Skip to main content

Application of Nanotechnology in Diagnosis, Drug Dissolution, Drug Discovery, and Drug Carrier

  • Chapter
  • First Online:
Nanobiotechnology in Bioformulations

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nanotechnology (NT) is the branch of science that deals with the matter at nanoscale. Nanostructured materials offer great advantage in the field of diagnosis due to their unique physiochemical properties. The conventional method of diagnosis is time taking and demands expertise. Early diagnosis of major harmful diseases such as cancer leads to better prognosis. Nanodiagnostics (NDs) is the application of nanostructures in biomedical sciences. It offers cheaper and early diagnosis, and there is no need for experts to perform the tests based on nanotechnology. Nanoscale-fabricated structured devices provide diagnostic results available at the patient’s bedside i.e., point-of-care diagnosis. Common nanomaterials such as nanoparticles, nanowires, nanorobots, and nanocrystals are used to fabricate useful nanodevices such as nanobiosensors, biochips, etc. Application of nanotechnology has been seen everywhere in medical sciences. The use of nanomaterials in nanodiagnostics significantly improved the method of diagnosis in techniques such as immunohistochemistry (IHC), genotyping, cancer detection, and biomarker detection. Nano-based contrast agents are frequently in use in the field of imaging such as MRI, ultrasound, PET/CT scan, and so on. NT also troubleshoots one of the major problems in pharmaceutical industries, i.e., poor solubility of drugs. Poor solubility of drugs decreases the bioavailability of drugs and increases the systemic toxicity in vivo. Nanocarriers such as liposomes, dendrimers, and polymeric micelles not only overcome this problem but also offer some additional advantage like targeted drug delivery. Integration of nanotechnology with other techniques like microfluidics holds great promises in the field of diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbarzadeh A, Sadabady RR, Davaran S (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alric C, Taleb J, Le Duc G et al (2008) Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 130:5908–5915

    Article  CAS  PubMed  Google Scholar 

  • Aulton ME (2007) Pharmaceutics: the design and manufacture of medicines, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem. https://doi.org/10.3389/fchem.2019.00065

  • Azmi MA, Tehrani Z, Lewis RP (2014) Highly sensitive covalently functionalized integrated silicon nanowire biosensor devices for detection of cancer risk biomarker. Biosens Bioelectron 52:216–224

    Article  CAS  Google Scholar 

  • Bahadorimehr AR, Jumril Y, Majlis BY (2010) Low cost fabrication of microfluidic microchannels for lab-on-a-chip applications. International conference on electronic devices, systems and applications, pp 242–244

    Google Scholar 

  • Barone PW, Baik S, Heller DA, Strano MS (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92

    Article  CAS  PubMed  Google Scholar 

  • Beishon M (2013) Exploiting a Nano-Sized Breach in Cancer’s Defences. Cancer World :14–21

    Google Scholar 

  • Boisselier BE, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 4:MR17–MR71

    Article  Google Scholar 

  • Caban S, Aytekin E, Sahin A, Capan Y (2014) Nanosystems for drug delivery. OA Drug Des Deliv 2(1):2

    Google Scholar 

  • Cabibbe AM, Miotto P, Moure R (2015) Lab-on-chip-based platform for fast molecular diagnosis of multidrug-resistant tuberculosis. J Clin Microbiol 53(12):3876–3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai QY, Kim SH, Choi KS et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for x-ray computed tomography in mice. Investig Radiol 42(12):797–806

    Article  CAS  Google Scholar 

  • Caminade AM, Turrin CO (2014) Dendrimers for drug delivery. J Mater Chem B 2:4055–4066

    Article  CAS  PubMed  Google Scholar 

  • Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Challa S, Kumar SR (2007) Nanomaterials for medical diagnosis and therapy (Handbook). The Wiley network USA

    Google Scholar 

  • Chan HK, Kwok PCL (2011) Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 63:406–416

