
1The First Few Steps

1.1 What Is a Program? AndWhat Is Programming?

Computer Programs Today, most people are experienced with computer pro-
grams, typically programs such as Word, Excel, PowerPoint, Internet Explorer, and
Photoshop. The interaction with such programs is usually quite simple and intuitive:
you click on buttons, pull down menus and select operations, drag visual elements
into locations, and so forth. The possible operations you can do in these programs
can be combined in seemingly an infinite number of ways, only limited by your
creativity and imagination.

© The Author(s) 2020
S. Linge, H. P. Langtangen, Programming for Computations - Python,
Texts in Computational Science and Engineering 15,
https://doi.org/10.1007/978-3-030-16877-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16877-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-16877-3_1


2 1 The First Few Steps

Nevertheless, programs often make us frustrated when they cannot do what
we wish. One typical situation might be the following. Say you have some
measurements from a device, and the data are stored in a file with a specific format.
You may want to analyze these data in Excel and make some graphics out of it.
However, assume there is no menu in Excel that allows you to import data in this
specific format. Excel can work with many different data formats, but not this one.
You start searching for alternatives to Excel that can do the same and read this type
of data files. Maybe you cannot find any ready-made program directly applicable.
You have reached the point where knowing how to write programs on your own
would be of great help to you! With some programming skills, you may write your
own little program which can translate one data format to another. With that little
piece of tailored code, your data may be read and analyzed, perhaps in Excel, or
perhaps by a new program tailored to the computations that the measurement data
demand.

Programming The real power of computers can only be utilized if you can
program them, i.e., write the programs yourself. With programming, you can tell
the computer what you want it to do, which is great, since it frees you from possible
limitations that come with programs written by others! Thus, with this skill, you get
an important extra option for problem solving that goes beyond what ready-made
programs offer.

A program that you write, will be a set of instructions that you store in a file.
These instructions must be written (according to certain rules) in a very specialized
language that has adopted words and expressions from English. Such languages
are known as programming (or computer) languages. When you have written your
instructions (your program), you may ask the programming language to read your
program and carry out the instructions. The programming language will then (if
there are no errors) translate the meaning of your instructions into real actions inside
the computer.

To write a program that solves a computing problem, you need to have a thorough
understanding of the given problem. That understanding may have to be developed
along the way and will obviously guide the way you write your solution program.
Typically, you need to write, test and re-write your program several times until you
get it right. Thus, what starts out with a computing problem and ends with a sensible
computer program for its solution, is a process that may take some time. By the term
programming, we will mean the whole of this process.

The purpose of this book is to teach you how to develop computer programs ded-
icated to solve mathematical and engineering problems by fundamental numerical
methods.

Programming Languages There are numerous computer languages for different
purposes. Within the engineering area, the most widely used ones are Python,
MATLAB, Octave, Fortran, C, C++, and to some extent, Maple and Mathematica.
The rules for how to write the instructions (i.e. the syntax) differ between the
languages. Let us use an analogy.

Assume you are an international kind of person, having friends abroad in
England, Russia and China. They want to try your favorite cake. What can you



1.1 What Is a Program? And What Is Programming? 3

do? Well, you may write down the recipe in those three languages and send them
over. Now, if you have been able to think correctly when writing down the recipe,
and you have written the explanations according to the rules in each language, each
of your friends will produce the same cake. Your recipe is the “computer program”,
while English, Russian and Chinese represent the “computer languages” with their
own rules of how to write things. The end product, though, is still the same cake.
Note that you may unintentionally introduce errors in your “recipe”. Depending
on the error, this may cause “baking execution” to stop, or perhaps produce the
wrong cake. In your computer program, the errors you introduce are called bugs
(yes, small insects! . . . for historical reasons), and the process of fixing them is called
debugging. When you try to run your program that contains errors, you usually get
warnings or error messages. However, the response you get depends on the error and
the programming language. You may even get no response, but simply the wrong
“cake”. Note that the rules of a programming language have to be followed very
strictly. This differs from languages like English etc., where the meaning might be
understood even with spelling errors and “slang” included.

We Use Python 3.6 in This Book For good reasons, the programming language
used in this book is Python (version 3.6). It is an excellent language for beginners
(and experts!), with a simple and clear syntax. Some of Python’s other strong
properties are1: It has a huge and excellent library (i.e., ready-made pieces of
code that you can utilize for certain tasks in your own programs), many global
functions can be placed in only one file, functions are straightforwardly transferred
as arguments to other functions, there is good support for interfacing C, C++ and
Fortran code (i.e., a Python program may use code written in other languages), and
functions explicitly written for scalar input often work fine, without modification,
also with vector input. Another important thing, is that Python is available for free.
It can be downloaded at no cost from the Internet and will run on most platforms.

A Primer on Scientific Programming with Python

Readers who want to expand their scientific programming skills beyond the
introductory level of the present exposition, are encouraged to study A Primer
on Scientific Programming with Python [11]. This comprehensive book is
as suitable for beginners as for professional programmers, and teaches the
art of programming through a huge collection of dedicated examples. This
book is considered the primary reference, and a natural extension, of the
programming matters in the present book. Note, however, that this reference
[11] uses version 2.7 of Python, which means that, in a few cases, instructions
will differ somewhat from what you find in the present book.

1 Some of the words here will be new to you, but relax, they will all be explained as we move
along.



4 1 The First Few Steps

Some computer science terms

Note that, quite often, the terms script and scripting are used as synonyms for
program and programming, respectively.

The inventor of the Perl programming language, Larry Wall, tried to
explain the difference between script and program in a humorous way (from
perl.coma): Suppose you went back to Ada Lovelaceb and asked her the
difference between a script and a program. She’d probably look at you funny,
then say something like: Well, a script is what you give the actors, but a
program is what you give the audience. That Ada was one sharp lady. . . Since
her time, we seem to have gotten a bit more confused about what we mean
when we say scripting. It confuses even me, and I’m supposed to be one of the
experts.

There are many other widely used computer science terms to pick up as
well. For example, writing a program (or script or code) is often expressed as
implementing the program. Executing a program means running the program.
A default value is what will be used if nothing is specified. An algorithm
is a recipe for how to construct a program. A bug is an error in a program,
and the art of tracking down and removing bugs is called debugging (see,
e.g., Wikipediac). Simulating or simulation refers to using a program to mimic
processes in the real world, often through solving differential equations that
govern the physics of the processes. A plot is a graphical representation of
a data set. For example, if you walk along a straight road, recording your
position y with time t , say every second, your data set will consist of pairs
with corresponding y and t values. With two perpendicular axes in a plane
(e.g., a computer screen or a sheet of paper), one “horizontal” axis for t and
one “vertical” axis for y, each pair of points could be marked in that plane. The
axes and the points make up a plot, which represents the data set graphically.
Usually, such plotting is done by a computer.

a http://www.perl.com/pub/2007/12/06/soto-11.html.
b http://en.wikipedia.org/wiki/Ada_Lovelace.
c http://en.wikipedia.org/wiki/Software_bug#Etymology.

1.1.1 Installing Python

To study this book, you need a Python installation that fits the purpose. The quickest
way to get a useful Python installation on your Windows, Mac, or Linux computer,
is to download and install Anaconda.2 There are alternatives (as you can find on
the internet), but we have had very good experiences with Anaconda for several
years, so that is our first choice. No separate installation of Python or Spyder (our
recommended environment for writing Python code) is then required, as they are
both included in Anaconda.

2 https://www.anaconda.com/distribution.

http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
http://www.perl.com/pub/2007/12/06/soto-11.html
http://en.wikipedia.org/wiki/Ada_Lovelace
http://en.wikipedia.org/wiki/Software_bug#Etymology
https://www.anaconda.com/distribution


1.2 A Python Programwith Variables 5

To download Anaconda, you must pick the Anaconda version suitable for your
machine (Windows/Mac/Linux) and choose which version of Python you want
(3.6 is used for this book). When the download has completed, proceed with the
installation of Anaconda.

After installation, you may want to (search for and) start up Spyder to see what
it looks like (see also Appendix A). Spyder is an excellent tool for developing
Python code. So, unless you have good reasons to choose otherwise, we recommend
Spyder to be your main “working” environment, meaning that to read, write and run
code you start Spyder and do it there. Thus, it is a good idea to make Spyder easy
accessible on your machine.

With Anaconda installed, the only additional package you need to install is
Odespy.3 Odespy is relevant for the solving of differential equations that we treat in
Chaps. 8 and 9.

In Appendix A you will find more information on the installation and use of
Python.

1.2 A Python Programwith Variables

Our first example regards programming a mathematical model that predicts the
height of a ball thrown straight up into the air. From Newton’s 2nd law, and
by assuming negligible air resistance, one can derive a mathematical model that
predicts the vertical position y of the ball at time t:

y = v0t − 0.5gt2.

Here, v0 is the initial upwards velocity and g is the acceleration of gravity, for which
9.81 ms−2 is a reasonable value (even if it depends on things like location on the
earth).

With this formula at hand, and when v0 is known, you may plug in a value for
time and get out the corresponding height.

