ϕ, ψ, ϕ ψ � ϕ′, ψ
′

ϕ � ϕ0, ϕ1, ϕ
′

ϕ � ϕ0 ϕ1, ϕ′
ϕ � ϕ, ϕ′ ψ, ψ � ψ

′

ϕ, ψ, ϕ � ψ � ϕ′, ψ
′

ϕ, ϕ � ϕ′

ϕ, (∃zτ)ϕ � ϕ′
ϕ � ϕ[tτ/xτ], ϕ′

ϕ � (∃xτ)ϕ, ϕ′
ϕ, ϕ[tτ/xτ] � ϕ′

ϕ, (∀xτ)ϕ � ϕ′
ϕ � ϕ

ϕ � (∀zτ)ϕ

Fig. 2. Deduction for MF (where zτ is fresh).

only exist when the term language can decide ϕD(u, x, a), which is possible in
arithmetic but not in all settings. Besides, linear versions of Dialectica were
formulated at the very beginning of linear logic [21–23] (see also [14,27]).

In this paper, we use a variant of Dialectica as a syntactic formulation of the
automata-based realizability model of [26]. The formula ϕD essentially repre-
sents a deterministic automaton on ω-words and is in general not quantifier-free.
Moreover, we extract f.s. causal functions, while the category M is not closed.
As a result, a realizer of ϕ is an open (eager) term u(x) of arity (σ; τ) satisfying
ϕD(u(x), x). While it is possible to exhibit realizers for contraction on closed
ϕ thanks to the Büchi-Landweber Theorem, this is generally not the case for
open ϕ(a). We therefore resort to working in a linear system, in which we obtain
witnesses for ∀∃(−)L-statements (and thus for realizable instances of Church’s
synthesis), but not for all ∀∃-statements.

Fix a set of atomic formulae At containing all (tτ .= uτ), and a standard
interpretation extending Sect. 2 for each α ∈ At.

3.1 The Multiplicative Fragment

Our linear system is based on full intuitionistic linear logic (see [15]). The for-
mulae of the multiplicative fragment MF are given by the grammar:

(where α ∈ At). Deduction is given by the rules of Fig. 2 and the axioms

� tτ .= tτ tτ .= uτ , ϕ[tτ/xτ] � ϕ[uτ/xτ]
�tτ � = �uτ �

� tτ .= uτ
(7)

Each formula ϕ of MF can be mapped to a classical formula �ϕ� (where I, �,
⊗, are replaced resp. by �,→,∧,∨). Hence �ϕ� holds whenever � ϕ

The Dialectica interpretation of MF is the usual one rewritten with the con-
nectives of MF, but for the disjunction that we treat similarly as ⊗. To each

478 P. Pradic and C. Riba

(ϕ ⊗ ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ ⊗ ψ)D(〈u, v〉, 〈x, y〉, a) :=
∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ⊗ ψD(v, y, a)

(ϕ ψ)D(a) := ∃〈u, v〉∀〈x, y〉. (ϕ ψ)D(〈u, v〉, 〈x, y〉, a) :=

∃〈u, v〉∀〈x, y〉. ϕD(u, x, a) ψD(v, y, a)
(ϕ � ψ)D(a) := ∃〈f, F 〉∀〈u, y〉. (ϕ � ψ)D(〈f, F 〉, 〈u, y〉, a) :=

∃〈f, F 〉∀〈u, y〉. ϕD(u, (F)uy, a) � ψD((f)u, y, a)
(∃w.ϕ)D(a) := ∃〈u, w〉∀x. (∃w.ϕ)D(〈u, w〉, x, a) := ∃〈u, w〉∀x. ϕD(u, x, 〈a, w〉)
(∀w.ϕ)D(a) := ∃f ∀〈x, w〉. (∀w.ϕ)D(f, 〈x, w〉, a) := ∃f ∀〈x, w〉. ϕD((f)w, x, 〈a, w〉)

Fig. 3. The Dialectica Interpretation of MF (where types are leaved implicit).

formula ϕ(a) with only a free, we associate a formula ϕD(a) with only a free,
as well as a formula ϕD with possibly other free variables. For atomic formulae
we let ϕD(a) := ϕD(a) := ϕ(a). The inductive cases are given on Fig. 3, where
ϕD(a) = (∃u)(∀x)ϕD(u, x, a) and ψD(a) = (∃v)(∀y)ψD(v, y, a).

Dialectica is such that ϕD is equivalent to ϕ via possibly non-intuitionistic
but constructive principles. The tricky connectives are implication and uni-
versal quantification. Similarly as in the intuitionistic case (see e.g. [1,16,33]),
(ϕ � ψ)D is prenex a form of ϕD � ψD obtained using (LAC) together with
linear variants of the Markov and Independence of premises principles. In our
case, the equivalence also requires additional axioms for ⊗ and . We
give details for the full system in Sect. 3.3.

The soundness of (−)D goes as usual, excepted that we extract open eager
terms: from a proof of ϕ(aκ) we extract a realizer of (∀a)ϕ(a), that is an open
eager term u(x, a) s.t. � ϕD(@(u(x, a), a), x, a). Composition of realizers (in part.
required for the cut rule) is given by the fixpoints of Proposition 3. Note that a
realizer of a closed ϕ is a finite-state winning P-strategy in G(�ϕD�)(u, x).

3.2 Polarized Exponentials

It is well-known that the structure of Dialectica is linear, as it makes problematic
the interpretation of contraction:

In our case, the Büchi-Landweber Theorem implies that all closed instances of
contraction have realizers which are correct in the standard model. But this is
in general not true for open instances.

Example 3. Realizers of ϕ � ϕ ⊗ ϕ for a closed ϕ are given by eager terms
U1(u, x1, x2), U2(u, x1, x2), X(u, x1, x2) which must represent P-strategies in the
game G(Φ)(〈U1, U2,X〉, 〈u, x1, x2〉), where Φ is

�ϕD(u, (X)ux1x2)� −→ �ϕD((U1)u, x1)� ∧ �ϕD((U2)u, x2)�

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 479

By the Büchi-Landweber Theorem 1, either there is an eager term U(x) such
that �ϕD(U(x), x)� holds, so that

�ϕD(u, x1)� −→ �ϕD(e(U)(x1), x1)� ∧ �ϕD(e(U)(x2), x2)�

or there is an eager term X(u) such that ¬�ϕD(u, e(X)(u))� holds, so that

�ϕD(u, e(X)(u))� −→ �ϕD(u, x1)� ∧ �ϕD(u, x2)�
Example 4. Consider the open formula ϕ(ao) := (∀xo)(t(x, a) .= 0ω) where
�t�(B,C) = 0n+11ω for the first n ∈ N with C(n+1) = B(0) if such n exists, and
such that �t�(B,C) = 0ω otherwise. The game induced by ((∀a)(ϕ � ϕ ⊗ ϕ))D

is G(Φ)(X, 〈x1, x1, a〉), where Φ is

t((X)x1x2a, a) .= 0ω −→ t(x1, a) .= 0ω ∧ t(x2, a) .= 0ω

In this game, P begins by playing a function 23 → 2, O replies in 23, and then
P and O keep on alternatively playing moves of the expected type. A finite-state
winning strategy for O is easy to find. Let P begin with the function X. Fix some
a ∈ 2 and let i := X(0, 1, a). O replies (0, 1, a) to X. The further moves of P
are irrelevant, and O keeps on playing (−,−, 1 − i) (the values of x1 and x2 are
irrelevant after the first round). This strategy ensures

t((X)x1x2a, a) .= 0ω ∧ ¬(t(x1, a) .= 0ω ∧ t(x2, a) .= 0ω)

Hence we can not realize contraction while remaining correct w.r.t. the
standard model. On the other hand, Dialectica induces polarities generaliz-
ing the usual polarities of linear logic (see e.g. [17]). Say that ϕ(a) is posi-
tive (resp. negative) if ϕD(a) is of the form ϕD(a) = (∃uτ)ϕD(u,−, a) (resp.
ϕD(a) = (∀xσ)ϕD(−, x, a)). Quantifier-free formulae are thus both positive and
negative.

Example 5. Polarized contraction

gives realizers of all instances of itself. Indeed, with say ϕD(a) = (∃u)ϕD(u,−, a)
and ψD(a) = (∀y)ψD(−, y, a), Λ(π1) (for π1 a M-projection on suitable types)
gives eager terms U(u, a) and Y(y, a) such that

We only have exponentials for polarized formulae. First, following the usual
polarities of linear logic, we can let

(!(ϕ+))D(a) := (∃u)(!(ϕ+))D(u,−, a) := (∃u)!ϕD(u,−, a)
(?(ψ−))D(a) := (∀y)(?(ψ−))D(−, y, a) := (∀x)?ψD(−, y, a) (8)

480 P. Pradic and C. Riba

ψ � ψ
′

ψ, !ϕ � ψ
′

ψ, !ϕ, !ϕ � ψ
′

ψ, !ϕ � ψ
′

ϕ, ϕ � ϕ′

ϕ, !ϕ � ϕ′
!ϕ � ϕ, ?ψ
!ϕ � !ϕ, ?ψ

ϕ, !ϕ � ψ, ?ψ
ϕ � !ϕ � ψ, ?ψ

ψ � ψ
′

ψ � ?ϕ, ψ
′

ψ � ?ϕ, ?ϕ, ψ
′

ψ � ?ϕ, ψ
′

ϕ � ϕ, ψ

ϕ � ?ϕ, ψ

!ϕ, ϕ � ?ψ
!ϕ, ?ϕ � ?ψ

ϕ � ϕ, ?ψ
ϕ � (∀z)ϕ, ?ψ

Fig. 4. Exponential rules of PF.

Hence !ϕ is positive for a positive ϕ and ?ψ is negative for a negative ψ. The
following exponential contraction axioms are then interpreted by themselves:

Second, we can have exponentials !(ψ−) and ?(ϕ+) with the automata-based
reading of [26]. Positive formulae are seen as non-deterministic automata, and
?(−) on positive formulae is determinization on ω-words (McNaughton’s Theo-
rem [19]). Negative formulae are seen as universal automata, and !(−) on negative
formulae is co-determinization (an instance of the Simulation Theorem [10,20]).
Formulae which are both positive and negative (notation (−)±) correspond to
deterministic automata, and are called deterministic. We let

(!(ψ−))D(a) := (!(ψ−))D(−,−, a) := !(∀x)ψD(−, x, a)
(?(ϕ+))D(a) := (?(ϕ+))D(−,−, a) := ?(∃u)ϕD(u,−, a) (9)

So !(ψ−) and ?(ϕ+) are always deterministic. The corresponding exponential
contraction axioms are interpreted by themselves. This leads to the following
polarized fragment PF (the deduction rules for exponentials are given on Fig. 4):

3.3 The Full System

The formulae of the full system FS are given by the following grammar:

Deduction in FS is given by Figs. 2, 4 and (7). We extend �−� to FS with �!ϕ� :=
�?ϕ� := �ϕ�. Hence �ϕ� holds when � ϕ is derivable. The Dialectica interpreta-
tion of FS is given by Fig. 3 and (8), (9) (still taking ϕD(a) := ϕD(a) := ϕ(a)
for atoms). Note that (−)D preserves and reflects polarities.

Theorem 2 (Soundness). Let ϕ be closed with ϕD = (∃uτ)(∀xσ)ϕD(u, x).
From a proof of ϕ in FS one can extract an eager term u(x) such that FS proves
(∀xσ)ϕD(u(x), x).

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 481

As usual, proving requires extra axioms. Besides (LAC), we use the
following (linear) semi-intuitionistic principles (LSIP), with polarities as shown:

as well as the following deterministic exponential axioms (DEXP):

δ −� !δ and ?δ −� δ (δ deterministic)

All these axioms but (LAC) are true in the standard model (via �−�). Moreover:

Proposition 4. The axioms (LAC) and (LSIP) are realized in FS. The axioms
(DEXP) are realized in FS + (DEXP).

Theorem 3 (Characterization). We have

Corollary 1 (Extraction). Consider a closed formula ϕ := (∀xσ)(∃uτ)δ(u, x)
with δ deterministic. From a proof of ϕ in FS + (LAC) + (LSIP) + (DEXP) one
can extract a term t(x) such that |= (∀xσ)�δ(t(x), x)�.
Note that FS + (DEXP) proves for all deterministic δ.

3.4 Translations of Classical Logic

There are many translations from classical to linear logic. Two canonical possi-
bilities are the (−)T and (−)Q-translation of [9] (see also [17,18]) targeting resp.
negative and positive formulae. Both take classical sequents to linear sequents
of the form !(−) � ?(−), which are provable in FS thanks to the PF rules

ϕ, !ϕ � ψ, ?ψ
ϕ �!ϕ � ψ, ?ψ

ϕ � ϕ, ?ψ
ϕ � (∀z)ϕ, ?ψ

For the completeness of LMSO(C) (Theorem 6, Sect. 4), we shall actually require
a translation (−)L such that the linear equivalences (with polarities as displayed)

are provable possibly with extra axioms that we require to realize themselves. In
part., (10) implies (DEXP), and (−)L should give deterministic formulae. While
(−)T and (−)Q can be adapted accordingly, (10) induces axioms which make the
resulting translations equivalent to the deterministic (−)L-translation of [26]:

482 P. Pradic and C. Riba

Proposition 5. The scheme (10) is equivalent in FS to (DEXP)+(PEXP), where
(PEXP) are the following polarized exponential axioms, with polarities as shown:

Proposition 6. If ϕ is provable in many-sorted classical logic with equality then
FS + (DEXP) proves ϕL.

Proposition 7. The axioms (PEXP) are realized in FS + (LSIP) + (DEXP) +
(PEXP). Corollary 1 thus extends to FS + (LAC) + (LSIP) + (DEXP) + (PEXP).

Note that ϕL is deterministic and that �ϕL� = ϕ.

4 Completeness

In Sect. 3 we devised a Dialectica-like (−)D providing a syntactic extraction pro-
cedure for ∀∃(−)L-statements. In this Section, building on an axiomatic treat-
ment of MSO(M), we show that LMSO, an arithmetic extension of FS+(LSIP)+
(DEXP)+(PEXP) adapted from [26], is correct and complete w.r.t. Church’s syn-
thesis, in the sense that the provable ∀∃(−)L-statements are exactly the realiz-
able ones. We then turn to the main result of this paper, namely the completeness
of LMSO(C) := LMSO + (LAC). We fix the set of atomic formulae

α ∈ At ::= tτ .= uτ | to ⊆̇ uo | E(to) | N(to) | S(to, uo) | 0(to) | to ≤̇ uo

4.1 The Logic MSO(M)

MSO(M) is many-sorted first-order logic with atomic formulae α ∈ At. Its sorts
and terms are those given in Sect. 2, and standard interpretation extends that
of Sect. 2 as follows: ⊆̇ is set inclusion, E holds on B iff B is empty, N (resp. 0)
holds on B iff B is a singleton {n} (resp. the singleton {0}), and S(B,C) (resp.
B ≤̇ C) holds iff B = {n} and C = {n + 1} for some n ∈ N (resp. B = {n}
and C = {m} for some n ≤ m). We write xι for variables xo relativized to N, so
that (∃xι)ϕ and (∀xι)ϕ stand resp. for (∃xo)(N(x) ∧ ϕ) and (∀xo)(N(x) → ϕ).
Moreover, xι ∈̇ t stands for xι ⊆̇ t, so that to ⊆̇ uo is equivalent to (∀xι)(x ∈̇
t → x ∈̇ u).

The logic MSO+ [26] is MSO(M) restricted to the type o, hence with only
terms for Mealy machines of sort (2, . . . ,2;2). The MSO of [26] is the purely
relational (term-free) restriction of MSO+. Recall from [26, Prop. 2.6], that for

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 483

E(t) � t ⊆̇ u

ϕ � t ⊆̇ z, ϕ′

ϕ � E(t), ϕ′
ϕ, z ⊆̇ t � E(z), z .= t, ϕ′

ϕ � N(t),E(t), ϕ′
ϕ,N(z), z ⊆̇ t � z ⊆̇ u, ϕ′

ϕ � t ⊆̇ u, ϕ′ N(t),E(t) �

� t ⊆̇ t t ⊆̇ u, u ⊆̇ v � t ⊆̇ v t ⊆̇ u, u ⊆̇ t � t
.= u N(t), u ⊆̇ t � E(u), u .= t S(t, u), 0(u) �

N(t) � t ≤̇ t t ≤̇ u, u ≤̇ v � t ≤̇ v t ≤̇ u, u ≤̇ t � t
.= u S(t, u) � t ≤̇ u 0(t) � N(t)

ϕ, 0(z) � ϕ′

ϕ � ϕ′ S(u, v), t ≤̇ v � t
.= v, t ≤̇ u t ≤̇ u � N(t) t ≤̇ u � N(u) S(t, u) � N(t)

ϕ, S(t, z) � ϕ′

ϕ � ϕ′ 0(t), 0(u) � t
.= u S(t, u), S(t, v) � u

.= v S(u, t), S(v, t) � u
.= v S(t, u) � N(u)

Fig. 5. The Arithmetic Rules of MSO(M) and LMSO (with terms of sort o and z fresh).

each Mealy machine M : 2p → 2, there is an MSO-formula δM(X,x) such that
for all n ∈ N and all B ∈ (2ω)p, we have FM(B)(n) = 1 iff δM({n}, B) holds.

The axioms of MSO(M) are the arithmetic rules of Fig. 5, the axioms (7) and
the following, where M : 2p → 2 and y, z,X are fresh.

� (∀X
o
)(∀xι)

(
x ∈̇ fM(X) ↔ δM(x,X)

) � (∃Xo)(∀xι) (x ∈̇ X ↔ ϕ)

ϕ, 0(z) � ϕ[z/x], ϕ′ ϕ,S(y, z), ϕ[y/x] � ϕ[z/x], ϕ′

ϕ � (∀xι)ϕ,ϕ′

The theory MSO(M) is complete. Thus provability in MSO(M) and validity
in the standard model coincide. This extends [26, Thm. 2.11 (via [28])].

Theorem 4 (Completeness of MSO(M)). For closed MSO(M)-formulae ϕ,
we have |= ϕ if and only if �MSO(M) ϕ.

4.2 The Logic LMSO

The system LMSO is FS+ (LSIP) + (DEXP) + (PEXP) extended with Fig. 5 and

Let LMSO(C) := LMSO + (LAC). Note that �MSO(M) �ϕ� whenever �LMSO ϕ.
Proposition 6 extends so that similarly as in [26] we have

Proposition 8. If �MSO(M) ϕ then �LMSO ϕL. In part., for a realizable instance
of Church’s synthesis (∀xσ)(∃uτ)ϕ(u, x), we have �LMSO (∀xσ)(∃uτ)ϕL(u, x).

Moreover, the soundness of (−)D extends to LMSO. It follows that LMSO(C) is
coherent and proves exactly the realizable ∀∃(−)L-statements.

484 P. Pradic and C. Riba

Theorem 5 (Soundness). Let ϕ be closed with ϕD = (∃uτ)(∀xσ)ϕD(u, x).
From a proof of ϕ in LMSO(C) one can extract an eager term u(x) such that
LMSO proves (∀xσ)ϕD(u(x), x).

Corollary 2 (Extraction). Consider a closed formula ϕ := (∀xσ)(∃uτ)
δ(u, x) with δ deterministic. From a proof of ϕ in LMSO(C) one can extract
a term t(x) such that |= (∀xσ)�δ(t(x), x)�.

4.3 Completeness of LMSO(C)

The completeness of LMSO(C) follows from a couple of important facts. First,
LMSO(C) proves the elimination of linear double negation, using (via Theorem3)
the same trick as in [26].

Lemma 1. For all LMSO-formula ϕ, we have (ϕ � ⊥) � ⊥ �LMSO(C) ϕ.

Combining Lemma 1 with (LAC) gives classical linear choice.

Corollary 3. (∀f)(∃x)ϕ(x, (f)x) �LMSO(C) (∃x)(∀y)ϕ(x, y).

The key to the completeness of LMSO(C) is the following quantifier inversion.

Lemma 2. (∀xσ)ϕ(tτ (x), x) �LMSO(C) (∃uτ)(∀xσ)ϕ(u, x), where t(x) is eager.

Lemma 2 follows (via Corollary 3) from the fixpoints on eager machines (Proposi-
tion 3). Fix an eager tτ (xσ). Taking the fixpoint of �(f)t(x)� : �σ�× �(σ)τ� →EM

�σ��(σ)τ� gives a term vσ(f (σ)τ) such that v(f) .= @(f, t(v(f))). Then conclude
with

(∀xσ)ϕ(t(x), x) �LMSO ϕ
(
t(v(f)) , v(f)

)

�LMSO ϕ
(
t(v(f)) , @(f, t(v(f)))

)

�LMSO (∃uτ)ϕ
(
u, (f)u

)

�LMSO (∀f (σ)τ)(∃uτ)ϕ
(
u, (f)u

)

�LMSO(C) (∃uτ)(∀xσ)ϕ(u, x)

Completeness of LMSO(C) then follows via (−)D, Proposition 5, completeness of
MSO(M) and Büchi-Landweber Theorem 1. The idea is to lift a f.s. winning
P-strat. in G(�ϕD(u, x)�)(u, x) to a realizer of ϕD = (∃u)(∀x)ϕD(u, x) in
LMSO(C).

Theorem 6 (Completeness of LMSO(C)). For each closed formula ϕ, either
�LMSO(C) ϕ or �LMSO(C) ϕ � ⊥.

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 485

5 Conclusion

We provided a linear Dialectica-like interpretation of LMSO(C), a linear vari-
ant of MSO on ω-words based on [26]. Our interpretation is correct and com-
plete w.r.t. Church’s synthesis, in the sense that it proves exactly the realiz-
able ∀∃(−)L-statements. We thus obtain a syntactic extraction procedure with
correctness proof internalized in LMSO(C). The system LMSO(C) is moreover
complete in the sense that for every closed formula ϕ, it proves either ϕ or its
linear negation. While completeness for a linear logic necessarily collapse some
linear structure, the corresponding axioms (DEXP) and (PEXP) do respect the
structural constraints allowing for realizer extraction from proofs. The complete-
ness of LMSO(C) contrasts with that of the classical system MSO(M), since the
latter has provable unrealizable ∀∃-statements. In particular, proof search in
LMSO(C) for ∀∃(−)L-formulae and their negation is correct and complete w.r.t.
Church’s synthesis. The design of the Dialectica interpretation also clarified the
linear structure of LMSO, as it allowed us to decompose it starting from a system
based on usual full intuitionistic linear logic (see e.g. [3] for recent references on
the subject).

An outcome of witness extraction for LMSO(C) is the realization of a simple
version of the fan rule (in the usual sense of e.g. [16]). We plan to investigate
monotone variants of Dialectica for our setting. Thanks to the compactness
of Σω, we expect this to allow extraction of uniform bounds, possibly with
translations to stronger constructive logics than LMSO.

