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Preface

1 Introduction

Henning Schoenenberger

Advances in technology around Natural Language Processing and Machine
Learning have brought us to the point of being able to publish automatically
generated meaningful research text.

We have seen the rise of automated text generation in popular fiction (with quite
diverse and fascinating results), automated journalism such as in sports, stock
market reports or auto-produced weather forecast (data-to-text), automated medical
reviews and not to forget the remarkable progress in dialog systems (chat bots,
smart speakers).

As far as it concerns scholarly publishing, many attempts in this area up to now
have had a negative perception, and the outcome has fallen short of expectations.
Often such texts have been however quite successful in demonstrating flaws in the
scientific reviewing processes, clearly serving as an important corrective.

1.1 The First Machine-Generated Research Book

What you read here on your mobile device or on your computer screen or even hold
in your hand as a printed book is of a different kind. In fact it is the first
machine-generated research book. This book about Lithium-Ion Batteries has the
potential to start a new era in scientific publishing. With the exception of this
preface it has been created by an algorithm on the basis of a re-combined accu-
mulation and summarization of relevant content in the area of Chemistry and
Materials Science.

The book is a cross-corpora auto-summarization of current texts from Springer
Nature’s content platform “SpringerLink”, organized by means of a similarity-based
clustering routine in coherent chapters and sections. It automatically condenses a

v



large set of papers into a reasonably short book. This method allows for readers to
speed up the literature digestion process of a given field of research instead of
reading through hundreds of published articles. At the same time, if needed, readers
are always able to identify and click through to the underlying original source in
order to dig deeper and further explore the subject. It can assist anyone who, for
example, has to write a literature survey or requires a quick start into the topic. This
book proposes one solution (out of many others) to the problem of managing
information overload efficiently.

As it involves a number of experimental aspects, the Beta Writer was developed
in a joint effort and in collaboration between Springer Nature and researchers from
Goethe University Frankfurt, Germany. The current implementation will be subject
to ongoing refinement, with the machine-generated book on Lithium-Ion Batteries
providing the basis to explore strategic improvements of the technology, its inte-
gration into production and consumption workflows of scientific literature, the
merits it provides and the limitations that it currently faces.

1.2 Why Lithium-Ion Batteries

More than 53,000 articles were published in the last three years, presenting research
results on lithium-ion batteries. Rechargeable batteries are a crucial part of our daily
life, energizing smartphones, tablets, laptops, alarm clocks, screwdrivers and many
other devices. They will become even more important as energy storage systems for
electric and hybrid vehicles as well as photovoltaic systems. Therefore, they are a
key technology for limiting carbon-dioxide emissions and slowing down climate
change. The future of mankind depends on progress in research on lithium-ion
batteries, and we need to think of innovative ways to enable researchers to achieve
this progress. This is where the potential of natural language processing and arti-
ficial intelligence (AI) comes in that might help researchers stay on top of the vast
and growing amount of literature.

This first machine-generated book on the topic of lithium-ion batteries is a
prototype which shows what is possible today if a researcher wants to get a sum-
marized overview of the existing literature.

Next to Chemistry we are planning to publish prototypes in other subject areas as
well, including the Humanities and Social Sciences, with special emphasis on an
interdisciplinary approach, acknowledging how difficult it often is to keep an
overview across the disciplines.
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1.3 A Technological and Publishing Challenge

From the very beginning of developing this prototype we have considered our
assignment equally as a technological as well as a publishing challenge. It was
evident to us that numerous questions would arise from machine-generated content
and from the generation process itself.

Many of these questions, related to machine-generated research content, remain
open, and some of them we may not even be aware of yet. Hence we will use this
preface as starting point to raise a number of questions which all stakeholders of the
scientific community have to answer in a responsible and also collaborative manner.
This prototype about Lithium-Ion Batteries is meant to commence an important and
necessary discussion that the scholarly community will need to have much sooner
than later.

We aim to explore the opportunities and limits of machine-generated research
content and simultaneously suggest answers to a number of questions related to the
impact of Artificial Intelligence on the scholarly publishing industry and its
potential implications.

These questions focus on the crucial elements of scientific publishing:
Who is the originator of machine-generated content? Can developers of the

algorithms be seen as authors? Or is it the person who starts with the initial input
(such as “Lithium-Ion Batteries” as a term) and tunes the various parameters? Is
there a designated originator at all? Who decides what a machine is supposed to
generate in the first place? Who is accountable for machine-generated content from
an ethical point of view?

We have held extensive discussions on these topics, and we have come to the
preliminary conclusion that one possible answer is that there may be a joint
accountability which is shared by the developers and the involved publishing
editors. However, this is far from being finally decided. And there might be quite
some different and equally valid answers.

1.4 Why Transparency Is Important

Full transparency is essential for us to discover both the opportunities of
machine-generated content and the current limitations that technology still con-
fronts us with.

But it was also an ethical decision that if we start this journey, we want to do so
in a correct and responsible manner, in order to enable a discussion in the research
communities that is as open-minded as possible.

During the entire process—from the idea to produce the first machine-generated
research book to its realization—there has always been a large consensus that full
transparency is one of the key elements of this project.
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We also hope that the publication of this book encourages as much feedback as
possible to help up learn and improve.

1.5 Continuous Improvement

We are genuinely convinced that exposing the way we work—step by step—failure
as integral part of the progress—continuous feedback loop into the development—
iterative approach to continuously improve—encourage criticism and learn from
it—will help us turning this into a successful prototype and in the long run, shape a
product that will be suitable for a large variety of use cases, increasing efficiency
and allowing researchers to spend their time more effectively. That is also the
reason why we decided to outline the technological side of the implementation of
this book in this very preface (see below). Truly, we have succeeded in developing
a first prototype which also shows that there is still a long way to go: the extractive
summarization of large text corpora is still imperfect, and paraphrased texts, syntax
and phrase association still seem clunky at times. However, we clearly decided not
to manually polish or copy-edit any of the texts due to the fact that we want to
highlight the current status and remaining boundaries of machine-generated con-
tent. We have experimented on quite a number of components, and we developed
alternative implementations for most of them. Some of the more advanced modules
we implemented did not find their way into the final pipeline, and we were fol-
lowing the preferences of the subject matter experts consulted during the devel-
opment process for their selection. For example, this includes neural techniques,
which will improve with additional training data and development time. While we
expect them to eventually yield better results, for now they will be held in reserve as
we move forward upon the solid foundation of this initial publication.

How will the publication of machine-generated content impact our role as a
research publisher? As a global publisher it is our responsibility to take potential
implications into consideration and therefore start providing a framework for
machine-generated research content. Aswithmany technological innovationswe also
acknowledge that machine-generated research text may become an entirely new kind
of content with specific features not yet fully foreseeable. It would be highly pre-
sumptuous to claim we knew exactly where this journey would take us in the future.

1.6 The Role of Peer-Review

It was already pointed out that the technology is still facing a variety of short-
comings which we plan to deal with in a transparent way. We do expect that
continuous improvement is necessary to constantly increase the level of quality to
be delivered by machine-generated content. On the other hand, we know that the
quality of machine-generated text can only be as good as the underlying sources
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which have been used to generate it. At Springer Nature, we publish research which
stands up to scientific scrutiny. In consequence, machine-generated content makes
it even more necessary to re-emphasize the crucial role of peer-review itself.
Though peer-review is also in the course of being continuously re-defined (and in
the future we expect to see substantial progress in machine-support also in this
regard) we still think that for the foreseeable future we will need a robust human
review process for machine-generated text.

Especially in the area of Deep Learning it becomes increasingly difficult to
understand how a result has been actually derived. While concepts such as
Explainable Artificial Intelligence (XAI) become more and more crucial, also the
review process on machine-generated research content needs refinement, if not a
complete re-definition. The term peer itself indicates a certain inadequacy for
machine-generated research content. Who are the peers in this context? Would you
as a human reader consider yourself as peer to a machine? And should an expert in
a specific research field become an expert of neural networks and Natural Language
Processing as well in order to be able to evaluate the quality of a text and the related
research? In the field of machine-summarization of texts this might not be an issue
yet, especially since the underlying sources are peer-reviewed. However, soon
enough we will see machine-generated texts from unstructured knowledge bases
that will lead to more complex evaluation processes. Also in this area, we have to
work together to find answers and define common standards related to
machine-generated content. Once more we would like to consider this book as an
opportunity to initiate the discussion—as early and anticipatory as possible.

1.7 The Role of the Scientific Author

Finally, what does all this mean for the role of the scientific author? We foresee that
in future there will be a wide range of options to create content—from entirely
human-created content to a variety of blended man-machine text generation to
entirely machine-generated text. We do not expect that authors will be replaced by
algorithms. On the contrary, we expect that the role of researchers and authors will
remain important, but will substantially change as more and more research content
is created by algorithms. To a degree, this development is not that different from
automation in manufacturing over the past centuries which has often resulted in a
decrease of manufacturers and an increase of designers at the same time. Perhaps
the future of scientific content creation will show a similar decrease of writers and
an increase of text designers or, as Ross Goodwin puts it, writers of writers:

“When we teach computers to write, the computers don’t replace us any more
than pianos replace pianists—in a certain way, they become our pens, and we
become more than writers. We become writers of writers.”1

1https://medium.com/artists-and-machine-intelligence/adventures-in-narrated-reality-
6516ff395ba3.
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We do join Zackaray Thoutt’s enthusiasm who indicates that “technology is
finally on the cusp of breaking through the barrier between interesting toy projects
and legitimate software that can dramatically increase the efficiency of humankind.”2

We have started this exciting journey to explore this area, to find answers to the
manifold questions this fascinating field offers, and to initiate a broad discussion
about future challenges and limitations, together with the research communities and
with technology experts. As a research publisher with a strong legacy, expertise and
reputation we feel committed to push the boundaries in a pioneering and respon-
sible way and in continuous partnership with researchers.

2 Book Generation System Pipeline

Christian Chiarcos, Niko Schenk

Automatically generating a structured book from a largely unstructured collection
of scientific publications poses a great challenge to a computer which we approach
with state-of-the-art Natural Language Processing (NLP) and Machine Learning
techniques. Book generation involves numerous problems that have been addressed
as separate research problems before, and solved to a great extent, but the challenge
in its entirety has not found a satisfying solution thus far. The present volume aims
to demonstrate what can be achieved in this regard if expertise in scientific pub-
lishing and natural language processing meet.

We aim to demonstrate both possible merits and possible limitations of the
approach, and to put it to the test under real-world conditions, in order to achieve a
better understanding of what techniques work and which techniques do not. In
addition, we wish to better understand the demands and expectations of creators,
editors, publishers and consumers towards such a product including their reactions
to its limitations, and their assessment of its prospective value, both economically
and scientifically.