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Meng H, Xing G (2007) Toxicological and biological effects of nanomaterials. Int J Nanotechnol 4:179–196

    Article  CAS  Google Scholar 

  • Chen Y, Ai K, Liu J, Ren X (2016) Polydopamine-based coordination nanocomplex for T1/T2 dual mode magnetic resonance imaging-guided chemo-photothermal synergistic therapy. Biomaterials 77:198–206

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Yuen C, Aniweh Y (2017) Recent progress in the development of diagnostic tests for malaria. Diagnostics (Basel) 7(3):54

    Article  CAS  Google Scholar 

  • Cheng WP, Gray AI, Tetley L, Hang TLB (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, El-Boubbou K, Landry CC (2012) Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments. ACS Appl Mater Interfaces 4(1):235–243

    Article  CAS  PubMed  Google Scholar 

  • Chetoni P, Burgalassi S, Monti D, Najarro M (2007) Liposome-encapsulated mitomycin C for the reduction of corneal healing rate and ocular toxicity. J Drug Deliv Sci Technol 17(1):43–48

    Article  CAS  Google Scholar 

  • Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81(21):9129–9134

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Tripathi A, Singh D (2014) Smart nanomaterials for biomedics. J Biomed Nanotechnol 10(10):3162–3188

    Article  CAS  PubMed  Google Scholar 

  • Cole LE, Ross RD, Tilley JM, Vargo-Gogola T (2015) Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine 10:321–341

    Article  CAS  PubMed  Google Scholar 

  • Coughlin AJ, Ananta JS, Deng N, Larina IV, Decuzzi P, West JL (2014) Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy. Small 10:556–565

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:89–92

    Article  Google Scholar 

  • Daraee H, Eatemadi A, Abbasi E, Aval SF, Kouhi M (2016) Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 44:410–422

    Article  CAS  PubMed  Google Scholar 

  • Ding H, Wang X, Zhang S, Liu X (2012) Applications of polymeric micelles with tumor targeted in chemotherapy. J Nanopart Res 14:1–13

    Google Scholar 

  • Dixon C, Ng AHC, Fobel R, Miltenburg MB, Wheeler AR (2016) An inkjet printer, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab Chip 16(23):4560–4568

    Article  CAS  PubMed  Google Scholar 

  • Draz MS, Shafiee H (2018) Applications of gold nanoparticles in virus detection. Theranostics 8(7):1985–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua JS, Rana AC, Bhandari AK (2012) Liposomes methods of preparation and applications. Int J Pharm Stud Res 3:14–20

    Google Scholar 

  • Fan L, Qi H, Teng J, Su B (2016) Identification of serum miRNAs by nano-quantum dots microarray as diagnostic biomarkers for early detection of non-small cell lung cancer. Tumour Biol 37:7777–7784

    Article  CAS  PubMed  Google Scholar 

  • Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3:16–20

    Article  CAS  PubMed  Google Scholar 

  • Fazio B, Andrea CD, Foti A, Messina E (2016) SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating. Sci Rep 6:26952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonte P, Noguiera T, Gehm C (2011) Chitosan-coated solid lipid nanoparticles enhance the oral absorption of insulin. Drug Deliv Transl Res 1(4):299–308

    Article  CAS  PubMed  Google Scholar 

  • Fritz J (2008) Cantilever biosensors. Analyst 133:855–863

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Ke H (2016) Nanomaterials incorporated ultrasound contrast agents for cancer theranostics. Cancer Biol Med 13(3):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Li P, Wang T (2010) Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosens Bioelectron 25:1699–1704

    Article  CAS  PubMed  Google Scholar 

  • Fuente DL, Jesus M (2006) Gold and gold-Iron oxide magnetic glyconanoparticles: synthesis, characterization and magnetic properties. J Phys Chem B 110(26):13021–13028