References

1. Avigad, J., Feferman, S.: Gödel’s functional (“Dialectica”) interpretation. In: Buss,
S. (ed.) Handbook Proof Theory. Studies in Logic and the Foundations of Mathe-
matics, vol. 137, pp. 337–405. Elsevier, Amsterdam (1998)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, New York (2008)
3. Bellin, G., Heijltjes, W.: Proof nets for bi-intuitionistic linear logic. In: Kirchner,

H. (ed.) FSCD. LIPIcs, vol. 108, pp. 10:1–10:18. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany (2018)

4. Birkedal, L., Møgelberg, R.E., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. Logical Methods
Comput. Sci. 8(4), 1–45 (2012)

5. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

6. Büchi, J.R.: On a decision method in restricted second-order arithmetic. In: Nagel,
E., Suppes, P., Tarski, A. (eds.) Logic, Methodology and Philosophy of Science
(Proc. 1960 Intern. Congr.), pp. 1–11. Stanford University Press, Stanford (1962)

7. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strate-
gies. Transation Am. Math. Soc. 138, 367–378 (1969)

8. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the SISL. vol. 1, pp. 3–50. Cornell University, Ithaca (1957)

9. Danos, V., Joinet, J.B., Schellinx, H.: A new deconstructive logic: linear logic. J.
Symb. Log. 62(3), 755–807 (1997)

486 P. Pradic and C. Riba

10. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy
(extended abstract). In: FOCS. pp. 368–377. IEEE Computer Society (1991)

11. Filiot, E., Jin, N., Raskin, J.F.: Antichains and compositional algorithms for LTL
synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011)

12. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering, NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 45, pp. 72–
98. IOS Press, Amsterdam (2016)

13. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
14. Hyland, J.M.E.: Proof theory in the abstract. Ann. Pure Appl. Logic 114(1–3),

43–78 (2002)
15. Hyland, M., de Paiva, V.C.V.: Full intuitionistic linear logic (extended abstract).

Ann. Pure Appl. Logic 64(3), 273–291 (1993)
16. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and their Use in

Mathematics. Springer Monographs in Mathematics. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77533-1

17. Laurent, O., Regnier, L.: About translations of classical logic into polarized linear
logic. In: Proceedings of LICS 2003, pp. 11–20. IEEE Computer Society Press
(2003)

18. LLWiki: LLWiki (2008). http://llwiki.ens-lyon.fr/mediawiki/
19. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.

Inf. Control 9(5), 521–530 (1966)
20. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by non-

deterministic automata: new results and new proofs of theorems of Rabin,
McNaughton and Safra. Theor. Comput. Sci. 141(1&2), 69–107 (1995)

21. de Paiva, V.C.V.: The DIalectica categories. In: Proceedings of Categories in Com-
puter Science and Logic, Boulder, CO, Contemporary Mathematics, vol. 92. Amer-
ican Mathematical Society (1987)

22. de Paiva, V.C.V.: A DIalectica-like model of linear logic. In: Pitt, D.H., Rydeheard,
D.E., Dybjer, P., Pitts, A.M., Poigné, A. (eds.) Category Theory and Computer
Science. LNCS, vol. 389, pp. 341–356. Springer, Heidelberg (1989). https://doi.
org/10.1007/BFb0018360

23. de Paiva, V.C.V.: The DIalectica categories. Technical report 213, University of
Cambridge Computer Laboratory, January 1991

24. Perrin, D., Pin, J.É.: Infinite Words: Automata, Semigroups, Logic and Games.
Pure and Applied Mathematics. Elsevier (2004)

25. Pradic, P., Riba, C.: A Curry-Howard approach to Church’s synthesis. In: Pro-
ceedings of FSCD 2017. LIPIcs, vol. 84, pp. 30:1–30:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2017)

26. Pradic, P., Riba, C.: LMSO: a Curry-Howard approach to Church’s synthesis via
linear logic. In: Proceedings of LICS 2018. ACM (2018)

27. Shirahata, M.: The DIalectica interpretation of first-order classical affine logic.
Theory Appl. Categ. 17(4), 49–79 (2006)

28. Siefkes, D.: Decidable Theories I: Büchi’s Monadic Second Order Successor
Arithmetic. LNM, vol. 120. Springer, Heidelberg (1970). https://doi.org/10.1007/
BFb0061047

29. Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B: Formal Models and Semantics, pp. 133–192.
Elsevier Science Publishers (1990)

https://doi.org/10.1007/978-3-540-77533-1
http://llwiki.ens-lyon.fr/mediawiki/
https://doi.org/10.1007/BFb0018360
https://doi.org/10.1007/BFb0018360
https://doi.org/10.1007/BFb0061047
https://doi.org/10.1007/BFb0061047

A Dialectica-Like Interpretation of a Linear MSO on Infinite Words 487

30. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, vol. III, pp. 389–455. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 7

31. Thomas, W.: Solution of Church’s problem: a tutorial. New Perspect. Games Inter-
act. 5, 23 (2008)

32. Thomas, W.: Facets of synthesis: revisiting Church’s problem. In: de Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 1–14. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1 1

33. Troelstra, A.: Metamathematical Investigation of Intuitionistic Arithmetic and
Analysis. LNM, vol. 344. Springer, Heidelberg (1973). https://doi.org/10.1007/
BFb0066739

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-59126-6_7
https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/978-3-642-00596-1_1
https://doi.org/10.1007/BFb0066739
https://doi.org/10.1007/BFb0066739
http://creativecommons.org/licenses/by/4.0/

Deciding Equivalence of Separated
Non-nested Attribute Systems

in Polynomial Time

Helmut Seidl1, Raphaela Palenta1(B), and Sebastian Maneth2

1 Fakultät für Informatik, TU München, Munich, Germany
{seidl,palenta}@in.tum.de

2 FB3 - Informatik, Universität Bremen, Bremen, Germany
maneth@uni-bremen.de

Abstract. In 1982, Courcelle and Franchi-Zannettacci showed that the
equivalence problem of separated non-nested attribute systems can be
reduced to the equivalence problem of total deterministic separated basic
macro tree transducers. They also gave a procedure for deciding equiv-
alence of transducer in the latter class. Here, we reconsider this equiv-
alence problem. We present a new alternative decision procedure and
prove that it runs in polynomial time. We also consider extensions of
this result to partial transducers and to the case where parameters of
transducers accumulate strings instead of trees.

1 Introduction

Attribute grammars are a well-established formalism for realizing computations
on syntax trees [20,21], and implementations are available for various program-
ming languages, see, e.g. [12,28,29]. A fundamental question for any such speci-
fication formalism is whether two specifications are semantically equivalent. As a
particular case, attribute grammars have been considered which compute unin-
terpreted trees. Such devices that translate input trees (viz. the parse trees of
a context-free grammar) into output trees, have also been studied under the
name “attributed tree transducer” [14] (see also [15]). In 1982, Courcelle and
Franchi-Zannettacci showed that the equivalence problem for (strongly noncir-
cular) attribute systems reduces to the equivalence problem for primitive recur-
sive schemes with parameters [3]; the latter model is also known under the name
macro tree transducer [9]. Whether or not equivalence of attributed tree trans-
ducers (ATTs) or of (deterministic) macro tree transducers (MTTs) is decidable
remain two intriguing (and very difficult) open problems.

For several subclasses of ATTs it has been proven that equivalence is decid-
able. The most general and very recent result that covers almost all other known
ones about deterministic tree transducers is that “deterministic top-down tree-
to-string transducers” have decidable equivalence [27]. Notice that the complex-
ity of this problem remains unknown (the decidability is proved via two semi-
decision procedures). The only result concerning deterministic tree transducers
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 488–504, 2019.
https://doi.org/10.1007/978-3-030-17127-8_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_28&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_28

Deciding Equivalence of Separated Non-nested Attribute Systems 489

that we are aware of and that is not covered by this general result, is the one
by Courcelle and Franchi-Zannettacci about decidability of equivalence of “sepa-
rated non-nested” ATTs (which they reduce to the same problem for “separated
non-nested” MTTs). However, in their paper no statement is given concerning
the complexity of the problem. In this paper we close this gap and study the
complexity of deciding equivalence of separated non-nested MTTs. To do so we
propose a new approach that we feel is simpler and easier to understand than
the one of [3]. Using our approach we can prove that the problem can be solved
in polynomial time.

Fig. 1. Input tree for 2101.01 (in ternary) and corresponding output tree of Mtern.

In a separated non-nested attribute system, distinct sets of operators are
used for the construction of inherited and synthesized attributes, respectively,
and inherited attributes may depend on inherited attributes only. Courcelle and
Franchi-Zannettacci’s algorithm first translates separated non-nested attribute
grammars into separated total deterministic non-nested macro tree transducers.
In the sequel we will use the more established term basic macro-tree transducers
instead of non-nested MTTs. Here, a macro tree transducer is called separated
if the alphabets used for the construction of parameter values and outside of
parameter positions are disjoint. And the MTT is basic if there is no nesting
of state calls, i.e., there are no state calls inside of parameter positions. Let us
consider an example. We want to translate ternary numbers into expressions
over +, ∗, EXP, plus the constants 0, 1, and 2. Additionally, operators s, p,
and z are used to represent integers in unary. The ternary numbers are parsed
into particular binary trees; e.g., the left of Fig. 1 shows the binary tree for the

490 H. Seidl et al.

Fig. 2. Rules of the transducer Mtern.

number 2101.02. This tree is translated by our MTT into the tree in the right of
Fig. 1 (which indeed evaluates to 64.2 in decimal). The rules of our transducer
Mtern are shown in Fig. 2. The example is similar to the one used by Knuth [20]
in order to introduce attribute grammars. The transducer is indeed basic and
separated: the operators p, s, and z are only used in parameter positions.

Our polynomial time decision procedure works in two phases: first, the trans-
ducer is converted into an “earliest” normal form. In this form, output symbols
that are not produced within parameter positions are produced as early as pos-
sible. In particular it means that the root output symbols of the right-hand
sides of rules for one state must differ. For instance, our transducer Mtern is
not earliest, because all three r-rules produce the same output root symbol
(∗). Intuitively, this symbol should be produced earlier, e.g., at the place when
the state r is called. The earliest form is a common technique used for normal
forms and equivalence testing of different kinds of tree transducers [8,13,22]. We
show that equivalent states of a transducer in this earliest form produce their
state-output exactly in the same way. This means especially that the output of
parameters is produced in the same places. It is therefore left to check, in the
second phase, that also these parameter outputs are equivalent. To this end,
we build an equivalence relation on states of earliest transducers that combines
the two equivalence tests described before. Technically speaking, the equivalence
relation is tested by constructing sets of Herbrand equalities. From these equal-
ities, a fixed point algorithm can, after polynomially many iterations, produce a
stable set of equalities.

The proofs of Lemmata 1 and 2 can be found in the appendix of an extended
version at http://arxiv.org/abs/1902.03858.

2 Separated Basic Macro Tree Transducers

Let Σ be a ranked alphabet, i.e., every symbol of the finite set Σ has associated
with it a fixed rank k ∈ N. Generally, we assume that the input alphabet Σ is
non-trivial, i.e., Σ has cardinality at least 2, and contains at least one symbol
of rank 0 and at least one symbol of rank > 0. The set TΣ is the set of all
(finite, ordered, rooted) trees over the alphabet Σ. We denote a tree as a string
over Σ and parenthesis and commas, i.e., f(a, f(a, b)) is a tree over Σ, where
f is of rank 2 and a, b are of rank zero. We use Dewey dotted decimal notation
to refer to a node of a tree: The root node is denoted ε, and for a node u, its
i-th child is denoted by u.i. For instance, in the tree f(a, f(a, b)) the b-node is at
position 2.2. A pattern (or k-pattern) (over Δ) is a tree p ∈ TΔ∪{�} over a ranked

http://arxiv.org/abs/1902.03858

Deciding Equivalence of Separated Non-nested Attribute Systems 491

alphabet Δ and a disjoint symbol � (with exactly k occurrences of the symbol
�). The occurrences of the dedicated symbol � serve as place holders for other
patterns. Assume that p is a k-pattern and that p1, . . . , pk are patterns; then
p[p1, . . . , pk] denotes the pattern obtained from p by replacing, for i = 1, . . . , k,
the i-th occurrence (from left-to-right) of � by the pattern pi.

A macro tree transducer (MTT) M is a tuple (Q,Σ,Δ, δ) where Q is a
ranked alphabet of states, Σ and Δ are the ranked input and output alphabets,
respectively, and δ is a finite set of rules of the form:

q(f(x1, . . . , xk), y1, . . . , yl) → T (1)

where q ∈ Q is a state of rank l + 1, l ≥ 0, f ∈ Σ is an input symbol of rank
k ≥ 0, x1, . . . , xk and y1, . . . , yl are the formal input and output parameters,
respectively, and T is a tree built up according to the following grammar:

T ::= a(T1, . . . , Tm) | q′(xi, T1, . . . , Tn) | yj

for output symbols a ∈ Δ of rank m ≥ 0 and states q′ ∈ Q of rank n + 1, input
parameter xi with 1 ≤ i ≤ k, and output parameter yj with 1 ≤ j ≤ l. For sim-
plicity, we assume that all states q have the same number l of parameters. Our
definition of an MTT does not contain an initial state. We therefore consider
an MTT always together with an axiom A = p[q1(x1, T1), . . . , qm(x1, Tm)] where
T1, . . . , Tm ∈ T l

Δ are vectors of output trees (of length l each). Sometimes we
only use an MTT M without explicitly mentioning an axiom A, then some A is
assumed implicitly. Intuitively, the state q of an MTT corresponds to a function
in a functional language which is defined through pattern matching over its first
argument, and which constructs tree output using tree top-concatenation only;
the second to (l+1)-th arguments of state q are its accumulating output param-
eters. The output produced by a state for a given input tree is determined by
the right-hand side T of a rule of the transducer which matches the root symbol
f of the current input tree. This right-hand side is built up from accumulating
output parameters and calls to states for subtrees of the input and applications
of output symbols from Δ. In general MTTs are nondeterministic and only par-
tially defined. Here, however, we concentrate on total deterministic transducers.
The MTT M is deterministic, if for every (q, f) ∈ Q × Σ there is at most one
rule of the form (1). The MTT M is total, if for every (q, f) ∈ Q × Σ there is at
least one rule of the form (1). For total deterministic transducers, the semantics
of a state q ∈ Q with the rule q(f(x1, . . . , xk), y1, . . . , yl) → T can be considered
as a function

�q� : TΣ × T l
Δ → TΔ

which inductively is defined by:

�q�(f(t1, . . . , tk), S) = �T � (t1, . . . , tk)S

where
�a(T1, . . . , Tm)� t S = a(�T1� t S, . . . , �Tm� t S)

492 H. Seidl et al.

�yj� t S = Sj

�q′(xi, T1, . . . , Tl)� t S = �q′�(ti, �T1� t S, . . . , �Tl� t S)

where S = (S1, . . . , Sl) ∈ T l
Δ is a vector of output trees. The semantics of a pair

(M,A) with MTT M and axiom A = p[q1(x1, T1), . . . , qm(x1, Tm)] is defined
by �(M,A)�(t) = p[�q1�(t, T1), . . . , �qm�(t, Tm)]. Two pairs (M1, A1), (M2, A2)
consisting of MTTs M1, M2 and corresponding axioms A1, A2 are equivalent,
(M1, A1) ≡ (M2, A2), iff for all input trees t ∈ TΣ , and parameter values T ∈
T l

Δin
, �(M1, A1)�(t, T) = �(M2, A2)�(t, T).

The MTT M is basic, if each argument tree Tj of a subtree q′(xi, T1, . . . , Tn)
of right-hand sides T of rules (1) may not contain further occurrences of states,
i.e., is in TΔ∪Y . The MTT M is separated basic, if M is basic, and Δ is the disjoint
union of ranked alphabets Δout and Δin so that the argument trees Tj of subtrees
q′(xi, T1, . . . , Tn) are in TΔin∪Y , while the output symbols a outside of such
subtrees are from Δout. The same must hold for the axiom. Thus, letters directly
produced by a state call are in Δout while letters produced in the parameters are
in Δin. The MTT Mtern from the Introduction is separated basic with Δout =
{0, 1, 2, 3, ∗,+,EXP} and Δin = {p, s, z}.

As separated basic MTTs are in the focus of our interests, we make the
grammar for their right-hand side trees T explicit:

T ::= a(T1, . . . , Tm) | yj | q′(xi, T
′
1, . . . , T

′
n)

T ′ ::= b(T ′
1, . . . , T

′
m′) | yj

where a ∈ Δout, q′ ∈ Q, b ∈ Δin of ranks m,n + 1 and m′, respec-
tively, and p is an n-pattern over Δ. For separated basic MTTs only axioms
A = p[q1(x1, T1), . . . , qm(x1, Tm)] with T1, . . . , Tm ∈ T l

Δin
are considered.

Note that equivalence of nondeterministic transducers is undecidable (even
already for very small subclasses of transductions [18]). Therefore, we assume
for the rest of the paper that all MTTs are deterministic and separated basic.
We will also assume that all MTTs are total, with the exception of Sect. 5 where
we also consider partial MTTs.

Example 1. We reconsider the example from the Introduction and adjust it to
our formal definition. The transducer was given without an axiom (but with a
tacitly assumed “start state” q0). Let us now remove the state q0 and add the
axiom A = q(x1, z). The new q rule for g is:

q(g(x1, x2), y) → +(q(x1, y), q′(x2, p(y))).

To make the transducer total, we add for state q′ the rule

q′(g(x1, x2), y) → +(∗(0,EXP(3, y)), ∗(0,EXP(3, y))).

For state r we add rules q(α(x1, x2), y) → ∗(0,EXP(3, y)) with α = f, g. The MTT
is separated basic with Δout = {0, 1, 2, 3, ∗,+,EXP} and Δin = {p, s, z}. 	

Deciding Equivalence of Separated Non-nested Attribute Systems 493

We restricted ourselves to total separated basic MTTs. However, we would
like to be able to decide equivalence for partial transducers as well. For this reason
we define now top-down tree automata, and will then decide equivalence of MTTs
relative to some given DTA D. A deterministic top-down tree automaton (DTA)
D is a tuple (B,Σ, b0, δD) where B is a finite set of states, Σ is a ranked alphabet
of input symbols, b0 ∈ B is the initial state, and δD is the partial transition
function with rules of the form b(f(x1, . . . , xk)) → (b1(x1), . . . , bk(xk)), where
b, b1, . . . , bk ∈ B and f ∈ Σ of rank k. W.l.o.g. we always assume that all states
b of a DTA are productive, i.e., dom(b) �= ∅. If we consider a MTT M relative
to a DTA D we implicitly assume a mapping π : Q → B, that maps each state
of M to a state of D, then we consider for q only input trees in dom(π(q)).

3 Top-Down Normalization of Transducers

In this section we show that each total deterministic basic separated MTT can
be put into an “earliest” normal form relative to a fixed DTA D. Intuitively,
state output (in Δout) is produced as early as possible for a transducer in the
normal form. It can then be shown that two equivalent transducers in normal
form produce their state output in exactly the same way.

Recall the definition of patterns as trees over TΔ∪{�}. Substitution of �-
symbols by other patterns induces a partial ordering
 over patterns by p
 p′

if and only if p = p′[p1, . . . , pm] for some patterns p1, . . . , pm. W.r.t. this ordering,
� is the largest element, while all patterns without occurrences of � are minimal.
By adding an artificial least element ⊥, the resulting partial ordering is in fact
a complete lattice. Let us denote this complete lattice by PΔ.

Let Δ = Δin ∪Δout. For T ∈ TΔ∪Y , we define the Δout-prefix as the pattern
p ∈ TΔout∪{�} as follows. Assume that T = a(T1, . . . , Tm).

– If a ∈ Δout, then p = a(p1, . . . , pm) where for j = 1, . . . ,m, pj is the Δout-
prefix of Tj .

– If a ∈ Δin ∪ Y , then p = �.

By this definition, each tree t ∈ TΔ∪Y can be uniquely decomposed into a Δout-
prefix p and subtrees t1, . . . , tm whose root symbols all are contained in Δin ∪Y
such that t = p[t1, . . . , tm].

Let M be a total separated basic MTT M , D be a given DTA. We define the
Δout-prefix of a state q of M relative to D as the minimal pattern p ∈ TΔout∪{�}
so that each tree �q�(t, T), t ∈ dom(π(q)), T ∈ T l

Δ, is of the form p[T1, . . . , Tm] for
some sequence of subtrees T1, . . . , Tm ∈ TΔ. Let us denote this unique pattern p
by prefo(q). If q(f, y1, . . . , yl) → T is a rule of a separated basic MTT and there
is an input tree f(t1, . . . , tk) ∈ dom(π(q)) then |prefo(q)| ≤ |T |.

Lemma 1. Let M be a total separated basic MTT and D a given DTA. Let
t ∈ dom(π(q)) be a smallest input tree of a state q of M . The Δout-prefix of
every state q of M relative to D can be computed in time O(|t| · |M |).

494 H. Seidl et al.

The proof is similar to the one of [8, Theorem 8] for top-down tree transducers.
This construction can be carried over as, for the computation of Δout-prefixes,
the precise contents of the output parameters yj can be ignored.

Example 2. We compute the Δout-prefix of the MTT M from Example 1. We
consider M relative to the trivial DTA D that consists only of one state b with
dom(b) = TΣ . We therefore omit D in our example. We get the following system
of in-equations: from the rules of state r we obtain Yr
 ∗(i,EXP(3,�)) with i ∈
{0, 1, 2}. From the rules of state q we obtain Yq
 +(Yq, Yq′), Yq
 +(Yr, Yq) and
Yq
 ∗(i,EXP(3,�)) with i ∈ {0, 1, 2}. From the rules of state q′ we obtain Yq′

+(∗(0,EXP(3,�)), ∗(0,EXP(3,�))), Yq′
 +(Yr, Yq′) and Yq′
 ∗(i,EXP(3,�))
with i ∈ {0, 1, 2}. For the fixpoint iteration we initialize Y

(0)
r , Y

(0)
q , Y

(0)
q′ with ⊥

each. Then Y
(1)
r = ∗(�,EXP(3,�)) = Y

(2)
r and Y

(1)
q = �, Y

(1)
q′ = �. Thus, the

fixpoint iteration ends after two rounds with the solution prefo(q) = �. 	

Let M be a separated basic MTT M and D be a given DTA D. M is called

D-earliest if for every state q ∈ Q the Δout-prefix with respect to π(q) is �.

Lemma 2. For every pair (M,A) consisting of a total separated basic MTT M
and axiom A and a given DTA D, an equivalent pair (M ′, A′) can be constructed
so that M ′ is a total separated basic MTT that is D-earliest. Let t be an output
tree of (M,A) for a smallest input tree t′ ∈ dom(π(q)) where q is the state
occurring in A. Then the construction runs in time O(|t| · |(M,A)|).

The construction follows the same line as the one for the earliest form of
top-down tree transducer, cf. [8, Theorem 11]. Note that for partial separated
basic MTTs the size of the Δout-prefixes is at most exponential in the size of the
transducer. However for total transducer that we consider here the Δout-prefixes
are linear in the size of the transducer and can be computed in quadratic time,
cf. [8].

Corollary 1. For (M,A) consisting of a total deterministic separated basic
MTT M and axiom A and the trivial DTA D accepting TΣ an equivalent pair
(M ′, A′) can be constructed in quadratic time such that M ′ is an D-earliest total
deterministic separated basic MTT.

Example 3. We construct an equivalent earliest MTT M ′ for the transducer from
Example 1. In Example 2 we already computed the Δout-prefixes of states q, q′, r;
prefo(q) = �, prefo(q′) = � and prefo(r) = ∗(�,EXP(3,�)). As there is only
one occurrence of symbol � in the Δout-prefixes of q and q′ we call states 〈q, 1〉
and 〈q′, 1〉 by q and q′, respectively. Hence, a corresponding earliest transducer
has axiom A = q(x1, z). The rules of q and q′ for input symbol g do not change.
For input symbol f we obtain

q(f(x1, x2), y) → +(∗(r(x2, y),EXP(3, y)), q(x1, s(y))) and
q′(f(x1, x2), y) → +(∗(r(x1, y),EXP(3, y), q′(x2, p(y))).

As there is only one occurrence of symbol � related to a recursive call in
prefo(r) we call 〈r, 1〉 by r. For state r we obtain new rules r(α(x1, x2), y) → 0
with α ∈ {f, g} and r(i, y) → i with i ∈ {0, 1, 2}. 	