2.1 Choosing a Methodology

As mentioned above, the development process involved both computer scientists
and engineers, and editorial subject matter experts who both formulated possible
topics and evaluated generated manuscripts and their shortcomings. A key insight
from the development process is that different strands of science (and possibly,
different personalities) formulate different constraints and preferences regarding the
balance between ‘creative’ automated writing and a mere collation of existing
publications. While it is possible to emulate the style and phrasing of prose

2https://blog.udacity.com/2017/08/neural-network-game-of-thrones.html.
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descriptions rather accurately (e.g., from plain key words, as in Feng et al. [1], or by
mean of state-of-the-art language models as reported in the recent work of Radford
et al. [2]), the factual accuracy of such ‘more creative’ reformulations remains
questionable. As creators and consumers of scientific publications tend to value
correctness over style, we eventually decided for a relatively conservative approach,
a workflow based on

1. document clustering and ordering,
2. extractive summarization, and
3. paraphrasing of the generated extracts.

A requirement was to produce novel content, with novelty provided by the
organization of sources into a coherent work, and in the generation of chapter
introductions and related work sections. We initially considered two thematic
domains, chemistry and social sciences, and in both areas, subject matter experts
urged us to stay as close to the original text as possible. In other areas of appli-
cation, where better training and test data for developing advanced summarization
workflows may exist, many technical preferences would have been different, but for
these branches of research, we designed a workflow according to the premise to
preserve as much as possible from the original text—while still producing readable,
factually correct, compact, and, of course, novel descriptions. The interested reader
may decide to what extent we achieved this goal, but more importantly, let us know
where we failed, as it is human feedback—and human feedback only—that can
improve the advance of artificial authoring.

2.2 System Architecture

We implement book generation as a modular pipeline architecture, where the output
of one module serves as input to the next. Input to the system is a collection of
publications that define the scope of the book—typically in the range of several
hundred documents. For the present volume, this collection consisted of 1086 initial
publications which were identified by keywords and further restricted by year of
publication (cf. the next section for details). Output of the system is a manuscript in
an XML format which can be rendered in HTML or further processed in the regular
publishing workflow.

Main components of the pipeline are illustrated in Fig. 1 and include:

1. Preprocessing of input documents, i.e., conversion into the internal format,
bibliography analysis, detection of chemical entities, linguistic annotation for
parts of speech, lemmatization, dependency parsing, semantic roles, corefer-
ence, etc., and re-formulation of context-sensitive phrases such as pronominal
anaphora, and normalization of discourse connectives.
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2. Structure Generation

a. Document organization in order to identify the specific contribution and
scope of individual input documents, to use this information to group them
into chapter- and section-level clusters. As a result, we obtain a preliminary
table of contents, a list of associated publications, and keywords that char-
acterize chapters and sections.

b. Document selection is a subsequent processing step during which we
identify and arrange the most representative publications per section-level
cluster.

3. Text Generation

a. Extractive summarization creates excerpts of the selected documents
which serve as a basis for subsections.

b. Content aggregation techniques are applied to create sections with intro-
ductions and related research from multiple individual documents. Unlike
document-level extractive summarization, these are composed of re-arranged

Fig. 1 Book generation system pipeline and NLP components
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fragments of different input documents, such that information is presented in
a novel fashion.

c. Abstraction is implemented in a conservative fashion as a postprocessing
step to extraction (resp., aggregation). Here, we take single sentences into
consideration and employ syntactic and semantic paraphrasing.

4. Postprocessing includes the consolidation of bibliographical references,
chemical entities, and conversion into an output format that is suitable for
generating HTML as well as a manuscript to be handed over to the publishing
editor.

For every single component (resp., modules within a component), we provide
alternative implementations, and eventually select among these possibilities or
combine their predictions according to the preferences of the subject matter experts.

We focus on functionality, less on design. We do not provide a graphical user
interface, but the feedback we obtained from subject matter experts during their
qualitative evaluation of our system, resp., the generated candidate manuscripts
represent invaluable input for the requirement specification of user interfaces to the
book generation pipeline.

The pipeline itself is implemented as a chain of command-line tools, each
configured individually according to the preferences of the subject matter experts.
One premise has been to design an end-to-end system that generates manuscripts
from input documents, so the scientific contribution is the overall framework and
architecture, not so much the implementation of elementary components for basic
machine learning or fundamental NLP tasks. For these, we build on existing open
source software (e.g., Manning et al. [3], Clark and Manning [4], Cheng and Lapata
[5], Barrios et al. [6]) wherever possible. It should be noted, however, that we do
not depend on any specific third-party contribution, but that these are generic
components for which various alternatives exist (and have been tested).

2.3 Implementational Details

In preparation for generating a book, we identify a seed set of source documents as
a thematic data basis for the final book, which serve as input to the pipeline. These
documents are obtained by searching for keywords in publication titles or by means
of meta data annotations.3 The document types can be of various kinds: complete
books, single chapters, or journal articles.

For structure generation, we provide two alternative clustering methods
operating on two alternative similarity metrics. As for the latter, we explored
bibliography overlap and document-level textual similarity. As bibliography

3 In the present volume this includes, e.g., any realization of “li-ion battery”, “lithium-ion
batteries”, etc. and all occurrences containing “anode” and/or “cathode” as found in either article,
chapter, book titles or document meta data.

Preface xiii



overlap comes with a considerable bias against publications with a large number of
references, we eventually settled on textual similarity as a more robust and more
generic metric.

As for clustering methods, hierarchical clustering creates a tree structure over
the entire set of documents. Clusters can be mapped to chapters and sections
according to preferences with respect to size and number. However, we found that
the greedy mapping algorithm we implemented for this purpose produces clusters
of varying degrees of homogeneity. For the current volume, we thus performed
recursive non-hierarchical clustering instead: (i) over the set of all documents, core
thematic topics are automatically detected (chapter generation), and (ii) subtopics
are identified within these (section generation). If a restriction on the number of
input documents per section is defined, the n most representative publications per
cluster (closest to the center) are chosen, and ordered within the manuscript
according to their prototypicality for the cluster (i.e., distance from the cluster
center). More advanced selection and ordering mechanisms are possible, but will be
subject for future refinements. Figure 2 shows a graphical illustration of the cluster
analysis of this book. Each color represents the membership to one of four chapters,
bigger labeled dots represent chapters and sections, respectively, small dots show
documents.

Interestingly, due to their proximity in the 2-D visualization the graphics shows
that Chaps. 1 and 2 are thematically much more closely related (anode versus
cathode materials) than Chaps. 3 and 4 (model properties and battery behaviour).

Even though the structure generation for the manuscript is fully automated, here,
a number of parameter values can be set and tuned by the human expert who uses
the program, such as the desired number of chapters (i.e., cluster prototypes) and

Fig. 2 Two-dimensional projection (PCA) of the cluster analysis with 4 chapters and 2
subsections, and a maximum of 25 documents per section
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sections, as well as the number of document assignments per section.4 The result of
this process is a structured table of content, i.e., a manuscript skeleton in which
pointers to single publications serve as placeholder for the subsequent text.

At this level, subject matter experts requested the possibility for manual
refinement of the automatically generated structure. We permit publications to be
moved or exchanged between chapters or sections, or even removed if necessary,
for example, if they seem thematically unrelated according to the domain expertise
of the editor.5 We consider the resulting publication nevertheless to be
machine-generated, as such measures to refine an existing structure are comparable
to interactions between editors of collected volumes and contributing authors, e.g.,
during the creation of reference works.

Chapter and section headings are represented as a list of automatically generated
keywords. Technically, these keywords are the most distinctive linguistic phrases
(n-gram features) as obtained as a side-product of the clustering process and are
characteristic for a particular chapter/section. Again, human intervention is possible
at this stage, for instance, in order to select the most meaningful phrases for the final
book. In the present volume, the keywords remained unchanged. More advanced
techniques include the generation of headlines from keywords using neural
sequence-to-sequence methods, and while we provide an implementation for this
purpose, we found it hard to ensure a consistent level of quality, so that we
eventually stayed with plain keywords for the time being.

Text generation is the task to fill the chapter stubs with descriptive content. In
the present volume, this is based on extractive, reformulated summaries. Every
chapter consists of an introduction, a predefined number of sections as determined
in the previous step, a related work section, a conclusion, and a bibliography. We
elaborate on each of them in the following.

Every chapter introduction contains a paragraph-wise concatenation of extrac-
tive summaries of all individual document introductions which have been assigned
to the chapter.6 Since all documents of a chapter have been identified to belong to
the same topic, the motivation here is to combine the content of individual intro-
ductions from the publication level and merge them into a global one on the book

4For the present volume, the number of chapters, sections, and the maximum number of documents
per section have been initially set to 4, 2, and 25, respectively. The document clusters, i.e.
document to chapter assignments, are produced by k-means clustering on the term-document
matrix with different weighting schemes, e.g. TF-IDF. Additional, advanced parameters to be set
include the minimum/maximum document frequency of a term, the total number of features
(n-grams) used, or whether to use stemming or other types of text normalization.
5For the present volume, 9 documents have been moved between chapters, and 8 documents were
excluded from the final book. Overall, the generated book is based on 151 distinct publications.
6We elaborate on extractive summarization below.
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level. The summary length (in words and as a proportion of the original text length)
is parameterizable by the human editor who uses the system.7 The conclusion of the
book is built in the same way. The introduction produced in this way is conser-
vative in that it reflects the introductions of the input documents selected for the
chapter—both in order and content. As an alternative, we also implemented an
approach for reordering and combining sentences obtained from different publi-
cations in single paragraphs, based on an arrangement of semantically similar
sentences closer to each other and the elimination of near-duplicates. For the pre-
sent volume, however, the more simplistic implementation was eventually selected,
as subject matter experts found that the coherence of the resulting text suffered from
the heterogeneity of the underlying documents. For future generation experiments,
it would be desirable to allow an expert trying to produce a book with this tech-
nology to compare the conservative and the aggregated introductions for each
chapter. For more homogeneous chapters, the latter approach may be favorable.

On the section level, following the introduction, publication stubs are filled with
extractive summaries obtained according to different technologies:

• Unsupervised extractive summarization: A classical baseline for extractive
summarization is the application of the page rank algorithm to the text itself,
respectively, the graph of linguistic annotations obtained from it. As a result,
both important phrases and relevant sentences are augmented with relevance
scores, and a ranking according to these, and extractive summarization boils
down to retrieving the x most relevant sentences until a certain length threshold
is met. The method has the great advantage of being simple, mature and
well-tested. It is, however, context-insensitive, in that essential information may
be lost, or that sentence and keyword relevance in the context of a book project
diverts from their relevance within the original publication in isolation.