1.2.1 The Program

Let us next look at a Python program for evaluating this simple formula. To do this,
we need some values for v0 and t , so we pick v0 = 5 ms−1 and t = 0.6 s (other
choices would of course have been just as good). Assume the program is contained
as text in a file named ball.py, reading

# Program for computing the height of a ball in vertical motion

v0 = 5 # Initial velocity
g = 9.81 # Acceleration of gravity

3 The original version of Odespy (https://github.com/hplgit/odespy) was written in Python 2.7 by
H.P. Langtangen and L. Wang. However, since the sad loss of Prof. Langtangen in 2016, Ode-
spy has been updated to Python 3.6 (https://github.com/thomasantony/odespy/tree/py36/odespy),
thanks to Thomas Antony. This version is the one used herein.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball.py
https://github.com/hplgit/odespy
https://github.com/thomasantony/odespy/tree/py36/odespy


6 1 The First Few Steps

t = 0.6 # Time

y = v0*t - 0.5*g*t**2 # Vertical position

print(y)

Let us now explain this program in full detail.

Typesetting of Code Computer programs, and parts of programs, are typeset with
a blue background in this book. When a complete program is shown, the blue
background has a slightly darker top and bottom bar (as for ball.py here). Without
the bars, the code is just a snippet and will normally need additional lines to run
properly.

We also use the blue background, without bars, for interactive sessions
(Sect. 2.1).

1.2.2 Dissecting the Program

A computer program like ball.py contains instructions to the computer written as
plain text. Humans can read the code and understand what the program is capable
of doing, but the program itself does not trigger any actions on a computer before
another program, the Python interpreter, reads the program text and translates this
text into specific actions.

You must learn to play the role of a computer

Although Python is responsible for reading and understanding your program,
it is of fundamental importance that you fully understand the program
yourself. You have to know the implication of every instruction in the program
and be able to figure out the consequences of the instructions. In other words,
you must be able to play the role of a computer.

One important reason for this strong demand is that errors unavoidably, and
quite often, will be committed in the program text, and to track down these
errors, you have to simulate what the computer does with the program. Also,
you will often need to understand code written by other people. If you are able
to understand their code properly, you may modify and use it as it suits you.

When you run your program in Python, it will interpret the text in your file line
by line, from the top, reading each line from left to right. The first line it reads is

# Program for computing the height of a ball in vertical motion.

This line is what we call a comment. That is, the line is not meant for Python to read
and execute, but rather for a human that reads the code and tries to understand what
is going on. Therefore, one rule in Python says that whenever Python encounters the
sign # it takes the rest of the line as a comment. Python then simply skips reading
the rest of the line and jumps to the next line. In the code, you see several such
comments and probably realize that they make it easier for you to understand (or



1.2 A Python Programwith Variables 7

guess) what is meant with the code. In simple cases, comments are probably not
much needed, but will soon be justified as the level of complexity steps up.

The next line read by Python is

v0 = 5 # Initial velocity

In Python, a statement like v0 = 5 is known as an assignment statement.
After this assignment, any appearance of v0 in the code will “represent” the initial
velocity, being 5 ms−1 in this case. This means that, whenever Python reads v0,
it will replace v0 by the integer value 5. One simple way to think of this, might
be as follows. With the assignment v0 = 5, Python generates a “box” in computer
memory with the name v0 written on top. The number 5 is then put into that box.
Whenever Python later meets the name v0 in the code, it finds the box, opens it,
takes out the number (here 5) and replaces the name v0 with the number.

The next two lines

g = 9.81 # Acceleration of gravity
t = 0.6 # Time

are also assignment statements, giving two more “boxes” in computer memory. The
box named g will contain the value 9.81, while the box named t contains 0.6.
Similarly, when Python later reads g and t in the code, it plugs in the numerical
values found in the corresponding boxes.

The assignments in a bit more detail

When Python interprets the assignment statement v0 = 5, the integer 5
becomes an object of type int and the variable name on the left-hand side
becomes a named reference for that object. Similarly, when interpreting the
assignment statements g = 9.81 and t = 0.6, g and t become named
references to objects created for the real numbers given. However, since we
have real numbers, these objects will be of type float (in computer language,
a real number is called a “floating point number”).

Now, with these assignments in place, Python knows of three variables (v0, g, t)
and their values. These variables are then used by Python when it reads the next
line, the actual “formula”,

y = v0*t - 0.5*g*t**2 # Vertical position

Again, according to its rules, Python interprets * as multiplication, − as minus and
** as exponentiation (let us also add here that, not surprisingly, + and / would
have been understood as addition and division, if such signs had been present in the
expression). Having read the line, Python performs the mathematics on the right-
hand side, and then assigns the result (in this case the number 1.2342) to the variable
name y.

Finally, Python reads

print(y)



8 1 The First Few Steps

This is a print function call, which makes Python print the value of y on the
screen.4 Simply stated, the value of y is sent to a ready-made piece of code named
print (being a function—see Chap. 4, here called with a single argument named
y), which then takes care of the printing. Thus, when ball.py is run, the number
1.2342 appears on the screen.

Readability and Coding Style In the code above, you see several blank lines too.
These are simply skipped by Python and you may use as many as you want to make a
nice and readable layout of the code. Similarly, you notice that spaces are introduced
to each side of − in the “formula” and to each side of = in the assignments. These
spaces are not required, i.e., Python will understand perfectly well without them.
However, they contribute to readability and it is recommended to use them5 as part
of good coding style.6 Had there been a + sign in there, it too should have a space
to each side. To the contrary, no extra spaces are recommended for /, * and **.

Several Statements on One Line Note that it’s allowed to have several statements
on the same line if they are separated by a semi-colon. So, with our program here,
we could have written, e.g.,

# Program for computing the height of a ball in vertical motion

# v0 is the intial velocity, g is the acceleration of gravity, t is time
v0 = 5; g = 9.81; t = 0.6

y = v0*t - 0.5*g*t**2 # vertical position

print(y)

In general, however, readability is easily degraded this way, e.g., making comment-
ing more difficult, so it should be done with care.

Assignments like a=2*a

Frequently, you will meet assignment statements in which the variable name
on the left hand side (of =) also appears in the expression on the right hand
side. Take, e.g., a = 2*a. Python would then, according to its rules, first
compute the expression on the right hand side with the current value of a
and then let the result become the updated value of a through the assignment
(the updated value of a is placed in a new “box” in computer memory).

4 In Python 2.7, this would have been a print command reading print y.
5 Be aware that in certain situations programmers do skip such spaces, e.g., when listing arguments
in function calls, as you will learn more about in Chap. 4.
6 You might like to check out the style guide for Python coding at https://www.python.org/dev/
peps/pep-0008/.

https://www.python.org/dev/peps/pep-0008/


1.2 A Python Programwith Variables 9

1.2.3 Why Use Variables?

But why do we introduce variables at all? Would it not be just as fine, or even
simpler, to just use the numbers directly in the formula?

If we did, using the same numerical values, ball.pywould become even shorter,
reading

# Program for computing the height of a ball in vertical motion

y = 5*0.6 - 0.5*9.81*0.6**2 # vertical position

print(y)

What is wrong with this? After all, we do get the correct result when running the
code!

Coding and Mathematical Formulation If you compare this coded formula with
the corresponding mathematical formulation

y = v0t − 0.5gt2,

the equivalence between code and mathematics is not as clear now as in our original
program ball.py, where the formula was coded as

y = v0*t - 0.5*g*t**2

In our little example here, this may not seem dramatic. Generally, however, you bet-
ter believe that when, e.g., trying to find errors in code that lacks clear equivalence
to the corresponding mathematical formulation, human code interpretation typically
gets much harder and it might take you a while to track down those bugs!

Changing Numerical Values In addition, if we would like to redo the computation
for another point in time, say t = 0.9 s, we would have to change the code in two
places to arrive at the new code line

y = 5*0.9 - 0.5*9.81*0.9**2

You may think that this is not a problem, but imagine some other formula (and
program) where the same number enters in a 100 places! Are you certain that you
can do the right edit in all those places without any mistakes?7 You should realize
that by using a variable, you get away with changing in one place only! So, to
change the point in time from 0.6 to 0.9 in our original program ball.py, we could
simply change t = 0.6 into t = 0.9. That would be it! Quick and much safer
than editing in many places.

7 Using the editor to replace 0.6 in all places might seem like a quick fix, but you would have to
be sure you did not change 0.6 in the wrong places. For example, another number in the code,
e.g. 0.666, could easily be turned into 0.966, unless you were careful.



10 1 The First Few Steps

1.2.4 Mathematical Notation Versus Coding

Make sure you understand that, from the outset, we had a pure mathematical
formulation of our formula

y = v0t − 0.5gt2,

which does not contain any connection to programming at all. Remember, this
formula was derived hundreds of years ago, long before computers entered the
scene! When we next wrote a piece of code that applied this formula, that code had
to obey the rules of the programming language, which in this case is Python. This
means, for example, that multiplication had to be written with a star, simply because
that is the way multiplication is coded in Python. In some other programming
language, the multiplication could in principle have been coded otherwise, but the
mathematical formulation would still read the same.