Deciding Equivalence of Separated Non-nested Attribute Systems 495

We define a family of equivalence relation by induction, ∼=b ⊆ ((Q, T k
Δin

) ∪
TΔin

) × ((Q, T k
Δin

) ∪ TΔin
) with b a state of a given DTA is the intersection of

the equivalence relations ∼=(h)
b , i.e., X ∼=b Z if and only if for all h ≥ 0, X ∼=(h)

b

Z. We let (q, T) ∼=(h+1)
b (q′, T ′) if for all f ∈ dom(b) with b(f(x1, . . . , xk) →

(b1, . . . , bk), there is a pattern p such that q(f(x1, . . . , xk), y) → p[t1, . . . , tm]
and q′(f(x1, . . . , xk), y′) → p[t′1, . . . , t

′
m] with

– if ti and t′i are both recursive calls to the same subtree, i.e., ti = qi(xji , Ti),
t′i = q′

i(xj′
i
, T ′

i) and ji = j′
i, then (qi, Ti)[T/y] ∼=h

bji
(q′

i, T
′
i)[T

′/y′]
– if ti and t′i are both recursive calls but on different subtrees, i.e., ti =

qi(xji , Ti), t′i = q′
i(xj′

i
, T ′

i) and ji �= j′
i, then t̂ := �qi�(s, Ti)[T/y] =

�q′
i�(s, T

′
i)[T/y] for some s ∈ Σ(0) and (qi, Ti)[T/y] ∼=(h)

bji
t̂ ∼=(h)

bj′
i

(q′
i, T

′
i)[T/y]

– if ti and t′i are both parameter calls, i.e., ti = yji and t′i = y′
j′
i
, then Tji = T ′

j′
i

– if ti is a parameter call and t′i a recursive call, i.e., ti = yji and t′i = q′
i(xj′

i
, T ′

i),

then Tji
∼=(h)

bj′
i

(q′
i, T

′
i)[T

′/y′]

– (symmetric to the latter case) if ti is a recursive call and t′i a parameter call,
i.e., ti = qi(xji , Ti) and t′i = y′

j′
i
, then (qi, Ti)[T/y] ∼=(h)

bji
T ′

j′
i
.

We let T ∼=(h+1)
b (q′, T ′) if for all f ∈ dom(b) with r(f(x1, . . . , xk)) → (b1, . . . , bk),

q′(f(x), y) → t′,

– if t′ = yj then T = T ′
j

– if t′ = q′
1(xi, T

′
1) then T ∼=(h)

bi
(q′

1, T
′
1)[T

′/y′].

Intuitively, (q, T) ∼=h
b (q′, T ′) if for all input trees t ∈ dom(b) of height h,

�q�(t, T) = �q′�(t, T ′). Then (q, T) ∼=b (q′, T ′) if for all input trees t ∈ dom(b)
(independent of the height), �q�(t, T) = �q′�(t, T ′).

Theorem 1. For a given DTA D with initial state b, let M,M ′ be D-earliest
total deterministic separated basic MTTs with axioms A and A′, respectively.
Then (M,A) is equivalent to (M ′, A′) relative to D, iff there is a pattern p such
that A = p[q1(x1, T1), . . . , qm(x1, Tm)], and A′ = p[q′

1(x1, T
′
1), . . . , q

′
m(x1, T

′
m)]

and for j = 1, . . . , m, (qj , Tj) ∼=b (q′
j , T

′
j), i.e., qj and q′

j are equivalent on the
values of output parameters T j and T ′

j.

Proof. Let Δ be the output alphabet of M and M ′. Assume that (M,A) ∼=b

(M ′, A′). As M and M ′ are earliest, the Δout-prefix of �(M,A)�(t) and
�(M ′, A′)�(t), for t ∈ dom(b) is the same pattern p and therefore A =
p[q1(x1, T1), . . . , qm(x1, Tm)] and A′ = p[q′

1(x1, T
′
1), . . . , q

′
m(x1, T

′
m)]. To show

that (qi, Ti) ∼=b (q′
i, T

′
i) let ui be the position of the i-th �-node in the pattern p.

For some t ∈ dom(b) and T ∈ TΔin
let ti and t′i be the subtree of �(M,A)�(t, T)

and �(M ′, A′)�(t, T), respectively. Then ti = t′i and therefore (qi, Ti) ∼=b (q′
i, T

′
i).

Now, assume that the axioms A = p[q1(x1, T1), . . . , qm(x1, Tm)] and A′ =
p[q′

1(x1, T
′
1), . . . , q

′
m(x1, T

′
m)] consist of the same pattern p and for i = 1, . . . , m,

(qi, Ti) ∼=b (q′
i, T

′
i). Let t ∈ dom(b) be an input tree then

496 H. Seidl et al.

�(M,A)�(t) = p[�q1�(t, T1), . . . , �qm�(t, Tm)]
= p[�q′

1�(t, T
′
1), . . . , �q

′
m�(t, T ′

m)]
= �(M ′, A′)�(t).

4 Polynomial Time

In this section we prove the main result of this paper, namely, that for each
fixed DTA D, equivalence of total deterministic basic separated MTTs (relative
to D) can be decided in polynomial time. This is achieved by taking as input two
D-earliest such transducers, and then collecting conditions on the parameters of
pairs of states of the respective transducers for their produced outputs to be
equal.

Example 4. Consider a DTA D with a single state only which accepts all inputs,
and states q, q′ with

q(a, y1, y2) → g(y1) q′(a, y′
1, y

′
2) → g(y′

2)

Then q and q′ can only produce identical outputs for the input a (in dom(b))
if parameter y′

2 of q′ contains the same output tree as parameter y1 of q. This
precondition can be formalized by the equality y′

2
.= y1. Note that in order to

distinguish the output parameters of q′ from those of q we have used primed
copies y′

i for q′. 	

It turns out that conjunctions of equalities such as in Example 4 are sufficient
for proving equivalence of states. For states q, q′ of total separated basic MTTs
M,M ′, respectively, that are both D-earliest for some fixed DTA D, h ≥ 0 and
some fresh variable z, we define

Ψ
(h)
b,q (z) =

∧

b(fx)→(b1,...,bk)

∧

q(fx,y)→yj

(z .= yj) ∧
∧

q(fx,y)→q̂(xi,T)

Ψ
(h−1)
bi,q̂

(z)[T/y] ∧
∧

q(fx,y)→p[...]
p�=�

⊥

where ⊥ is the boolean value false. We denote the output parameters in Ψ
(h)
b,q (z)

by y, we define Ψ
′(h)
b,q′ (z) in the same lines as Ψ

(h)
b,q (z) but using y′ for the output

parameters. To substitute the output parameters with trees T , T ′, we therefore
use Ψ

(h)
b,q (z)[T/y] and Ψ

′(h)
b,q′ (z)[T ′/y′]. Assuming that q is a state of the D-earliest

separated basic MTT M then Ψ
(h)
b,q (z) is true for all ground parameter values s

and some T ∈ TΔ∪Y if �q�(t, s) = T [s/y] for all input trees t ∈ dom(b) of height
at most h. Note that, since M is D-earliest, T is necessarily in TΔin∪Y . W.l.o.g.,
we assume that every state b of D is productive, i.e., dom(b) �= ∅. For each
state b of D, we therefore may choose some input tree tb ∈ dom(b) of minimal

Deciding Equivalence of Separated Non-nested Attribute Systems 497

depth. We define sb,q to be the output of q for a minimal input tree tr ∈ dom(b)
and parameter values y—when considering formal output parameters as output
symbols in Δin, i.e., sb,q = �q�(tr, y).

Example 5. We consider again the trivial DTA D with only one state b that
accepts all t ∈ TΣ . Thus, we may choose tb = a. For a state q with the following
two rules q(a, y1, y2) → y1 and q(f(x), y1, y2) → q(x, h(y2), b), we have sb,q = y1.
Moreover, we obtain

Ψ
(0)
b,q (z) = z

.= y1

Ψ
(1)
b,q (z) = (z .= y1) ∧ (z .= h(y2))

Ψ
(2)
b,q (z) = (z .= y1) ∧ (z .= h(y2)) ∧ (z .= h(b))

≡ (y2
.= b) ∧ (y1

.= h(b)) ∧ (z .= h(b))

Ψ
(3)
b,q (z) = (z .= y1) ∧ (b .= b) ∧ (h(y2)

.= h(b)) ∧ (z .= h(b))

≡ (y2
.= b) ∧ (y1

.= h(b)) ∧ (z .= h(b))

We observe that Ψ
(2)
b,q (z) = Ψ

(3)
b,q (z) and therefore for every h ≥ 2, Ψ

(h)
b,q (z) =

Ψ
(3)
b,q (z). 	

According to our equivalence relation ∼=b, b state of the DTA D, we define for
states q, q′ of D-earliest total deterministic separated basic MTTs M,M ′, and
h ≥ 0, the conjunction Φ

(h)
b,(q,q′) by

∧

b(fx)→(b1,...,bk)
q(fx,y)→p[t]

q′(fx,y′)→p[t′]

(∧

ti=yji
,

t′
i
=y′

j′
i

(yji
.
= y′

j′
i
) ∧

∧

ti=yji
,

t′
i
=q′

i
(x

j′
i
,T ′)

Ψ
′(h−1)

bj′
i
,q′

i
(yji)[T

′/y′] ∧

∧

t′
i
=y′

j′
i

,

ti=qi(xji
,T)

Ψ
(h−1)
bji ,qi

(y′
j′
i
)[T/y] ∧

∧

ti=qi(xji
,T),

t′
i
=q′

i
(x

j′
i
,T ′)

ji=j′
i

Φ
(h−1)

bji ,(qi,q
′
i)

[T/y, T ′/y′] ∧

∧

ti=qi(xji
,T),

t′
i
=q′

i
(x

j′
i
,T ′)

ji �=j′
i

(Ψ
(h−1)
bji ,qi

(sb,qi)[T/y] ∧ Ψ
′(h−1)

bj′
i
,q′

i
(sb,qi [T/y])[T ′/y′])

)
∧

∧

b(f)→(b1,...,bk)
p�=p′,q(fx,y)→p[t]
q′(fx,q)→p′[t′]

⊥

Φ
(h)
b,(q,q′) is defined in the same lines as the equivalence relation ∼=(h)

b . Φ
(h)
b,(q,q′) is

true for all values of output parameters T , T ′ such that �q�(t, T) = �q′�(t, T ′)
for t ∈ dom(b) of height at most h. By induction on h ≥ 0, we obtain:

498 H. Seidl et al.

Lemma 3. For a given DTA D, states q, q′ of D-earliest total separated basic
MTTs, vectors of trees T , T ′ over Δin, b a state of D. s ∈ dom(b), and h ≥ 0
the following two statements hold:

(q, T) ∼=(h)
b (q′, T ′) ⇔ Φ

(h)
b,(q,q′)[T/y, T ′/y′] ≡ true

s ∼=(h)
b (q′, T ′) ⇔ Ψ

(h)
b,q′(t)[T ′/y] ≡ true

	

Φ
(h)
b,(q,q′) is a conjunction of equations of the form yi

.= yj , yi
.= t with t ∈ Δin.

Every satisfiable conjunction of equalities is equivalent to a (possible empty)
finite conjunction of equations of the form yi

.= ti, ti ∈ TΔin∪Y where the yi are
distinct and no equation is of the form yj

.= yj . We call such conjunctions reduced.
If we have two inequivalent reduced conjunctions φ1 and φ2 with φ1 ⇒ φ2 then
φ1 contains strictly more equations. From that follows that for every sequence
φ0 ⇒ . . . φm of pairwise inequivalent reduced conjunctions φj with k variables,
m ≤ k + 1 holds. This observation is crucial for the termination of the fixpoint
iteration we will use to compute Φ

(h)
b,(q,q′).

For h ≥ 0 we have:

Ψ
(h)
b,q (z) ⇒ Ψ

(h−1)
b,q (z) (2)

Φ
(h)
b,(q,q′) ⇒ Φ

(h−1)
b,(q,q′) (3)

As we fixed the number of output parameters to the number l, for each pair
(q, q′) the conjunction Φ

(h)
b,(q,q′) contains at most 2l variables yi, y

′
i. Assuming that

the MTTs to which state q and q′ belong have n states each, we conclude that
Φ
(n2(2l+1))
b,(q,q′) ≡ Φ

(n2(2l+1)+i)
b,(q,q′) and Ψ

(n(l+1))
b,q ≡ Ψ

(n(l+1)+i)
b,q for all i ≥ 0. Thus, we

can define Φb,(q,q′) := Φ
(n2(2l+1))
b,(q,q′) and Ψb,q := Ψ

(n(l+1))
b,q . As (q, T) ∼=b (q′, T ′) iff

for all h ≥ 0, (q, T) ∼=(h)
b (q′, T ′) holds, observation (3) implies that

(q, T) ∼=b (q′, T ′) ⇔ Φb,(q,q′)[T/y][T ′/y′] ≡ true

Therefore, we have:

Lemma 4. For a DTA D, states q, q′ of D-earliest separated basic MTTs M,M ′

and states b of D, the formula Φb,(q,q′) can be computed in time polynomial in
the sizes of M and M ′.

Proof. We successively compute the conjunctions Ψ
(h)
b,q (z), Ψ (h)

b,q′(z), Φ(h)
b,(q,q′),

h ≥ 0, for all states b, q, q′. As discussed before, some h ≤ n2(2l + 1) exists such
that the conjunctions for h+1 are equivalent to the corresponding conjunctions
for h—in which case, we terminate. It remains to prove that the conjunctions
for h can be computed from the conjunctions for h − 1 in polynomial time. For
that, it is crucial that we maintain reduced conjunctions. Nonetheless, the sizes of

Deciding Equivalence of Separated Non-nested Attribute Systems 499

occurring right-hand sides of equalities may be quite large. Consider for example
the conjunction x1

.= a ∧ x2
.= f(x1, x1) ∧ . . . ∧ xn

.= f(xn−1, xn−1). The corre-
sponding reduced conjunction is then given by x1

.= a∧x2
.= f(a, a)∧ . . .∧xn

.=
f(f(f(. . . (f(a, a)) . . .) where the sizes of right-hand sides grow exponentially. In
order to arrive at a polynomial-size representation, we therefore rely on compact
representations where isomorphic subtrees are represented only once. W.r.t. this
representation, reduction of a non-reduced conjunction, implications between
reduced conjunctions as well as substitution of variables in conjunctions can all
be realized in polynomial time. From that, the assertion of the lemma follows.

Example 6. Let D be a DTA with the following rules b(f(x)) → (b), b(g) →
() and b(h) → (). Let q and q′ be states of separated basic MTTs M , M ′,
respectively, that are D-earliest and π, π′ be the mappings from the states of D
to the states of M , M ′ with (b, q) ∈ π and (b, q′) ∈ π′.

q(f(x), y1, y2) → a(q(x, b(y1, y1), c(y2), d))
q(g, y1, y2) → y1
q(h, y1, y2) → y2

q′(f(x), y′
1, y

′
2) → a(q′(x, c(y′

1), b(y
′
2, y

′
2), d))

q′(g, y′
1, y

′
2) → y′

2

q′(h, y′
1, y

′
2) → y′

1

Φ
(0)
r,(q,q′) = (y1

.= y′
2) ∧ (y2

.= y′
1)

Φ
(1)
r,(q,q′) = (y1

.= y′
2) ∧ (y2

.= y′
1) ∧ (b(y1, y1)

.= b(y′
2, y

′
2)) ∧ (c(y2)

.= c(y′
1))

≡ (y1
.= y′

2) ∧ (y2
.= y′

1) = Φ
(0)
r,(q,q′)

	

In summary, we obtain the main theorem of our paper.

Theorem 2. Let (M,A) and (M ′, A′) be pairs consisting of total deterministic
separated basic MTTs M , M ′ and corresponding axioms A, A′ and D a DTA.
Then the equivalence of (M,A) and (M ′, A′) relative to D is decidable. If D
accepts all input trees, equivalence can be decided in polynomial time.

Proof. By Lemma 2 we build pairs (M1, A1) and (M ′
1, A

′
1) that are equivalent to

(M,A) and (M ′, A′) where M1, M ′
1 are D-earliest separated basic MTTs. If D

is trivial the construction is in polynomial time, cf. Corollary 1. Let the axioms
be A1 = p[q1(xi1 , T1), . . . , qk(xik , Tk)] and A′

1 = p′[q′
1(xi′

1
, T1), . . . , q′

k(xi′
k′ , Tk′)].

According to Lemma 3 (M1, A1) and (M ′
1, A

′
1) are equivalent iff

– p = p′, k = k′ and
– for all j = 1, . . . , k, Φb,(qj ,q′

j)
[Tj/y, Tj/y′] is equivalent to true.

By Lemma 4 we can decide the second statements in time polynomial in the
sizes of M1 and M ′

1.

500 H. Seidl et al.

5 Applications

In this section we show several applications of our equivalence result. First, we
consider partial transductions of separated basic MTTs. To decide the equiva-
lence of partial transductions we need to decide (a) whether the domain of two
given MTTs is the same and if so, (b) whether the transductions on this domain
are the same. How the second part of the decision procedure is done was shown
in detail in this paper if the domain is given by a DTA. It therefore remains to
discuss how this DTA can be obtained. It was shown in [4, Theorem 3.1] that
the domain of every top-down tree transducer T can be accepted by some DTA
BT and this automaton can be constructed from T in exponential time. This
construction can easily be extended to basic MTTs. The decidability of equiv-
alence of DTAs is well-known and can be done in polynomial time [16,17]. To
obtain a total transducer we add for each pair (q, f), q ∈ Q and f ∈ Σ that has
no rule a new rule q(f(x), y) → ⊥, where ⊥ is an arbitrary symbol in Δout of
rank zero.

Example 7. In Example 1 we discussed how to adjust the transducer from the
introduction to our formal definition. We therefore had to introduce additional
rules to obtain a total transducer. Now we still add rules for the same pairs
(q, f) but only with right-hand sides ⊥. Therefore the original domain of the
transducer is given by a DTA D = (R,Σ, r0, δD) with the rules r0(g(x1, x2)) →
(r(x1), r(x2)), r(f(x1, x2)) → (r(x1), r(x2)) and r(i) → () for i = 1, 2, 3. 	

Corollary 2. The equivalence of deterministic separated basic MTTs with a
partial transition function is decidable.

Next, we show that our result can be used to decide the equivalence of total
separated basic MTTs with look-ahead. A total macro tree transducer with reg-
ular look-ahead (MTTR) is a tuple (Q,Σ,Δ, δ,R, δR) where R is a finite set of
look-ahead states and δR is a total function from Rk → R for every f ∈ Σ(k).
Additionally we have a deterministic bottom-up tree automaton (P,Σ, δ,−)
(without final states). A rule of the MTT is of the form

q(f(t1, . . . , tk), y1, . . . , yk) → t 〈p1, . . . , pk〉

and is applicable to an input tree f(t1, . . . , tk) if the look-ahead automaton
accepts ti in state pi for all i = 1, . . . , k. For every q, f, p1, . . . , pk there is exactly
one such rule. Let N1 = (Q1, Σ1,Δ1, δ1, R1, δR1), N2 = (Q2, Σ2,Δ2, δ2, R2, δR2)
be two total separated basic MTTs with look-ahead. We construct total sepa-
rated basic MTTs M1,M2 without look-ahead as follows. The input alphabet
contains for every f ∈ Σ and r1, . . . , rk ∈ R1, r′

1, . . . , r
′
k ∈ R2 the symbols

〈f, r1, . . . , rk, r′
1, . . . , r

′
k〉. For q(f(x1, . . . , xk), y) → p[T1, . . . , Tm] 〈r1, . . . , rk〉 and

q′(f(x1, . . . , xk), y′) → p′[T ′
1, . . . , T

′
m] 〈r′

1, . . . , r
′
k〉 we obtain for M1 the rules

q̂(〈f(x1, . . . , xk), r1, . . . , rk, r′
1, . . . , r

′
k〉, y) → p[T̂1, . . . , T̂m]

Deciding Equivalence of Separated Non-nested Attribute Systems 501

with T̂i = q̂i(〈xji , r̂1, . . . , r̂l, r̂′
1, . . . , r̂

′
l〉, Zi) if Ti = qi(xji , Zi) and qi(xji , y) →

T̂i 〈r̂1, . . . , r̂l〉 and q′
i(xji , y

′) → T̂ ′
i 〈r̂′

1, . . . , r̂
′
l〉. If Ti = yji then T̂i = yji .

The total separated basic MTT M2 is constructed in the same lines. Thus, Ni,
i = 1, 2 can be simulated by Mi, i = 1, 2, respectively, if the input is restricted
to the regular tree language of new input trees that represent correct runs of the
look-ahead automata.

Corollary 3. The equivalence of total separated basic MTTs with regular look-
ahead is decidable in polynomial time.

Last, we consider separated basic MTTs that concatenate strings instead
of trees in the parameters. We abbreviate this class of transducers by MTTyp.
Thus, the alphabet Δin is not longer a ranked alphabet but a unranked alphabet
which elements/letters can be concatenated to words. The procedure to decide
equivalence of MTTyp is essentially the same as we discussed in this paper but
instead of conjunctions of equations of trees over Δin ∪Y we obtain conjunctions
equations of words. Equations of words is a well studied problem [23,24,26]. In
particular, the confirmed Ehrenfeucht conjecture states that each conjunction
of a set of word equations over a finite alphabet and using a finite number of
variables, is equivalent to the conjunction of a finite subset of word equations [19].
Accordingly, by a similar argument as in Sect. 4, the sequences of conjunctions
Ψ

(h)
b,q (z), Ψ ′(h)

b,q′(z), Φ(h)
b,(q,q′), h ≥ 0, are ultimately stable. Using an encoding of

words by integer matrices and applying techniques as in [19], we obtain:

Theorem 3. The equivalence of total separated basic MTTs that concatenate
words instead of trees in the parameters (Δin is unranked) is decidable.

6 Related Work

For several subclasses of attribute systems equivalence is known to be decidable.
For instance, attributed grammars without inherited attributes are equivalent
to deterministic top-down tree transducers (DT) [3,5]. For this class equivalence
was shown to be decidable by Esik [10]. Later, a simplified algorithm was pro-
vided in [8]. If the tree translation of an attribute grammar is of linear size
increase, then equivalence is decidable, because it is decidable for deterministic
macro tree transducers (DMTT) of linear size increase. This follows from the fact
that the latter class coincides with the class of (deterministic) MSO definable
tree translations (DMSOTT) [6] for which equivalence is decidable [7]. Figure 3
shows a Hasse diagram of classes of translations realized by certain determinis-
tic tree transducers. The prefixes “l”, “n”, “sn”, “b” and “sb” mean “linear size
increase”, “non-nested”, “separated non-nested”, “basic” and “separated basic”,
respectively. A minimal class where it is still open whether equivalence is decid-
able is the class of non-nested attribute systems (nATT) which, on the macro
tree transducer side, is included in the class of basic deterministic macro tree
transducers (bDMTT).

502 H. Seidl et al.

Fig. 3. Classes with and without (underlined) known decidability of equivalence

For deterministic top-down tree transducers, equivalence can be decided in
EXPSPACE, and in NLOGSPACE if the transducers are total [25]. For the latter
class of transducers, one can decide equivalence in polynomial time by transform-
ing the transducer into a canonical normal form (called “earliest normal form”)
and then checking isomorphism of the resulting transducers [8]. In terms of
hardness, we know that equivalence of deterministic top-down tree transducers
is EXPTIME-hard. For linear size increase deterministic macro tree transducers
the precise complexity is not known (but is at least NP-hard). More complexity
results are known for other models of tree transducers such as streaming tree
transducers [1], see [25] for a summary.