• Supervised extractive summarization: An alternative approach to produce a
ranking of sentences is to train a regressor to approximate a pre-defined score,
e.g., the extraction probability of a sentence. Unfortunately, such training data is
not available for our domain and cannot be created without massive invest-
ments. As a shorthand for such data, we measure the textual similarity of each
body sentence with the sentences of the abstract of the same publication. We
then trained a regressor to reproduce these scores, given the sentences (resp.,
their embeddings) in isolation. This regressor was trained for all publications
from the Chemistry and Material Science, as well as Engineering domains, and
it assigns every sentence a score, and thus, all sentences from a document a
domain-specific rank, which then serves as a basis for extraction.

• Extended abstracts: An extended abstract is a reformulated and compressed
version of the original abstract of a document, potentially enriched with sentences
from the body of the publication as useful additional information can be retrieved

7 The summary length has been set to either 270 words or 60% of the original text length—
depending on which one was shorter. This combined metric handles the trade-off between too
lengthy summaries on the one hand, and summaries which contain almost every sentence of the
source, on the other.
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from the document itself. For the current volume, we append sentences from the
body to any sentence in the original abstract by a similarity metric (provided they
exist). Similarity is measured by customizable n-gram overlap. An alternative, and
slightly more aggressive implementation, is to replace sentences from the original
abstract with the most similar sentences from the body.

• Weighted combined ranking: Each of the aforementioned methods assign sen-
tences a score (or a classification, which can be interpreted as a binary score),
from which a rank can be calculated. We provide a re-ranker that uses the
weighted sum of ranks produced by different components to produce an average
rank, so that more conservative approaches (extended abstracts) can be com-
bined with context-sensitive, machine-learning based rankers (supervised
extraction) and with context-insensitive, graph-based methods (unsupervised
extraction) according to the relative weights the user of the system assigns to
each component.

Subject matter experts from the chemistry domain found that the first two
methods (and their combination) are prone to factual errors, if applied to original
sections on methodology and experimental setup, so that such sections (which
constitute the majority of text in this domain) must not be summarized but either
dropped or quoted. This may be a characteristic of the chemistry domain, where
instructions on replicating a particular experiment must be followed carefully and
any omission of a step in the procedure or an ingredient is potentially harmful. For
the present volume, we thus operate with extended abstracts only.

Conclusions are aggregated in the same way as introductions. It is followed by a
related work section which is compiled from the citations of the input documents.

The related work section is typically short and organized around pivotal publi-
cations. A pivotal publication is defined as a DOI that is referred to within different
publications from a chapter, and we take the number of documents referring to this
publication as an indicator of its relevance. The user of the system defines a threshold
n for the number of documents that define a pivotal publication. For instance, if n is
set to 4, at least four different documents within a chapter need to cite the same
publication DOI. From each document, we retrieve the citation context, i.e., the
sentences that contain the reference, and arrange them according to their textual
similarity. We thus obtain 4 sentences, at least. The frequency threshold n needs to
be set by the user of the system.8 It should increase in proportion with a greater
number documents per chapter. Ideally, the most frequently referred to publications
by distinct sources have global importance within a chapter.

The final component of text generation is text abstraction, i.e., here the lin-
guistic reformulation of the original sentences, respectively. In order to create text
which is not only novel with respect to its arrangement, but also with respect to its
formulation, and in order to circumvent issues related to copyright of the original
texts, we attempt to reformulate a majority of the sentences as part of the generated
book, while trying to preserve their original meaning as best as possible. At the

8For the present volume, n = 2.
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same time, subject matter experts urged us to stay as close to the original formu-
lation as possible. Although we do perform deep parsing, this is used to inform
reformulation rules only, but not as a basis for the summarization itself: The
original text is preserved and reformulated, rather than being reduced to a graph and
then re-generated from scratch. In this more conservative approach, we provide
annotation-based reformulation components for which integrated different NLP
modules have been integrated in a preprocessing step, as outlined above: identifi-
cation of word boundaries,9 part-of-speech label assignment for words (i.e. word
categories, such as noun, verb, etc.), and the application of syntactic and semantic
parses to each sentence in order to obtain a linguistic analysis in terms of depen-
dency structure and semantic roles. Furthermore, coreference resolution is
employed in order to detect mentions in the text and associated referential
expressions (e.g., personal or possessive pronouns in subsequent sentences).

We provide the following modules:

• Rule-based simplification: Sentence-initial adverbials, discourse markers and
conjunctions are removed as they would otherwise appear out of context after
text summarization.

• Sentence compression: Using relevance scores such as created during keyword
extraction above, and a reduction threshold of, e.g., 90%, eliminate the least
relevant parts of the sentence until the reduction threshold is met. An alternative
implementation shortens a sentence by removing omittable modification infor-
mation, e.g., non-core, local/temporal cues, or discourse modification.

• Sentence restructuring: A range of syntactic transformation rules were imple-
mented which operate on the automatically produced structure, for instance, to
turn an active utterance into its passive variant.

• Semantic reformulation: In a final step, we substitute single words as well as
longer phrases if we find synonymous expressions that exceed a predefined
similarity threshold.10 What constitutes a phrase is automatically detected by
high pointwise mutual information of word co-occurrences. Note that all syn-
onyms are automatically learned from large amounts of raw unlabeled texts
using state-of-the-art methods for unsupervised learning of word representations
with neural networks.

Along with these reformulation components, a module for anaphora resolution is
applied to replace intersentential pronominal anaphora with the respective last
nominal representation: We replace pronouns (e.g., sentence-initial “It”) by inter-
pretable mentions of the same coreferential chain that are found in the prior context
(e.g., full noun phrases such as “the first study in this field”) in order to prevent the
rendering of sentences in which single pronouns appear without context after text

9Specifically, we developed special analyzers on the sentence level to detect, normalize and later
on reinsert chemical notations, textual content in brackets (such as references and supplementary
information) and other entities which need to be treated holistically and must not be parsed or split
into parts.
10When more than one word exceeds the threshold, we select one synonym randomly.
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summarization. Note, however, that this is applied during preprocessing already, in
order to guarantee that extractive summarization does not create unresolvable
anaphoric references.

Apart from the fully automated text generation module, the human user still has
influence on the quality of the text, for example by specifying a list of prohibitive
synonym replacements, or by setting the thresholds for the replacements. For
compiling this volume, we selected among the aforementioned modules and
adjusted their respective threshold in accordance with the feedback from subject
matter experts. It is to be noted, however, that users would apparently like to scale
freely between different degrees of reduction and reformulation, ranging from literal
quotes to complete paraphrases. Our implementation does not provide such an
interface, but developing such a tool may be a direction for future extensions.

As an example of two reformulated sentences compared to their original source
sentences, involving preposing of temporal information and most of the NLP
techniques described above, consider the following sentences (synonym replace-
ments in bold, syntactic changes and coreference replacements underlined).

Source11:
Lithium-ion batteries have played a major role in the development of vehicle

electrification since the 2000s. They are currently considered to be the most efficient
technology in this market.

Automatically reformulated:
Since the 2000s, lithium-ion batteries have played a main role in the develop-

ment of vehicle electrification. Lithium-ion batteries are presently regarded to be
the most effective technology in this market.

Advanced syntactic reformulation, e.g., turning active into passive voice is
illustrated in the next example.

Source:12

Finally, these results can develop a test methodology to determine the man-
agement of lithium batteries pack that experiences a potential heating threat.

Automatically reformulated:
A test approach to specify the management of Li-ion batteries pack that expe-

riences a potential heating threat could be devised by these results.
In total, for the present volume, approximately ¾ of all sentences were syn-

tactically reformulated, i.e. for 74% at least one transformation rule triggered.
Semantic replacements (unigram, bigram, or trigrams substituted) were made to
14.7% of all tokens. More than 96% of all sentences were modified by at least one
semantic substitution. Sentence compression was kept in a very conservative mode
and removed only a small portion of 0.9% of the tokens. In order to acknowledge
the original source, every sentence is coupled with the DOI of its source document.
In addition, sentences which were not affected by reformulation, synonym
replacements, or sentence compression are marked as literal quotes (1.2% of all
sentences).

11Sabatier et al. [7] https://link.springer.com/chapter/10.1007%2F978-3-319-55011-4_3.
12Chen et al. [8] https://link.springer.com/article/10.1007/s10973-017-6158-y.
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2.4 Challenges and Future Directions

Our book generation pipeline has been designed to not only compile extractive
summaries, but also to rephrase and make creative modifications to the original text
wherever possible. At the same time, however, it is forced to be conservative
enough to preserve the original meaning of the sentences. Besides selecting the
most important sentences in extractive summaries, this tradeoff can be seen as the
most difficult challenge in the design and implementation of the system.

The system in its current version is a minimalist implementation of core com-
ponents of a book generation workflow and can be refined and extended in many
ways. This preliminary state is also indicated by the name of the virtual author, Beta
Writer. Aside from creating a scalable end-to-end system for the generation of
books from large bodies of scientific publications, we see our main contribution as
the first successful attempt to push a machine-generated book beyond mere tech-
nical challenges through an established publication workflow up to the level of a
printed book. At the same time, the name entails a commitment for future exten-
sions and refinements, for which manifold possibilities exist, including the
following:

• Improving linguistic quality: Current limitations of the system are mainly due to
error propagation in the NLP pipeline. For instance, the very basic preprocessing
steps, word and sentence identification, are both non-trivial tasks, especially for
texts containing various chemical notations, numbers, or abbreviations in which
punctuation symbols do not necessarily indicate a sentence or word boundary.
Wrongly detected words and sentences lead to faulty linguistic annotations by
the part-of-speech taggers, ultimately to wrong parses, and finally to restructured
sentences which are meaningless.

• Improving paraphrasing: Issues regarding legibility, grammaticality, and cor-
rectness, are also partly due to the component which replaces words by syn-
onyms: This component is not yet sensitive to aspect, or context and, thus, in
some cases a substitution of a word is acceptable (revealed good performance ->
showed good performance), in others not (it is revealed -> it is showed). Even
more problematic in this regard is a well-known disadvantage associated to word
embeddings, namely that antonyms have very similar distributions compared to
synonyms. Replacing a word by its antonym, however, changes the meaning and
is prohibitive in sentence reformulation. We have tried to overcome these issues
as well as in any way possible using conservative similarity thresholds.