We have seen how the equals sign (=) is interpreted in Python code. This
interpretation is very different from the interpretation in mathematics, as might be
illustrated by the following little example. In mathematics, x = 2 − x would imply
that 2x = 2, giving x = 1. In Python code, however, a code line like x = 2 -
x would be interpreted, not as an equation, but rather as an assignment statement:
compute the right hand side by subtracting the current value of x from 2 and let the
result be the new value of x. In the code, the new value of x could thus be anything,
all depending on the value x had above the assignment statement!

1.2.5 Write and Run Your First Program

Reading only does not teach you computer programming: you have to program
yourself and practice heavily before you master mathematical problem solving via
programming. In fact, this is very much like learning to swim. Nobody can do that
by just reading about it! You simply have to practice real swimming to get good
at it. Therefore, it is crucial at this stage that you start writing and running Python
programs. We just went through the program ball.py above, so let us next write
and run that code.

But first a warning: there are many things that must come together in the right
way for ball.py to run correctly. There might be problems with your Python
installation, with your writing of the program (it is very easy to introduce errors!),
or with the location of the file, just to mention some of the most common difficulties
for beginners. Fortunately, such problems are solvable, and if you do not understand
how to fix the problem, ask somebody. Very often the guy next to you experienced
the same problem and has already fixed it!

Start up Spyder and, in the editor (left pane), type in each line of the program
ball.py shown earlier. Then you save the program (select File -> save as) where
you prefer and finally run it (select Run -> Run, . . . or press F5). With a bit of luck,
you should now get the number 1.2342 out in the rightmost lower pane in the Spyder
GUI. If so, congratulations, you have just executed your first self-written computer
program in Python!



1.2 A Python Programwith Variables 11

The documentation for Spyder8 might be useful to you. Also, more information
on writing and running Python programs is found in Appendix A.4 herein.

Why not a pocket calculator instead?

Certainly, finding the answer as with the program above could easily have
been done with a pocket calculator. No objections to that and no programming
would have been needed. However, what if you would like to have the position
of the ball for every milli-second of the flight? All that punching on the
calculator would have taken you something like 4 h!

If you know how to program, however, you could modify the code above
slightly, using a minute or two of writing, and easily get all the positions
computed in one go within a second.

An even stronger argument, however, is that mathematical models from
real life are often complicated and comprehensive. The pocket calculator
cannot cope with such problems, even not the programmable ones, because
their computational power and their programming tools are far too weak
compared to what a real computer can offer.

Write programs with a text editor

When Python interprets some code in a file, it is concerned with every
character in the file, exactly as it was typed in. This makes it trouble-
some to write the code into a file with word processors like, e.g., Mi-
crosoft Word, since such a program will insert extra characters, invisible
to us, with information on how to format the text (e.g., the font size and
type).

Such extra information is necessary for the text to be nicely formatted
for the human eye. Python, however, will be much annoyed by the extra
characters in the file inserted by a word processor. Therefore, it is fundamental
that you write your program in a text editor where what you type on the
keyboard is exactly the characters that appear in the file and what Python
will later read. There are many text editors around. Some are stand-alone
programs like Emacs, Vim, Gedit, Notepad++, and TextWrangler. Others
are integrated in graphical development environments for Python, such as
Spyder.

8 See, e.g., https://www.spyder-ide.org/.

https://www.spyder-ide.org/


12 1 The First Few Steps

What about units?

The observant reader has noticed that the handling of quantities in ball.py
did not include units, even though velocity (v0), acceleration (g) and time (t)
of course do have the units of ms−1, ms−2, and s, respectively. Even though
there are toolsa in Python to include units, it is usually considered out of scope
in a beginner’s book on programming. So also in this book.

a See, e.g., https://github.com/juhasch/PhysicalQuantities, https://github.com/hgrecco/pint
and https://github.com/hplgit/parampool if you are curious.

1.3 A Python Programwith a Library Function

Imagine you stand on a distance, say 10.0 m away, watching someone throwing a
ball upwards. A straight line from you to the ball will then make an angle with the
horizontal that increases and decreases as the ball goes up and down. Let us consider
the ball at a particular moment in time, at which it has a height of 10.0 m. What is
the angle of the line then?

Well, we do know (with, or without, a calculator) that the answer is 45◦. However,
when learning to code, it is generally a good idea to deal with simple problems
with known answers. Simplicity ensures that the problem is well understood before
writing any code. Also, knowing the answer allows an easy check on what your
coding has produced when the program is run.

Before thinking of writing a program, one should always formulate the algo-
rithm, i.e., the recipe for what kind of calculations that must be performed. Here,
if the ball is x m away and y m up in the air, it makes an angle θ with the ground,
where tan θ = y/x. The angle is then tan−1(y/x).

The Program Let us make a Python program for doing these calculations. We
introduce names x and y for the position data x and y, and the descriptive name
angle for the angle θ . The program is stored in a file ball_angle_first_try.py:

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = atan(y/x)

print((angle/pi)*180)

Before we turn our attention to the running of this program, let us take a look
at one new thing in the code. The line angle = atan(y/x), illustrates how the
function atan, corresponding to tan−1 in mathematics, is called with the ratio y/x
as argument. The atan function takes one argument, and the computed value is
returned from atan. This means that where we see atan(y/x), a computation
is performed (tan−1(y/x)) and the result “replaces” the text atan(y/x). This is
actually no more magic than if we had written just y/x: then the computation of

https://github.com/juhasch/PhysicalQuantities
https://github.com/hgrecco/pint
https://github.com/hplgit/parampool
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle_first_try.py


1.3 A Python Programwith a Library Function 13

y/x would take place, and the result of that division would replace the text y/x.
Thereafter, the result is assigned to angle on the left-hand side of =.

Note that the trigonometric functions, such as atan, work with angles in
radians. Thus, if we want the answer in degrees, the return value of atan
must be converted accordingly. This conversion is performed by the computation
(angle/pi)*180. Two things happen in the print command: first, the computa-
tion of (angle/pi)*180 is performed, resulting in a number, and second, print
prints that number. Again, we may think that the arithmetic expression is replaced
by its result and then print starts working with that result.

Running the Program If we next execute ball_angle_first_try.py, we get
an error message on the screen saying

NameError: name ’atan’ is not defined
WARNING: Failure executing file: <ball_angle_first_try.py>

We have definitely run into trouble, but why? We are told that

name ’atan’ is not defined

so apparently Python does not recognize this part of the code as anything familiar.
On a pocket calculator the inverse tangent function is straightforward to use in a
similar way as we have written in the code. In Python, however, this function is one
of many that must be imported before use. A lot of functionality9 is immediately
available to us (from the Python standard library) as we start a new programming
session, but much more functionality exists in additional Python libraries. To
activate functionality from these libraries, we must explicitly import it. In Python,
the atan function is grouped together with many other mathematical functions in a
library module called math. To get access to atan in our program, we may write an
import statement:

from math import atan

Inserting this statement at the top of the program and rerunning it, leads to a new
problem: pi is not defined. The constant pi, representing π , is also available in the
math module, but it has to be imported too. We can achieve this by including both
items atan and pi in the import statement,

from math import atan, pi

With this latter statement in place, we save the code as ball_angle.py:

from math import atan, pi

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = atan(y/x)

print((angle/pi)*180)

This script correctly produces 45.0 as output when executed.

9 https://docs.python.org/3/library/functions.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle.py
https://docs.python.org/3/library/functions.html


14 1 The First Few Steps

Alternatively, we could use the import statement import math. This
would require atan and pi to be prefixed with math, however, as shown in
ball_angle_prefix.py:

import math

x = 10.0 # Horizontal position
y = 10.0 # Vertical position

angle = math.atan(y/x)

print (angle/math.pi)*180

The essential difference between the two import techniques shown here, is the
prefix required by the latter. Both techniques are commonly used and represent the
two basic ways of importing library code in Python. Importing code is an evident
part of Python programming, so we better shed some more light on it.

1.4 Importing fromModules and Packages

At first, it may seem cumbersome to have code in different libraries, since it means
you have to know (or find out) what resides in which library.10 Also, there are
many libraries around in addition to the Python standard library itself. To your
comfort, you come a long way with just a few libraries, and for easy reference, the
handful of libraries used in this book is listed below (Sect. 1.4.5). Having everything
available at any time would be convenient, but this would also mean that computer
memory would be filled with a lot of unused information, causing less memory to be
available for computations on big data. Python has so many libraries, with so much
functionality, that importing what is needed is indeed a very sensible strategy.

Where to Place Import Statements? The general recommendation is to place
import statements at the top of a program, making them easy to spot.

1.4.1 Importing for UseWithout Prefix

The need to prefix item names is avoided when import statements are on the form

from some_library import ... # i.e., items will be used without prefix

as we saw in ball_angle.py above. Without prefixing, coded formulas often
become easier to read, since code generally comes “closer” to mathematical writing.
On the other hand, it is less evident where imported items “come from” and this may
complicate matters, particularly when trying to understand more comprehensive
code written by others.