7 Conclusion

We have proved that the equivalence problem for separated non-nested attribute
systems can be decided in polynomial time. In fact, we have shown a stronger
statement, namely that in polynomial time equivalence of separated basic total
deterministic macro tree transducers can be decided. To see that the latter is a
strict superclass of the former, consider the translation that takes a binary tree
as input, and outputs the same tree, but under each leaf a new monadic tree is
output which represents the inverse Dewey path of that node. For instance, the
tree f(f(a, a), a) is translated into the tree f(f(a(1(1(e))), a(2(1(e)))), a(2(e))).
A macro tree transducer of the desired class can easily realize this translation
using a rule of the form q(f(x1,2), y) → f(q(x1, 1(y)), q(x2, 2(y))). In contrast,
no attribute system can realize this translation. The reason is that for every
attribute system, the number of distinct output subtrees is linearly bounded by
the size of the input tree. For the given translation there is no linear such bound
(it is bounded by |s| log(|s|)).

The idea of “separated” to use different output alphabets, is related to the
idea of transducers “with origin” [2,11]. In future work we would like to define
adequate notions of origin for macro tree transducer, and prove that equivalence
of such (deterministic) transducers with origin is decidable.

Deciding Equivalence of Separated Non-nested Attribute Systems 503

References

1. Alur, R., D’Antoni, L.: Streaming tree transducers. J. ACM 64(5):31:1–31:55
(2017)

2. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp.
26–37. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 3

3. Courcelle, B., Franchi-Zannettacci, P.: Attribute grammars and recursive program
schemes I. Theor. Comput. Sci. 17(2), 163–191 (1982)

4. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Syst.
Theory 10, 289–303 (1977)

5. Engelfriet, J.: Some open questions and recent results on tree transducers and tree
languages. In: Formal Language Theory, pp. 241–286. Elsevier (1980)

6. Engelfriet, J., Maneth, S.: Macro tree translations of linear size increase are MSO
definable. SIAM J. Comput. 32(4), 950–1006 (2003)

7. Engelfriet, J., Maneth, S.: The equivalence problem for deterministic MSO tree
transducers is decidable. Inf. Process. Lett. 100(5), 206–212 (2006)

8. Engelfriet, J., Maneth, S., Seidl, H.: Deciding equivalence of top-down XML trans-
formations in polynomial time. J. Comput. Syst. Sci. 75(5), 271–286 (2009)

9. Engelfriet, J., Vogler, H.: Macro tree transducers. J. Comput. Syst. Sci. 31(1),
71–146 (1985)

10. Ésik, Z.: Decidability results concerning tree transducers I. Acta Cybern. 5(1),
1–20 (1980)

11. Filiot, E., Maneth, S., Reynier, P., Talbot, J.: Decision problems of tree transducers
with origin. Inf. Comput. 261(Part), 311–335 (2018)

12. Fors, N., Cedersjö, G., Hedin, G.: JavaRAG: a Java library for reference attribute
grammars. In: Proceedings of the 14th International Conference on Modularity,
MODULARITY 2015, pp. 55–67. ACM, New York (2015)

13. Friese, S., Seidl, H., Maneth, S.: Earliest normal form and minimization for bottom-
up tree transducers. Int. J. Found. Comput. Sci. 22(7), 1607–1623 (2011)

14. Fülöp, Z.: On attributed tree transducers. Acta Cybern. 5(3), 261–279 (1981)
15. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics - Formal Models Based on Tree

Transducers. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-642-72248-6

16. Gécseg, F., Steinby, M.: Minimal ascending tree automata. Acta Cybern. 4(1),
37–44 (1978)

17. Gécseg, F., Steinby, M.: Tree Automata. Akadéniai Kiadó, Budapest (1984)
18. Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free non-

deterministic generalized machines. J. ACM 15(3), 409–413 (1968)
19. Honkala, J.: A short solution for the HDT0L sequence equivalence problem. Theor.

Comput. Sci. 244(1–2), 267–270 (2000)
20. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–

145 (1968)
21. Knuth, D.E.: Correction: semantics of context-free languages. Math. Syst. Theory

5(1), 95–96 (1971)
22. Laurence, G., Lemay, A., Niehren, J., Staworko, S., Tommasi, M.: Normalization

of sequential top-down tree-to-word transducers. In: Dediu, A.-H., Inenaga, S.,
Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 354–365. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21254-3 28

https://doi.org/10.1007/978-3-662-43951-7_3
https://doi.org/10.1007/978-3-642-72248-6
https://doi.org/10.1007/978-3-642-21254-3_28

504 H. Seidl et al.

23. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

24. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math.
USSR-Sb. 32(2), 129 (1977)

25. Maneth, S.: A survey on decidable equivalence problems for tree transducers. Int.
J. Found. Comput. Sci. 26(8), 1069–1100 (2015)

26. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In:
40th Annual Symposium on Foundations of Computer Science, FOCS 1999, New
York, NY, USA, 17–18 October 1999, pp. 495–500. IEEE Computer Society (1999)

27. Seidl, H., Maneth, S., Kemper, G.: Equivalence of deterministic top-down tree-to-
string transducers is decidable. J. ACM 65(4), 21:1–21:30 (2018)

28. Sloane, A.M., Kats, L.C., Visser, E.: A pure embedding of attribute grammars.
Sci. Comput. Program. 78(10), 1752–1769 (2013). Special Section on Language
Descriptions Tools and Applications (LDTA 2008 and 2009) & Special Section on
Software Engineering Aspects of Ubiquitous Computing and Ambient Intelligence
(UCAm I 2011)

29. Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible attribute
grammar system. Sci. Comput. Program. 75(1–2), 39–54 (2010)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Justness
A Completeness Criterion for Capturing Liveness

Properties (Extended Abstract)

Rob van Glabbeek1,2(B)

1 Data61, CSIRO, Sydney, Australia
2 Computer Science and Engineering,

University of New South Wales, Sydney, Australia
rvg@cs.stanford.edu

Abstract. This paper poses that transition systems constitute a good
model of distributed systems only in combination with a criterion telling
which paths model complete runs of the represented systems. Among
such criteria, progress is too weak to capture relevant liveness proper-
ties, and fairness is often too strong; for typical applications we advocate
the intermediate criterion of justness. Previously, we proposed a defini-
tion of justness in terms of an asymmetric concurrency relation between
transitions. Here we define such a concurrency relation for the transition
systems associated to the process algebra CCS as well as its extensions
with broadcast communication and signals, thereby making these process
algebras suitable for capturing liveness properties requiring justness.

1 Introduction

Transition systems are a common model for distributed systems. They consist of
sets of states, also called processes, and transitions—each transition going from
a source state to a target state. A given distributed system D corresponds to a
state P in a transition system T—the initial state of D. The other states of D
are the processes in T that are reachable from P by following the transitions. A
run of D corresponds with a path in T: a finite or infinite alternating sequence
of states and transitions, starting with P , such that each transition goes from
the state before to the state after it. Whereas each finite path in T starting
from P models a partial run of D, i.e., an initial segment of a (complete) run,
typically not each path models a run. Therefore a transition system constitutes
a good model of distributed systems only in combination with what we here call
a completeness criterion: a selection of a subset of all paths as complete paths,
modelling runs of the represented system.

A liveness property says that “something [good] must happen” eventually
[18]. Such a property holds for a distributed system if the [good] thing happens
in each of its possible runs. One of the ways to formalise this in terms of transition
systems is to postulate a set of good states G , and say that the liveness property
G holds for the process P if all complete paths starting in P pass through a state
c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 505–522, 2019.
https://doi.org/10.1007/978-3-030-17127-8_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_29&domain=pdf
https://doi.org/10.1007/978-3-030-17127-8_29

506 R. van Glabbeek

of G [16]. Without a completeness criterion the concept of a liveness property
appears to be meaningless.

Example 1. The transition system on the right mod-
els Cataline eating a croissant in Paris. It abstracts
from all activity in the world except the eating of that croissant, and thus has
two states only—the states of the world before and after this event—and one
transition t. We depict states by circles and transitions by arrows between them.
An initial state is indicated by a short arrow without a source state. A possible
liveness property says that the croissant will be eaten. It corresponds with the set
of states G consisting of state 2 only. The states of G are indicated by shading.

1 2
t

The depicted transition system has three paths starting with state 1: 1, 1 t
and 1 t 2. The path 1 t 2 models the run in which Cataline finishes the croissant.
The path 1 models a run in which Cataline never starts eating the croissant, and
the path 1 t models a run in which Cataline starts eating it, but never finishes.
The liveness property G holds only when using a completeness criterion that
rules out the paths 1 and 1 t as modelling actual runs of the system, leaving 1 t 2
as the sole complete path.

The transitions of transition systems can be understood to model atomic actions
that can be performed by the represented systems. Although we allow these
actions to be instantaneous or durational, in the remainder of this paper we
adopt the assumption that “atomic actions always terminate” [23]. This is a
partial completeness criterion. It rules out the path 1 t in Example 1. We build
in this assumption in the definition of a path by henceforth requiring that finite
paths should end with a state.

Progress. The most widely employed completeness criterion is progress.1 In the
context of closed systems, having no run-time interactions with the environment,
it is the assumption that a run will never get stuck in a state with outgoing
transitions. This rules out the path 1 in Example 1, as t is outgoing. When
adopting progress as completeness criterion, the liveness property G holds for
the system modelled in Example 1.

Progress is assumed in almost all work on process algebra that deals with
liveness properties, mostly implicitly. Milner makes an explicit progress assump-
tion for the process algebra CCS in [20]. A progress assumption is built into the
temporal logics LTL [24], CTL [7] and CTL* [8], namely by disallowing states
without outgoing transitions and evaluating temporal formulas by quantifying
over infinite paths only.2 In [17] the ‘multiprogramming axiom’ is a progress
assumption, whereas in [1] progress is assumed as a ‘fundamental liveness
property’.
1 Misra [21,22] calls this the ‘minimal progress assumption’. In [22] he uses ‘progress’
as a synonym for ‘liveness’. In session types, ‘progress’ and ‘global progress’ are used
as names of particular liveness properties [4]; this use has no relation with ours.

2 Exceptionally, states without outgoing transitions are allowed, and then quantifica-
tion is over all maximal paths, i.e. paths that are infinite or end in a state without
outgoing transitions [5].

Justness 507

As we argued in [10,15,16], a progress assumption as above is too strong
in the context of reactive systems, meaning that it rules out as incomplete too
many paths. There, a transition typically represents an interaction between the
distributed system being modelled and its environment. In many cases a transi-
tion can occur only if both the modelled system and the environment are ready
to engage in it. We therefore distinguish blocking and non-blocking transitions. A
transition is non-blocking if the environment cannot or will not block it, so that
its execution is entirely under the control of the system under consideration. A
blocking transition on the other hand may fail to occur because the environment
is not ready for it. The same was done earlier in the setting of Petri nets [26],
where blocking and non-blocking transitions are called cold and hot, respectively.

In [10,15,16] we worked with transition systems that are equipped with a
partitioning of the transitions into blocking and non-blocking ones, and refor-
mulated the progress assumption as follows:

a (transition) system in a state that admits a non-blocking transition will
eventually progress, i.e., perform a transition.

In other words, a run will never get stuck in a state with outgoing non-blocking
transitions. In Example 1, when adopting progress as our completeness crite-
rion, we assume that Cataline actually wants to eat the croissant, and does not
willingly remain in State 1 forever. When that assumption is unwarranted, one
would model her behaviour by a transition system different from that of Exam-
ple 1. However, she may still be stuck in State 1 by lack of any croissant to eat.
If we want to model the capability of the environment to withhold a croissant,
we classify t as a blocking transition, and the liveness property G does not hold.
If we abstract from a possible shortage of croissants, t is deemed a non-blocking
transition, and, when assuming progress, G holds.

As an alternative approach to a dogmatic division of transitions in a transi-
tion system, we could shift the status of transitions to the progress property, and
speak of B-progress when B is the set of blocking transitions. In that approach,
G holds for State 1 of Example 1 under the assumption of B-progress when
t /∈ B, but not when t ∈ B.

Justness. Justness is a completeness criterion proposed in [10,15,16]. It strength-
ens progress. It can be argued that once one adopts progress it makes sense to
go a step further and adopt even justness.

Example 2. The transition system on the top right models
Alice making an unending sequence of phone calls in Lon-
don. There is no interaction of any kind between Alice and
Cataline. Yet, we may chose to abstracts from all activity
in the world except the eating of the croissant by Cataline,
and the making of calls by Alice. This yields the combined
transition system on the bottom right. Even when taking the

t

transition t to be non-blocking, progress is not a strong enough completeness
criterion to ensure that Cataline will ever eat the croissant. For the infinite path

508 R. van Glabbeek

that loops in the first state is complete. Nevertheless, as nothing stops Cataline
from making progress, in reality t will occur [16].

This example is not a contrived corner case, but a rather typical illustration of
an issue that is central to the study of distributed systems. Other illustrations of
this phenomena occur in [10, Section 9.1], [14, Section 10], [11, Section 1.4], [12]
and [6, Section 4]. The criterion of justness aims to ensure the liveness property
occurring in these examples. In [16] it is formulated as follows:

Once a non-blocking transition is enabled that stems from a set of parallel
components, one (or more) of these components will eventually partake in
a transition.

In Example 2, t is a non-blocking transition enabled in the initial state. It stems
from the single parallel component Cataline of the distributed system under
consideration. Justness therefore requires that Cataline must partake in a tran-
sition. This can only be t, as all other transitions involve component Alice only.
Hence justness says that t must occur. The infinite path starting in the initial
state and not containing t is ruled out as unjust, and thereby incomplete.

In [13,16] we explain how justness is fundamentally different from fairness,
and why fairness is too strong a completeness criterion for many applications.

Unlike progress, the concept of justness as formulated above is in need of
some formalisation, i.e., to formally define a component, to make precise for
concrete transition systems what it means for a transition to stem from a set of
components, and to define when a component partakes in a transition.

A formalisation of justness for the transition system generated by the process
algebra AWN, the Algebra for Wireless Networks [9], was provided in [10]. In the
same vain, [15] offered a formalisation for the transition systems generated by
CCS [20], and its extension ABC, the Algebra of Broadcast Communication [15],
a variant of CBS, the Calculus of Broadcasting Systems [25]. The same was done
for CCS extended with signals in [6]. These formalisations coinductively define
B-justness, where B ranges over sets of transitions deemed to be blocking, as a
family of predicates on paths, and proceed by a case distinction on the operators
in the language. Although these definitions do capture the concept of justness
formulated above, it is not easy to see why.

A more syntax-independent formalisation of justness occurs in [16]. There
it is defined directly on transition systems equipped with a, possibly asymmet-
ric, concurrency relation between transitions. However, the concurrency relation
itself is defined only for the transition system generated by a fragment of CCS,
and the generalisation to full CCS, and other process algebras, is non-trivial.

It is the purpose of this paper to make the definition of justness from [16]
available to a large range of process algebras by defining the concurrency relation
for CCS, for ABC, and for the extension of CCS with signals used in [6]. We do
this in a precise as well as in an approximate way, and show that both approaches
lead to the same concept of justness. Moreover, in all cases we establish a closure
property on the concurrency relation ensuring that justness is a meaningful
notion. We show that for all these algebras justness is feasible. Here feasibility is a

Justness 509

requirement on completeness criteria advocated in [1,16,19]. Finally, we establish
agreement between the formalisation of justness from [16] and the present paper,
and the original coinductive ones from [15] and [6].

2 Labelled Transition Systems with Concurrency

We start with the formal definitions of a labelled transition system, a path,
and the completeness criterion progress, which is parametrised by the choice of
a collection B of blocking actions. Then we define the completeness criterion
justness on labelled transition system upgraded with a concurrency relation.

Definition 1. A labelled transition system (LTS) is a tuple (S,Tr, src, target, �)
with S and Tr sets (of states and transitions), src, target : Tr → S and � : Tr →
L , for some set of transition labels L .

Here we work with LTSs labelled over a structured set of labels (L , Act,Rec),
where Rec ⊆ Act ⊆ L . Labels in Act are actions; the ones in L \Act are signals.
Transitions labelled with actions model a state chance in the represented system;
signal transitions do not—they satisfy src(t) = target(t) and merely convey a
property of a state. Rec ⊆ Act is the set of receptive actions; sets B ⊆ Act
of blocking actions must always contain Rec. In CCS and most other process
algebras Rec = ∅ and Act = L . Let Tr• = {t ∈ Tr | �(t) ∈ Act \ Rec} be the set
of transitions that are neither signals nor receptive.

Definition 2. A path in a transition system (S,Tr, src, target) is an alternating
sequence s0 t1 s1 t2 s2 · · · of states and non-signal transitions, starting with a
state and either being infinite or ending with a state, such that src(ti) = si−1

and target(ti) = si for all relevant i.

A completeness criterion is a unary predicate on the paths in a transition system.

Definition 3. Let B ⊆ Act be a set of actions with Rec ⊆ B—the blocking
ones. Then Tr•

¬B := {t ∈ Tr• | �(t) /∈ B} is the set of non-blocking transitions.
A path in T is B-progressing if either it is infinite or its last state is the source
of no non-blocking transition t ∈ Tr•

¬B .

B-progress is a completeness criterion for any choice of B ⊆ Act with Rec ⊆ B.

Definition 4. A labelled transition system with concurrency (LTSC) is a tuple
(S,Tr, src, target, �,�•) consisting of a LTS (S,Tr, src, target, �) and a concur-
rency relation �• ⊆ Tr• × Tr, such that:

t ��• t for all t ∈ Tr•, (1)

if t ∈ Tr• and π is a path from src(t) to s ∈ S such that t �• v for
all transitions v occurring in π, then there is a u ∈ Tr• such that
src(u) = s, �(u) = �(t) and t ��• u.

(2)

510 R. van Glabbeek

Informally, t �• v means that the transition v does not interfere with t, in the
sense that it does not affect any resources that are needed by t, so that in a state
where t and v are both possible, after doing v one can still do (a future variant
u of) t. In many transition systems �• is a symmetric relation, denoted �.

The transition relation in a labelled transition system is often defined as
a relation Tr ⊆ S × L × S. This approach is not suitable here, as we will
encounter multiple transitions with the same source, target and label that ought
to be distinguished based on their concurrency relations with other transitions.

Definition 5. A path π in an LTSC is B-just, for Rec ⊆ B ⊆ Act, if for each
transition t ∈ Tr•

¬B with s := src(t) ∈ π, a transition u occurs in the suffix of π
starting at s, such that t ��• u.

Informally, justness requires that once a non-blocking non-signal transition t is
enabled, sooner or later a transition u will occur that interferes with it, possibly
t itself. Note that, for any Rec ⊆ B ⊆ Act, B-justness is a completeness criterion
stronger than B-progress.

Components. Instead of introducing �• as a primitive, it is possible to obtain
it as a notion derived from two functions npc, afc : Tr → P(C), for a given
set of components C . These functions could then be added as primitives to the
definition of an LTS. They are based on the idea that a process represents a
system built from parallel components. Each transition is obtained as a synchro-
nisation of activities from some of these components. Now npc(t) describes the
(nonempty) set of components that are necessary participants in the execution
of t, whereas afc(t) describes the components that are affected by the execution
of t. The concurrency relation is then defined by

t �• u ⇔ npc(t) ∩ afc(u) = ∅
saying that u interferes with t iff a necessary participant in t is affected by u.

Most material above stems from [16]. However, there Tr• = Tr, so that �•

is irreflexive, i.e., npc(t) ∩ afc(t) �= ∅ for all t ∈ Tr. Moreover, a fixed set B
is postulated, so that the notions of progress and justness are not explicitly
parametrised with the choice of B. Furthermore, property (2) is new here; it is
the weakest closure property that supports Theorem 1 below. In [16] only the
model in which �• is derived from npc and afc comes with a closure property:

If t, v ∈ Tr• with src(t) = src(v) and npc(t) ∩ afc(v) = ∅, then
∃u ∈ Tr• with src(u) = target(v), �(u) = �(t) and npc(u) = npc(t). (3)

Trivially (3) implies (2).
An important requirement on completeness criteria is that any finite path

can be extended into a complete path. This requirement was proposed by Apt,
Francez and Katz in [1] and called feasibility. It also appears in Lamport [19]
under the name machine closure. The theorem below list conditions under which
B-justness is feasible. Its proof is a variant of a similar theorem from [16] showing
conditions under which notions of strong and weak fairness are feasible.

Justness 511

Table 1. Structural operational semantics of CCS

α.P
α

P (Act)
P

α
P ′

P + Q
α

P ′
(Sum-l)

Q
α

Q′

P + Q
α

Q′
(Sum-r)

P
η

P ′

P |Q η
P ′|Q

(Par-l)
P

c
P ′, Q

c̄
Q′

P |Q τ
P ′|Q′

(Comm)
Q

η
Q′

P |Q η
P |Q′

(Par-r)

P
�

P ′

P\L
�

P ′\L
(�, �̄ �∈ L) (Res)

P
�

P ′

P [f]
f(�)

P ′[f]
(Rel)

P
α

P ′

A
α

P ′
(A

def
= P) (Rec)

Theorem 1. If, in an LTSC with set of blocking actions B, only countably many
transitions from Tr•

¬B are enabled in each state, then B-justness is feasible.

All proofs can found in the full version of this paper [13].

3 CCS and Its Extensions with Broadcast and Signals

This section presents four process algebras: Milner’s Calculus of Communicating
Systems (CCS) [20], its extensions with broadcast communication ABC [15] and
signals CCSS [6], and an alternative presentation of ABC that avoids negative
premises in favour of discard transitions.

3.1 CCS

CCS [20] is parametrised with sets A of agent identifiers and Ch of (hand-
shake communication) names; each A ∈ A comes with a defining equation
A

def
= P with P being a CCS expression as defined below. C̄h := {c̄ | c ∈ Ch}

is the set of co-names. Complementation is extended to C̄h by setting ¯̄c = c.
Act := Ch

.∪ C̄h

.∪ {τ} is the set of actions, where τ is a special internal action.
Below, c ranges over Ch ∪ C̄h, η, α, � over Act, and A,B over A . A relabelling
is a function f : Ch → Ch; it extends to Act by f(c̄) = f(c) and f(τ) := τ . The
set PCCS of CCS expressions or processes is the smallest set including:

0 inaction
α.P for α ∈ Act and P ∈ PCCS action prefixing
P + Q for P,Q ∈ PCCS choice
P |Q for P,Q ∈ PCCS parallel composition
P\L for L ⊆ Ch and P ∈ PCCS restriction
P [f] for f a relabelling and P ∈ PCCS relabelling
A for A ∈ A agent identifier

One often abbreviates α.0 by α, and P\{c} by P\c. The traditional semantics
of CCS is given by the labelled transition relation → ⊆ PCCS × Act × PCCS,
where transitions P � Q are derived from the rules of Table 1.

512 R. van Glabbeek

Table 2. Structural operational semantics of ABC broadcast communication

)c-orB()l-orB((Bro-r)

P
b�1 P ′, Q b?�

P |Q b�1 P ′|Q
P

b�1 P ′, Q
b�2 Q′

P |Q b�
P ′|Q′

�1◦�2=� = with
◦ ! ?

! !

? ! ?

P b?� , Q
b�2 Q′

P |Q b�2 P |Q′

3.2 ABC—The Algebra of Broadcast Communication

The Algebra of Broadcast Communication (ABC) [15] is parametrised with sets
A of agent identifiers, B of broadcast names and Ch of handshake communica-
tion names; each A ∈ A comes with a defining equation A

def
= P with P being

a guarded ABC expression as defined below.
The collections B! and B? of broadcast and receive actions are given by

B� := {b� | b ∈ B} for � ∈ {!, ?}. Act := B!
.∪ B?