• Headline generation: The generation of suitable, narrative headlines (for
chapters and sections) is yet another highly complex task which we did not
approach in the current version of the system, but rather prompted us to stick to
the keywords that we obtained as a result of text clustering. Note that the
keywords themselves are not necessarily the most interpretable and meaningful
phrases to a human reader, even though technically they are in fact the most
distinctive n-gram features. Future research will address their combination into
syntactically more appealing descriptions.
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• Improving coherence: In this current version, we have not addressed any dis-
course properties of the texts. Typically, sentences do not occur in isolation.
Instead, they are part of a well-formed and coherent text structure which is
signaled either explicitly (e.g., using discourse markers but, next, if, etc.) or
sometimes even implicitly. In fact, our extractive summaries break up and
remove parts from the discourse structure of the original source documents and,
in future versions of the system, special focus needs to be taken to ensure that
the reformulated extractive summaries adhere to the original discourse structure
and its associated global meaning. This would also entail fusing sentences and
reintroducing discourse markers where applicable. We want to point out,
however, that such a feature is not only non-trivial to implement but also
extremely hard to evaluate.

• Reordering: A related challenge is the sequential order of sentences—and,
similarly, the sequential ordering of sections within a chapter. Here, we have
implemented different simplifications that either preserve the original order of
sentences or perform re-ordering in a way that maximizes similarity between
adjacent sentences. More advanced implementations could build on formal
representations of discourse structure as also necessary for improving coherence.

• Abstraction via graph representations: A book generation pipeline based on
full-fledged abstractive summarization requires the decomposition of texts and
sentences into their logical parts, their representation as a graph, and the
re-generation of natural language from the abstract graphs. At the moment, this is
an area of intense research, and several experimental prototypes already do exist,
but we estimate that a production-ready implementation will not be available for
another, 3–5years. For the academic partners in this enterprise, this is of course one
of the aspects of the bookgeneration challenge thatweare particularly interested in.

• Neural abstraction: Another way of abstraction is the application of neural
sequence-to-sequence models to translate full sentences into their paraphrases.
Again, this would be a strategic goal, but we currently lack training data for our
domain, and where training data is synthesized (e.g., by means of a neural noisy
channel model), it is virtually impossible to guarantee a consistent level of
quality in the generated output. Our own experiments show that the output that
can be produced is superficially readable, but often has severe flaws when it
comes to its meaning and factual correctness. For the present system, and the
eventual pipeline we developed, we thus went for a conservative,
extraction-based architecture. Nevertheless, this is an area of intense research.

• Creative writing: Another scientific challenge is the production of novel text
fragments from contextual cues rather than from a given input sentence. While
on a technical level, this is similar to neural headline generation, such apparent
simulation of creative behaviour is probably the most fascinating aspect of
modern-day AI. In fact, it is fairly easy to build and train a model to re-generate
sentences given the previous and the next sentence. However, the quality of the
generated output is even less controllable than the results we achieved by neural
abstraction. Again, this remains an area of research.
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• Including structured data sources: At the moment, the Beta Writer builds on
three pillars: Established NLP techniques, word embeddings for the target
domain, and vast amounts of scientific publications to optimize both and to
create summaries from. There is another possible component that we did not
take into account so far: Structured knowledge graphs can provide additional
background information, e.g., about chemical entities and relations between
them. In fact, such information is already available, and Springer Nature can
build on the Springer Nature SciGraph in this regard. For the creation of this
publication, however, we focused on core functionalities of a generic book
generation pipeline, which will permit domain-specific knowledge base inte-
gration in future iterations.

• The nasty little details: Last but not least, we have to mention that a great deal
of the errors that we are currently facing are due to specifics of the domain and
the data. The interested reader will immediately spot such apparently obvious
errors—with rather obvious solutions. This includes, for example, the occa-
sional use of us, ourselves, this paper etc. which refers back to the original
publication but is clearly misplaced in the generated book. The solution to these
is a simple replacement rule, the challenge in this solution is the sheer number
and the distribution of errors that require a domain-specific solution each,
sometimes referred to as ‘the long tail’. While we made some efforts to cover
such obvious cases, continuous control and refinement of an increasingly
elaborate set of repair rules is necessary, and will accompany the subsequent use
and development of the Beta Writer.

• Getting the human in the loop: Error correction can potentially also be covered by
a human expert—or, in a book production workflow, as part of copyediting. But
even beyond this level of manual meddling with the machine-generated manu-
script, a clear, and somewhat unexpected result of our internal discussions with
subject matter experts on chemistry and social sciences was that editors would
like to maintain a certain level of control. At the moment, the system remains a
blackbox to its users, and we manually adjust parameters or (de)select modules
according to the feedback we get about the generated text, then re-generate, etc.
At the same time, it is impossible to optimize against a gold standard—because
such data does not exist. One solution is to provide a user interface that allows a
user to switch parameters on the fly and see and evaluate the modifications
obtained by this and thus optimize the machine-generated text according to
personal preferences, and—also depending on the feedback we elicit on this
volume—developing such an interface is a priority for the immediate future.

We are well aware of experimental approaches that improve upon the current
state of our implementation. With a publication that links every generated sentence
with its original form in the original publication, we aim to establish a reference
point for evaluation by the scientific community and a baseline for future systems to
meet. Yet, at the core of this challenge is not so much scientific originality, but the
balance of having an automated system performing autonomous and ‘creative’
operations and the degree to which the factual accuracy of the underlying text can
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be preserved. Guided by subject matter experts on chemistry and social sciences,
we eventually went for a conservative approach to book generation, in that as much
information is preserved from the original as possible. We are aware of the
expectations in trustworthiness and verifiability in scientific publications which—
for the time being—, a more radical, abstraction-based approach on book genera-
tion would be impossible to meet. We expect this to change in the immediate future,
and we are working towards it, but at the same time as Artificial Intelligence—or,
for that matter, neural Natural Language Processing—is about to reach the fringes
of creativity, we still need to learn how to restrict its creativity to producing content
that remains factually true to the data its predictions are generated from.

Another technical challenge that we identified during the creation of this book
was that human users aim to remain in control. While an automatically generated
book may be a dream come true for providers and consumers of scientific publi-
cations (and a nightmare to peer review), advanced interfaces to help users to guide
the algorithm, to adjust parameters and to compare their outcomes seem to be
necessary to ensure both standards of scientific quality and correctness. Advanced
interfaces will also help to identify areas where it is possible to deviate from the
cautious, conservative approach on text generation applied for producing the pre-
sent volume, and to include more experimental aspects of AI.
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Chapter 1
Anode Materials, SEI, Carbon,
Graphite, Conductivity, Graphene,
Reversible, Formation

1.1 Introduction

Lithium-ion batteries (Li-ion batteries) have been commonly used as power sources
in consumer electronics including laptops, cellular phones, and full and hybrid
electric vehicles because of their long cycling life, high energy capacity, and
eco-friendliness [1, 47–49]. Considerable efforts have been devised to examine
useful electrode materials for Li-ion batteries with long cycle life and high capacity
[1]. Due to its high theoretical capacity (718 mAh g−1), low cost, relative abun-
dance [50–52], and environmental benignity, NiO has attracted considerable
attention among multiple TMOs for Li-ion batteries [1]. Through solid-state ther-
molysis of Ni-MOF, porous NiO had been fabricated for Li-ion batteries and
showed a high initial capacity of *800 mAh g−1 at 100 mA g−1 [1, 53]. That NiO
nanoflowers utilized as anodes for Li-ion batteries displayed a reversible capacity of
551.8 mAh g−1 at a current density of 100 mA g−1 after 50 cycles [54] had been
indicated by Mollamahale and others [1]. Porous Co3O4/CNT composites were
synthesized through the decomposition of ZIF-67/CNTs and revealed an excellent
specific capacity of 813 mAh g−1 at a current density of 100 mA g−1 after 100
cycles, whilst that of pure Co3O4 had been just 118 mAh g−1 [1, 55]. Porous ZnO/
CNT composites derived from Zn-MOFs/CNT precursors showed superior
lithium-ion storage performance with a high reversible capacity of 419.8 mAh
g−1 after 100 cycles at 200 mA g−1, whilst the pure ZnO subsample had been
ultimately stabilized with a capacity of less than 200 mAh g−1 [1, 56]. Introducing
1D CNTs into MOF-based NiO must be an efficient way to improve the lithium-ion
transport and storage performance for Li-ion batteries [1].

The current commercial graphite carbon electrodes with a low theoretical capacity
(372 mAh g−1) indicate inferior rate performance and restricted energy capacity,
particularly in the high-energy consuming applications [2]. That sort of research’s
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principal aim is to attain the materials with superior properties such as high capacity,
fast Li-ion diffusion rate, easy to operate, and stable structure [2]. Materials, a number
of metal oxides with high theoretical capacity have aroused more and more attention
including SnO2, Fe3O4, Co3O4, andMoO2 [2]. Due to safe lithiation potential (Zhang
and others [57, 58]) and its high theoretical capacity (782 mAh g−1), SnO2 is treated
as one of the most extensively investigated anode materials for Li-ion batteries [2].
Jiang and others [59] have utilized the graphene/TiO2–SnO2 composites as the anode;
this anode deliver the enhanced cycling performance (537 mAh g−1 at 50 mA g−1

accompanied by columbic efficiency of 97% after 50 cycles) and satisfactory rever-
sible capacity (250 mAh g−1 even at the current density 1000 mA g−1) [2]. “Han and
others [60] have prepared TiO2–SnO2–graphene aerogels with a high reversible
capacity of 750 mAh g−1 at 100 mA g−1 for 100 cycles” [2]. Through Tang and
others [61], mesoporous graphene-based TiO2/SnO2 nanosheet is synthesized and it
can deliver a huge reversible capacity of 600 mAh g−1 at current density of
160 mA g−1 [2]. The prepared commodities indicate a distinctive nanostructure, a
huge BET surface area of 274.5 m2 g−1, and high chemical purities [2]. An out-
standing electrochemical performance is shown by the SnO2–TiO2@graphene
composites, and the discharge capacity can arrive at high as 1276 mAh g−1 after 200
cycles at the current density 200 mA g−1 [2]. It is still maintained the huge capacity of
611 mAh g−1 at an ultra-high current density of 2000 mA g−1, when utilized as an
anode for Li-ion batteries [2].