    Article  PubMed  CAS  Google Scholar 

  • Gao A, Lu N, Dai P, Fan C, Wang Y, Li T (2014) Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays. Nanoscale 6(21):13036–13042

    Article  CAS  PubMed  Google Scholar 

  • Garcia AC, Merkoci A (2016) Nanobiosensors in diagnostics. Nano 3:1–26

    Google Scholar 

  • Gayathri T, Kumar RA, Panigrahi BS, Devanand B (2017) Silica-coated europium-doped gadolinium oxide nanorods for dual-modal imaging of cancer cells. Nano 12(06):1750073

    Article  CAS  Google Scholar 

  • Geho DH, Jones CD, Petricoin EF, Liotta LA (2006) Nanoparticles: potential biomarker harvesters. Curr Opin Chem Biol 10:56–61

    Article  CAS  PubMed  Google Scholar 

  • Ghaghada KB, Sato AF, Starosolski ZA, Berg J (2016) Computed tomography imaging of solid tumors using a liposomal-iodine contrast agent in companion dogs with naturally occurring cancer. PLoS One 11(3):e0152718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253

    Article  CAS  PubMed  Google Scholar 

  • Holzinger M, Goff AL, Cosneir S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hounsfield GN (1973) Computerized transverse axial scanning (tomography), description of system. Br J Radiol 46(552):1016–1022

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Li S, Schultz JS, Wang Q, Lin Q (2009) A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer. Sensors Actuators B Chem 140(2):603–609

    Article  CAS  Google Scholar 

  • Jackson TC, Patani BO, Ekpa DE (2017) Nanotechnology in diagnosis: a review. Adv Nanopart 6:93–102

    Article  CAS  Google Scholar 

  • Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q (2013) Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release 172(3):1020–1034

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Wang J, Ke H, Wang S, Dai Z (2013) Graphene oxide modified PLA microcapsules containing gold nanoparticles for ultrasonic/CT bimodal imaging guided photothermal tumor therapy. Biomaterials 34:4794–4802

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Chen Y, Wang Y, Ji J (2014) Zwitterionic drug nanocarriers: a biomimetic strategy for drug delivery. Colloids Surf B Biointerfaces 124:80–86

    Article  CAS  PubMed  Google Scholar 

  • Junghanns J, MĂ¼ller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3:295–309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HK, Seo J, Carlo DD, Choi YK (2003) Planar nanogap capacitor arrays on quartz for optical and dielectric bioassays. In: Proceedings of the micro total analysis systems, Squaw Valley, California, USA. pp 697–700

    Google Scholar 

  • Ke H, Yue X, Wang J (2014) Gold nanoshelled liquid perfluorocarbon nanocapsules for combined dual modal ultrasound/CT imaging and photothermal therapy of cancer. Small 10:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 6:714–729

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Park S, Lee JH, Jeong YY, Jon S (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129:7661–7665

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Yeo WH, Shu Z (2012) Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip 12(8):1437–1440

    Article  CAS  PubMed  Google Scholar 

  • Klostranec JM, Chan WCW (2006) Quantum dots in biological and biomedical research: recent progress and present challenges. Adv Mater 18:1953–1964

    Article  CAS  Google Scholar 

  • Kojima C, Umeda Y, Ogawa M, Harada A, Magata Y, Kono K (2010) X-ray computed tomography contrast agents prepared by seeded growth of gold nanoparticles in PEGylated dendrimer. Nanotechnology 21:245104

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy V (2010) Ion-channel biosensors-part i: construction, operation, and clinical studies. IEEE Trans Nanotechnol 9(3):303–312

    Article  Google Scholar 

  • Krukemeyer MG, Krenn V, Huebner F, Wagner W (2015) History and possible uses of nanomedicine based on nanoparticles and nanotechnological progress. Nanomed Nanotechnol 6:336

    Google Scholar 

  • Kumar SR, Vijayalakshmi R (2006) Nanotechnology in dentistry. Indian J Dent Res 17:62–69