.∪ Ch

.∪ C̄h

.∪ {τ} is the set of
actions. Below, A ranges over A, b over B, c over Ch ∪ C̄h, η over Ch ∪ C̄h ∪ {τ}
and α, � over Act. A relabelling is a function f : (B → B) ∪ (Ch → Ch). It
extends to Act by f(c̄) = f(c), f(b�) = f(b)� and f(τ) := τ . The set PABC of
ABC expressions is defined exactly as PCCS. An expression is guarded if each
agent identifier occurs within the scope of a prefixing operator. The structural
operational semantics of ABC is the same as the one for CCS (see Table 1) but
augmented with the rules for broadcast communication in Table 2.

ABC is CCS augmented with a formalism for broadcast communication taken
from the Calculus of Broadcasting Systems (CBS) [25]. The syntax without
the broadcast and receive actions and all rules except (Bro-l), (Bro-c) and
(Bro-r) are taken verbatim from CCS. However, the rules now cover the dif-
ferent name spaces; (Act) for example allows labels of broadcast and receive
actions. The rule (Bro-c)—without rules like (Par-l) and (Par-r) with label
b!—implements a form of broadcast communication where any broadcast b! per-
formed by a component in a parallel composition is guaranteed to be received
by any other component that is ready to do so, i.e., in a state that admits a
b?-transition. In order to ensure associativity of the parallel composition, one
also needs this rule for components receiving at the same time (�1=�2=?). The
rules (Bro-l) and (Bro-r) are added to make broadcast communication non-
blocking : without them a component could be delayed in performing a broadcast
simply because one of the other components is not ready to receive it.

3.3 CCS with Signals

CCS with signals (CCSS) [6] is CCS extended with a signalling operator P ŝ.
Informally, P ŝ emits the signal s to be read by another process. P ŝ could for
instance be a traffic light emitting the signal red. The reading of the signal
emitted by P ŝ does not interfere with any transition of P , such as jumping to
green. Formally, CCS is extended with a set S of signals, ranged over by s and r.
In CCSS the set of actions is defined as Act := S

.∪ Ch ∪ C̄h

.∪ {τ}, and the set

Justness 513

Table 3. Structural operational semantics for signals of CCSS

P ŝ
s̄

P ŝ
P

s̄
P ′

P + Q
s̄

P ′ + Q

Q
s̄

Q′

P + Q
s̄

P + Q′

P
α

P ′

P r̂
α

P ′
P

s̄
P ′

P r̂
s̄

P ′ r̂

P
s̄

P ′

A
s̄

A
(A

def
= P)

of labels by L := Act
.∪ S̄ , where S̄ := {s̄ | s ∈ S }. A relabelling is a function

f : (S → S) ∪ (Ch → Ch). It extends to L by f(c̄) = f(c) for c ∈ Ch ∪ S and
f(τ) := τ . The set PCCSS of CCSS expressions is defined just as PCCS, but now
also P ŝ is a process for P ∈PCCSS and s∈S, and restriction also covers signals.

The semantics of CCSS is given by the labelled transition relation → ⊆
PCCSS × L × PCCSS derived from the rules of CCS (Table 1), where now η, �
range over L , α over Act, c over Ch ∪S and L ⊆ Ch ∪S , augmented with the
rules of Table 3. The first rule is the base case showing that a process P ŝ emits
the signal s. The rule below models the fact that signalling cannot prevent a
process from making progress.

The original semantics of CCSS [6] featured unary predicates P �s on pro-
cesses to model that P emits the signal s; here, inspired by [3], these predicates
are represented as transitions P s̄ P . Whereas this leads to a simpler opera-
tional semantics, the price paid is that these new signal transitions need special
treatment in the definition of justness—cf. Definitions 2 and 5.

3.4 Using Signals to Avoid Negative Premises in ABC

Finally, we present an alternative operational semantics ABCd of ABC that
avoids negative premises. The price to be paid is the introduction of signals
that indicate when a state does not admit a receive action.3 To this end, let
B: := {b: | b ∈ B} be the set of broadcast discards, and L := B:

.∪ Act the
set of transition labels, with Act as in Sect. 3.2. The semantics is given by the
labelled transition relation → ⊆ PABC × L × PABC derived from the rules of
CCS (Table 1), where now c ranges over Ch ∪ C̄h, η over Ch ∪ C̄h ∪ {τ}, α over
Act and � over L , augmented with the rules of Table 4.

Lemma 1. [25] P b: Q iff Q = P ∧ P b?�− , for P,Q ∈ PABC and b ∈ B.

So the structural operational semantics of ABC from Sects. 3.2 and 3.4 yield the
same labelled transition relation −→ when transitions labelled b: are ignored.
This approach stems from the Calculus of Broadcasting Systems (CBS) [25].

3 A state P admits an action α ∈ Act if there exists a transition P Qα
.

514 R. van Glabbeek

Table 4. SOS of ABC broadcast communication with discard transitions

0 b: 0 α.P b: α.P (α �=b?)
P b: P ′, Q b: Q′

P + Q b: P ′ + Q′

P b�1 P ′, Q b�2 Q′

P |Q b� P ′|Q′ �1◦�2=� = with

◦ ! ? :
! ! !
? ! ? ?
: ! ? :

P b: P ′

A b: A
(A

def
= P)

4 An LTS with Concurrency for CCS and Its Extensions

The forthcoming material applies to each of the process algebras from Sect. 3,
or combinations thereof. Let P be the set of processes in the language.

We allocate an LTS as in Definition 1 to these languages by taking S to be
the set P of processes, and Tr the set of derivations t of transitions P

�−→ Q with
P,Q ∈ P. Of course src(t) = P , target(t) = Q and �(t) = �. Here a derivation of a
transition P

�−→ Q is a well-founded tree with the nodes labelled by transitions,
such that the root has label P

�−→ Q, and if μ is the label of a node and K is
the set of labels of the children of this node then K

μ is an instance of a rule of
Tables 1, 2, 3 and 4.

We take Rec := B? in ABC and ABCd: broadcast receipts can always be
blocked by the environment, namely by not broadcasting the requested message.
For CCS and CCSS we take Rec := ∅, thus allowing environments that can
always participate in certain handshakes, and/or always emit certain signals.

Following [15], we give a name to any derivation of a transition: The unique
derivation of the transition α.P α P using the rule (Act) is called α→P . The
unique derivation of the transition P ŝ

s̄−→ P ŝ is called P→s. The derivation
obtained by application of (Comm) or (Bro-c) on the derivations t and u of
the premises of that rule is called t|u. The derivation obtained by application of
(Par-l) or (Bro-l) on the derivation t of the (positive) premise of that rule,
and using process Q at the right of |, is t|Q. In the same way, (Par-r) and
(Bro-r) yield P |u, whereas (Sum-l), (Sum-r), (Res), (Rel) and (Rec) yield
t+Q, P+t, t\L, t[f] and A:t. These names reflect syntactic structure: t|P �= P |t
and (t|u)|v �= t|(u|v).

Table 3, moreover, contributes derivations t̂ r. The derivations obtained by
application of the rules of Table 4 are called b:0, b:α.P , t +u, t|u and A:t, where
t and u are the derivations of the premises.

Synchrons. Let Arg := {+L,+R, |L, |R, \L, [f], A:, r̂ | L ⊆ Ch ∧ f a relabelling ∧
A ∈ A ∧ r ∈ S }. A synchron is an expression σ(α→P) or σ(P→s) or σ(b:) with
σ ∈ Arg∗, α ∈ Act, s ∈ S , P ∈ P and b ∈ B. An argument ι ∈ Arg is applied
componentwise to a set Σ of synchrons: ι(Σ) := {ις | ς ∈ Σ}.

Justness 515

The set of synchrons ς(t) of a derivation t of a transition is defined by

ς(α→P) = {(α→P)} ς(t + Q) = +Lς(t) ς(P + t) = +Rς(t)
ς(t|Q) = |Lς(t) ς(t|u) = |Lς(t) ∪ |Rς(u) ς(P |u) = |Rς(u)
ς(t\L) = \L ς(t) ς(t[f]) = [f]ς(t) ς(A:t) = A:ς(t)
ς(P→s) = {(P→s)} ς(t̂ r) = r̂ ς(t)
ς(b:0) = {(b:)} ς(b:α.P) = {(b:)} ς(t + v) = +Lς(t) ∪ +Rς(v)

Thus, a synchron of t represents a path in the proof-tree t from its root to a leaf.
Each transition derivation can be seen as the synchronisation of one or more
synchrons. Note that we use the symbol ς as a variable ranging over synchrons,
and as the name of a function—context disambiguates.

Example 3. The CCS process P =
((

c.Q + (d.R|e.S)
)|c̄.T) \c has 3 outgoing

transitions: , and .
Let tτ , td and te ∈ Tr be the unique derivations of these transitions. Then
tτ is a synchronisation of two synchrons, whereas td and te ∈ Tr have only
one each: ς(tτ) = {\c |L +L(c→Q), \c |R(c̄→T)}, ς(td) = {\c |L +R |L(d→R)} and
ς(te) = {\c |L +R |R(e→S)}. The derivations td and te ∈ Tr can be seen as concur-
rent, because their synchrons come from opposite sides of the same parallel com-
position; one would expect that after one of them occurs, a variant of the other
is still possible. Indeed, there is a transition .
Let t′d be its unique derivation. The derivation td and t′d are surely differ-
ent, for they have a different source state. Even their synchrons are different:
ς(t′d) = {\c |L |L(d→R)}. Nevertheless, t′d can be recognised as a future variant of
td: its only synchron has merely lost an argument +R. This choice got resolved
when taking the transition te.

We proceed to formalise the concepts “future variant” and “concurrent” that
occur above, by defining two binary relations � ⊆ Tr• ×Tr• and �• ⊆ Tr• ×Tr
such that the following properties hold:

The relation � is reflexive and transitive. (4)

If t � t′ and t �• v, then t′ �• v. (5)

If t �• v with src(t) = src(v) then ∃t′ with src(t′) = target(v) and t � t′. (6)

If t � t′ then �(t′) = �(t) and t ��• t′. (7)

With t �• v we mean that the possible occurrence of t is unaffected by the
occurrence of v. Although for CCS the relation �• is symmetric (and Tr• = Tr),
for ABC and CCSS it is not:

Example 4 ([15]). Let P be the process b!|(b? + c), and let t and v be the
derivations of the b!- and c-transitions of P . The broadcast b! is in our view
completely under the control of the left component; it will occur regardless of
whether the right component listens to it or not. It so happens that if b! occurs
in state P , the right component will listen to it, thereby disabling the possible
occurrence of c. For this reason we have t �• v but v ��• t.

516 R. van Glabbeek

Example 5. Let P be the process â s|s, and let t and v be the derivations of
the a- and τ -transitions of P . The occurrence of a disrupts the emission of the
signal s, thereby disabling the τ -transition. However, reading the signal does not
affect the possible occurrence of a. For this reason we have t �• v but v ��• t.

Proposition 1. Assume (4)–(7). Then the LTS (P,Tr, src, target, �), augmented
with the concurrency relation �•, is an LTSC in the sense of Definition 4.

We now proceed to define the relations � and �• on synchrons, and then
lift them to derivations. Subsequently, we establish (4)–(7).

The elements +L, +R, A: and r̂ of Arg are called dynamic [20]; the others are
static. (Static operators stay around when their arguments perform transitions.)
For σ ∈ Arg∗ let static(σ) be the result of removing all dynamic elements from
σ. For ς = συ with υ ∈ {(α→P), (P→s), (b:)} let static(ς) := static(σ)υ.

Definition 6. A synchron ς ′ is a possible successor of a synchron ς, notation
ς � ς ′, if either ς ′ = ς, or ς has the form σ1|Dς2 for some σ1 ∈ Arg∗, D ∈ {L,R}
and ς2 a synchron, and ς ′ = static(σ1)|Dς2.

Definition 7. Two synchrons ς and υ are directly concurrent, notation ς �d υ,
if ς has the form σ1|Dς2 and υ = σ1|Eυ2 with {D,E} = {L,R}. Two synchrons
ς ′ and υ′ are concurrent, notation ς ′ � υ′, if ∃ς,υ. ς ′ �ς �d υ � υ′.

Necessary and Active Synchrons. All synchrons of the form σ(α→P) are active;
their execution causes a transition α.P

α−→ P in the relevant component of the
represented system. Synchrons σ(P→s) and σ(b:) are passive; they are not affect-
ing any state change. Let aς(t) denote the set of active synchrons of a derivation
t. So a transition t is labelled by a signal, i.e. �(t) /∈ Act, iff aς(t) = ∅.

Whether a synchron ς ∈ ς(t) is necessary for t to occur is defined only for
t ∈ Tr•. If t is the derivation of a broadcast transition, i.e., �(t) = b! for some
b ∈ B, then exactly one synchron υ ∈ ς(t) is of the form σ(b!→P), while all the
other ς ∈ ς(t) are of the form σ′(b?→Q) (or possibly σ′(b:) in ABCd). Only the
synchron υ is necessary for the broadcast to occur, as a broadcast is unaffected
by whether or not someone listens to it. Hence we define nς(t) := {υ}. For all
t ∈ Tr• with �(t) /∈ B! (i.e. �(t) ∈ S ∪ Ch ∪ C̄h ∪ {τ}) we set nς(t) := ς(t),
thereby declaring all synchrons of the derivation necessary.

Definition 8. A derivation t′ ∈ Tr• is a possible successor of a derivation t ∈
Tr•, notation t � t′, if t and t′ have equally many necessary synchrons and each
necessary synchron of t′ is a possible successor of one of t; i.e., if |nς(t)| = |nς(t′)|
and ∀ς ′ ∈ nς(t′).∃ς ∈ nς(t). ς � ς ′.

This implies that the relation � between nς(t) and nς(u) is a bijection.

Definition 9. Derivation t ∈ Tr• is unaffected by u, notation t �• u, if ∀ς ∈
nς(t).∀υ ∈ aς(u). ς � υ.

Justness 517

So t is unaffected by u if no active synchron of u interferes with a necessary
synchron of t. Passive synchrons do not interfere at all.

In Example 3 one has td � te, td � t′d and t′d � te. Here t � u denotes
t �• u ∧ u �• t.

Proposition 2. The relations � and �• satisfy the properties (4)–(7).

5 Components

This section proposes a concept of system components associated to a transi-
tion, with a classification of components as necessary and/or affected. We then
define a concurrency relation �•

s in terms of these components closely mirroring
Definition 9 in Sect. 4 of the concurrency relation �• in terms of synchrons. We
show that �• and �•

s, as well as the concurrency relation defined in terms of
components in Sect. 2, give rise to the same concept of justness.

A static component is a string σ ∈ Arg∗ of static arguments. Let C be the
set of static components. The static component c(ς) of a synchron ς is defined
to be the largest prefix γ of ς that is a static component.

Let comp(t) := {c(ς) | ς ∈ ς(t)} be the set of static components of t. Moreover,
npc(t) := {c(ς) | ς ∈ nς(t)} and afc(t) := {c(ς) | ς ∈ aς(t)} are the necessary
and affected static components of t ∈ Tr. Since nς(t) ⊆ ς(t) and aς(t) ⊆ ς(t), we
have npc(t) ⊆ comp(t) and afc(t) ⊆ comp(t).

Two static components γ and δ are concurrent, notation γ � δ, if γ = σ1|Dγ2
and δ = σ1|Eδ2 with {D,E} = {L,R}.

Definition 10. Derivation t ∈ Tr• is statically unaffected by u, t �•
s u, iff

∀γ ∈ npc(t).∀δ ∈ afc(u). γ � δ.

Proposition 3. If t �•
s u then t �• u.

In Example 3 we have td � te but td ��s te, for npc(te) = comp(te) = comp(td) =
afc(td) = {\c |L}. Here t �s u denotes t �•

s u ∧ u �•
s t. Hence the implication

of Proposition 3 is strict.

Proposition 4. The functions npc and afc : Tr → P(C) satisfy closure prop-
erty (3) of Sect. 2.

The concurrency relation �•
c defined in terms of static components according

to the template in [16], recalled in Sect. 2, is not identical to �•
s:

Definition 11. Let t, u be derivations. Write t �•
c u iff npc(t) ∩ afc(u) = ∅.

Nevertheless, we show that for the study of justness it makes no difference
whether justness is defined using the concurrency relation �•, �•

s or �•
c.

Theorem 2. A path is �•-B-just iff it is �•
c-B-just iff it is �•

s-B-just.

518 R. van Glabbeek

6 A Coinductive Characterisation of Justness

In this section we show that the �•-based concept of justness defined in this
paper coincides with a coinductively defined concept of justness, for CCS and
ABC originating from [15]. To state the coinductive definition of justness, we
need to define the notion of the decomposition of a path starting from a process
with a leading static operator.

Any derivation t ∈ Tr of a transition with src(t) = P |Q has the shape

– u|Q, with target(t) = target(u)|Q,
– u|v, with target(t) = target(u)|target(v),
– or P |v, with target(t) = P |target(v).

Let a path of a process P be a path as in Definition 2 starting with P . Now the
decomposition of a path π of P |Q into paths π1 and π2 of P and Q, respectively,
is obtained by concatenating all left-projections of the states and transitions of π
into a path of P and all right-projections into a path of Q—notation π � π1|π2.
Here it could be that π is infinite, yet either π1 or π2 (but not both) are finite.

Likewise, t ∈ Tr with src(t) = P [f] has the shape u[f] with target(t) =
target(u)[f]. The decomposition π′ of a path π of P [f] is the path obtained
by leaving out the outermost [f] of all states and transitions in π, notation
π � π′[f]. In the same way one defines the decomposition of a path of P\c.

The following co-inductive definition of the family B-justness of predicates
on paths, with one family member of each choice of a set B of blocking actions,
stems from [15, Appendix E]—here D̄ := {c̄ | c ∈ D}.

Definition 12. B-justness, for B? ⊆ B ⊆ Act, is the largest family of predi-
cates on the paths in the LTS of ABC such that

– a finite B-just path ends in a state that admits actions from B only;
– a B-just path of a process P |Q can be decomposed into a C-just path of P

and a D-just path of Q, for some C,D ⊆ B such that τ ∈ B ∨ C∩D̄ = ∅;
– a B-just path of P\L can be decomposed into a B ∪ L ∪ L̄-just path of P ;
– a B-just path of P [f] can be decomposed into an f−1(B)-just path of P ;
– and each suffix of a B-just path is B-just.

Intuitively, justness is a completeness criterion, telling which paths can actually
occur as runs of the represented system. A path is B-just if it can occur in an
environment that may block the actions in B. In this light, the first, third, fourth
and fifth requirements above are intuitively plausible. The second requirement
first of all says that if π � π1|π2 and π can occur in the environment that
may block the actions in B, then π1 and π2 must be able to occur in such
an environment as well, or in environments blocking less. The last clause in this
requirement prevents a C-just path of P and a D-just path of Q to compose into
a B-just path of P |Q when C contains an action c and D the complementary
action c̄ (except when τ ∈ B). The reason is that no environment (except one
that can block τ -actions) can block both actions for their respective components,
as nothing can prevent them from synchronising with each other.

Justness 519

The fifth requirement helps characterising processes of the form b+(A|b) and
a.(A|b), with A

def
= a.A. Here, the first transition ‘gets rid of’ the choice and of

the leading action a, respectively, and this requirement reduces the justness of
paths of such processes to their suffixes.

Example 6. To illustrate Definition 12 consider the unique infinite path of the
process Alice|Cataline of Example 2 in which the transition t does not occur.
Taking the empty set of blocking actions, we ask whether this path is ∅-just. If
it were, then by the second requirement of Definition 12 the projection of this
path on the process Cataline would need to be ∅-just as well. This is the path 1
(without any transitions) in Example 1. It is not ∅-just by the first requirement
of Definition 12, because its last state 1 admits a transition.

We now establish that the concept of justness from Definition 12 agrees with the
concept of justness defined earlier in this paper.

Theorem 3. A path is �•
s-B-just iff it is B-just in the sense of Definition 12.

If a path π is B-just then it is C-just for any C ⊇ B. Moreover, the collection
of sets B such that a given path π is B-just is closed under arbitrary intersection,
and thus there is a least set Bπ such that π is B-just. Actions α ∈ Bπ are called
π-enabled [14]. A path is called just (without a predicate B) iff it is B-just
for some B? ⊆ B ⊆ B?

.∪ Ch

.∪ C̄h

.∪ S [3,6,14,15], which is the case iff it is
B?
.∪ Ch

.∪ C̄h

.∪ S -just.
In [3] a definition of justness for CCS with signal transition appears, very

similar to Definition 12; it also applies to CCSS as presented here. Generalising
Theorem 3, one can show that a path is (�•

s or �•
c or) �•-just iff it is just in

this sense. The same holds for the coinductive definition of justness from [6].

7 Conclusion

We advocate justness as a reasonable completeness criterion for formalising live-
ness properties when modelling distributed systems by means of transition sys-
tems. In [16] we proposed a definition of justness in terms of a, possibly asym-
metric, concurrency relation between transitions. The current paper defined such
a concurrency relation for the transition systems associated to CCS, as well as
its extensions with broadcast communication and signals, thereby making the
definition of justness from [16] available to these languages. In fact, we pro-
vided three versions of the concurrency relation, and showed that they all give
rise to the same concept of justness. We expect that this style of definition will
carry over to many other process algebras. We showed that justness satisfies the
criterion of feasibility, and proved that our formalisation agrees with previous
coinductive formalisations of justness for these languages.

Concurrency relations between transitions in transition systems have been
studied in [28]. Our concurrency relation �• follows the same computational
intuition. However, in [28] transitions are classified as concurrent or not only

520 R. van Glabbeek

when they have the same source, whereas as a basis for the definition of justness
here we need to compare transitions with different sources. Apart from that, our
concurrency relation is more general in that it satisfies fewer closure properties,
and moreover is allowed to be asymmetric.

Concurrency is represented explicitly in models like Petri nets [26], event
structures [29], or asynchronous transition systems [2,27,30]. We believe that the
semantics of CCS in terms of such models agrees with its semantics in terms of
labelled transition systems with a concurrency relation as given here. However,
formalising such a claim requires a choice of an adequate justness-preserving
semantic equivalence defined on the compared models. Development of such
semantic equivalences is a topic for future research.

Acknowledgement. I am grateful to Peter Höfner, Victor Dyseryn and Filippo de
Bortoli for valuable feedback.