10 There is a built-in function called dir, which gives all the names defined in a library module.
Another built-in function called help prints documentation. To see how they work, write (in
Spyder, pane down to the right) import math followed by dir(math) or help(math).

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle_prefix.py


1.4 Importing fromModules and Packages 15

Importing Individual Items With ball_angle.py, we just learned that the
import statement

from math import atan, pi

made the atan function and pi available to the program. To bring in even more
functionality from math, the import statement could simply have been extended
with the relevant items, say

from math import atan, pi, sin, cos, log

and so on.

Having Several Import Statements Very often, we need to import functionality
from several libraries. This is straight forward, as we may show by combining
imports from math with imports from the useful Numerical Python (or NumPy)
library,11 named numpy in Python:

from math import atan, pi, sin, cos, log
from numpy import zeros, linspace

Right now, do not worry what the functions zeros and linspace do, we will
explain and use them soon.

Importing All Items with “Import *” The approach of importing individual items
(atan, pi, etc.) might appear less attractive if you need many of them in your
program. There is another way, though, but it should be used with care, for reasons
to be explained. In fact, many programmers will advice you not to use it at all,
unless you know very well what you are doing. With this import technique, the list
of items in the import statement is exchanged with simply a star (i.e., *). The import
statement then appears as

from some_library import * # import all items from some_library

which with the math library reads

from math import * # import all items from math

This will cause all items from math to be imported, however, also the ones you
do not need! So, with this “lazy” import technique, Python has to deal with a lot
of names that are not used. Like when importing individual items, items are used
without prefix.

Disadvantage: No Prefix Allows Name Conflicts! When importing so that items
are written without prefix, there is a potential problem with name conflicts. Let
us illustrate the point with a simple example. Assume that, being new to Python,
we want to write a little program for checking out some of the functions that the
language has got to offer.

Our first candidate could be the exponential function and we might like to
compute and print out et for t = 0, 1, 2. A fellow student explains us how a function
exp in the numpy library allows our calculations to be done with a single function

11 The NumPy library (http://www.numpy.org/) is included in Anaconda. If you have not installed
Anaconda, you may have to install NumPy separately.

http://www.numpy.org/


16 1 The First Few Steps

call. This sounds good to us, so based on what we were told, we start writing our
program as

from numpy import exp

x = exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

The script runs without any problems and the printed numbers seem fine,

[ 1. 2.71828183 7.3890561 ]

Moving on, we want to test a number of functions from the math library (cos, sin,
tan, etc.). Since we foresee testing quite many functions, we choose the “lazy”
import technique and plan to extend the code with one function at a time.

Extending the program with a simple usage of the cos function, it reads

from numpy import exp
from math import *

x = exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = cos(0)
print(y)

Running this version of the script, however, we get a longer printout (most of which
is irrelevant at this point) ending with

TypeError: a float is required

Clearly, something has gone wrong! But why?
The explanation is the following. With the second import statement, i.e.,

from math import *

all items from math were imported, including a function from math that is also
named exp. That is, there are two functions in play here that both go by the name
exp! One exp function is found in the numpy library, while the other exp function is
found in the math library, and the implementations of these two are different. This
now becomes a problem, since the last imported exp function silently “takes the
place” of the previous one, so that the name exp hereafter will be associated with
the exp function from math! Thus, when Python interprets x = exp([0, 1, 2]),
it tries to use exp from math for the calculations, but that version of exp can only
take a single number (real or integer) as input argument, not several (as exp from
numpy can). This mismatch then triggers the error message12 and causes program
execution to stop before reaching y = cos(0).

Similar name conflicts may arise also with other functions than exp, since a lot
of items appear with identical names in different libraries (e.g., also cos, sin, tan,
and many more, exist with different implementations in both numpy and math).
The fact that programmers may create, and share, their own libraries containing self

12 It should be mentioned here, that error messages can not always be very accurate. With
some experience, however, you will find them very helpful at many occasions. More about error
messages later (Sect. 1.7).



1.4 Importing fromModules and Packages 17

chosen item names, makes it even more obvious that “name conflicts” is an issue
that should be understood.

Several other coding alternatives would have helped the situation here. For ex-
ample, instead of from math import *, we could switch the star (*) with a list of
item names, i.e. as from math import cos for the present version. As long as we
stay away from (by a mistake) importing exp also from math, no name conflict will
occur and the program will run fine. Alternatively, we could simply have switched
the order of the import statements (can you explain13 why?), or, we could have
moved the import statement from math import * down, so that it comes after
the statement x = exp([0, 1, 2]) and before the line y = cos(0). Note that, in
Python 3, import statements on the form from module import * are only allowed
at module level, i.e., when placed inside functions, they give an error message.

Next, we will address the safer “standard” way of importing.

1.4.2 Importing for Usewith Prefix

A safer implementation of our program would use the “standard” method of
importing, which we saw a glimpse of in ball_angle_prefix.py above. With
this import technique, the code would read

import numpy
import math

x = numpy.exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = math.cos(0)
print(y)

We note that the import statements are on the form

import some_library # i.e., items will be used with prefix

and that item names belonging to some_library are prefixed with some_library
and a “dot”. This means that, e.g., numpy.exp([0, 1, 2]) refers to the (unique)
exp function from the numpy library. When the import statements are on the
“standard” form, the prefix is required. Leaving it out gives an error message. This
version of the program runs fine, producing the expected output.

With the prefixing method, the order of imports does not matter, as there is no
doubt where the functions (or items) come from. At the same time, though, it is clear
that prefixing does not make it any easier for a human to read the “math meaning”
out of the code. In mathematical writing, there would be no prefix, so a prefix will
just complicate the job for a human interpreter, and more so the more comprehensive
the expressions are.

13 By switching the order, Python would first read from math import * and would import
everything, including exp, from math. Then, it would read from numpy import exp, which
would cause Python to import the numpy version of exp, which effectively means that the math
version of exp is “overwritten” by the one from numpy. At any later point in the code then, Python
will associate the word exp with the numpy function.



18 1 The First Few Steps

1.4.3 Imports with Name Change

Whether we import for use with or without prefix, we may change names of the im-
ported items by minor adjustments of the import statements. Introducing such name
changes in our program and saving this final version as check_functions.py, it
reads

import numpy as np
import math as m

x = np.exp([0, 1, 2]) # do all 3 calculations
print(x) # print all 3 results

y = m.cos(0)
print(y)

Effectively, the module names in this program now become np and m (by our
own choice) instead of numpy and math, respectively. We still enjoy the safety
of prefixing and notice that such name changes might bring computer coded
expressions closer to mathematical writing and thus ease human interpretation.

When importing library items for use without prefix, name changes can be done,
e.g., like

from math import cos as c, sin as s

print(c(0) + s(0))

1.4.4 Importing from Packages

Modules may be grouped into packages, often together with functions, variables,
and more. We may import items (modules, functions, etc.) from such packages
also, but the appearance of an import statement will then depend on the structure
of the package in question. We leave out the details14 and just exemplify with two
packages often used in this book.

The numpy library used above is, in fact, a package and we saw how it could be
used with different import statements, just as if it had been a module. Note that the
import statement

import numpy as np # standard way of importing numpy

is the standard way of importing numpy, i.e., also the “nickname” np is standard.
This will be the standard import technique for numpy also in our book, meaning that
we will generally use numpy items with the np prefix. We will deviate from this at
times, typically during brief interactive sessions (see Sect. 2.1), in which case we
will import items explicitly specified by name.

Another popular package you will meet often in this book, is the plotting library
matplotlib (Sect. 1.5), used for generating and handling plots. The standard
import statement, including the “nickname”, is then

import matplotlib.pyplot as plt # standard way of importing pyplot

14 If you are curious, check for more details at https://docs.python.org/3.6/tutorial/modules.html.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/check_functions.py
https://docs.python.org/3.6/tutorial/modules.html


1.5 A Python Programwith Vectorization and Plotting 19

Here, pyplot is a module in the matplotlib package15 that is named plt when
imported. Thus, when imported this way, all items from pyplotmust have the prefix
plt. We will stick to this import and naming standard for pyplot also in the present
book, whenever plotting is on the agenda.

1.4.5 TheModules/Packages Used in This Book

Some readers might be curious to know which libraries are used in this book (apart
from the modules we make ourselves). Well, here they are:

• math—see, e.g., ball_angle.py, Sect. 1.3.
• numpy—see, e.g., check_functions.py above.
• matplotlib.pyplot—see, e.g., ball_plot.py, Sect. 1.5.
• random—see, e.g., throw_2_dice.py in Sect. 2.4.
• sympy—see, e.g., Sect. 5.3.
• timeit—see, e.g., Sect. 5.6.
• sys—see, e.g., Sect. 7.2.2.

These libraries are all well known to Python programmers. The three first ones
(math, numpy and matplotlib.pyplot) are used repeatedly throughout the
text, while the remaining ones (random, sympy, timeit and sys) appear just
occasionally.

Not listed, are two modules that are used just once each, the keyword module
(Sect. 2.2) and the os module (Sect. 9.2.4). It should be mentioned that we also use
a package called odespy (Sect. 8.4.6), previously developed by one of the authors
(Langtangen).