The ionic and electronic electrical conductivity of TiO2 (anatase) is comparatively
inferior, leading to the low electronic transfer and ion diffusion efficiency, which
might severely decline the electrochemical properties for Li-ion batteries as a semi-
conductor material [3]. Various carbon-added TiO2 composites [62–65] were indi-
cated and employed as the anode materials of Li-ion batteries, and those
carbon-added composites did display an enhanced cycle retention and rate perfor-
mance; this retention demonstrated that the addition of carbon actually fosters the
electrical conductivity of the entire architecture [3]. Carbon can safeguard TiO2 from
the direct contact with electrolyte; this electrolyte additional enhances the structure
resistance to electrode material invalidation and pulverization [3]. Molybdenum
disulphide (MoS2), characteristic layered transition metal dichalcogenides (TMDs),
has aroused considerable attention as a fruitful electrode material because of its high
theoretical specific capacity and distinctive 2D layered structure where hexagonal
layers of Mo are stuck in two S layers and held together by strong covalent forces,
whilst theMoS2 lamella is bonded by weak van derWaals relationships [3, 66]. Once
assessed as the anode material for Li-ion batteries, the bulk MoS2 might suffer
tremendous volume expansion, which results in unanticipated pulverization and
serious systemic deformation, which triggers a fairly meager cycling performance,
whilst the few-layer MoS2 configuration can keep the few-layer MoS2’s original
structure and become more stable during the discharge/charge cycles because of the
ultra-thin 2D flexible nanostructure [3]. Apart from, few-layer MoS2 nanosheets
enhance a fast insertion/extraction of lithium ions and provide more active sites to
enhance the specific capacity [3]. Once assessed as the anode material of lithium-ion
batteries, the synthesized MoS2-C@TiO2 nano-composites display excellent cyclic
performance and high specific capacity [3].
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Based on transition metal oxides (TMOs) including TiO2 [67], ZnO [68], CuO
[69], Fe3O4 [70], NiO [71], CoOx [72–75] as anode materials for Li-ion batteries,
and MnO [76], has made considerable progress among the wide range of efforts [4].
Co3O4 materials with multiple structures have been efficiently prepared, including
lamellar [77, 78], nanorods [79], hollow spheres [80], nanoparticles [81, 82], and
cubes [4, 83]. High lithium storage Co3O4 electrodes could be obtained by the
indicators of designing hollow structures [4]. There is still a challenge to enhance
the electric conductivity and agglomeration issue of Co3O4, which are the con-
textual factors impeding the development of Co3O4 electrodes for use in Li-ion
batteries [4]. Carbonaceous materials have functioned as the most optimum con-
ductive materials to enhance the electric conductivity of Li-ion batteries’ electrodes
[4]. Two-dimensional (2D) graphene (GR) with an excellent electric conductivity,
systemic flexibility [84], and rich surface area, is another influential carbon material
[4]. A hybrid of these two types of materials which formed a new 3-D (3D) layered
structure is the most efficient technique in order to harness the advantages of the 1D
CNTs and 2D GR [4]. The 3D graphene/carbon nanotubes (GR/CNTs) network can
not just maintain the excellent properties of CNTs and GR though enhance the
inferior electric conductivity between graphene sheets [4, 85]. Co3O4 hollow
microsphere/graphene/carbon nanotube (Co3O4/GR/CNT) flexible film is prepared
through a two-stage technique; this technique comprises a subsequent thermal
decrease process and a straightforward filtration route [4]. That the film electrode
showed better lithium storage capacities in rate and cycling performances than
hollow Co3O4 materials is revealed by the results [4].

Numerous researches on CuO/graphene composites utilized as Li-ion batteries
anode have been indicated; for instance, Rai and others [86] have synthesized CuO/
rGO nanocomposite through a spex-milling technique [5]. The first discharge
capacity of 1043.3 mAh g−1 had been delivered by the CuO/rGO composite, and
the charge capacity can be maintained at 516.4 mAh g−1 after 45 cycles at
0.1 mA cm−2 [5]. Enhanced anodic performance, which is compared to the pure
CuO nanoparticles, had been shown by this CuO/rGO composite [5]. A novel kind
of CuO nanosheets/rGO composite paper, which revealed better cyclic retention
than that of the pure CuO nanosheets had been indicated by Liu and others [5, 87].
Improved electrochemical performance than pure CuO had been demonstrated by
the composites [5]. Porous CuO nanorods/rGO had been synthesizeded by Zhang
and others [88] composite through hydrothermal reaction [5]. Improved electro-
chemical properties than the pristine CuO nanorods were shown by the composite
electrode [5]. A facile refluxing approach had been utilized to synthesize ultra-short
rice-like CuO-NRs/rGO composite [5]. Cu2+ ions absorbed into Cu(OH)2 and then
rapidly dehydrated into CuO-NRs under high temperature, with homogeneous
distribution on the rGO nanosheets after the addition of NaOH [5]. The as-prepared
CuO-NRs/rGO composite anode indicates enhanced electrochemical performance
in Li-ion batteries due to the synergetic effect between the high electrical con-
ductivity of rGO nanosheets and the well-dispersed CuO-NRs [5]. The rGO
nanosheets offer a substrate for the anchoring of CuO-NRs and an electrical
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network to preserve the electrical contacts between the active material and current
collector [5]. A huge reversible capacity, satisfactory rate property of CuO-NRs/
rGO composite, and advantageous cyclic performance, could be attained [5].

Throughout the overcharge process, the current marketed graphite anode with a
low operating voltage versus Li/Li+, which results in the generation of lithium
dendrite, leading to serious safety issue (Zhou and others [89]), [6]. The develop-
ment of a practical TiO2 material for commercialization is still restricted because of
its low theoretical capacity (336 mAh g−1), inferior electric conductivity (*10−13 S
cm−1), and low lithium diffusion coefficient (*10−9 to 10−13 cm2 s−1) (Wagemaker
and others [90]; Kamata and others [91]), [6]. It is still a considerable challenge to
employ TiO2 nanostructures as anode in Li-ion batteries to settle the instinct low
electronic electrical conductivity (Chu and others [92]) and the aggregation issue
[6]. Owing to the high electrical conductivity of carbonaceous materials, consid-
erable efforts have been made to construct multiple TiO2/C nanostructures, the
aggregation of TiO2 nanostructures is reasonably well tackled and in which carbon
serves as conceptual framework to foster the electron transport ability [6]. The
electrical conductivity of carbon matrix is still inadequate due to the low pyrolysis
temperature, which substantially affects the electric and reactivity transfer ability
and consequently, the lithium storage capacity even though enhanced electro-
chemical properties of TiO2/C nano-composites have been shown [6]. Carbon,
which is Dual-doped, can drastically enhance the electric conductivity performance
and the lithium storage performance because of the greater electronegativity and the
systemic defects (Wang and others [93, 94]; Xing and others [95]; Zhuang and
others [96]), [6]. The incorporation of heteroatoms in carbon matrix and the rational
design of TiO2/C nano-composites are both of considerable significant for obtaining
high electrochemical property as anode in Li-ion batteries [6]. Nano-TiO2 anchored
on N/S dual-doped carbon conceptual framework (NSC@TiO2) had been accom-
plished through a facile technique as high performance anode material for Li-ion
batteries [6].

Co3O4 had been a fascinating Li-ion batteries’ anode material due to its high
theoretical specific capacity (890 mAh g−1), low cost, eco-friendliness, and relative
abundance, among multiple TMOs [7]. The extensive application of Co3O4-based
anodes had been restricted because of its tremendous volume expansion effect in the
process of charge/discharge [7]. An efficient strategy had been to fabricate meso-
porous Co3O4-based nanomaterials as potential electrode materials to solve the
issue [7]. The mesoporous Co3O4-based nanomaterials normally showed satisfac-
tory performance because of some distinctive mesoporous Co3O4-based nanoma-
terials’ huge specific surface area, a huge number of holes efficiently impeding the
systemic disintegration and potential hazards triggered by volume expansion in the
process of charge/discharge, and rapid mass transfer between the electrolyte and the
active material [7]. At a current density of 0.1, a high reversible capacity of
1067 mAh had been delivered by Cluster-like Co3O4 g

−1 Ah g−1 after 100 cycles
[7, 97]. Upon 30 cycles at a current density of 0.1 Ah g−1 [98], a stable specific
discharge/charge capacity of 765 and 749 mAh g−1 had been shown by
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Mesoporous Co3O4 microdisks [7]. The designation and synthesis of mesoporous
Co3O4-based nanomaterials owning special distribution of particle and pore sizes
were still quite required for additional amelioration of performance [7]. A novel
mesoporous dandelion-like Co3O4 nanomaterial had been synthesized [7]. “The
as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nano-
needles which were about 50 nm in width and about 5 lm in length” [7]. The
as-prepared Co3O4 mesoporous dandelion-like Co3O4 nanomaterial reveals supe-
rior electrochemical performance of Li-ion batteries when assessed as anode
materials [7].

Transition metal oxides (TMOs), including Co3O4 [99], MnO2 [100], V2O5

[101], and Fe3O4 [102], have been researched as fruitful anode materials for Li-ion
batteries because of natural relative abundance [103, 104] and their high theoretical
capacities [8]. MCo2O4 (M = Ni, Zn, Fe, Mn) have been commonly used as anode
materials to substitute graphite, which owes to their high theoretical capacities
[105–108], as a kind of ternary TMOs [8]. More substantially, high specific capacity,
which is usually two times greater than that of traditional graphite-based materials is
shown by CuCo2O4 [8]. “Yuan’s group [109] synthesized CuCo2O4, the discharge
capacity of which still remained 740 mAh g−1 at 0.1 C (1 C = 1000 mA g−1) after
50 cycles” [8]. In contrast with the same-sized solid nanomaterials, porous hollow
spheres can offer huge active area, abundant buffer space, and short ion diffusion
pathways, to ameliorate the volume change during repeated Li+ insertion/extraction
mechanisms; these mechanisms can efficiently foster the electrochemical reaction
[8, 110, 111]. A facile and general hydrothermal technique to synthesize porous
CuCo2O4 hollow spheres (PHS-CuCo2O4) is indicated by us without employing any
templates [8]. The crucial step is one-pot to form porous CuCo2O4 hollow precursor
spheres [8]. The porous CuCo2O4 hollow precursor spheres reshape into
well-retained PHS-CuCo2O4 via a thermal annealing process in air [8]. Full cells
were assembled employing the as-prepared PHS-CuCo2O4 and LiCoO2 as the
cathode as the anode; this anode indicate a comparatively high capacity of 660 mAh
g−1 after 50 cycles [8].

A critical factor for overall electrochemical performance; huge pore volumes, the
porous structure of carbon material with high surface zones, and homogeneous pore
sizes normally display greater lithiation capability and better cycling stability,
which can shorten the Li+ ions transport path, accommodate the huge volume
change, improve the electrode/electrolyte interface, and decide the contact between
electrode and electrolyte solution, and enhance the interfacial lithium ion diffusion
[112, 113] is the porosity of electrode materials [9]. The carbon material with
spherical structure have been shown to be competent for employing as anode
materials for Li-ion batteries, since spherical materials enjoy a high packing den-
sity, a low surface to maximal systemic stability, volume ratio, and ease to
preparing electrode films [9, 114]. Developing new, which is carbon-based anode
materials with porous and spherical structure as the host of the lithium insertion and
transport, is imperative to enhance the performance of Li-ion batteries [9]. Studying
a sustainable and cheap synthetic technique to prepare micropores spherical
structure of carbon sphere as anode material for Li-ion batteries will enormously
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enhanced lithium ion storage, which is crucial to the structure design and modifier
of carbon anode material application in Li-ion batteries in the future [9]. We report
a carbon microsphere with highly prepared micropores by green and straightfor-
ward technique, which had been utilized to anode material of Li-ion batteries and
indicate high discharge capacity and long cycle life at various current density in this
work [9]. NCM and the RF-C were utilized to anode materials of Li-ion batteries,
respectively, compared with RF-C; the lithium-ion storage capacity of NCM had
been enormously enhanced because of their microporous structure; this structure
indicates a high discharge capacity and excellent cycle performance at various
current [9].