References

1. Apt, K.R., Francez, N., Katz, S.: Appraising fairness in languages for distributed
programming. Distrib. Comput. 2(4), 226–241 (1988). https://doi.org/10.1007/
BF01872848

2. Bednarczyk, M.: Categories of asynchronous systems. Ph.D. thesis, Computer Sci-
ence, University of Sussex, Brighton (1987)

3. Bouwman, M.S.: Liveness analysis in process algebra: simpler techniques to model
mutex algorithms. Technical report, Eindhoven University of Technology (2018).
http://www.win.tue.nl/∼timw/downloads/bouwman seminar.pdf

4. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of global
progress properties for dynamically interleaved multiparty sessions. In: De Nicola,
R., Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38493-6 4

5. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J. ACM
42(2), 458–487 (1995). https://doi.org/10.1145/201019.201032

6. Dyseryn, V., van Glabbeek, R.J., Höfner, P.: Analysing mutual exclusion using
process algebra with signals. In: Peters, K., Tini, S. (eds.) Proceedings of the
Combined 24th International Workshop on Expressiveness in Concurrency and
14th Workshop on Structural Operational Semantics, Electronic Proceedings in
Theoretical Computer Science 255. Open Publishing Association, pp. 18–34 (2017).
https://doi.org/10.4204/EPTCS.255.2

7. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize
synchronization skeletons. Sci. Comput. Program. 2(3), 241–266 (1982). https://
doi.org/10.1016/0167-6423(83)90017-5

8. Emerson, E.A., Halpern, J.Y.: ‘Sometimes’ and ‘Not Never’ revisited: on branching
time versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://
doi.org/10.1145/4904.4999

9. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks. In: Seidl, H. (ed.) ESOP 2012. LNCS,
vol. 7211, pp. 295–315. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28869-2 15

https://doi.org/10.1007/BF01872848
https://doi.org/10.1007/BF01872848
http://www.win.tue.nl/~timw/downloads/bouwman_seminar.pdf
https://doi.org/10.1007/978-3-642-38493-6_4
https://doi.org/10.1145/201019.201032
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1007/978-3-642-28869-2_15
https://doi.org/10.1007/978-3-642-28869-2_15

Justness 521

10. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: A process algebra for wireless mesh networks used for modelling, verifying
and analysing AODV. Technical report 5513, NICTA (2013). http://arxiv.org/abs/
1312.7645

11. van Glabbeek, R.J.: Structure preserving bisimilarity, supporting an operational
petri net semantics of CCSP. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Cor-
rect System Design. LNCS, vol. 9360, pp. 99–130. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23506-6 9. http://arxiv.org/abs/1509.05842

12. van Glabbeek, R.J.: Ensuring Liveness Properties of Distributed Systems (A
Research Agenda). Position paper (2016). http://arxiv.org/abs/org/abs/1711.
04240

13. van Glabbeek, R.J.: Justness: a completeness criterion for capturing liveness prop-
erties. Technical report, Data61, CSIRO (2018). http://www.cse.unsw.edu.au/
∼rvg/synchrons.pdf. Full version of the present paper

14. van Glabbeek, R.J., Höfner, P.: CCS: It’s not fair! Acta Inform. 52(2–3), 175–205
(2015). https://doi.org/10.1007/s00236-015-0221-6

15. van Glabbeek, R.J., Höfner, P.: Progress, fairness and justness in process algebra.
Technical report 8501, NICTA (2015). http://arxiv.org/abs/1501.03268

16. van Glabbeek, R.J., Höfner, P.: Progress, justness and fairness. Survey paper,
Data61, CSIRO, Sydney, Australia (2018). https://arxiv.org/abs/1810.07414

17. Kuiper, R., de Roever, W.-P.: Fairness assumptions for CSP in a temporal logic
framework. In: Bjørner, D. (ed.) Formal Description of Programming Concepts II,
North-Holland, pp. 159–170 (1983)

18. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977). https://doi.org/10.1109/TSE.1977.229904

19. Lamport, L.: Fairness and hyperfairness. Distrib. Comput. 13(4), 239–245 (2000).
https://doi.org/10.1007/PL00008921

20. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

21. Misra, J.: A Rebuttal of Dijkstra’s position on fairness (1988). http://www.cs.
utexas.edu/users/misra/Notes.dir/fairness.pdf

22. Misra, J.: A Discipline of Multiprogramming—Programming Theory for Dis-
tributed Applications. Springer, New York (2001). https://doi.org/10.1007/978-
1-4419-8528-6

23. Owicki, S.S., Lamport, L.: Proving liveness properties of concurrent programs.
ACM TOPLAS 4(3), 455–495 (1982). https://doi.org/10.1145/357172.357178

24. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS 1977), pp. 46–57. IEEE
(1977). https://doi.org/10.1109/SFCS.1977.32

25. Prasad, K.V.S.: A calculus of broadcasting systems. In: Abramsky, S., Maibaum,
T.S.E. (eds.) CAAP 1991. LNCS, vol. 493, pp. 338–358. Springer, Heidelberg
(1991). https://doi.org/10.1007/3-540-53982-4 19

26. Reisig, W.: Understanding Petri Nets—Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

27. Shields, M.W.: Concurrent machines. Comput. J. 28(5), 449–465 (1985). https://
doi.org/10.1093/comjnl/28.5.449

28. Stark, E.W.: Concurrent transition systems. Theor. Comput. Sci. 64(3), 221–269
(1989). https://doi.org/10.1016/0304-3975(89)90050-9

http://arxiv.org/abs/1312.7645
http://arxiv.org/abs/1312.7645
https://doi.org/10.1007/978-3-319-23506-6_9
https://doi.org/10.1007/978-3-319-23506-6_9
http://arxiv.org/abs/org/abs/1711.04240
http://arxiv.org/abs/org/abs/1711.04240
http://www.cse.unsw.edu.au/~rvg/synchrons.pdf
http://www.cse.unsw.edu.au/~rvg/synchrons.pdf
https://doi.org/10.1007/s00236-015-0221-6
http://arxiv.org/abs/1501.03268
https://arxiv.org/abs/1810.07414
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1007/PL00008921
https://doi.org/10.1007/3-540-10235-3
http://www.cs.utexas.edu/users/misra/Notes.dir/fairness.pdf
http://www.cs.utexas.edu/users/misra/Notes.dir/fairness.pdf
https://doi.org/10.1007/978-1-4419-8528-6
https://doi.org/10.1007/978-1-4419-8528-6
https://doi.org/10.1145/357172.357178
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-53982-4_19
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1093/comjnl/28.5.449
https://doi.org/10.1093/comjnl/28.5.449
https://doi.org/10.1016/0304-3975(89)90050-9

522 R. van Glabbeek

29. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986, Part II. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987).
https://doi.org/10.1007/3-540-17906-2 31

30. Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, Chap. 1, 4: Semantic
Modelling, pp. 1–148. Oxford University Press, Oxford (1995)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-17906-2_31
http://creativecommons.org/licenses/by/4.0/

Path Category for Free

Open Morphisms from Coalgebras
with Non-deterministic Branching

Thorsten Wißmann1(B) , Jérémy Dubut2,3, Shin-ya Katsumata2,
and Ichiro Hasuo2,4

1 Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
thorsten.wissmann@fau.de

2 National Institute of Informatics, Tokyo, Japan
{dubut,s-katsumata,hasuo}@nii.ac.jp

3 Japanese-French Laboratory for Informatics, Tokyo, Japan
4 SOKENDAI, Hayama, Kanagawa, Japan

Abstract. There are different categorical approaches to variations of
transition systems and their bisimulations. One is coalgebra for a functor
G, where a bisimulation is defined as a span of G-coalgebra homomor-
phism. Another one is in terms of path categories and open morphisms,
where a bisimulation is defined as a span of open morphisms. This simi-
larity is no coincidence: given a functor G, fulfilling certain conditions, we
derive a path-category for pointed G-coalgebras and lax homomorphisms,
such that the open morphisms turn out to be precisely the G-coalgebra
homomorphisms. The above construction provides path-categories and
trace semantics for free for different flavours of transition systems: (1)
non-deterministic tree automata (2) regular nondeterministic nominal
automata (RNNA), an expressive automata notion living in nominal sets
(3) multisorted transition systems. This last instance relates to Lasota’s
construction, which is in the converse direction.

Keywords: Coalgebra · Open maps · Categories · Nominal sets

1 Introduction

Coalgebras [25] and open maps [16] are two main categorical approaches to tran-
sition systems and bisimulations. The former describes the branching type of
systems as an endofunctor, a system becoming a coalgebra and bisimulations
being spans of coalgebra homomorphisms. Coalgebra theory makes it easy to
consider state space types in different settings, e.g. nominal sets [17,18] or alge-
braic categories [5,11,20]. The latter, open maps, describes systems as objects of

This research was supported by ERATO HASUO Metamathematics for Systems Design
Project (No. JPMJER1603), JST. The first author was supported by the DFG project
MI 717/5-1. He expresses his gratitude for having been invited to Tokyo, which initiated
the present work.

c© The Author(s) 2019
M. Bojańczyk and A. Simpson (Eds.): FOSSACS 2019, LNCS 11425, pp. 523–540, 2019.
https://doi.org/10.1007/978-3-030-17127-8_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17127-8_30&domain=pdf
http://orcid.org/0000-0001-8993-6486
https://doi.org/10.1007/978-3-030-17127-8_30

524 T. Wißmann et al.

Table 1. Two approaches to categorical (bi)simulations

a category and the execution types as particular objects called paths. In this case,
bisimulations are spans of open morphisms. Open maps are particularly adapted
to extend bisimilarity to history dependent behaviors, e.g. true concurrency [7,8],
timed systems [22] and weak (bi)similarity [9]. Coalgebra homomorphisms and
open maps are then key concepts to describe bisimilarity categorically. They
intuitively correspond to functional bisimulations, that is, those maps between
states whose graph is a bisimulation.

We are naturally interested in the relationship between those two categor-
ical approaches to transition systems and bisimulations. A reduction of open
maps situations to coalgebra was given by Lasota using multi-sorted transition
systems [19]. In this paper, we give the reduction in the other direction: from
the category Coalgl(TF) of pointed TF -coalgebras and lax homomorphisms, we
construct the path-category Path and a functor J : Path −→ Coalgl(TF) such
that Path-open morphisms coincide with strict homomorphisms, hence functional
bisimulations. Here, T is a functor describing the branching behaviour and F
describes the input type, i.e. the type of data that is processed (e.g. words or
trees). This development is carried out with the case where T is a powerset-like
functor, and covers transition systems allowing non-deterministic branching.

The key concept in the construction of Path are F -precise maps. Roughly
speaking in set, a map f : X −→FY is F -precise if every y ∈ Y is used precisely
once in f , i.e. there is a unique x such that y appears in f(x) and addition-
ally y appears precisely once in f(x). Such an F -precise map represents one
deterministic step (of shape F). Then a path P ∈ Path is a finite sequence of
deterministic steps, i.e. finitely many precise maps. J converts such a data into
a pointed TF -coalgebra. There are many existing notions of paths and traces in
coalgebra [4,12,13,21], which lack the notion of precise map, which is crucial for
the present work.

Once we set up the situation J : Path −→ Coalgl(TF), we are on the frame-
work of open map bisimulations. Our construction of Path using precise maps
is justified by the characterisation theorem: Path-open morphisms and strict
coalgebra homomorphisms coincide (Theorems 3.20 and 3.24). This coincidence
relies on the concept of path-reachable coalgebras, namely, coalgebras such that
every state can be reached by a path. Under mild conditions, path-reachability
is equivalent to an existing notion in coalgebra, defined as the non-existence of
a proper sub-coalgebra (Sect. 3.5). Additionally, this characterization produces
a canonical trace semantics for free, given in terms of paths (Sect. 3.6).

Path Category for Free 525

We illustrate our reduction with several concrete situations: different classes
of non-deterministic top-down tree automata using analytic functors (Sect. 4.1),
Regular Nondeterministic Nominal Automata (RNNA), an expressive automata
notion living in nominal sets (Sect. 4.2), multisorted transition systems, used in
Lasota’s work to construct a coalgebra situation from an open map situation
(Sect. 4.3).

Notation. We assume basic categorical knowledge and notation (see e.g. [1,3]).
The cotupling of morphisms f : A → C, g : B → C is denoted by [f, g] : A+B →
C, and the unique morphsim to the terminal object is ! : X → 1 for every X.

2 Two Categorical Approaches for Bisimulations

We introduce the two formalisms involved in the present paper: the open maps
(Sect. 2.1) and the coalgebras (Sect. 2.2). Those formalisms will be illustrated on
the classic example of Labelled Transition Systems (LTSs).

Definition 2.1. Fix a set A, called the alphabet. A labelled transition system is
a triple (S, i,Δ) with S a set of states, i ∈ S the initial state, and Δ ⊆ S×A×S

the transition relation. When Δ is obvious from the context, we write s
a−→ s′

to mean (s, a, s′) ∈ Δ.

For instance, the tuple ({0, · · · , n}, 0, {(k − 1, ak, k) | 1 ≤ k ≤ n}) is an LTS,
and called the linear system over the word a1 · · · an ∈ A�. To relate LTSs, one
considers functions that preserves the structure of LTSs:

Definition 2.2. A morphism of LTSs from (S, i,Δ) to (S′, i′,Δ′) is a function
f : S −→ S′ such that f(i) = i′ and for every (s, a, s′) ∈ Δ, (f(s), a, f(s′)) ∈ Δ′.
LTSs and morphisms of LTSs form a category, which we denote by LTSA.

Some authors choose other notions of morphisms (e.g. [16]), allowing them
to operate between LTSs with different alphabets for example. The usual way
of comparing LTSs is by using simulations and bisimulations [23]. The for-
mer describes what it means for a system to have at least the behaviours of
another, the latter describes that two systems have exactly the same behaviours.
Concretely:

Definition 2.3. A simulation from (S, i,Δ) to (S′, i′,Δ′) is a relation R ⊆
S × S′ such that (1) (i, i′) ∈ R, and (2) for every s

a−→ t and (s, s′) ∈ R, there
is t′ ∈ S′ such that s′ a−→ t′ and (t, t′) ∈ R. Such a relation R is a bisimulation
if R−1 = {(s′, s) | (s, s′) ∈ R} is also a simulation.

Morphisms of LTSs are functional simulations, i.e. functions between states
whose graph is a simulation. So how to model (1) systems, (2) functional simu-
lations and (3) functional bisimulations categorically? In the next two sections,
we will describe known answers to this question, with open maps and coalgebra.
In both cases, it is possible to capture similarity and bisimilarity of two LTSs T

526 T. Wißmann et al.

and T ′. Generally, a simulation is a (jointly monic) span of a functional bisim-
ulation and a functional simulation, and a bisimulation is a simulation whose
converse is also a simulation, as depicted in Table 1. Consequently, to under-
stand similarity and bisimilarity on a general level, it is enough to understand
functional simulations and bisimulations.

2.1 Open Maps

The categorical framework of open maps [16] assumes functional simulations to
be already modeled as a category M. For example, for M := LTSA, objects are
LTSs, and morphisms are functional simulations. Furthermore, the open maps
framework assumes another category P of ‘paths’ or ‘linear systems’, together
with a functor J that tells how a ‘path’ is to be understood as a system:

Definition 2.4 [16]. An open map situation is given by categories M (‘systems’
with ‘functional simulations’) and P (‘paths’) together with a functor J : P → M.

For example with M := LTSA, we pick P := (A�,≤) to be the poset of words over
A with prefix order. Here, the functor J maps a word w ∈ A� to the linear system
over w, and w ≤ v to the evident functional simulation J(w ≤ v) : Jw −→ Jv.

In an open map situation J : P−→M, we can abstractly represent the concept
of a run in a system. A run of a path w ∈ P in a system T ∈ M is simply defined
to be an M-morphism of type Jw −→ T . With this definition, each M-morphism
h : T −→ T ′ (i.e. functional simulation) inherently transfers runs: given a run
x : Jw −→ T , the morphism h · x : Jw −→ T ′ is a run of w in T ′. In the example
open map situation J : (A�,≤) −→ LTSA, a run of a path w = a1 · · · an ∈ A�

in an LTS T = (S, i,Δ) is nothing but a sequence of states x0, . . . , xn ∈ S such
that x0 = i and xk−1

ak−→ xk holds for all 1 ≤ k ≤ n.
We introduce the concept of open map [16]. This is an abstraction of the

property posessed by functional bisimulations. For LTSs T = (S, i,Δ) and T ′ =
(S′, i′,Δ′), an LTSA-morphism h : T −→ T ′ is a functional bisimulation if the
graph of h is a bisimulation. This implies the following relationship between
runs in T and runs in T ′. Suppose that w ≤ w′ holds in A�, and a run x of w
in T is given as in (1); here n,m are lengths of w,w′ respectively. Then for any
run y′ of w′ in T ′ extending h · x as in (2), there is a run x′ of w′ extending x,
and moreover its image by h coincides with y′ (that is, h · x′ = y′). Such x′ is
obtained by repetitively applying the condition of functional bisimulation.

→
x

︷ ︸︸ ︷

i
w1−−→ x1

w2−−→ · · · wn−−→ xn

w′
n+1−−−→ x′

n+1

w′
n+2−−−→ · · · w′

m−−→ x′
m

︸ ︷︷ ︸

x′

(in T) (1)

→ i′ w1−−→ h(x1)
w2−−→ · · · wn−−→ h(xn)

w′
n+1−−−→ y′

n+1

wn+2−−−→ · · · w′
m−−→ y′

m
︸ ︷︷ ︸

y′

(in T ′) (2)

Observe that y′ extending h · x can be represented as y′ · J(w ≤ w′) = h · x,
and x′ extending x as x′ · J(w ≤ w′) = x. From these, we conclude that if an

Path Category for Free 527

LTSA-morphism h : T −→ T ′ is a functional bisimulation, then for any w ≤ w′

in A� and run x : Jw −→ T and y′ : Jw′ −→ T ′ such that y′ · J(w ≤ w′) = h · x,
there is a run x′ : Jw′ −→ T such that x′ · J(w ≤ w′) = x and h · x′ = y′ (the
converse also holds if all states of T are reachable). This necessary condition of
functional bisimulation can be rephrased in any open map situation, leading us
to the definition of open map.

Definition 2.5 [16]. Let J : P−→M be an open map situation.
An M-morphism h : T −→ T ′ is said to be open if for every
morphism Φ : w −→ w′ ∈ P making the square on the right
commute, there is x′ making the two triangles commute.

Jw T

Jw′ T ′

x

JΦ h

y′
∃x

′

Open maps are closed under composition and stable under pullback [16].

2.2 Coalgebras

The theory of G-coalgebras is another categorical framework to study bisimu-
lations. The type of systems is modelled using an endofunctor G : C −→ C and
a system is then a coalgebra for this functor, that is, a pair of an object S
of C (modeling the state space), and of a morphism of type S −→ GS (mod-
eling the transitions). For example for LTSs, the transition relation is of type
Δ ⊆ S×A×S. Equivalently, this can be defined as a function Δ : S −→ P(A×S),
where P is the powerset. In other words, the transition relation is a coalgebra for
the Set-functor P(A×). Intuitively, this coalgebra gives the one-step behaviour
of an LTS: S describes the state space of the system, P describes the ‘branch-
ing type’ as being non-deterministic, A × S describe the ‘computation type’ as
being linear, and the function itself lists all possible futures after one-step of
computation of the system. Now, changing the underlying category or the end-
ofunctor allows to model different types of systems. This is the usual framework
of coalgebra, as described for example in [25].

Initial states are modelled coalgebraically by a pointing to the carrier i : I−→
S for a fixed object I in C, describing the ‘type of initial states’ (see e.g. [2,
Sec. 3B]). For example, an initial state of an LTS is the same as a function from
the singleton set I := {∗} to the state space S. This object I will often be the
final object of C, but we will see other examples later. In total, an I-pointed G-
coalgebra is a C-object S together with morphisms α : S −→ GS and i : I −→ S.
E.g. an LTS is an I-pointed G-coalgebra for I = {∗} and GX = P(A × X).

In coalgebra, functional bisimulations are the first class citizens to be mod-
elled as homomorphisms. The intuition is that those preserve the initial state,
and preserve and reflect the one-step relation.

Definition 2.6. An I-pointed G-coalgebra homomorphism

from I
i−→ S

α−→ GS to I
i′

−→ S′ α′
−−→ GS′ is a morphism

f : S −→ S′ making the right-hand diagram commute.

I S GS

S′ GS′

i

i′

α

f Gf

α′

528 T. Wißmann et al.

For instance, when G = P(A ×), one can easily see that a function f is a
G-coalgebra homomorphism iff it is a functional bisimulation. Thus, if we want
to capture functional simulations in LTSs, we need to weaken the condition of
homomorphism to the inequality Gf(α(s)) ⊆ α′(f(s)) (instead of equality). To
express this condition for general G-coalgebras, we introduce a partial order
�X,Y on each homset C(X,GY) in a functorial manner.

Definition 2.7. A partial order on G-homsets is a functor � : Cop × C−→ Pos
such that U · � = C(, G); here, U : Pos−→ Set is the forgetful functor from
the category Pos of posets and monotone functions.

The functoriality of � amounts to that f1 � f2 implies Gh · f1 · g � Gh · f2 · g.

Definition 2.8. Given a partial order on G-homsets, an
I-pointed lax G-coalgebra homomorphism f : (S, α, i) −→
(S′, α′, i′) is a morphism f : S−→S′ making the right-hand
diagram commute. The I-pointed G-coalgebras and lax
homomorphisms form a category, denoted by Coalgl(I,G).

I S GS

S′ GS′

i

i′

α

f

�

Gf

α′

Conclusion 2.9. In Set, with I = {∗}, G = P(A×), define the order f � g in
Set(X,P(A×Y)) iff for every x ∈ X, f(x) ⊆ g(x). Then Coalgl({∗},P(A×)) =
LTSA. In particular, we have an open map situation

P = (A�,≤) J−→ M = LTSA = Coalgl({∗},P(A ×))

and the open maps are precisely the coalgebra homomorphisms (for reachable
LTSs). In this paper, we will construct a path category P for more general I and
G, such that the open morphisms are precisely the coalgebra homomorphisms.

3 The Open Map Situation in Coalgebras

Lasota’s construction [19] transforms an open map situation J : P −→ M into
a functor G (with a partial order on G-homsets), together with a functor
Beh : M −→ Coalgl(I,G) that sends open maps to G-coalgebra homomorphisms
(see Sect. 4.3 for details). In this paper, we provide a construction in the converse
direction for functors G of a certain shape.

As exemplified by LTSs, it is a common pattern that G is the composition
G = TF of two functors [12], where T is the branching type (e.g. partial, or
non-deterministic) and F is the data type, or the ‘linear behaviour’ (words,
trees, words modulo α-equivalence). If we instantiate our path-construction to
T = P and F = A × , we obtain the known open map situation for LTSs
(Conclusion 2.9).

Fix a category C with pullbacks, functors T, F : C −→ C, an object I ∈ C
and a partial order �T on T -homsets. They determine a coalgebra situation
(C, I, TF,�) where � is the partial order on TF -homsets defined by �X,Y =
�T

X,FY . Under some conditions on T and F , we construct a path-category
Path(I, F +1) and an open map situation Path(I, F +1) ↪→ Coalgl(I, TF) where
TF -coalgebra homomorphisms and Path(I, F + 1)-open morphisms coincide.

Path Category for Free 529

x1

x2

x3

x4

X

y1

y2

y3

y4

Y

x1

x2

x3

x4

X

y′
1

y′
2

y′
3

y′
4

Y ′

y1

y2

y3

y4

Y

⊥

⊥

⊥

⊥

f f ′ h

Fig. 1. A non-precise map f that factors through the F -precise f ′ : X−→Y ′×Y ′+{⊥}

3.1 Precise Morphisms

While the path category is intuitively clear for FX = A × X, it is not for inner
functors F that model tree languages. For example for FX = A+X ×X, a PF -
coalgebra models transition systems over binary trees with leaves labelled in A,
instead of over words. Hence, the paths should be these kind of binary trees. We
capture the notion of tree like shape (“every node in a tree has precisely one
route to the root”) by the following abstract definition:

Definition 3.1. For a functor F : C −→ C, a morphism s : S −→ FR is called
F -precise if for all f, g, h the following implication holds:

S FC

FR FD

f

s Fh
Fg

∃d=⇒
S FC

FR

f

s
Fd

&
C

R D

h
g

d

Remark 3.2. If F preserves weak pullbacks, then a morphism s is F -precise iff
it fulfils the above definition for g = id.

Example 3.3. Intuitively speaking, for a polynomial Set-functor F , a map
s : S → FR is F -precise iff every element of R is mentioned precisely once
in the definition of the map f . For example, for FX = A × X + {⊥}, the case
needed later for LTSs, a map f : X −→ FY is precise iff for every y ∈ Y , there
is a unique pair (x, a) ∈ X ×A such that f(x) = (a, y). For FX = X ×X + {⊥}
on Set, the map f : X −→FY in Fig. 1 is not F -precise, because y2 is used three
times (once in f(x2) and twice in f(x3)), and y3 and y4 do not occur in f at
all. However, f ′ : X −→ FY ′ is F -precise because every element of Y ′ is used
precisely once in f ′, and we have that Fh · f ′ = f . Also note that f ′ defines a
forest where X is the set of roots, which is closely connected to the intuition
that, in the F -precise map f ′, from every element of Y ′, there is precisely one
edge up to a root in X.