1.5 A Python Programwith Vectorization and Plotting

We return to the problem where a ball is thrown up in the air and we have a formula
for the vertical position y of the ball. Say we are interested in y at every milli-second
for the first second of the flight. This requires repeating the calculation of y =
v0t − 0.5gt2 one thousand times. As we will see, the computed heights appear very
informative when presented graphically with time, as opposed to a long printout of
all the numbers.

The Program In Python, the calculations and the visualization of the curve may
be done with the program ball_plot.py, reading

import numpy as np
import matplotlib.pyplot as plt

v0 = 5
g = 9.81

15 The matplotlib package (https://matplotlib.org/) comes with Anaconda. If you have not
installed Anaconda, you may have to install matplotlib separately.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_angle.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/check_functions.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_plot.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/throw_2_dice.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/ball_plot.py
https://matplotlib.org/


20 1 The First Few Steps

t = np.linspace(0, 1, 1001)

y = v0*t - 0.5*g*t**2

plt.plot(t, y) # plots all y coordinates vs. all t coordinates
plt.xlabel(’t (s)’) # places the text t (s) on x-axis
plt.ylabel(’y (m)’) # places the text y (m) on y-axis
plt.show() # displays the figure

This program produces a plot of the vertical position with time, as seen in
Fig. 1.1. As you notice, the code lines from the ball.py program in Sect. 1.2 have
not changed much, but the height is now computed and plotted for a thousand points
in time!

Let us take a closer look at this program. At the top, we recognize the import
statements

import numpy as np
import matplotlib.pyplot as plt

As we know by now, these statements imply that items from numpy and
matplotlib.pyplotmust be prefixed with np and plt, respectively.

The linspace Function Next, there is a call to the function linspace from the
numpy library. When n evenly spaced floating point numbers are sought on an
interval [a, b], linspace may generally be called like this:

np.linspace(a, b, n)

This means that the call

t = np.linspace(0, 1, 1001)

creates 1001 coordinates between 0 and 1, inclusive at both ends. The mathemati-
cally inclined reader might agree that 1001 coordinates correspond to 1000 equal-

Fig. 1.1 Plot generated by the script ball_plot.py showing the vertical position of the ball
(computed for a thousand points in time)



1.6 Plotting, Printing and Input Data 21

sized intervals in [0, 1] and that the coordinates are then given by ti = 1−0
1000 i = i

1000 ,
i = 0, 1, . . . , 1000.

The object returned from linspace is an array, i.e., a certain collection of (in
this case) numbers. Through the assignment, this array gets the name t. If we like,
we may think of the array t as a collection of “boxes” in computer memory (each
containing a number) that collectively go by the name t (later, we will demonstrate
how these boxes are numbered consecutively from zero and upwards, so that each
“box” may be identified and used individually).

Vectorization When we start computing with t in

y = v0*t - 0.5*g*t**2

the right hand side is computed for every number in t (i.e., every ti for i =
0, 1, . . . , 1000), yielding a similar collection of 1001 numbers in the result y, which
(automatically) also becomes an array!

This technique of computing all numbers “in one chunk” is referred to as
vectorization. When it can be used, it is very handy, since both the amount of
code and computation time is reduced compared to writing a corresponding loop16

(Chap. 3) for doing the same thing.

Plotting The plotting commands are new, but simple:

plt.plot(t, y) # plots all y coordinates vs. all t coordinates
plt.xlabel(’t (s)’) # places the text t (s) on x-axis
plt.ylabel(’y (m)’) # places the text y (m) on y-axis
plt.show() # displays the figure

At this stage, you are encouraged to do Exercise 1.4. It builds on the example
above, but is much simpler both with respect to the mathematics and the amount of
numbers involved.

1.6 Plotting, Printing and Input Data

1.6.1 PlottingwithMatplotlib

Often, computations and analyses produce data that are best illustrated graphically.
Thus, programming languages usually have many good tools available for producing
and working with plots, and Python is no exception.17

In this book, we shall stick to the excellent plotting library Matplotlib, which has
become the standard plotting package in Python. Below, we demonstrate just a few
of the possibilities that come with Matplotlib, much more information is found on
the Matplotlib website.18

16 It should be mentioned, though, that the computations are still done with loops “behind the
scenes” (coded in C or Fortran). They generally run much quicker than the Python loops we write
ourselves.
17 In Sect. 9.2.4 we give a brief example of how plots may be turned into videos.
18 https://matplotlib.org/index.html.

https://matplotlib.org/index.html


22 1 The First Few Steps

A Single Curve In Fig. 1.1, we saw a nice and smooth curve, showing how the
height of a ball developed with time. The reader should realize that, even though
the curve is continuous and apparently smooth, it is generated from a collection of
points only. That is, for the chosen points in time, we have computed the height. For
times in between, we have computed nothing! So, in principle, we actually do not
know what the height is there. However, if only the time step between consecutive
height computations is “small enough”, the ball can not experience any significant
change in its state of motion. Thus, inserting straight lines between two and two
consecutive data points will be a good approximation. This is exactly what Python
does, unless otherwise is specified. With “many” data points, as in Fig. 1.1, the curve
appears smooth.

We saw previously, in ball_plot.py, how an array y (heights) could be plotted
against another corresponding array t (points in time) with the statement

plt.plot(t, y)

A plot command like this is very typical and often just what we prefer, for example,
in our case with the ball.

It is also possible, however, to plot an array without involving any second array
at all. With reference to ball_plot.py, this means that y could have been plotted
without any mention of t, and to do that, one could write the plot command rather
like

plt.plot(y)

The curve would then have looked just like the one in Fig. 1.1, except that the x-axis
would span the y array indices from 0 to 1000 instead of the corresponding points
in time (check it and see for yourself).

Quickly testing a (minor) code change

Let us take the opportunity here, to mention how many programmers
would go about to check the alternative plot command just mentioned. In
ball_plot.py, one would typically just comment out the original lines and
insert alternative code for these, i.e., as

#plt.plot(t, y)
#plt.xlabel(’t (s)’)
plt.plot(y)
plt.xlabel(’Array indices’)

One would then run the code and observe the impact of the change, which in
this case is the modified plot described above.

After running the modified code, there are, generally, two alternatives.
Should the original version be kept or should we make the change permanent?
With the present ball example, most of us would prefer the original plot, so
we would change the code back to its original form (remember to check that
it works as before!).

When the code change to test is more comprehensive, it is much better to
make a separate copy of the whole program, and then do the testing there.



1.6 Plotting, Printing and Input Data 23

The characteristics of a plotted line may also be changed in many ways with just
minor modifications of the plot command. For example, a black line is achieved
with

plt.plot(t, y, ’k’) # k - black, b - blue, r - red, g - green, ...

Other colors could be achieved by exchanging the k with certain other letters. For
example, using b, you get a blue line, r gives a red line, while g makes the line
green. In addition, the line style may be changed, either alone, or together with a
color change. For example,

plt.plot(t, y, ’--’) # default color, dashed line

plt.plot(t, y, ’r--’) # red and dashed line

plt.plot(t, y, ’g:’) # green and dotted line

Note that to avoid destroying a previously generated plot, you may precede your
plot command by

plt.figure()

This causes a new figure to be created alongside any already present.

Plotting Points Only When there are not too many data points, it is sometimes
desirable to plot each data point as a “point”, rather than representing all the data
points with a line. To illustrate, we may consider our case with the ball again,
but this time computing the height each 0.1 s, rather than every millisecond. In
ball_plot.py, we would then have to change our call to linspace into

t = np.linspace(0, 1, 11) # 11 values give 10 intervals of 0.1

Note that we need to give 11 as the final argument here, since there will be 10
intervals of 0.1 s when 11 equally distributed values on [0, 1] are asked for. In
addition, we would have to change the plot command to specify the plotting of
data points as “points”. To mark the points themselves, we may use one of many
different alternatives, e.g., a circle (the lower case letter o) or a star (*). Using a star,
for example, the plot command could read

plt.plot(t, y, ’*’) # default color, points marked with *

With these changes, the plot from Fig. 1.1 would change as seen in Fig. 1.2.
Of course, not only can we choose between different kinds of point markers, but

also their color may be specified. Some examples are:

plt.plot(t, y, ’r*’) # points marked with * in red

plt.plot(t, y, ’bo’) # points marked with o in blue

plt.plot(t, y, ’g+’) # points marked with + in green

When are the data points “too many” for plotting data points as points (and not
as a line)? If plotting the data points with point markers and those markers overlap
in the plot, the points will not appear as points, but rather as a very thick line. This
is hardly what you want.



24 1 The First Few Steps

Fig. 1.2 Vertical position of the ball computed and plotted for every 0.1 s

Decorating a Plot We have seen how the code lines plt.xlabel(’t (s)’) and
plt.ylabel(’y (m)’) in ball_plot.py put labels t (s) and y (m) on the t-
and y-axis, respectively. There are other ways to enrich a plot as well.