Fe3O4 has been viewed as an advanced alternative anode material for Li-ion
batteries because of low cost and its high theoretical capacity among all the reports
for MxOy [10]. There are many reports on that the quantum dots display enhanced
electrochemical performance [10, 115]. The distinctive quantum dots have multiple
merits for excellent cycling stability and high-rate capability in terms of electronic/
ionic electrical conductivity, volume effect, specific surface area, and grain
boundary defects [10, 116]. Much work till date has revolved around that the
quantum dots dispersed on graphene display enhanced electrochemical performance
[10]. Highly distributed Fe3O4 quantum dots on commercially readily available
graphite nanoplates, which revealed high-rate capability (530 mAh g−1 at 5 A g−1)
including a high cycling performance (960 mAh g−1 at 200 mA g−1 after 147
cycles) had been efficiently prepared by Su and others [10, 116]. The ultrafine
Fe3O4 quantum dots on hybrid carbon nanosheets indicated by Liu showed an
enhanced electrochemical performance [10, 117]. There are handful reports about
combining 3D graphene aerogel and 0D quantum dots, the distinctive structure
shown the efficacy of the synergetic effect between 3D GA to the lithium storage
properties and the 0D Fe3O4 quantum dots [10]. It is a particular challenge to build
a facile technique to prepare single-phase Fe3O4 quantum dots reasonably well
dispersed on graphene foam matrix [10]. Fe3O4 quantum dots/graphene composite
showed cycling stability (312 mAh g−1 after 200 cycles at 50 mA g−1) [118] and
satisfactory sodium storage capacity (525 mAh g−1 at 30 mA g−1) in our group
[10]. Benefitting from the Fe3O4 quantum size of 2–5 nm, the obtained
Fe3O4 QDs/GA performs satisfactory behaviour properties on cyclic stability and
rate capability [10].

Decades, transition metal oxides (TMOs) have been extensively examined as
fruitful anodes for Li-ion batteries due to low cost and their high theoretical
capacities [11]. Much attention has been paid to Fe-based ternary metal oxides as
fruitful anodes for Li-ion batteries to enhance their cycleability [11]. It is anticipated
that Fe-based ternary metal oxides as fruitful anodes for Li-ion batteries can effi-
ciently circumvent the shortcomings of pure iron oxide anode; then bigger rever-
sible capacity, better rate performance, and better cycleability, could be
accomplished by the useful combination of various metal species (Yuan and others
[119]), [11]. The use of ZnFe2O4 as anodes in Li-ion batteries for the first time (Li
and others [120]) had been indicated by Li and others, and the initial reversible
capacity had been 556 mAh g−1 and 78% of the capacity (434 mAh g−1) had been
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still preserved after 100 cycles [11]. An efficient way to enhance rate performance
and the battery cycling by both improving the nanomaterial surface electronic
electrical conductivity and minimizing the electrode/electrolyte interfacial side
reaction (Zhang and others [121]; Lee and others [122]) is surface coating on TMO
nanoparticles [11]. A new-generation carbon material, which not just possesses
high electrical conductivity and the high surface area though can serve as a reliable
matrix to load multiple metal oxides is Graphene [11]. It is supposed that the 3D
network graphene composites as anode material can efficiently ameliorate the
aggregation of metal oxides [11]. The enhancement of electrochemical perfor-
mances could be attributable to the synergetic role of graphene and homogeneous
carbon layer, which can hinder the volume expansion, enhance the electron transfer
of the composites, and deter the pulverization/aggregation upon prolonged cycling
[11].

In the variety 670–893 mAh g−1 have been indicated (Xiong and others [123];
Qi and others [124]; Huang and others [125]), CoO has received particular attention
because of specific capacities and its high theoretical capacity (716 mAh g−1) [12].
Numerous efforts were made toward the synthesis of CoO that comprises octahedral
nanocages (Guan and others [126]) and nanodisks (Sun and others [127, 128]) with
enhanced capacities of 893 and 1118 mAh g−1, respectively since morphologically
tailored nanostructured materials can provide distinctive properties [12]. Superior
performance with specific capacities of 1592 mAh g−1 at 50 mA g−1 (Peng and
others [129]) and *1018 mAh g−1 at 500 mA g−1 (Sun and others [127, 128]) is
demonstrated by CoO-graphene composites [12]. Zhou and others [130] have
indicated specific capacity of 2223 F g−1 at a current density of 1 mA cm−2 from
3D CoO@polypyrrole nanowires (in 3 M NaOH electrolyte), while Wang and
others [131] have detected a high specific capacity of 3282.2 F g−1 at
1 mA cm−2 (in 6 M KOH electrolyte) for a hybrid composite of conductive carbon
and CoO [12]. Some researches are concentrated on mixed metal oxide composites
including CoO@NiO and specific capacities in the variety of 145–840 F g−1 can be
obtained (Gao and others [132]; Yang and others [133]) in order to solve the
electrical conductivity issue of CoO and enhance capacitance [12]. Based on
carbon-based composite materials, although gives rise to an enhancement of
gravimetric capacitance of metal oxide supercapacitors, normally results in lower
areal capacitance because of high volume to mass ratio of carbon (e.g., CNT,
graphene, etc.) [12]. That by synthesizing 1D materials with useful morphology,
high capacitance values could be derived from CoO (1167 F g−1 after 10,000 cycles
at 5 A g−1 and areal capacitance of 728 mF cm−2) without the need to form with
carbon or other metal oxides any composite and hence, enhancing both gravimetric
and volumetric capacitance is demonstrated here by us [12].

Porous carbon materials have been devised as a fruitful electrode material for
lithium batteries because of physicochemical properties [134–138] and the dis-
tinctive systemic elements among all carbon-based materials [13]. Template tech-
nique and activation technique were usually introduced to synthesize high surface
area porous carbon materials [13, 139–141]. Lithium batteries delivered the elec-
trochemical performance with specific charge capacities of 445 mAh g−1 at 0.1 C
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and 370 mAh g−1 at 1 C [142] had been material-based by the carbon [13]. Porous
carbon particles based on peanut shells, which shown reversible capacity of
480 mAh g−1 with high columbic efficiency of 98.9% after 20 cycles [143] were
prepared by Cao and others [13]. One practical approach to additional enhance the
electrochemical performance of the porous carbon-based anode is by controlling
structure [46, 144–146] and morphology [13]. That the obtained porous carbon
reaches the high reversible capacity of 660 mAh g−1 after 70 cycles at a current
density of 100 mA g−1 [147] had been shown by Guo and others [13].
Nanostructured porous carbon materials with structure and characteristic mor-
phology shown the enhanced electrochemical properties [13, 148–150]. The
FPCMs highlight rate performance (378 mAh g−1 at 1 A g−1) and the optimal cycle
capacity (643 mAh g−1 at 100 mA g−1) whilst employing as anode materials of
lithium batteries [13]. The link between morphology and structure of porous carbon
and electrochemical performance of lithium batteries had been examined [13].
Possibilities of enhancing the lithium storage capacity of porous carbon materials
by controlling both morphology and structure are provided by the results [13].

A wide range of materials have been exploited as anode materials for Li-ion
batteries in the past decades, including silicon-based [151–153] or tin-based [154–
156] materials, and transition-metal oxides [157–159]; these decades have
ultra-high theoretical capacity [14]. Silver is an attractive option for anode mate-
rials, due to its comparatively high specific capacity; this capacity is attributable to
the formation of numerous Ag–Li alloys (up to AgLi12) within a quite low voltage
variety (0.25–0 V) [14, 160]. A common matrix for silver is carbon [14]. Shilpa and
others utilized hollow carbon nanofibres as a buffer matrix and enmeshed silver
nanoparticles in them via the coaxial electrospinning technique [14, 161]. Metal
organic approaches (MOFs) have been attracting increased attention as carbon
sources for anode materials because multiple kinds of MOF precursors can con-
sequence in deduced carbon with allow innate doping of heteroatoms [162–164]
and a homogeneous, controllable, porous structure [14]. A cage-like carbon/nano-Si
composite as anode materials by the template technique to incorporate Si
nanoparticles into ZIF-8 had been prepared by Song and others [14]. Porous
nitrogen-doped carbon (PNCs@Gr) via the pyrolysis of zeolitic imidazolate con-
ceptual framework nanoparticles grown in situ on GO (ZIF-8@GO), which showed
outstanding electrochemical performance among carbonaceous materials utilized as
anode materials [165], a sandwich-like had been fabricated by Xie and others,
graphene-based [14]. Carbon, which is ZIF-8-derived, had been utilized by us as a
matrix for silver nanoparticles (Ag nanoparticles); these nanoparticles can offer not
just rigid matrices with nanopores, though also a comparatively high nitrogen
content [14]. Once utilized as the anode material for the lithium ion battery, the
Ag-NPC revealed excellent electrochemical performance over bare NPC; this NPC
had been attributable to the carbon matrix and the synergetic effect of Ag
nanoparticles [14].

Several carbon-doped anode materials with multiple structures have been
devised to improve the electric conductivity [166–170] and to ameliorate tremen-
dous volume variability during the process of Li+ insertion/extraction in recent
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decades [15]. Since they are quite environment-friendly and renewable, though
offer a novel approach to prepare anode materials with distinctive nanostructures for
improving performances [171–176], sustainability could be not just maintained by
such materials [15]. Upon 60 cycles at the current density of 0.2 and 2 A g−1, which
had been considerably greater than the theoretical capacity of graphite (372 mAh
g−1), the lithium storage capacity of MnO/C nano-composites showed 610 and
350 mAh g−1 [15]. Through the approach of biotemplating method, which is based
on Zhang, microalgaes and others, prepared MnO/C nano-composites; these
nano-composites the enhanced lithium storage performance may be attributed to the
porous hollow microsphere architecture [177] and released a relative high capacity
of 700 at 100 mA g−1 after 50 cycles [15]. Through utilizing bacillus subtilis as
templates, Kim and others synthesized Co3O4 nanorods with porous hollow
nanostructure and it revealed high reversible capacity of 903 mAh g−1 after 20
cycles under the current density of 240 mA g−1 [15, 178]. A cheap and
environment-friendly approach to prepare graphene (G)-Co/CoO shaddock, which
is peel-derived carbon foam (SPDCF) hybrid as anode materials for Li-ion batteries,
had been devised by us [15]. The carbonized porous shaddock peels can act as the
supporting skeleton to accommodate the mechanical strain and keep elastic for
Li+ insertion/extraction, which might enhance the cycle stability of the G-Co/CoO
SPDCF substantially [15]. The devised approach to prepare the G-Co/CoO SPDCF
with nanoflakes nanostructure based upon biological materials could be extended to
the synthesis of other comparable materials for Li-ion batteries, supercapacitor,
catalysis, etc. [15].