So when transforming a non-precise map into a precise map, one duplicates
elements that are used multiple times and drops elements that are not used.
We will cover functors F for which this factorization pattern provides F -precise

530 T. Wißmann et al.

maps. If F involves unordered structure, this factorization needs to make choices,
and so we restrict the factorization to a class S of objects that have that choice-
principle (see Example 4.5 later):

Definition 3.4. Fix a class of objects S ⊆ objC closed under
isomorphism. We say that F admits precise factorizations
w.r.t. S if for every f : S → FY with S ∈ S, there exist Y ′ ∈ S,
h : Y ′ → Y and f ′ : S → FY ′ F -precise with Fh · f ′ = f .

S FY ′

FY

∀f

∃f ′

Fh

∗
P0

P1

P2 P3
P4

a

a

⊥ ⊥

⊥

p0

p1
p2 p3

Fig. 2. A path of length 4 for FX = {a} × X + X × X + {⊥} with I = {∗}.

For C = Set, S contains all sets. However for the category of nominal sets, S
will only contain the strong nominal sets (see details in Subsect. 4.2).

Remark 3.5. Precise morphisms are essentially unique. If f1 : X −→ FY1 and
f2 : X −→FY2 are F -precise and if there is some h : Y1 −→Y2 with Fh · f1 = f2,
then h is an isomorphism. Consequently, if f : S −→FY with S ∈ S is F -precise
and F -admits precise factorizations, then Y ∈ S.

Functors admitting precise factorizations are closed under basic constructions:

Proposition 3.6. The following functors admit precise factorizations w.r.t. S:
1. Constant functors, if C has an initial object 0 and 0 ∈ S.
2. F · F ′ if F : C −→ C and F ′ : C −→ C do so.
3.

∏

i∈I

Fi, if all (Fi)i∈I do so and S is closed under I-coproducts.

4.
∐

i∈I

Fi, if all (Fi)i∈I do so, C is I-extensive and S is closed under I-

coproducts.
5. Right-adjoint functors, if and only if its left-adjoint preserves S-objects.
Example 3.7. When C is infinitary extensive and S is closed under coproducts,
every polynomial endofunctor F : C −→ C admits precise factorizations w.r.t. S.
This is in particular the case for C = S = Set. In this case, we shall see later
(Sect. 4.1) that many other Set-functors, e.g. the bag functor B, where B(X) is
the set of finite multisets, have precise factorizations. In contrast, F = P does
not admit precise factorizations, and if f : X −→PY is P-precise, then f(x) = ∅
for all x ∈ X.

Path Category for Free 531

3.2 Path Categories in Pointed Coalgebras

We define a path for I-pointed TF -coalgebras as a tree according to F . Following
the observation in Example 3.3, one layer of the tree is modelled by a F -precise
morphism and hence a path in a TF -coalgebra is defined to be a finite sequence
of (F + 1)-precise maps, where the + 1 comes from the dead states w.r.t. T ;
the argument is given later in Remark 3.23 when reachability is discussed. Since
the + 1 is not relevant yet, we define Path(I, F) in the following and will use
Path(I, F + 1) later. For simplicity, we write Xn for finite families (Xk)0≤k<n.

Definition 3.8. The category Path(I, F) consists of the following. An object
is (P n+1,pn) for an n ∈ N with P0 = I and pn a family of F -precise maps
(pk : Pk −→ FPk+1)k<n. We say that (P n+1,pn) is a path of length n. A mor-
phism φn+1 : (P n+1,pn)−→(Qm+1, qm), m ≥ n, is a family (φk : Pk−→Qk)k≤n

with φ0 = idI and qk · φk = Fφk+1 · pk for all 0 ≤ k ≤ n.

Example 3.9. Paths for FX = A × X + 1 and I = {∗} singleton are as follows.
First, a map f : I −→ FX is precise iff (up-to isomorphism) either X = I and
f(∗) = (a, ∗) for some a ∈ A; or X = ∅ and f(∗) = ⊥. Then a path is isomorphic
to an object of the form: Pi = I for i ≤ k, Pi = ∅ for i > k, pi(∗) = (ai, ∗) for
i < k, and pk(∗) = ⊥. A path is the same as a word, plus some “junk”, concretely,
a word in A�.⊥�. For LTSs, an object in Path(I, F) with FX = A×X is simply
a word in A�. For a more complicated functor, Fig. 2 depicts a path of length
4, which is a tree for the signature with one unary, one binary symbol, and a
constant. The layers of the tree are the sets P 4. Also note that since every pi is
F -precise, there is precisely one route to go from every element of a Pk to ∗.

Remark 3.10. The inductive continuation of Remark 3.5 is as follows. Given a
morphism φn+1 in Path(I, F), since φ0 is an isomorphism, then φk is an isomor-
phism for all 0 ≤ k ≤ n. If F admits precise factorizations and if I ∈ S, then for
every path (P n+1,pn), all Pk, 0 ≤ k ≤ n, are in S.

Remark 3.11. If in Definition 3.4, the connecting morphism h : Y ′−→Y uniquely
exists, then it follows by induction that the hom-sets of Path(I, F) are at most
singleton. This is the case for all polynomial functors, but not the case for the
bag functor on sets (discussed in Subsect. 4.1).

Definition 3.12. The path poset PathOrd(I, F) is the set
∐

0≤n C(I, Fn1) equipped with the order: for u : I −→ Fn1 and
v : I −→ Fm1, we define u ≤ v if n ≤ m and Fn(!) · v = u.

FnFm−n1

I Fn1

Fn!
v

u

So u ≤ v if u is the truncation of v to n levels. This matches the morphisms in
Path(I, F) that witnesses that one path is prefix of another:

Proposition 3.13. 1. The functor Comp : Path(I, F)−→PathOrd(I, F) defined

by I = P0
p0→ FP1 · · · → FnPn

Fn!→ Fn1 on (P n+1,pn) is full, and reflects isos.
2. If F admits precise factorizations w.r.t. S and I ∈ S, then Comp is sujective.
3. If additionally h in Definition 3.4 is unique, then Comp has a right-inverse.

532 T. Wißmann et al.

In particular, PathOrd(I, F) is Path(I, F) up to isomorphism. In the
instances, it is often easier to characterize PathOrd(I, F). This also shows that
Path(I, F) contains the elements – understood as morphisms from I – of the

finite start of the final chain of F : 1 !←− F1 F !←− F 21 F 2!←−− F 31 ←− · · · .

Example 3.14. When FX = A × X + 1, Fn1 is isomorphic to the set of words
in A�.⊥� of length n. Consequently, PathOrd(I, F) is the set of words in A�.⊥�,
equipped with the prefix order. In this case, Comp is an equivalence of categories.

3.3 Embedding Paths into Pointed Coalgebras

The paths (P n+1,pn) embed into Coalgl(I, TF) as one expects it for examples
like Fig. 2: one takes the disjoint union of the Pk, one has the pointing I = P0

and the linear structure of F is embedded into the branching type T .
During the presentation of the results, we require T , F , and I to have cer-

tain properties, which will be introduced one after the other. The full list of
assumptions is summarized in Table 2:

(Ax1) – The main theorem will show that coalgebra homomorphisms in
Coalgl(I, TF) are the open maps for the path category Path(I, F + 1). So from
now on, we assume that C has finite coproducts and to use the results from
the previous sections, we fix a class S ⊆ objC such that F + 1 admits precise
factorizations w.r.t. S and that I ∈ S.

(Ax2) – Recall, that a family of morphisms (ei : Xi −→ Y)i∈I with common
codomain is called jointly epic if for f, g : Y −→Z we have that f ·ei = g ·ei ∀i ∈ I
implies f = g. For Set, this means, that every element y ∈ Y is in the image
of some ei. Since we work with partial orders on T -homsets, we also need the
generalization of this property if f � g are of the form Y −→ TZ ′.

(Ax3) – In this section, we encode paths as a pointed coalgebra by construct-
ing a functor J : Path(I, F +1) ↪→ Coalgl(I, TF). For that we need to embed the
linear behaviour FX + 1 into TFX. This is done by a natural transformation
[η,⊥] : Id +1 −→ T , and we require that ⊥ : 1 −→ T is a bottom element for �.

Example 3.15. For the case where T is the powerset functor P, η is given by the
unit ηX(x) = {x}, and ⊥ is given by empty sets ⊥X(∗) = ∅.

Definition 3.16. We have an inclusion functor J : Path(I, F + 1) ↪→
Coalgl(I, TF) that maps a path (P n+1,pn) to an I-pointed TF -coalgebra on
∐

P n+1 :=
∐

0≤k≤n Pk. The pointing is given by in0 : I = P0 −→ ∐

P n+1 and
the structure by:

∐

0≤k<n

Pk + Pn
[(F ink+1+1)·pk]0≤k<n+!−−−−−−−−−−−−−−−−→ F

∐

P n+1 + 1
[η,⊥]−−−→ TF

∐

P n+1.

Example 3.17. In the case of LTSs, a path, or equivalently a word a1...ak.⊥...⊥ ∈
A�.⊥�, is mapped to the finite linear system over a1...ak (see Sect. 2.1), seen as
a coalgebra (see Sect. 2.2).

Path Category for Free 533

Proposition 3.18. Given a morphism [xk]k≤n :
∐

P n+1−→X for some system
(X, ξ, x0) and a path (P n+1,pn), we have

J(P n+1,pn)
[xk]k≤n−−−−−→ (X, ξ, x0)

a run in Coalgl(I, TF)
⇐⇒ ∀k < n :

Pk X

FPk+1 + 1 FX + 1 TFX.

xk

pk ξFxk+1+1 �
[η,⊥]X

Also note that the pointing x0 of the coalgebra is necessarily the first component
of any run in it. In a run [xk]k≤n, pk corresponds to an edge from xk to xk+1.

Example 3.19. For LTSs, since the Pk are singletons, xk just picks the kth state
of the run. The right-hand side of this lemma describes that this is a run iff there
is a transition from the kth state and the (k + 1)−th state.

3.4 Open Morphisms Are Exactly Coalgebra Homomorphisms

In this section, we prove our main contribution, namely that Path(I, F + 1)-
open maps in Coalgl(I, TF) are exactly coalgebra homomorphisms. For the first
direction of the main theorem, that is, that coalgebra homomorphisms are open,
we need two extra axioms:

(Ax4) – describing that the order on C(X,TY) is point-wise. This holds for
the powerset because every set is the union of its singleton subsets.

(Ax5) – describing that C(X,TY) admits a choice-principle. This holds for
the powerset because whenever y ∈ h[x] for a map h : X −→ Y and x ⊆ X, then
there is some {x′} ⊆ x with h(x′) = y.

Theorem 3.20. Under the assumptions of Table 2, a coalgebra homomorphism
in Coalgl(I, TF) is Path(I, F + 1)-open.

Table 2. Main assumptions on F, T : C −→ C, �T , S ⊆ objC

F (Ax1) F + 1 admits precise factorizations, w.r.t. S and I ∈ S
T (Ax2) If (ei : Xi −→ Y)i∈I jointly epic, then f · ei � g · ei for all i ∈ I ⇒ f � g.

(Ax3) [η, ⊥] : Id+1 −→ T , with ⊥Y ·!X � f for all f : X −→ TY

(Ax4) For every f : X −→ TY , X ∈ S,
f =

⊔{[η, ⊥]Y · f ′ � f | f ′ : X −→ Y + 1}

(Ax5) ∀A ∈ S
A TX

Y + 1 TY

x

y � Th

[η,⊥]Y

∃x′
=⇒

A

X + 1
TX

Y + 1 TY

x

x′

y

�

[η,⊥]X

h+1
Th

[η,⊥]Y

The converse is not true in general, because intuitively, open maps reflect
runs, and thus only reflect edges of reachable states, as we have seen in Sect. 2.1.
The notion of a state being reached by a path is the following:

534 T. Wißmann et al.

Definition 3.21. A system (X, ξ, x0) is path-reachable if the family of runs
[xk]k≤n : J(P n+1,pn)−→(X, ξ, x0) (of paths from Path(I, F +1)) is jointly epic.

Example 3.22. For LTSs, this means that every state in X is reached by a run,
that is, there is a path from the initial state to every state of X.

Remark 3.23. In Definition 3.21, it is crucial that we consider Path(I, F +1) and
not Path(I, F) for functors incorporating ‘arities ≥ 2’. This does not affect the
example of LTSs, but for I = 1, FX = X × X and T = P in Set, the coalge-
bra (X, ξ, x0) on X = {x0, y1, y2, z1, z2} given by ξ(x0) = {(y1, y2)}, ξ(y1) =
{(z1, z2)}, ξ(y2) = ξ(z1) = ξ(z2) = ∅ is path-reachable for Path(I, F +1). There
is no run of a length 2 path from Path(I, F), because y2 has no successors, and
so there is no path to z1 or to z2.

Theorem 3.24. Under the assumptions of Table 2, if (X, ξ, x0) is path-
reachable, then an open morphism h : (X, ξ, x0) −→ (Y, ζ, y0) is a coalgebra
homomorphism.

3.5 Connection to Other Notions of Reachability

There is another concise notion for reachability in the coalgebraic literature [2].

Definition 3.25. A subcoalgebra of (X, ξ, x0) is a coalgebra homomorphism
h : (Y, ζ, y0) −→ (X, ξ, x0) that is carried by a monomorphism h : X � Y . Fur-
thermore (X, ξ, x0) is called reachable if it has no proper subcoalgebra, i.e. if any
subcoalgebra h is an isomorphism.

Under the following assumptions, this notion coincides with the path-based def-
inition of reachability (Definition 3.21).

Assumption 3.26. For the present Subsect. 3.5, let C be cocomplete, have
(epi,mono)-factorizations and wide pullbacks of monomorphisms.

The first direction follows directly from Theorem 3.20:

Proposition 3.27. Every path-reachable (X, ξ, x0) has no proper subcoalgebra.

For the other direction it is needed that TF preserves arbitrary intersections,
that is, wide pullbacks of monomorphisms. In Set, this means that for a family
(Xi ⊆ Y)i∈I of subsets we have

⋂

i∈I TFXi = TF
⋂

i∈I Xi as subsets of TFY .

Proposition 3.28. If, furthermore, for every monomorphism m : Y −→ Z, the
function C(−, Tm) : C(X,TY) −→ C(X,TZ) reflects joins and if TF pre-
serves arbitrary intersections, then a reachable coalgebra (X, ξ, x0) is also path-
reachable.

All those technical assumptions are satisfied in the case of LTSs, and will also
be satisfied in all our instances in Sect. 4.

Path Category for Free 535

3.6 Trace Semantics for Pointed Coalgebras

The characterization from Theorems 3.20 and 3.24 points out a natural way
of defining a trace semantics for pointed coalgebras. Indeed, the paths category
Path(I, F +1) provides a natural way of defining the runs of a system. A possible
way to go from runs to trace semantics is to describe accepting runs as the
subcategory J ′ : Path(I, F) ↪→ Path(I, F +1). We can define the trace semantics
of a system (X, ξ, xo) as the set:

tr(X, ξ, x0) = {Comp(P n+1,pn) |∃ run [xk]k≤n : JJ ′(P n+1,pn) −→ (X, ξ, x0)
with (P n+1,pn) ∈ Path(I, F)}

Since Path(I, F)-open maps preserve and reflect runs, we have the following:

Corollary 3.29. tr : Coalgl(I, TF)−→(P(PathOrd(I, F)),⊆) is a functor and if
f : (X, ξ, x0) −→ (Y, ζ, y0) is Path(I, F +1)-open, then tr(X, ξ, x0) = tr(Y, ζ, y0).

Let us look at two LTS-related examples (we will describe some others in the
next section). First, for FX = A × X. The usual trace semantics is given by
all the words in A� that are labelled of a run of a system. This trace semantics
is obtained because PathOrd(I, F) =

∐

n≥0 An and because Comp maps every
path to its underlying word. Another example is given for FX = A × X + {�},
where � marks final states. In this case, a path in Path(I, F) of length n is either
a path that can still be extended or encodes less than n steps to an accepting
state �. This obtains the trace semantics containing the set of accepted words,
as in automata theory, plus the set of possibly infinite runs.

4 Instances

4.1 Analytic Functors and Tree Automata

In Example 3.7, we have seen that every polynomial Set-functors, in particular
the functor X �→ A × X, has precise factorizations with respect to all sets.
This allowed us to see LTSs, modelled as {∗}-pointed P(A ×)-coalgebra, as
an instance of our theory. This allowed us in particular to describe their trace
semantics using our path category in Sect. 3.6. This can be extended to tree
automata as follows. Assume given a signature Σ, that is, a collection (Σn)n∈N

of disjoint sets. When σ belongs to Σn, we say that n is the arity of σ or
that σ is a symbol of arity n. A top-down non-deterministic tree automata as
defined in [6] is then the same as a {∗}-pointed PF -coalgebra where F is the
polynomial functor X �→ ∐

σ∈Σn
Xn. For this functor, Fn(1) is the set of trees

over Σ�{∗(0)} of depth at most n+1 such that a leaf is labelled by ∗ if and only
if it is at depth n + 1. Intuitively, elements of Fn(1) are partial runs of length
n that can possibly be extended. Then, the trace semantics of a tree automata,
seen as a pointed coalgebra, is given by the set of partial runs of the automata.
In particular, this contains the set of accepted finite trees as those partial runs

536 T. Wißmann et al.

without any ∗, and the set of accepted infinite trees, encoded as the sequence of
their truncations of depth n, for every n.

In the following, we would like to extend this to other kinds of tree automata
by allowing some symmetries. For example, in a tree, we may not care about
the order of the children. This boils down to quotient the set Xn of n-tuples, by
some permutations of the indices. This can be done generally given a subgroup
G of the permutation group Sn on n elements by defining Xn/G as the quotient
of Xn under the equivalence relation: (x1, . . . , xn) ≡G (y1, . . . , yn) iff there is
π ∈ G such that for all i, xi = yπ(i). Concretely, this means that we replace the
polynomial functor F by a so-called analytic functor :

Definition 4.1 [14,15]. An analytic Set-functor is a functor of the form FX =
∐

σ∈Σn
Xn/Gσ where for every σ ∈ Σn, we have a subgroup Gσ of the permuta-

tion group Sn on n elements.

Example 4.2. Every polynomial functor is analytic. The bag-functor is analytic,
with Σ = ({∗})n∈N has one operation symbol per arity and Gσ = Sar(σ) is
the full permutation group on ar(σ) elements. It is the archetype of an analytic
functor, in the sense that for every analytic functor F : Set−→ Set, there is a
natural transformation into the bag functor α : F −→ B. If F is given by Σ and
Gσ as above, then αX is given by

FX =
∐

σ∈Σn
Xn/Gσ �

∐

σ∈Σn
Xn/Sn → ∐

n∈N Xn/Sn = BX.

Proposition 4.3. For an analytic Set-functor F , the following are equivalent
(1) a map f : X−→FY is F -precise, (2) αY ·f is B-precise, (3) every element
of Y appears precisely once in the definition of f , i.e. for every y ∈ Y , there is
exactly one x in X, such that f(x) is the equivalence class of a tuple (y1, . . . , yn)
where there is an index i, such that yi = y; and furthermore this index is unique.
So every analytic functor has precise factorizations w.r.t. Set.

4.2 Nominal Sets: Regular Nondeterministic Nominal Automata

We derive an open map situation from the coalgebraic situation for regular
nondeterministic nominal automata (RNNAs) [26]. They are an extension of
automata to accept words with binders, consisting of literals a ∈ A and binders
|a for a ∈ A; the latter is counted as length 1. An example of such a word of length
4 is a|cbc, where the last c is bound by |c. The order of binders makes difference:
|a|bab �= |a|bba. RNNAs are coalgebraically represented in the category of nomi-
nal sets [10], a formalism about atoms (e.g. variables) that sit in more complex
structures (e.g. lambda terms), and gives a notion of binding. Because the choice
principles (Ax4) and (Ax5) are not satisfied by every nominal sets, we instead
use the class of strong nominal sets for the precise factorization (Definition 3.4).

Definition 4.4 [10,24]. Fix a countably infinite set A, called the set of atoms.
For the group Sf(A) of finite permutations on the set A, a group action (X, ·)
is a set X together with a group homomorphism · : Sf(A) −→ Sf(X), written in

Path Category for Free 537

infix notation. An element x ∈ X is supported by S ⊆ A, if for all π ∈ Sf(A)
with π(a) = a ∀a ∈ S we have π · x = x. A nominal set is a group action
for Sf(A) such that every x ∈ X is finitely supported, i.e. supported by a finite
S ⊆ A. A map f : (X, ·) −→ (Y,
) is equivariant if for all x ∈ X and π ∈ Sf(A)
we have f(π · x) = π
 f(x). The category of nominal sets and equivariant maps
is denoted by Nom. A nominal set (X, ·) is called strong if for all x ∈ X and
π ∈ Sf(A) with π · x = x we have π(a) = a for all a ∈ supp(x).

Intuitively, the support of an element is the set of free literals. An equivariant
map can forget some of the support of an element, but can never introduce new
atoms, i.e. supp(f(x)) ⊆ supp(x). The intuition behind strong nominal sets is
that all atoms appear in a fixed order, that is, An is strong, but Pf(A) (the finite
powerset) is not. We set S to be the class of strong nominal sets:

Example 4.5. The Nom-functor of unordered pairs admits precise factorizations
w.r.t. strong nominal sets, but not w.r.t. all nominal sets.

In the application, we fix the set I = A#n of distinct n-tuples of atoms (n ≥ 0)
as the pointing. The hom-sets Nom(X,PufsY) are ordered point-wise.

Proposition 4.6. Uniformly finitely supported powerset Pufs(X) = {Y ⊆ X |
⋃

y∈Y supp(y) finite} satisfies (Ax2-5) w.r.t. S the class of strong nominal sets.1

As for F , we study an LTS-like functor, extended with the binding functor [10]:

Definition 4.7. For a nominal set X, define the α-equivalence relation ∼α on
A× X by: (a, x) ∼α (b, y) ⇔ ∃c ∈ A \ supp(x) \ supp(y) with (a c) · x = (b c) · y.
Denote the quotient by [A]X := A × X/∼α. The assignment X �→ [A]X extends
to a functor, called the binding functor [A] : Nom−→Nom.

RNNA are precisely PufsF -coalgebras for FX = {�} + [A]X + A × X [26]. In
this paper we additionally consider initial states for RNNAs.

Proposition 4.8. The binding functor [A] admits precise factorizations w.r.t.
strong nominal sets and so does FX = {�} + [A]X + A × X.

An element in PathOrd(A#n, F) may be regarded as a word with binders
under a context a � w, where a ∈ A#n, all literals in w are bound or in a, and w
may end with �. Moreover, two word-in-contexts a � w and a′ � w′ are identified
if their closures are α-equivalent, that is, |a1 · · · |an

w = |a′
1
· · · |a′

n
w′. The trace

semantics of a RNNA T contains all the word-in-contexts corresponding to runs
in T . This trace semantics distinguishes whether words are concluded by �.

4.3 Subsuming Arbitrary Open Morphism Situations

Lasota [19] provides a translation of a small path-category P ↪→ M into a func-
tor F : SetobjP −→SetobjP defined by F

(

XP

)

P
= (

∏

Q∈P

(P(XQ))P(P,Q)
)

P∈P
.

1 There are two variants of powersets discussed in [26]. The finite powerset Pf also
fulfils the axioms. However, finitely supported powerset Pfs does not fulfil (Ax5).

538 T. Wißmann et al.

So the hom-sets SetobjP(X,FY) have a canonical order, namely the point-wise
inclusion. This admits a functor Beh from M to F-coalgebras and lax coalgebra
homomorphisms, and Lasota shows that f ∈ M(X,Y) is P-open iff Beh(f) is
a coalgebra homomorphism. In the following, we show that we can apply our
framework to F by a suitable decomposition F = TF and a suitable object I for
the initial state pointing. As usual in open map papers, we require that P and
M have a common initial object 0P. Observe that we have F = T · F where

T (XP)P∈P =
(P(XP)

)

P∈P
and F (XP)P∈P =

(∐

Q∈PP(P,Q) × XQ

)

P∈P
.