    Article  Google Scholar 

  • Kumvongpin R, Jearanaikool P, Wilailuckana C, Sae-Ung N (2016) High sensitivity, loop-mediated isothermal amplification combined with colorimetric gold-nanoparticle probes for visual detection of high risk human papillomavirus genotypes 16 and 18. J Virol Methods 234:90–95

    Article  CAS  PubMed  Google Scholar 

  • Lawaczeck R, Bauer H, Frenzel T (2016) Magnetic Iron oxide particles coated with carboxydextran for parenteral administration and liver contrasting. Acta Radiol 38:584–597

    Google Scholar 

  • Lee D, Koo H, Sun IC, Ryu JH (2012) Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 41(7):2656–2672

    Article  CAS  PubMed  Google Scholar 

  • Li Y, ArtĂ©s JM, Demir B, Gokce S (2018) Detection and identification of genetic material via single-molecule conductance. Nat Nanotechnol 13(12):1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Liu M, FrĂ©chet JM (1999) Designing dendrimers for drug delivery. Pharm Sci Technol Today 2:393–401

    Article  CAS  PubMed  Google Scholar 

  • Liversidge EM, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Lu N, Gao A, Dai P (2014) CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 10(10):2022–2028

    Article  CAS  PubMed  Google Scholar 

  • Lueke J, Moussa WA (2011) MEMS-based power generation techniques for implantable Biosensing applications. Sensors (Basel) 11(2):1433–1460

    Article  Google Scholar 

  • Lyberopoulou A, Stathopoulos EP, Gazouli M (2015) Nanodiagnostic and nanotherapeutic molecular platforms for cancer management. J Cancer Res Updat 4:153–162

    Article  CAS  Google Scholar 

  • MarzĂ¡n LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41

    Article  CAS  Google Scholar 

  • Mascini M, Tombelli S (2008) Biosensors for biomarkers in medical diagnostics. Biomarkers 13:637–657

    Article  CAS  PubMed  Google Scholar 

  • Mattrey RF, Scheible FW, Gosink BB, Leopold GR, Long DM, Higgins CB (1982) Perfluoroctylbromide: a liver/spleen-specific and tumorimaging ultrasound contrast material. Radiology 145(3):759–762

    Article  CAS  PubMed  Google Scholar 

  • Mehnert W, Mäder K (2001) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 47:165–196

    Article  CAS  PubMed  Google Scholar 

  • Miyata K, Christie RJ, Kataoka K (2011) Polymeric micelles for nano-scale drug delivery. React Funct Polym 71:227–234

    Article  CAS  Google Scholar 

  • Mozafari M (2010) Liposomes: methods and protocols, pharmaceutical nanocarriers, 1st edn. Humana Press, Totowa, pp 29–50

    Book  Google Scholar 

  • MĂ¼ller R, Maaβen S, Weyhers H (1996) Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles. Int J Pharm 138:85–94

    Article  Google Scholar 

  • MĂ¼ller R, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev 47:3–19

    Article  PubMed  Google Scholar 

  • Nasimi P, Haidari M (2013) Medical use of nanoparticles: drug delivery and diagnosis diseases. Int J Green Nanotechnol 1:1–5

    Article  Google Scholar 

  • Nie L, Liu F, Ma P, Xiao X (2014) Applications of gold nanoparticles in optical biosensors. J Biomed Nanotechnol 10:2700–2721

    Article  CAS  PubMed  Google Scholar 

  • Olbrich C, Bakowsky U, Lehr CM (2001) Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release 77(3):345–355

    Article  CAS  PubMed  Google Scholar 

  • Pedersen N, Hansen S, Heydenreich AV, Kristensen HG (2006) Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands. Eur J Pharm Biopharm 62:155–162

    Article  CAS  PubMed  Google Scholar 

  • Peeling RW, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16(8):1062–1069