One thing, is to add a legend so that the curve itself gets labeled. With
ball_plot.py, we could get the legend v0*t - 0.5*g*t**2, for example, by
coding

plt.legend([’v0*t - 0.5*g*t**2’])

When there is more than a single curve, a legend is particularly important of course
(see section below on “multiple curves” for a plot example).

Another thing, is to add a grid. This is useful when you want a more detailed
impression of the curve and may be coded in this way,

plt.grid(’on’)

A plot may also get a title on top. To get a title like This is a great title, for
example, we could write

plt.title(’This is a great title’)

Sometimes, the default ranges appearing on the axes are not what you want them to
be. This may then be specified by a code line like

plt.axis([0, 1.2, -0.2, 1.5]) # x in [0, 1.2] and y in [-0.2, 1.5]

All statements just explained will be demonstrated in the next section, when we
show how multiple curves may be plotted together in a single plot.

Multiple Curves in the Same Plot Assume we want to plot f (t) = t2 and
g(t) = et in the same plot for t on the interval [−2, 2]. The following script
(plot_multiple_curves.py) will accomplish this task:

import numpy as np
import matplotlib.pyplot as plt

https://github.com/slgit/prog4comp_2/blob/master/py36-src/plot_multiple_curves.py


1.6 Plotting, Printing and Input Data 25

t = np.linspace(-2, 2, 100) # choose 100 points in time interval

f_values = t**2
g_values = np.exp(t)

plt.plot(t, f_values, ’r’, t, g_values, ’b--’)
plt.xlabel(’t’)
plt.ylabel(’f and g’)
plt.legend([’t**2’, ’e**t’])
plt.title(’Plotting of two functions (t**2 and e**t)’)
plt.grid(’on’)
plt.axis([-3, 3, -1, 10])
plt.show()

In this code, you recognize the commands explained just above. Their impact on
the plot may be seen in Fig. 1.3, which is produced when the program is executed.

Fig. 1.3 The functions f (t) = t2 and g(t) = et

In addition, you see how

plt.plot(t, f_values, ’r’, t, g_values, ’b--’)

causes both curves to be seen in the same plot. Notice the structure here, within the
parenthesis, we first describe plotting of the one curve with t, f_values, ’r’,
before plotting of the second curve is specified by t, g_values, ’b--’. These
two “plot specifications” are separated by a comma. Had there been more curves
to plot in the same plot, we would simply extend the list in a similar way. For each
curve, color and line style is specified independently of the other curve specifications
in the plot command (no specification gives default appearance). Furthermore, you
notice how

plt.legend([’t**2’, ’e**t’])

creates the right labelling of the curves. Note that the order of curve specifications
in the plot command must be the same as the order of legend specifications in



26 1 The First Few Steps

the legend command. In the plot command above, we first specify the plotting of
f_values and then g_values. In the legend command, t**2 should thus appear
before e**t (as it does).

Multiple Plots in One Figure With the subplot command you may
combine several plots into one. We may demonstrate this with the script
two_plots_one_fig.py, which reproduces Figs. 1.2 and 1.3 as one:

import numpy as np
import matplotlib.pyplot as plt

plt.subplot(2, 1, 1) # 2 rows, 1 column, plot number 1
v0 = 5
g = 9.81
t = np.linspace(0, 1, 11)
y = v0*t - 0.5*g*t**2
plt.plot(t, y, ’*’)
plt.xlabel(’t (s)’)
plt.ylabel(’y (m)’)
plt.title(’Ball moving vertically’)

plt.subplot(2, 1, 2) # 2 rows, 1 column, plot number 2
t = np.linspace(-2, 2, 100)
f_values = t**2
g_values = np.exp(t)
plt.plot(t, f_values, ’r’, t, g_values, ’b--’)
plt.xlabel(’t’)
plt.ylabel(’f and g’)
plt.legend([’t**2’, ’e**t’])
plt.title(’Plotting of two functions (t**2 and e**t)’)
plt.grid(’on’)
plt.axis([-3, 3, -1, 10])

plt.tight_layout() # make subplots fit figure area
plt.show()

You observe that subplot appears in two places, first as plt.subplot(2, 1,
1), then as plt.subplot(2, 1, 2). This may be explained as follows. With a
code line like

plt.subplot(r, c, n)

we tell Python that in an arrangement of r by c subplots, r being the number of
rows and c being the number of columns, we address subplot number n, counted
row-wise. So, in two_plots_one_fig.py, when we first write

plt.subplot(2, 1, 1)

Python understands that we want to plot in subplot number 1 in an arrangement with
two rows and one column of subplots. Further down, Python interprets

plt.subplot(2, 1, 2)

and understands that plotting now is supposed to occur in subplot number 2 of the
same arrangement.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/two_plots_one_fig.py


1.6 Plotting, Printing and Input Data 27

Fig. 1.4 Ball trajectory and functions f (t) = t2 and g(t) = et as two plots in one figure

Note that, when dealing with subplots, some overlapping of subplots may occur.
Usually, this is solved nicely by inserting the following line (as at the end of our
code),

plt.tight_layout()

This will cause subplot parameters to be automatically adjusted, so that the subplots
fit in to the figure area.

The plot generated by the code is shown in Fig. 1.4.

Making a Hardcopy Saving a figure to file is achieved by

plt.savefig(’some_plot.png’) # PNG format
plt.savefig(’some_plot.pdf’) # PDF format
plt.savefig(’some_plot.jpg’) # JPG format
plt.savefig(’some_plot.eps’) # Encanspulated PostScript format

1.6.2 Printing: The String Format Method

We have previously seen that

print(y)

will print the value of the variable y. In an equally simple way, the line

print(’This is some text’)

will print This is some text (note the enclosing single quotes in the call to
print). Often, however, it is of interest to print variable values together with some
descriptive text. As shown below, such printing can be done nicely and controlled
in Python, since the language basically allows text and numbers to be mixed and
formatted in any way you need.



28 1 The First Few Steps

One Variable and Text Combined Assume there is a variable v1 in your program,
and that v1 has the value 10.0, for example. If you want your code to print the value
of v1, so that the printout reads

v1 is 10.0

you can achieve that with the following line in your program:

print(’v1 is {}’.format(v1))

This is a call to the function print with “an argument composed of two parts”. The
first part reads v1 is {} enclosed in single quotes (note the single quotes, they
must be there!), while the second part is .format(v1). The single quotes of the
first part means that it is a string (alternatively, double quotes may be used).19 That
string contains a pair of curly brackets {}, which acts as a placeholder. The brackets
tell Python where to place the value of, in this case, v1, as specified in the second
part .format(v1). So, the formatting creates the string v1 is 10.0, which then
gets printed by print.

Several Variables and Text Combined Often, we have more variables to print,
and with two variables v1 and v2, we could print them by

print(’v1 is {}, v2 is {}’.format(v1, v2))

In this case, there are two placeholders {}, and—note the following: the order of v1
and v2 given in .format(v1, v2) will dictate the order in which values are filled
into the preceding string. That is, reading the string from left to right, the value of
v1 is placed where the first {} is found, while the value of v2 is placed where the
second {} is located.

So, if v1 and v2 have values 10.0 and 20.0, respectively, the printout will read

v1 is 10.0, v2 is 20.0

When printing the values of several variables, it is often natural to use one line for
each. This may be achieved by using \n as

print(’v1 is {} \nv2 is {}’.format(v1, v2)) # \n gives new line

which will produce

v1 is 10.0
v2 is 20.0

We could print the values of more variables by a straight forward extension of what
was shown here.

Note that, if we had accidentally switched the order of the variables as

print(’v1 is {}, \nv2 is {}’.format(v2, v1))

where .format(v2, v1) is used instead of .format(v1, v2)), we would have
got no error message, just an erroneous printout where the values are switched:

v1 is 20.0
v2 is 10.0

19 Previously, we have met objects of type int and float. A string is an object of type str.



1.6 Plotting, Printing and Input Data 29

So, make sure the order of the arguments is correct. An alternative is to name the
arguments.

Naming the Arguments If we name the arguments (v1 and v2 are arguments to
format), we get the correct printout whether we call print as

print(’v1 is {v1}, \nv2 is {v2}’.format(v1=v1, v2=v2))

or, switching the order,

print(’v1 is {v1}, \nv2 is {v2}’.format(v2=v2, v1=v1))

Note that the names introduced do not have to be the same as the variable names,
i.e., “any” names would do. Thus, if we (for the sake of demonstration) rather use
the names a and b, any of the following calls to print would work just as fine (try
it!):

print(’v1 is {a}, \nv2 is {b}’.format(a=v1, b=v2))

or

print(’v1 is {a}, \nv2 is {b}’.format(b=v2, a=v1))

Controlling the printout like we have demonstrated this far, may be sufficient
in many cases. However, as we will see next, even more printing details can be
controlled.

Formatting More Details Often, we want to control how numbers are formatted.
For example, we may want to write 1/3 as 0.33 or 3.3333e-01 (3.3333 · 10−1),
and as the following example will demonstrate, such details may indeed be specified
in the argument to print. The essential new thing then, is that we supply the
placeholders {} with some extra information in between the brackets.