Nickel oxide (NiO) as an alternative anode material for Li-ion batteries has been
extensively researched because of its high theoretical capacity (718 mAh g−1),
non-toxicity and low cost [16]. Design and synthesis of nanoscaled NiO with
distinctive structure, e.g., porous and hollow structures, in which free space can
accommodate enhance Li-ion diffusion and the tremendous volume change
including swiftly throughout the whole electrode during the lithiation/delithiation
process is one efficient approach [16]. Owing to the distinctive porous architecture,
enhanced electrochemical performance with good cycleability and high lithium
storage capacity is shown by the porous NiO hollow microspheres [16].
Nanosphere electrode delivers a high capacity of 393 mAh g−1 after 50 cycles of
charge-discharge at a rate of 0.3 C are hollowed by the NiO [16]. The satisfactory
electrochemical behaviour of the NiO electrode, which is attributed to the nano-size
effect coupled with the hollow void space of NiO nanospheres that can accom-
modate the volume transformations occurring during the conversion reactions and
enhance faster Li-ion intercalation/deintercalation kinetics, is noted by they [16].
Previous studies have clearly suggested that controlled synthesis of NiO anode
materials with porous hollow structures for Li-ion batteries had been the pursuing
aim [16]. The controlled and facile synthesis of porous hollow NiO electrode
materials based on nanoscaled Ni-MOF still encounters many issues and might
have considerable interest in the field of materials science [16]. We report on
synthesis of porous NiO hollow quasi-nanospheres employing a MOF as both the
precursor and the self-sacrificing template [16]. The NiO electrode prepared from
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the porous NiO hollow quasi-nanospheres displays high reversible capacity, rate
performance and satisfactory cycling stability when assessed as an anode material
for Li-ion batteries [16].

The specific energy of traditional Li-ion batteries is not sufficient for these
applications because of the restricted specific capacity of the traditional graphite
anode (372 mAh g−1) [17]. Exploration of novel anode materials with greater
capacity is one of the main research directions for Li-ion batteries (Poizot and
others [179]; Ji and others [109]; Wang and others [180]; Manthiram and others
[181]; Cheng and others [182]), [17]. Transition metal carbonates (TMCs) have
been hot research concentrates in recent decades because of their facile synthesis,
satisfactory electrochemical durabilities (Zhao and others [183]) and high specific
capacities as a novel sort of readily available anode lithium storage materials [17].
That porous ZnCO3 nanoparticles (NPs) revealed an initial capacity of satisfactory
rate ability and 735 mAh g−1 had been indicated by Zhang and others [17, 184].
There are handful reports about multi-metal carbonates utilized as anode materials
for Li-ion batteries till now [17]. The TMCs could be as precursors of the synthesis
of transition metal oxides (TMOs); to the optimal of our knowledge, the TMOs are
emerging as fruitful anode materials because of their high capacities usually two or
three times greater than those of traditional graphite-based electrodes (Poizot and
others [179]; Reddy and others [185]), [17]. TMOs, Co3O4 indicates comparatively
high capacity and is regarded as most potential candidate for Li-ion batteries (Wu
and others [186]), [17]. Due to its satisfactory electronic electrical conductivity,
easy electrolyte penetration (Cui and others [187]; Wei and others [188]) and low
diffusion resistance to protons/cations, TMOs, ZnCo2O4 is regarded as one of the
most fruitful electrode materials for Li-ion batteries application [17]. The
as-prepared ZCO and ZCCO microspheres display satisfactory electrochemical
performance as anode materials for LIB applications, suggesting that the electro-
chemical properties of ZCO might be linked to the electrochemical performance of
ZCCO [17].

Owing to theoretical capacities [189] (>600 mAh g−1) and the high natural
relative abundance, metal oxides (Co3O4 [190], Mn2O3 [191], ZnO [192], SnO2

[193], NiO [194]), are supposed to be the possible anode candidates for
high-performance Li-ion batteries [18]. Zn2SnO4 (ZTO) retains distinctive prop-
erties of high theoretical irreversible capacity of 1231 mAh g−1, a wide band
disparity of 3.6 eV and superior electron mobility of 10–15 cm2 V−1 s−1 [18]. Upon
200 cycles at 100 mA g−1, where monodispersed SnO2 nanoparticles existed
within 3D linked carbon networks, by dexterously employing the porous structures
and adsorption properties of MOFs [195], SnO2@CNT had been devised by Wang
and others with a reversible capacity of 880 mAh g−1 [18]. A two-step calcining
process to efficiently synthesize Sn@graphene-based nanosheets integrating of
optimized nitrogen species had been devised by Zhong and others, and this anode
delivered the discharge capacity of 890 mAh g−1 after continuous tests from 0.1 to
1 A−1 cycle at 100 mA g−1 [18, 196]. A greater capacity of 520 mAh, which is
compared g−1 with the SnO2 nanoparticles failing totally after 100 cycles [197], had
been shown by a SnO2–graphene nanocomposite [18]. Upon 50 cycles, the RGO/C/
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ZnO anode materials showed the reversible capacity of 600 mAh g−1, and this value
had been much more than bare ZnO aggregates [18, 198]. Graphene-MWCNT
demonstrates a specific capacity of 768 mAh g−1 at the current density of 100
mA g−1 after 100 cycles, which is 2.5 times superior to that of pure graphene [18,
199]. At the current density of 100 mA g−1, Ge/RGO establishes a specific capacity
of 863.8 mAh g−1 after 100 cycles, though displays an inferior cycle life perfor-
mance compared with Ge/RGO/CNT [200] without adding CNT [18].

A restricted theory capacity of 372 mAh g−1 [173, 201, 202], which substan-
tially restricted the additional development had been demonstrated by Li-ion bat-
teries with the commercial graphite as the anode material [20]. ZnO is a fascinating
Li-ion batteries’ anode material among multiple anode materials, for its high the-
oretical capacity of 978 mAh g−1 [20, 203]. Recent work [204] synthesized the
ZnO/graphene composites and utilized to prepare Li-ion batteries anode, which
indicates a striking specific capacity of 870 mAh g−1 after 100 cycles at the current
density of 1 A g−1 and 713 mAh g−1 after the sequential 100 cycles at the current
density of 2 A g−1 [20]. On the surface of ZnO nanoparticles with an mean diameter
of *50 nm [205], which indicates specific capacity of *975 mAh g−1 at the
current density of 40 mA g−1, an amorphous coating of carbon had been created
[20]. Sucrose had been utilized as carbon precursor grants to improve the elec-
trochemical performance of ZnO [206], displaying an initial discharge capacity of
1440 mAh g−1 with a reversible (charge) capacity of 1050 mAh g−1 at the current
density of 50 mA g−1 [20]. ZIF-8 nanocrystals were pyrolyzed to prepare the anode
material of Li-ion batteries demonstrating discharge capacity of 600 mAh g−1 after
50 cycles [20, 207]. That structure, which is dispersed not just reasonably well
nano-ZnO though also enhanced the capacity of ZIF-8 [20]. Spherical ZnO@C
nano-composites is poroused by the hybrid as anode materials for Li-ion batteries
possessed superior electrochemical properties, including high specific capacity, fine
cycle performance, and satisfactory rate capability; these properties have been
validated in previous report [20, 208–212].

Rechargeable lithium-ion batteries (Li-ion batteries) have been intensively
studied to satisfy the expanding power-supply requirements for a wide range of
applications in mobile and portable communication tools, electric/hybrid vehicles
due to the high energy density, durable power output [213–216], and stable cycle
life [21]. Titanium dioxide (TiO2) has been acknowledged as an alternative material
to substitute the graphite electrodes in lithium batteries because of its high safety
performance, low volume change, eco-friendliness [217, 218], and natural relative
abundance [21]. Through the inferior Li ions and the aggregation tendency
nanoparticles, electron transport, and the inherent low electrical conductivity, the
practical electrochemical performance is still restricted [21]. It is an efficient
strategy to improve the electrochemical performance by controlling the unidi-
mensional morphologies, including nanofibres, nanowires, and nanotubes; these
morphologies have the huge surface to volume ratio, excellent ion and electron
electrical conductivity [219–221], and high surface area [21]. Low electronic
electrical conductivity and the slow lithium-ion diffusion are still the principal
obstacles for its practical application [21, 222]. Graphene (G) has aroused intensive
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attention due to its superior mechanical, electrical, chemical, and thermal, properties
and is regarded as an optimal support for metal oxides (MO) as lithium ion battery
electrodes [223–226] as is known to all [21]. Some literatures have been indicated
on graphene/TiO2 composite materials with excellent electrochemical performance
as anodes for lithium-ion batteries because of the influential synergetic impacts [21,
227–229]. Upon the decrease of graphene oxide, the G/TiO2 composite nanofibres
were finally obtained and utilized as an anode for lithium batteries with excellent
high rate performance and the excellent rechargeable stability [21].

Transition metal cobalt-based compounds (Co(OH)2, Co3O4, CoN, CoS, CoP),
etc. NiCo2O4, are an crucial class of fruitful materials due to their high theoretical
capacity, adequate cycleability [230–236] and rich redox reaction among the wide
range of anode materials examined [22]. The redox mechanism of the cobalt-based
compounds versus lithium is based upon conversion reactions rather than interca-
lation reactions unlike traditional carbon negative electrodes [22]. The low elec-
tronic electrical conductivity of most of cobalt-based compounds is another inherent
drawback [22]. Several indicators have been taken to ameliorate the two difficulties
by designing nanostructured cobalt-based electrodes with heterogeneous mor-
phologies (including nanoparticles [233], nanowires (NWs) [123], hollow spheres
[237], nanoboxes [238], nanorods [239], nanosheets [240] and nanoplates [241],
etc.) or by preparing them on high electric conductivity substrates (including gra-
phene [242, 243], lowered graphene oxide [244, 245], carbon cloth [246],
nitrogen-doped carbon nanotubes [247] and Ni foam [248], etc.) [22]. It is the fact
that the conversion reaction-based electrodes exhibit low initial columbic efficiency
because of the incomplete conversion reaction, the irreversible stage transitions and
the irreversible lithium deterioration, which is based on the formation of a solid
electrolyte interphase (SEI) layer [22, 186, 230]. There is a need for reviewing the
recent progress in multiple cobalt-based compounds as anode materials [22]. That
review focuses on the synthetic methodologies and the nanostructures of
cobalt-based compounds and their corresponding performances in Li-ion batteries,
and expects to give readers the guideline on how to circumvent the issues of huge
volume change and inferior electric conductivity for these cobalt-based compounds
[22].