    Article  CAS  PubMed  Google Scholar 

  • Perez-Campana C, Gomez-Vallejo V, Puigivila M, Martin A, Calvo-Fernandez T, Moya SE, Ziolo RF, Reese T, Llop J (2013) Biodistribution of different sized nanoparticles assessed by positron emission tomography: a general strategy for direct activation of metal oxide particles. ACS Nano 7(4):3498–3505

    Article  CAS  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 963961. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  PubMed  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature, Singapore. (ISBN 978-3-319-68423-9)

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014

    Google Scholar 

  • Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H and Janaswamy S (eds.), Natural Polymers for Drug Delivery CAB International, UK, pp 53–70

    Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing. https://www.springer.com/978-3-319-99570-0

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796

    Article  CAS  PubMed  Google Scholar 

  • Rajasundari K, Hamurugu K (2011) Nanotechnology and its application in medical diagnosis. J Basic Pure Appl Chem 1:26–32

    Google Scholar 

  • Ramesan RM, Sharma CP (2009) OMICS: biomedical perspectives and applications. Expert Rev Med Devices 6:665–676

    Article  CAS  PubMed  Google Scholar 

  • Rawat M, Singh D, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Article  CAS  PubMed  Google Scholar 

  • Reimhult E, Höök F (2015) Design of Surface Modifications for nanoscale sensor applications. Sensors 15. https://doi.org/10.3390/s150101635

    Article  PubMed  PubMed Central  Google Scholar 

  • Roco MC, Harthorn B, Guston D, Shapira P (2017) Innovative and responsible governance of nanotechnology for societal development. In: Nanotechnology research directions for societal needs in 2020, pp 441–488 Springer USA

    Google Scholar 

  • Saeed AA, Sanchez JLA, O’Sullivan CK (2017) DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry 118:91–99

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  • Savjani KT, Anuradha K, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012:195727

    PubMed  PubMed Central  Google Scholar 

  • Seyfer P, Pagenstecher A, Mandic R, Klose KJ, Heverhagen JT (2014) Cancer and inflammation: differentiation by USPIO-enhanced MR imaging. J Magn Reson Imaging 39:665–672

    Article  PubMed  Google Scholar 

  • Sharma RB, Hashim U (2013) Microfluidic photomask design using CAD software for application in lab-on-chip biomedical nano diagnostics. Adv Mater Res 795:388–392

    Article  CAS  Google Scholar 

  • Shegokar R, MĂ¼ller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399:129–139

    Article  CAS  PubMed  Google Scholar 

  • Shehada N, Brönstrup G, Funka K, Christiansen S, Leja M, Haick H (2015) Ultrasensitive silicon nanowire for real-world gas sensing: noninvasive diagnosis of cancer from breath Volatolome. Nano Lett 15(2):1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Shetty NJ, Swati P, David K (2013) Nanorobots: future in dentistry. Saudi Dent J 25(2):49–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Shilo M, Reuveni T, Motiei M (2012) Nanoparticles as computed tomography contrast agents. Nanomedicine 7(2):257–259

    Article  CAS  PubMed  Google Scholar 

  • Svenson S (2009) Dendrimers as versatile platform in drug delivery applications. Eur J Pharm Biopharm 71:445–462

    Article  CAS  PubMed  Google Scholar 

  • Swierczewska M, Lee S, Chen X (2011) Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 10(1):3–16

    Article  CAS  PubMed  Google Scholar 

  • Taguchi M, Ptitsyn A (2014) Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 8(2):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S, Shiraishi T, Miles N, Trock BJ, Kulkarni P, Getzenberg RH (2015) Nanowire analysis of cancer-testis antigens as biomarkers of aggressive prostate cancer. Urology 85(3):704.e1–704.e7

    Article  Google Scholar 

  • Tan C, Wang Y, Fan Y (2013) Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies. Pharmaceutics 5:201–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teraphongphom N, Chhour P, Eisenbrey JR (2015) Nanoparticle loaded polymeric microbubbles as contrast agents for multimodal imaging. Langmuir 31(43):11858–11867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ThĂ©venot DR, Toth K, Durst RA (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  PubMed  Google Scholar 