Suppose we have a real number 12.89643, an integer 42, and a text ’some
message’ that we want to write out in the following two different ways:

real=12.896, integer=42, string=some message
real=1.290e+01, integer= 42, string=some message

The real number is first to be written in decimal notation with three decimals, as
12.896, but afterwards in scientific notation as 1.290e+01. The integer should first
be written as compactly as possible, while the second time, 42 should be placed in
a five character wide text field.

The following program, formatted_print.py, produces the requested output:

r = 12.89643 # real number
i = 42 # integer
s = ’some message’ # string (equivalent: s = "some message")

print(’real={:.3f}, integer={:d}, string={:s}’.format(r, i, s))
print(’real={:9.3e}, integer={:5d}, string={:s}’.format(r, i, s))

Here, each placeholder carries a specification of what object type that will enter in
the corresponding place, with f symbolizing a float (real number), d symbolizing
an int (integer), and s symbolizing a str (string). Also, there is a specification of
how each number is to be printed. Note the colon within the brackets, it must be
there!

https://github.com/slgit/prog4comp_2/blob/master/py36-src/formatted_print.py


30 1 The First Few Steps

In the first call to print,

print(’real={:.3f}, integer={:d}, string={:s}’.format(r, i, s))

:.3f tells Python that the floating point number r is to be written as compactly as
possible in decimal notation with three decimals, :d tells Python that the integer i
is to be written as compactly as possible, and :s tells Python to write the string s.

In the second call to print,

print(’real={:9.3e}, integer={:5d}, string={:s}’.format(r, i, s))

the interpretation is the same, except that r and i now should be formatted according
to :9.3e and :5d, respectively. For r, this means that its float value will be written
in scientific notation (the e) with 3 decimals, in a field that has a width of 9
characters. As for i, its integer value will be written in a field of width 5 characters.

Other ways of formatting the numbers would also have been possible.20 For
example, specifying the printing of r rather as :9.3f (i.e., f instead of e), would
give decimal notation, while with :g, Python itself would choose between scientific
and decimal notation, automatically choosing the one resulting in the most compact
output. Typically, scientific notation is appropriate for very small and very large
numbers and decimal notation for the intermediate range.

Printing with old string formatting

There is another older string formatting that, when used with print, gives the
same printout as the string format method. Since you will meet it frequently
in Python programs found elsewhere, you better know about it. With this
formatting, the calls to print in the previous example would rather read

print(’real=%.3f, integer=%d, string=%s’ % (r, i, s))
print(’real=%9.3e, integer=%5d, string=%s’ % (r, i, s))

As you might guess, the overall “structure” of the argument to print is the
same as with the string format method, but, essentially, % is used instead of {}
(with : inside) and .format.

An Example: Printing Nicely Aligned Columns A typical example of when
formatted printing is required, arises when nicely aligned columns of numbers are to
be printed. Suppose we want to print a column of t values together with associated
function values g(t) = t sin(t) in a second column.

We could achieve this in the following way (note that, repeating the same
set of statements multiple times, like we do in the following code, is not good
programming practice—one should use a loop. You will learn about loops in
Chap. 3.)

from math import sin

t0 = 2

20 https://docs.python.org/3/library/string.html#format-string-syntax.

https://docs.python.org/3/library/string.html#format-string-syntax


1.6 Plotting, Printing and Input Data 31

dt = 0.55

t = t0 + 0*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

t = t0 + 1*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

t = t0 + 2*dt; g = t*sin(t)
print(’{:6.2f} {:8.3f}’.format(t, g))

Running this program, we get the printout

2.00 1.819
2.55 1.422
3.10 0.129

Observe that the columns are nicely aligned here. With the formatting, we effec-
tively control the width of each column and also the number of decimals. The
numbers in each column will then become nicely aligned under each other and
written with the same precision.

To the contrary, if we had skipped the detailed formatting, and rather used a
simpler call to print like

print(t, g)

the columns would be printed as

2.0 1.81859485365
2.55 1.42209347935
3.1 0.128900053543

Observe that the nice and easy-to-read structure of the printout now is gone.

1.6.3 Printing: The f-String

We should briefly also mention printing by use of f-strings. Above, we printed the
values of variables v1 and v2, being 10.0 and 20.0, respectively. One of the calls we
used to print was (repeated here for easy reference)

print(’v1 is {} \nv2 is {}’.format(v1, v2)) # \n gives new line

and it produced the output

v1 is 10.0
v2 is 20.0

However, if we rather skip .format(v1, v2), and instead introduce an f in front
of the string, we can produce the very same output by the following simpler call to
print:

print(f’v1 is {v1} \nv2 is {v2}’)

So, f-strings21 are quite handy!

21 Read more about f-strings at https://www.python.org/dev/peps/pep-0498.

https://www.python.org/dev/peps/pep-0498


32 1 The First Few Steps

Printing Strings that Span Multiple Lines

A handy way to print strings that run over several lines, is to use triple double-
quotes (or, alternatively, triple single-quotes) like this:

print("""This is a long string that will run over several lines
if we just manage to fill in
enough words.""")

The output will then read

This is a long string that will run over several lines
if we just manage to fill in
enough words.

1.6.4 User Input

Computer programs need a set of input data and the purpose is to use these data to
compute output (data), i.e., results. We have previously seen how input data can be
provided simply by assigning values to variables directly in the code. However, to
change values then, one must change them in the program.

There are more flexible ways of handling input, however. For example through
some dialogue with the user (i.e., the person running the program). Here is one
example where the program asks a question, and the user provides an answer by
typing on the keyboard:

age = int(input(’What is your age? ’))
print(’Ok, so you’re half way to {}, wow!’.format(age*2))

In the first line, there are two function calls, first to input and then to int. The func-
tion call input(’What is your age? ’) will cause the question “What is your
age?” to appear in the lower right pane. When the user has (after left-clicking the
pane) typed in an integer for the age and pressed enter, that integer will be returned
by input as a string (since input always returns a string22). Thus, that string must
be converted to an integer by calling int, before the assignment to age takes place.

So, after having interpreted and run the first line, Python has established the
variable age and assigned your input to it. The second line combines the calculation
of twice the age with a message printed on the screen. Try these two lines in a little
test program to see for yourself how it works.

It is possible to get more flexibility into user communication by building a string
before input shows it to the user. Adding a bit to the previous dialogue may
illustrate how it works:

# ...assume the variable "name" contains name of user

message = ’Hello {:s}! What is your age? ’.format(name)

age = int(input(message))
print(’Ok, so you’re half way to {}, wow!’.format(age*2))

22 The input function here in Python 3.6, corresponds to the raw_input function in Python 2.7.



1.7 Error Messages and Warnings 33

Thus, if the user name was Paul, for example, he would get this question up on his
screen

Hello Paul! What is your age?

He would type his age, press enter, and the code would proceed like before.
There are other ways of providing input to a program as well, e.g., via a graphical

interface (as many readers will be used to) or at the command line (i.e., as parameters
succeeding, on the same line, the command that starts the program). Reading data
from a file is yet another way.

1.7 Error Messages andWarnings

All programmers experience error messages, and usually to a large extent during the
early learning process. Sometimes error messages are understandable, sometimes
they are not. Anyway, it is important to get used to them.

One idea is to start with a program that initially is working, and then deliberately
introduce errors in it, one by one (but remember to take a copy of the original
working code!). For each error, you try to run the program to see what Python’s
response is. Then you know what the problem is and understand what the error
message is about. This will greatly help you when you get a similar error message
or warning later.

Debugging Very often, you will experience that there are errors in the program you
have written. This is normal, but frustrating in the beginning. You then have to find
the problem, try to fix it, and then run the program again. Typically, you fix one
error just to experience that another error is waiting around the corner. However,
after some time you start to avoid the most common beginner’s errors, and things
run more smoothly. The process of finding and fixing errors, called debugging, is
very important to learn. There are different ways of doing it too.

A special program (debugger) may be used to help you check (and do) different
things in the program you need to fix. A simpler procedure, that often brings
you a long way, is to print information to the screen from different places in the
program. First of all, this is something you should do (several times) during program
development anyway, so that things get checked as you go along. However, if the
final program still ends up with error messages, you may save a copy of it, and do
some testing on the copy. Useful testing may then be to remove, e.g., the latter half
of the program (e.g., by inserting comment signs #), and insert print commands at
clever places to see what is the case. When the first half looks ok, possibly after
some corrections, insert parts of what was removed and repeat the process with the
new code. Using simple numbers and doing this in parallel with hand calculations
on a piece of paper (for comparison) is often a very good idea.

Exception Handling Python also offers means to detect and handle errors by the
program itself! The programmer must then foresee (when writing the code) that
there is a potential for error at some particular point. If, for example, a running
program asks the user to give a number, things may go very wrong if the user inputs
the word five in stead of the number 5. In Python, such cases may be handled



34 1 The First Few Steps

elegantly in the code, since it is possible to (put simply) try some statements,
and if they go wrong, rather run some other code lines! This way, an exception
is handled, and an unintended program stop (“crash”) is avoided. More about
exception handling in Sect. 5.2.