Lasota considers coalgebras without pointing, but one indeed has a canonical
pointing as follows. For P ∈ P, define the characteristic family χP ∈ SetobjP by
χP

Q = 1 if P = Q and χP
Q = ∅ if P �= Q. With this, we fix the pointing I = χ0P .

Proposition 4.9. T , F and I satisfy the axioms from Table 2, with S =
SetobjP.

The path category in Coalgl(I, TF) from our theory can be described as follows.

Proposition 4.10. An object of Path(I, F) is a sequence of composable P-mor-
phisms 0P

m1−−→ P1
m2−−→ P2 · · · mn−−→ Pn.

5 Conclusions and Further Work

We proved that coalgebra homomorphisms for systems with non-deterministic
branching can be seen as open maps for a canonical path-category, constructed
from the computation type F . This limitation to non-deterministic systems is
unsurprising: as we have proved in Sect. 4.3 on Lasota’s work [19], every open
map situation can been encoded as a coalgebra situation with a powerset-like
functor, so with non-deterministic branching. As a future work, we would like to
extend this theory of path-categories to coalgebras for further kinds of branching,
especially probabilistic and weighted. This will require (1) to adapt open maps
to allow those kinds of branching (2) adapt the axioms from Table 2, by replacing
the “+1” part of (Ax1) to something depending on the branching type.

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy
of cats. online and enhanced edition of the book published in 1990 by John Wiley
and Sons (2004). http://katmat.math.uni-bremen.de/acc/acc.pdf

2. Adámek, J., Milius, S., Moss, L.S., Sousa, L.: Well-pointed coalgebras. Logical
Methods Comput. Sci. 9(3), 1–51 (2013)

3. Awodey, S.: Category Theory, 2nd edn. Oxford University Press, Inc., New York
(2010)

4. Beohar, H., Küpper, S.: On path-based coalgebras and weak notions of bisimula-
tion. In: 7th Conference on Algebra and Coalgebra in Computer Science, CALCO
2017, Ljubljana, Slovenia, 12–16 June 2017, pp. 6:1–6:17 (2017). https://doi.org/
10.4230/LIPIcs.CALCO.2017.6

http://katmat.math.uni-bremen.de/acc/acc.pdf
https://doi.org/10.4230/LIPIcs.CALCO.2017.6
https://doi.org/10.4230/LIPIcs.CALCO.2017.6

Path Category for Free 539

5. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R.,
Nestmann, U. (eds.) 28th International Conference on Concurrency Theory (CON-
CUR 2017), Dagstuhl, Germany, vol. 85, pp. 23:1–23:18 (2017). https://doi.org/
10.4230/LIPIcs.CONCUR.2017.23

6. Comon, H., et al.: Tree Automata Techniques and Applications (2007). http://
tata.gforge.inria.fr

7. Dubut, J., Goubault, É., Goubault-Larrecq, J.: Natural homology. In: Halldórsson,
M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015, Part II.
LNCS, vol. 9135, pp. 171–183. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47666-6 14

8. Fahrenberg, U., Legay, A.: History-preserving bisimilarity for higher-dimensional
automata via open maps. Electron. Notes Theor. Comput. Sci. 298, 165–178 (2013)

9. Fiore, M.P., Cattani, G.L., Winskel, G.: Weak bisimulation and open maps. In:
14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), pp.
67–76 (1999)

10. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax involving binders.
In: Longo, G. (ed.) Proceedings of the Fourteenth Annual IEEE Symposium on
Logic in Computer Science, LICS 1999, pp. 214–224. IEEE Computer Society Press
(1999)

11. Hansen, H.H., Klin, B.: Pointwise extensions of GSOS-defined operations. Math.
Struct. Comput. Sci. 21(1), 321–361 (2011)

12. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical
Methods Comput. Sci. 3(4), 1–36 (2007)

13. Jacobs, B., Sokolova, A.: Traces, executions and schedulers, coalgebraically. In:
Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 206–
220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 15

14. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42(1), 1–82
(1981)

15. Joyal, A.: Foncteurs analytiques et espèces de structures. In: Labelle, G., Leroux,
P. (eds.) Combinatoire énumérative. LNM, vol. 1234, pp. 126–159. Springer, Hei-
delberg (1986). https://doi.org/10.1007/BFb0072514

16. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput.
127, 164–185 (1996)

17. Kozen, D., Mamouras, K., Petrişan, D., Silva, A.: Nominal Kleene coalgebra. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015,
Part II. LNCS, vol. 9135, pp. 286–298. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47666-6 23

18. Kurz, A., Petrisan, D., Severi, P., de Vries, F.: Nominal coalgebraic data types
with applications to lambda calculus. Logical Methods Comput. Sci. 9(4) (2013).
https://doi.org/10.2168/LMCS-9(4:20)2013

19. Lasota, S.: Coalgebra morphisms subsume open maps. Theor. Comput. Sci. 280(1),
123–135 (2002)

20. Milius, S.: A sound and complete calculus for finite stream circuits. In: Proceedings
of the 25th Annual Symposium on Logic in Computer Science (LICS 2010), pp.
449–458 (2010)

21. Milius, S., Pattinson, D., Schröder, L.: Generic trace semantics and graded mon-
ads. In: Moss, L.S., Sobocinski, P. (eds.) Proceedings of 6th Conference on Algebra
and Coalgebra in Computer Science, CALCO 2015. Leibniz International Proceed-
ings in Informatics, vol. 35, pp. 253–269 (2015). http://www8.cs.fau.de/ media/
research:papers:traces-gm.pdf

https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
https://doi.org/10.4230/LIPIcs.CONCUR.2017.23
http://tata.gforge.inria.fr
http://tata.gforge.inria.fr
https://doi.org/10.1007/978-3-662-47666-6_14
https://doi.org/10.1007/978-3-662-47666-6_14
https://doi.org/10.1007/978-3-642-03741-2_15
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1007/978-3-662-47666-6_23
https://doi.org/10.1007/978-3-662-47666-6_23
https://doi.org/10.2168/LMCS-9(4:20)2013
http://www8.cs.fau.de/_media/research:papers:traces-gm.pdf
http://www8.cs.fau.de/_media/research:papers:traces-gm.pdf

540 T. Wißmann et al.

22. Nielsen, M., Hune, T.: Bisimulation and open maps for timed transition systems.
Fundam. Inform. 38, 61–77 (1999)

23. Park, D.: Concurrency and automata on infinite sequences. Theor. Comput. Sci.
104, 167–183 (1981)

24. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press, Cam-
bridge (2013)

25. Rutten, J.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249(1),
3–80 (2000)

26. Schröder, L., Kozen, D., Milius, S., Wißmann, T.: Nominal automata with
name binding. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 124–142. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 8

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-662-54458-7_8
http://creativecommons.org/licenses/by/4.0/

Author Index

Akshay, S. 260
Alcolei, Aurore 27
Alvarez-Picallo, Mario 45

Baier, Christel 436
Barlocco, Simone 62
Ben-Amram, Amir M. 80
Biernacki, Dariusz 98
Bollig, Benedikt 115
Bouyer, Patricia 115

Cadilhac, Michaël 133
Castellan, Simon 150
Clairambault, Pierre 27
Colcombet, Thomas 1
Corradini, Andrea 169

Dartois, Luc 189
Doumane, Amina 207
Dubut, Jérémy 224, 523

Echenim, Mnacho 242

Fijalkow, Nathanaël 1
Filiot, Emmanuel 189

Gupta, Utkarsh 260

Hamilton, Geoff W. 80
Hasuo, Ichiro 523
Hausmann, Daniel 277
Heindel, Tobias 169
Hofman, Piotr 260
Hugunin, Jasper 295

Iosif, Radu 242

Jacobs, Bart 313

Katsumata, Shin-ya 523
Kerjean, Marie 330
Kissinger, Aleks 313
König, Barbara 169

Kuperberg, Denis 207
Kupke, Clemens 62
Kuske, Dietrich 348

Laurent, Olivier 27
Lenglet, Sergueï 98
Leventis, Thomas 365
Lucas, Christophe 418

Maneth, Sebastian 488
Matache, Cristina 382
Milius, Stefan 400
Mio, Matteo 418

Nolte, Dennis 169

Ong, C.-H. Luke 45

Pacaud Lemay, Jean-Simon 330
Pagani, Michele 365
Palenta, Raphaela 488
Peltier, Nicolas 242
Pérez, Guillermo A. 133
Piribauer, Jakob 436
Piróg, Maciej 453
Polesiuk, Piotr 98, 453
Pous, Damien 207
Pradic, Pierre 207, 470

Reiter, Fabian 115
Rensink, Arend 169
Riba, Colin 470
Rot, Jurriaan 62

Schröder, Lutz 277
Seidl, Helmut 488
Shah, Preey 260
Sieczkowski, Filip 453
Staton, Sam 382

Talbot, Jean-Marc 189

Urbat, Henning 400

van den Bogaard, Marie 133
van Glabbeek, Rob 505

Wißmann, Thorsten 523

Yoshida, Nobuko 150

Zanasi, Fabio 313
Zetzsche, Georg 348

542 Author Index

	ETAPS Foreword
	Preface
	Organization
	Contents
	Universal Graphs and Good for Games Automata: New Tools for Infinite Duration Games
	1 Introduction
	2 Games and automata
	2.1 Games
	2.2 Memory of strategies
	2.3 Automata
	2.4 Automata for solving games

	3 Efficiently solving games
	3.1 Good for small games automata
	3.2 The case of memoryless winning conditions
	3.3 Maximal graphs

	4 The case of parity conditions
	4.1 Parity and cycles
	4.2 The shape and size of universal graphs for parity games

	References

	Resource-Tracking Concurrent Games
	1 Introduction
	2 From R-IPA to R-Strategies
	2.1 Affine IPA
	2.2 Interleaving Cost Semantics, and R-IPA
	2.3 Non-interleaving Semantics

	3 Concurrent Game Semantics of IPA
	3.1 Arenas and R-Strategies
	3.2 Interpretation of R-IPA
	3.3 Soundness

	4 Adequacy for Time
	5 Conclusion
	References

	Change Actions: Models of Generalised Differentiation
	1 Introduction
	2 Change Actions
	3 Change Actions on Arbitrary Categories
	4 Higher-Order Derivatives: The Extrinsic View
	5 Examples of Change Action Models
	6 -Change Actions and -Differential Maps
	7 Related Work, Future Directions and Conclusions
	References

	Coalgebra Learning via Duality
	1 Introduction
	2 Learning by Example
	3 Preliminaries
	4 Subformula Closed Collections of Formulas
	5 Reachability and the Base
	6 Learning Algorithm
	6.1 Tables and Counterexamples
	6.2 The Algorithm
	6.3 Correctness and Termination

	7 Future Work
	References

	Tight Worst-Case Bounds for Polynomial Loop Programs
	1 Introduction
	1.1 The Core Language
	1.2 The Algorithm

	2 Preliminaries
	2.1 Some Notation and Terminology
	2.2 Formal Semantics of the Core Language
	2.3 Detailed Statement of the Main Result

	3 Analysis Algorithm: First Concepts
	4 Reduction to Simple Disjunctive Loops
	4.1 Symbolic Evaluation of Straight-Line Code
	4.2 Evaluation of Non-deterministic Choice
	4.3 Handling Loops

	5 Simple Disjunctive Loop Analysis Algorithm
	6 Correctness
	7 Related Work
	8 Conclusion and Further Work
	References

	A Complete Normal-Form Bisimilarity for State
	1 Introduction
	2 Global Store
	2.1 Syntax, Semantics, and Contextual Equivalence
	2.2 Normal-Form Bisimulation
	2.3 Soundness
	2.4 Completeness

	3 Local Store
	3.1 Syntax, Semantics, and Contextual Equivalence
	3.2 Bisimilarity
	3.3 Soundness and Completeness
	3.4 Examples

	4 Related Work and Conclusion
	References

	Identifiers in Registers
	1 Introduction
	2 Preliminaries
	3 Distributed Register Automata
	4 Functional Fixpoint Logic
	5 Translating Between Automata and Logic
	6 Conclusion
	References

	The Impatient May Use Limited Optimism to Minimize Regret
	1 Introduction
	2 Preliminaries
	3 Admissible Strategies and Regret
	3.1 Any Strategy Is Weakly Dominated by an Admissible Strategy
	3.2 Being Dominated Is Regretful
	3.3 Optipess Strategies Are both Regret-Minimal and Admissible

	4 Minimal Values Are Witnessed by a Single Iterated Cycle
	5 Short Witnesses for Regret, Antagonistic, and Collaborative Values
	5.1 Regret Is Witnessed by Histories of Bounded Length
	5.2 Short Witnesses for the Collaborative and Antagonistic Values

	6 The Complexity of Regret
	7 Conclusion
	References

	Causality in Linear Logic
	1 Introduction
	2 MALL- and Its Commuting Conversions
	3 Concurrent Games Based on General Event Structures
	3.1 Games as Prime Event Structures with Polarities
	3.2 Causal Structures as Deterministic General Event Structures

	4 Acyclicity of Causal Structures
	4.1 Communication in Causal Structures
	4.2 Definition of Acyclicity on Casual Structures

	5 Causal Nets and Sequentialisation
	5.1 Causal Nets: Totality and Well-Linking Casual Structs
	5.2 Strong Sequentialisation of Causal Nets

	6 Causal Invariants and Completeness
	6.1 Causal Invariants as Maximal Causal Nets
	6.2 The Category of Causal Invariants

	7 Extensions and Related Work
	References

	Rewriting Abstract Structures: Materialization Explained Categorically
	1 Introduction
	2 Preliminaries
	2.1 Subobject Classifiers and Partial Map Classifiers of Graphs
	2.2 Languages

	3 Materialization
	3.1 Materialization Category and Existence of Materialization
	3.2 Characterizing the Language of Rewritable Objects
	3.3 Rewriting Materializations

	4 Annotated Objects
	5 Abstract Rewriting of Annotated Objects
	5.1 Abstract Rewriting and Soundness
	5.2 Completeness

	6 Conclusion
	References

	Two-Way Parikh Automata with a Visibly Pushdown Stack
	1 Introduction
	2 Two-Way Visibly Pushdown (Parikh) Automata
	3 Emptiness Complexity
	4 NExpTime-Hardness
	5 Applications to Decision Problems for Nested Word Transducers
	References

	Kleene Algebra with Hypotheses
	1 Introduction
	2 The Systems KA and KA*
	3 Closure of Regular Languages
	3.1 Definition of the Closure
	3.2 Properties of the Closure Operator
	3.3 Relating Closure and Provability in KAH and KAH*

	4 Decidability of KA and KA* with (1=x)-Hypotheses
	5 Complexity Results for Letter Hypotheses
	5.1 Closure and Co-reachable States of TMs and LBAs
	5.2 Complexity Results
	5.3 Undecidability of KAH for Sums of Letters

	References

	Trees in Partial Higher Dimensional Automata
	1 Introduction
	2 Fixing the Definition of pHDA
	2.1 Higher Dimensional Automata
	2.2 Original Definition of Partial Higher Dimensional Automata
	2.3 Partial Higher Dimensional Automata as Lax Functors
	2.4 Completion of a pHDA

	3 Paths in Partial Higher Dimensional Automata
	3.1 Path Category, Open Maps, Coverings
	3.2 Encoding Paths in pHDA

	4 Trees and Unfolding in pHDA
	4.1 Trees, as Colimits of Paths in pHDA
	4.2 The Unique Path Properties of Trees
	4.3 Trees Are Unfoldings

	5 Cofibrant Objects
	5.1 Cofibrant Objects in pHDAL
	5.2 Cofibrant Objects Are Exactly Trees
	5.3 The Unfolding Is Universal

	6 Conclusion and Future Work
	References

	The Bernays-Schönfinkel-Ramsey Class of Separation Logic on Arbitrary Domains
	1 Introduction
	2 Preliminaries
	3 Test Formulæ for SLk
	3.1 From Test Formulæ to FO

	4 From Quantifier-Free SLk to Test formulæ
	4.1 Minterms
	4.2 Translating Quantifier-Free SLk into Minterms

	5 Bernays-Schönfinkel-Ramsey SLk
	5.1 Undecidability of BSR(SLk)
	5.2 Two Decidable Fragments of BSR(SLk)

	6 Conclusions and Future Work
	References

	Continuous Reachability for Unordered Data Petri Nets is in PTime
	1 Introduction
	2 Preliminaries
	3 UDPN, Reachability and Its Variants: Our Main Results
	4 Equivalent Formulation via Matrices
	5 Bounding Number of Data Values Used in Q,Q+-run
	5.1 Transformation of an X-run

	6 Q-reachability is in PTime
	7 Q+-reachability is in PTime
	7.1 Characterizing Q+-reachability
	7.2 Transforming UDPN to Loop-less UDPN
	7.3 Encoding Q+-reachability as Linear Equations with Implications

	8 Conclusion
	References

	Optimal Satisfiability Checking for Arithmetic -Calculi
	1 Introduction
	2 The Coalgebraic -Calculus
	3 Tracking Automata
	4 Global Caching for the Coalgebraic -Calculus
	5 Soundness and Completeness
	6 Conclusion
	References

	Constructing Inductive-Inductive Types in Cubical Type Theory
	1 Introduction
	1.1 Syntax and Conventions
	1.2 Running Example of an Inductive-Inductive Definition

	2 Deriving UIP
	2.1 Unique Goodness Implies UIP
	2.2 Simple Elimination Rules Imply Unique Goodness
	2.3 Simple Elimination Rules for Nordvall Forsberg's Construction only if UIP

	3 Constructing an Inductive-Inductive Type in Cubical Type Theory
	3.1 Pre-syntax
	3.2 Goodness Algebras
	3.3 Niceness
	3.4 Successor Goodness Algebra
	3.5 Limit of Goodness Algebras

	4 Related Work
	5 Conclusions and Future Work
	References

	Causal Inference by String Diagram Surgery
	1 Introduction
	2 Stochastic Matrices and Conditional Probabilities
	3 Bayesian Networks as String Diagrams
	4 Towards Causal Inference: The Smoking Scenario
	5 Interventional Distributions as Diagram Surgery
	6 The Comb Factorisation
	7 Returning to the Smoking Scenario
	8 The General Case for a Single Intervention
	9 Conclusion and Future Work
	References

	Higher-Order Distributions for Differential Linear Logic
	1 Introduction
	2 Preliminaries
	2.1 Differential Linear Logic and Its Semantics
	2.2 Reflexive Spaces and Distributions

	3 Higher-Order Distributions and Kernel
	4 Structural Morphisms on the Exponential
	4.1 Dereliction and Co-dereliction
	4.2 (Co-)contraction and (Co-)weakening
	4.3 Co-multiplication

	5 A Model of DiLL0
	6 Conclusion
	References

	Languages Ordered by the Subword Order
	1 Introduction
	2 Preliminaries
	3 The FO+MOD-Theory with Regular Predicates
	4 The C+MOD2-Theory with Regular Predicates
	4.1 Unambiguous Rational Relations
	4.2 Closure Properties of the Class of Regular Languages
	4.3 Quantifier Elimination for C+MOD2

	5 The 1-Theory
	6 The 1-Theory with Constants
	References

	Strong Adequacy and Untyped Full-Abstraction for Probabilistic Coherence Spaces
	1 Introduction
	2 The Probabilistic Language +
	3 Probabilistic Coherence Spaces
	4 Strong Adequacy
	5 Nakajima Trees and Full Abstraction
	References

	A Sound and Complete Logic for Algebraic Effects
	1 Introduction
	2 Programming Language – ECPS
	2.1 Operational Semantics
	2.2 Contextual Equivalence

	3 A Program Logic for ECPS – F
	4 Soundness and Completeness of the Logic F
	5 Related Work
	6 Concluding Remarks
	References

	Equational Axiomatization of Algebras with Structure
	1 Introduction
	2 Preliminaries
	3 The Generalized Variety Theorem
	4 Equational Logic
	5 Applications
	5.1 Classical -Algebras
	5.2 Finite -Algebras
	5.3 Quantitative Algebras
	5.4 Nominal Algebras
	5.5 Further Applications

	6 Conclusions and Future Work
	References

	Towards a Structural Proof Theory of Probabilistic -Calculi
	1 Introduction
	2 Technical Background
	2.1 The Riesz Modal Logic and Its Scalar-free Fragment
	2.2 The Hypersequent Calculus GA

	3 The Hypersequent System MGA
	4 Overview of the Proof of the Cut-Elimination Theorem
	4.1 The CAN-Elimination Theorem for the System GA
	4.2 Issues in Adapting the Proof for the System MGA
	4.3 The System MGA-SR and the M-Elimination Theorem
	4.4 Cut-Elimination Theorem for the System MGA

	5 Conclusions and Future Work
	References

	Partial and Conditional Expectations in Markov Decision Processes with Integer Weights
	1 Introduction
	2 Preliminaries
	3 Partial and Conditional Expectations in MDPs
	4 Existence of Optimal Schedulers
	5 Approximation
	6 Conclusion
	References

	Equational Theories and Monads from Polynomial Cayley Representations
	1 Introduction
	2 Tight Cayley Representations
	3 Multi-sorted Equational Theories with a Main Sort
	4 Theories from Polynomial Cayley Representations
	5 Effects Modeled by Polynomial Representations
	5.1 Backtracking Nondeterminism via Monoids
	5.2 Finite Mutable State
	5.3 Backtracking with Local State
	5.4 Backtracking with Global State

	6 Direct-Style Implementation
	7 Discussion
	References

	A Dialectica-Like Interpretation of a Linear MSO on Infinite Words
	1 Introduction
	2 Preliminaries
	3 A Monadic Linear Dialectica-Like Interpretation
	3.1 The Multiplicative Fragment
	3.2 Polarized Exponentials
	3.3 The Full System
	3.4 Translations of Classical Logic

	4 Completeness
	4.1 The Logic MSO(M)
	4.2 The Logic LMSO
	4.3 Completeness of LMSO(C)

	5 Conclusion
	References

	Deciding Equivalence of Separated Non-nested Attribute Systems in Polynomial Time
	1 Introduction
	2 Separated Basic Macro Tree Transducers
	3 Top-Down Normalization of Transducers
	4 Polynomial Time
	5 Applications
	6 Related Work
	7 Conclusion
	References

	Justness
	1 Introduction
	2 Labelled Transition Systems with Concurrency
	3 CCS and Its Extensions with Broadcast and Signals
	3.1 CCS
	3.2 ABC—The Algebra of Broadcast Communication
	3.3 CCS with Signals
	3.4 Using Signals to Avoid Negative Premises in ABC

	4 An LTS with Concurrency for CCS and Its Extensions
	5 Components
	6 A Coinductive Characterisation of Justness
	7 Conclusion
	References

	Path Category for Free
	1 Introduction
	2 Two Categorical Approaches for Bisimulations
	2.1 Open Maps
	2.2 Coalgebras

	3 The Open Map Situation in Coalgebras
	3.1 Precise Morphisms
	3.2 Path Categories in Pointed Coalgebras
	3.3 Embedding Paths into Pointed Coalgebras
	3.4 Open Morphisms Are Exactly Coalgebra Homomorphisms
	3.5 Connection to Other Notions of Reachability
	3.6 Trace Semantics for Pointed Coalgebras

	4 Instances
	4.1 Analytic Functors and Tree Automata
	4.2 Nominal Sets: Regular Nondeterministic Nominal Automata
	4.3 Subsuming Arbitrary Open Morphism Situations

	5 Conclusions and Further Work
	References

	Author Index