  • Tian C, Zhu L, Lin F, Boyes SG (2015) Poly(acrylic acid) bridged gadolinium metal-organic framework-gold nanoparticle composites as contrast agents for computed tomography and magnetic resonance bimodal imaging. ACS Appl Mater Interfaces 7:17765–17775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2012) Multifunctional nanocarriers. Adv Drug Deliv Rev 64:302–315

    Article  Google Scholar 

  • Trubetskoy VS, Gazelle GS, Wolf GL, Torchilin VP (1997) Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for x-ray computed tomography. J Drug Target 4(6):381–388

    Article  CAS  PubMed  Google Scholar 

  • Varshosaz J, Minayian M, Moazen E (2010) Formulation and optimization of solid lipid nanoparticles of buspirone HCl for enhancement of its oral bioavailability. J Liposome Res 20:115–123

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408

    Article  CAS  PubMed  Google Scholar 

  • Warkiani ME, Tay AK, Khoo BL, Xiaofeng X, Han J, Lim CT (2015) Malaria detection using inertial microfluidics. Lab Chip 15(4):1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Warlin D (2013) Superparamagnetic iron oxide nanoparticles for MRI: contrast media pharmaceutical company R&D perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):411–422

    Article  PubMed  CAS  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65:315–499

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Mu L, Roes I, Miranda-Nieves I, Nahrendorf D (2011) Nanoparticle-based monitoring of cell therapy. Nanotechnology 22(49):494001

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu W, Ling P, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013:340315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh MK, Chang LC, Chiou AHJ (2009) Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech 10:166–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo WH, Chung JH, Liu Y, Lee KH (2009) Size-specific concentration of DNA to a nanostructured tip using dielectrophoresis and capillary action. J Phys Chem B 113(31):10849–10858

    Article  CAS  PubMed  Google Scholar 

  • Yogesh ST, Indrajeet DG, Avinash HS (2011) Solubility enhancement techniques: a review on conventional and novel approaches. Int J Pharm Sci Res 2:2501–2513

    Google Scholar 

  • Yu L, Shi Z, Fang C, Zhang Y, Liu Y (2015) Disposable lateral flow-through strip for smartphone-camera to quantitatively detect alkaline phosphatase activity in milk. Biosens Bioelectron 69:307–315

    Article  CAS  PubMed  Google Scholar 

  • Yuen C, Liu QJ (2012) Magnetic field enriched surface enhanced resonance Raman spectroscopy for early malaria diagnosis. J Biomed Opt 17(1):017005

    Article  PubMed  CAS  Google Scholar 

  • Zhang CY, Yeh HC, Kuroki MT, Wang TH (2005) Single-quantum-dot-based DNA nanosensor. Nat Mater 4(11):826–831

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang K, Si J, Sui M, Shen Y (2014) Charge-reversal polymers for biodelivery. In: Gu Z (ed) Bioinspired and biomimetic polymer systems for drug and gene delivery. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 223–242

    Google Scholar 

  • Zhang Z, Xia X, Xiang X, Huang F (2018) Quantum dots-ru complex assembling dyads for cancer cell detection and cellular imaging based on hybridization chain reaction. Sensors Actuators B Chem 257:1–8

    Article  CAS  Google Scholar 

  • Ziegler C (2004) Cantilever-based biosensors. Anal Bioanal Chem 379(7–8):946–959

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A.K. (2019). Application of Nanotechnology in Diagnosis, Drug Dissolution, Drug Discovery, and Drug Carrier. In: Prasad, R., Kumar, V., Kumar, M., Choudhary, D. (eds) Nanobiotechnology in Bioformulations. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-17061-5_19

Download citation

Publish with us

Policies and ethics