Testing Code When a program finally runs without error messages, it might be
tempting to think that Ah. . . , I am finished!. But no! Then comes program testing,
you need to verify that the program does the computations as planned. This is almost
an art and may take more time than to develop the program, but the program is
useless unless you have much evidence showing that the computations are correct.
Also, having a set of (automatic) tests saves huge amounts of time when you further
develop the program.

Verification Versus Validation

Verification is important, but validation is equally important. It is great if
your program can do the calculations according to the plan, but is it the right
plan? Put otherwise, you need to check that the computations run correctly
according to the formula you have chosen/derived. This is verification: doing
the things right. Thereafter, you must also check whether the formula you have
chosen/derived is the right formula for the case you are investigating. This is
validation: doing the right things.

In the present book, it is beyond scope to question how well the mathe-
matical models describe a given phenomenon in nature or engineering, as the
answer usually involves extensive knowledge of the application area. We will
therefore limit our testing to the verification part.

1.8 Concluding Remarks

1.8.1 Programming Demands You to Be Accurate!

In this chapter, you have seen some examples of how simple things may be done
in Python. Hopefully, you have tried to do the examples on your own. If you have,
most certainly you have discovered that what you write in the code has to be very
accurate.

For example, in our program ball_plot.py, we called linspace in this way

t = np.linspace(0, 1, 1001)

If this had rather been written

t = np.linspace[0, 1, 1001)

we would have got an error message ([ was used instead of (), even if you and I
would understand the meaning perfectly well!

Remember that it is not a human that runs your code, it is a machine. Therefore,
even if the meaning of your code looks fine to a human eye, it still has to comply in
detail to the rules of the programming language. If not, you get warnings and error



1.8 Concluding Remarks 35

messages. This also goes for lower and upper case letters. If you (after importing
from math) give the command pi, you get 3.1415 . . .. However, if you write Pi,
you get an error message. Pay attention to such details also when they are given in
later chapters.

1.8.2 Write Readable Code

When you write a computer program, you have two very different kinds of
readers. One is Python, which will interpret and run your program according to
the rules. The other is some human, for example, yourself or a peer. It is very
important to organize and comment the code so that you can go back to your
own code after, e.g., a year and still understand what clever constructions you
put in there. This is relevant when you need to change or extend your code
(which usually happens often in reality). Organized coding and good commenting
is even more critical if other people are supposed to understand code that you have
written.

It might be instructive to see an example of code that is not very readable. If we
use our very first problem, i.e. computing the height y of a ball thrown up in the air,
the mathematical formulation reads:

y = v0t − 0.5gt2.

Now, instead of our previous program ball.py, we could write a working program
(in bad style!) like:

# This is an example of bad style!
m=5;u=9.81;y=0.6
t=m*y-u*0.5*y**2;print(t)

Running this code, would give the correct answer printed out. However, upon
comparison with the mathematical writing, it is not even clear that the two are
related, unless you sit down and look carefully at it!

In this code,

• variable names do not correspond to the mathematical variables
• there are no (explaining) comments
• no blank lines
• no space to each side of = and -
• several statements appear on the same line with no space in between

When comparing this “bad style” code to the original code in ball.py, the point
should be clear.

1.8.3 Fast Code or Slower and Readable Code?

In numerical computing, there is a strong tradition for paying much attention to fast
code. Industrial applications of numerical computing often involve simulations that



36 1 The First Few Steps

run for hours, days, and even weeks. Fast code is tremendously important in those
cases.

The problem with a strong focus on fast code, unfortunately, is that sometimes
clear and easily understandable constructions are replaced by fast (and possibly
clever), but less readable code. For beginners, however, it is definitely most
important to learn writing readable and correct code.

We will make some comments on constructions that are fast or slow, but the main
focus of this book is to teach how to write correct programs, not the fastest possible
programs.

1.8.4 Deleting Data No Longer in Use

Python has automatic garbage collection, meaning that there is no need to delete
variables (or objects) that are no longer in use. Python takes care of this by itself.
This is opposed to, e.g., Matlab, where explicit deleting sometimes may be required.

1.8.5 Code Lines That Are Too Long

If a code line in a program gets too long, it may be continued on the next line
by inserting a back-slash at the end of the line before proceeding on the next line.
However, no blanks must occur after the back-slash! A little demonstration could be
the following,

my_sum = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 +\
14 + 15 + 16 + 17 + 18 + 19 + 20

So, the back-slash works as a line continuation character here.

1.8.6 Where to Find More Information?

We have already recommended Langtangen’s book, A Primer on Scientific Pro-
gramming with Python (Springer, 2016), as the main reference for the present book.

In addition, there is, of course, the official Python documentation website
(http://docs.python.org/), which provides a Python tutorial, the Python Library
Reference, a Language Reference, and more. Several other great books are also
available, check out, e.g., http://wiki.python.org/moin/PythonBooks.

As you do know, search engines like Google are excellent for finding information
quickly, so also with Python related questions! Finally, you will also find that the
questions and answers at http://stackoverflow.com often cover exactly what you
seek. If not, you may ask your own questions there.

http://docs.python.org/
http://wiki.python.org/moin/PythonBooks
http://stackoverflow.com


1.9 Exercises 37

1.9 Exercises

Exercise 1.1: Error Messages
Save a copy of the program ball.py and confirm that the copy runs as the original.
You are now supposed to introduce errors in the code, one by one. For each error in-
troduced, save and run the program, and comment how well Python’s response cor-
responds to the actual error. When you are finished with one error, re-set the program
to correct behavior (and check that it works!) before moving on to the next error.

a) Insert the word hello on the empty line above the assignment to v0.
b) Remove the # sign in front of the comment initial velocity.
c) Remove the = sign in the assignment to v0.
d) Change the reserved word print into pint.
e) Change the calculation of y to y = v0*t.
f) Change the line print(y) to print(x).

Filename: testing_ball.py.

Exercise 1.2: Volume of a Cube
Write a program that computes the volume V of a cube with sides of length L = 4
cm and prints the result to the screen. Both V and L should be defined as separate
variables in the program. Run the program and confirm that the correct result is
printed.

Hint See ball.py in the text.
Filename: cube_volume.py.

Exercise 1.3: Area and Circumference of a Circle
Write a program that computes both the circumference C and the area A of a circle
with radius r = 2 cm. Let the results be printed to the screen on a single line with an
appropriate text. The variables C, A and r should all be defined as separate variables
in the program. Run the program and confirm that the correct results are printed.
Filename: circumference_and_area.py.

Exercise 1.4: Volumes of Three Cubes
We are interested in the volume V of a cube with length L: V = L3, computed for
three different values of L.

a) In a program, use the linspace function to compute and print three values of L,
equally spaced on the interval [1, 3].

b) Carry out, by hand, the computation V = L3 when L is an array with three
elements. That is, compute V for each value of L.

c) Modify the program in a), so that it prints out the result V of V = L**3 when L is
an array with three elements as computed by linspace. Compare the resulting
volumes with your hand calculations.

d) Make a plot of V versus L.



38 1 The First Few Steps

Filename: volume3cubes.py.

Exercise 1.5: Average of Integers
Write a program that stores the sum 1 + 2 + 3 + 4 + 5 in one variable and then
creates another variable with the average of these five numbers. Print the average to
the screen and check that the result is correct.
Filename: average_int.py.

Exercise 1.6: Formatted Print to Screen
Write a program that defines two variables as x = pi and y = 2. Then let the
program compute the product z of these two variables and print the result to the
screen as

Multiplying 3.14159 and 2 gives 6.283

Filename: formatted_print.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	1 The First Few Steps
	1.1 What Is a Program? And What Is Programming?
	1.1.1 Installing Python

	1.2 A Python Program with Variables
	1.2.1 The Program
	1.2.2 Dissecting the Program
	1.2.3 Why Use Variables?
	1.2.4 Mathematical Notation Versus Coding
	1.2.5 Write and Run Your First Program

	1.3 A Python Program with a Library Function
	1.4 Importing from Modules and Packages
	1.4.1 Importing for Use Without Prefix
	1.4.2 Importing for Use with Prefix
	1.4.3 Imports with Name Change
	1.4.4 Importing from Packages
	1.4.5 The Modules/Packages Used in This Book

	1.5 A Python Program with Vectorization and Plotting
	1.6 Plotting, Printing and Input Data
	1.6.1 Plotting with Matplotlib
	1.6.2 Printing: The String Format Method
	1.6.3 Printing: The f-String
	1.6.4 User Input

	1.7 Error Messages and Warnings
	1.8 Concluding Remarks
	1.8.1 Programming Demands You to Be Accurate!
	1.8.2 Write Readable Code
	1.8.3 Fast Code or Slower and Readable Code?
	1.8.4 Deleting Data No Longer in Use
	1.8.5 Code Lines That Are Too Long
	1.8.6 Where to Find More Information?

	1.9 Exercises
	Exercise 1.1: Error Messages
	Exercise 1.2: Volume of a Cube
	Exercise 1.3: Area and Circumference of a Circle
	Exercise 1.4: Volumes of Three Cubes
	Exercise 1.5: Average of Integers
	Exercise 1.6: Formatted Print to Screen