Commercial anodes for Li-ion batteries are still graphite-based materials their
restricted specific capacities are not sufficient for greater energy density with the
rapid development of the modern society, and whose theoretical capacity is as low
as 372 mAh g−1 [23]. Novel anode materials with greater capacity for LIB appli-
cations (Huang and others [249]; Manthiram and others [181]; Wang and others
[180]; Ji and others [109]; Cheng and others [182]) must be examined by us [23].
That special S–Mo–S layered structure is favourable for Li-ion insertion/extraction
during the discharge/charge process, whilst the previous reports show that
MoS2 has many drawbacks (Xie and others [250]; Liao and others [251]), [23]. To
solve this issue, the most efficient one is to combine MoS2 with materials which
have satisfactory electrical conductivity, and fairly plenty of tactics are put forth
[23]. Some conductive metals including Cu, Sn, and Co, are doped in MoS2 to help
engender rapid electron transport and enhance the electrical conductivity of active
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materials [23]. A high theoretical capacity of 991 mAh g−1 is possessed by metallic
tin (Sn) and has been regarded as the most fruitful anode materials for
high-performance Li-ion batteries (Hou and others [252]), [23]. Previous studies
have discovered lately that MoS2 doped with Sn can substantially enhance the
cycling performance during the lithiation/delithiation process (Li and others [253]),
[23]. Once evaluated as anode material for Li-ion batteries, all the as-prepared Sn/
MoS2 composites display both greater reversible capacity and better cycling per-
formance, which is compared with the pure MoS2 [23]. That the doping of metal Sn
can substantially enhance the electrochemical properties of MoS2 is revealed by the
results [23].

There has been a greater requirement for lithium-ion batteries about energy
density, the safety of the electrode materials [254, 255], and rate performance, with
the development of multiple electronic mobile tools and the hybrid electric vehicles
[24]. Graphite, as a prevailing commercial anode material for lithium-ion batteries,
delivers a gravimetric capacity of 372 mAh g−1 and a volumetric capacity of 840
mAh cm−3, much from meeting the increased requirement of consumers [24, 256].
Bismuth’s layered crystal structure is facile to Li+ insertion/extraction during
delithiation and lithiation process, making bismuth readily available as an anode
material for lithium-ion batteries [24, 257–260]. The astonishing volume transfor-
mations, which gives rise to expansion and pulverization of subsequently a serious
capacity fade [261] and materials is the principal challenge of the metals and alloys
directly utilized as anode materials for lithium-ion batteries [24]. With regard to the
preceding accomplishments, heterogeneous graphene-based nano-composites,
extensively examined as anode materials for lithium-ion batteries, have showed
enhanced electrochemical performance [24, 186, 262–266]. Co-workers and Yang
showed Bi@C as anode materials for sodium/lithium-ion batteries, obtaining almost
similar capacities [24, 260]. Graphene, comparable to other pure carbon materials,
suffers from a huge irreversible capacity and rapid capacity fade during cycling,
though nitrogen-doped graphene can circumvent these demerits and present
enhanced electrochemical performance than the pristine graphene, which is because
of the enhanced electric conductivity, more defects, intensive electrode/electrolyte
wettability, and active sites for Li+ adsorption from nitrogen, which is incorporated
[267–273], to the optimal of our knowledge [24]. It is quite possible to derive high
performance electrode materials via combining the bismuth with the nitrogen-doped
graphene [24]. We synthesized N-doped graphene/Bi nanocomposite as an anode
material for lithium-ion batteries through a two-stage technique, combining the gas/
liquid interface reaction with the rapid heat treatment technique [24].

The traditional graphite materials are much from being able to which additional
hinder its applications in electric vehicles (EVs), fulfil the market requirement due
to the inferior rate performance and its restricted theoretical capacity (372 mAh g−1)
and hybrid electric vehicles (HEVs) with the extensive application of Li-ion bat-
teries [25]. Spinel NiCo2O4 has been attracted considerable attention because of its
high theoretical capacity (890 mAh g−1), low cost, eco-friendliness, abound
resources [274–276], and high electronic electrical conductivity, among those of
potential alternative anode materials [25]. The meager capacity retention and rate
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performance of the spinel NiCo2O4 inhibit spinel NiCo2O4’s practical application
[25, 277, 278]. That the NiCo2O4 hollow microspheres with the distinctive high
and porous specific surface can offer a short path for lithium ions and electrons in
comparison with bulk materials, whose microstructure can give rise to satisfactory
electrical conductivity and high ion diffusion rate had been shown by coworkers
and Yu [25, 279]. Urchin-like NiCo2O4 nanostructures [280] have been followed
by annealing, suggesting satisfactory cycleability and better rate property and
synthesized through a solvothermal technique, which employs hexadecyl trimethyl
ammonium bromide (CTAB) as a soft template [25]. A facile
microemulsion-assisted solvothermal route with the assistance of employing a
mixture of cosurfactant (n-heptanol and n-heptane) as soft template and sodium
dodecyl sulfate (SDS) to derive Ni-Co precursor, which are followed by annealing
at 400 °C for 4 h to prepare urchin-like NiCo2O4 microspheres had been indicated
by us [25]. That the NiCo2O4 microspheres will display better cycling stability and
greater specific capacity is hoped by us [25].

The field of Li-ion batteries [281, 282] can offer a novel approach to solve the
shortcomings existing in anode materials, including the huge volume change,
meager cycling performance, and low electrical conductivity, by coating polymer
film or the carbon layer on the surface of nanoparticles [27]. Several researches on
the carbon-coated anode materials have been indicated in the scientific literature,
and the reasons for the amelioration of the electrochemical performance of Li-ion
batteries have been described from the point of view of the SEI film [27, 283, 284].
That the carbon coating can buffer the volume change, improve the stability of the
electrode, enhance the electronic electrical conductivity, and deter the SEI layer
from breaking during cycling even at a high rate is shown by all the results [27].
Choi and others coated a thin layer of polymer film efficiently on the lithium
electrode surface by ultraviolet radiation technology and observed that the SEI film
on lithium electrode surface with a protective film is considerably denser than that
without one; the battery with a protective film has a greater discharge capacity and
better cycling performance [27, 285]. On the impacts of polymer shell on the SEI
film and the mechanism of how the polymer shell can enhance the electrochemical
performance of Li-ion batteries and the stability of SEI films is lack of under-
standing, handful researches indicated even though the electrochemical perfor-
mance of anode materials is can efficiently enhanced by the polymer shell [27]. The
examination of the role of the polymer shell in the formation of SEI film is of
paramount importance for additional amelioration of the performance of Li-ion
batteries, which comprises high energy density, safety, cycle performance, and so
on [27].

In voltage areas exceeded the stability window of the electrolytes, most kinds of
lithium-ion batteries are operated, and they present a potential safety hazard; this
hazard limits the voltage variety [28]. Through the formation of a homogenous and
stable electron-insulating solid electrolyte interphase (SEI) on the anode, additional
electrolyte break-down and critical degradation processes could be precluded [28].
The composition and structure of SEIs formed on the anode material, i.e., graphite,
which is utilized most frequently, have previously been researched intensively [28,
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286–293]. Several alternative anode materials were outlined to satisfy the
requirement for safety [294], which is increasing, and greater capacities [28]. It is
indispensable to better comprehend SEI formation to enhance capacity retention
and longevity and to maximize alloy anodes [28]. Lithium titanate (LTO) anodes
still indicate serious gassing when they come into titanium oxides (TiO2, Li4Ti5O12)
particularly with the electrolyte, which results in film formation and battery swel-
ling on the anode surface [28]. Stable SEI layers are replied to be efficient in
suppressing additional electrolyte decomposition [295] to lessen gassing of
LTO-based batteries [28]. Upon the first cycle, the formation of SEI layers, which is
formed on LTO and silicon anodes, had been examined by us [28]. That the overall
resistance of the silicon anodes substantially declined in the second cycle, sug-
gesting the formation of a stable SEI had been founded by us [28]. That is in
contrast to the LTO anodes, where the overall resistance increasing by a factor of
two under comparable conditions, implying that SEI formation would not have
been full after the first cycle [28].

Through ultimately results in the inferior cycling performance and a volume
increase of 300% [296], which gives rise to the pulverization of electrode material,
the silicon alloy electrode, which is lithiated completely, is accompanied [29].
Carbon-based composites could be utilized as buffer matrix material to enhance the
electrode cycle performance [29, 297, 298]. The decrease of electrolyte caused in
the surface film formation as a solid electrolyte intermediate stage (SEI) on the
anode surface [299, 300] in the case of silicon-carbon composite at lower anodic
potential [29]. “The stability of the SEI film is critical to the long cycle life of the
silicon-carbon anode” [29]. Some film-forming additives [301, 302] could be uti-
lized to lessen the irreversible capacity deterioration and enhance the cycle life by
changing the surface film composition [29]. The participation of additives can
change at electrode surface to enhance the stability of SEI film [29]. Numbers of
work have been indicated that the cycle performance of silicon anodes is increasing
by introducing the FEC into the electrolyte solution [29]. The FEC can form a
common SEI on the silicon electrode to restrain the occurrence of huge fissures to
enhance the cycle performance [29, 303]. That surface analysis of FTIR demon-
strates and silicon electrodes by XPS that an electrolyte containing LiF, LixSiOy in
the SEI, and an insoluble polymeric species, had been indicated by Nie and others
[29, 304]. There is no thorough comparative investigation of the quantity of the
FEC as an additive, which is utilized for silicon-carbon composite anodes [29].
A thorough investigation of the impacts of SEI composition of silicon-carbon
anodes and various quantity of FEC on cycling performance is indicated by us [29].

“Part of electrolyte will decompose to form a solid electrolyte interface
(SEI) film on graphite electrode during the first intercalation of lithium ions into the
graphite electrode” [30]. The formation of the SEI film gives rise to an irreversible
capacity deterioration of the first discharge/charge cycle of the lithium-ion batteries
and capacity fading might progressively take place with the thickening of SEI film
in the subsequent cycles [30, 289]. In the electrolyte, adding additives is one of the
most effective techniques to affect the properties of the SEI films and then to
enhance the performance of lithium-ion batteries [30, 305–309]. The SEI film,
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which is formed before the intercalation of lithium ions, is rich in inorganic ele-
ments and unstable [30]. The reduction-type additives, with greater reductive
potentials than that of the electrolyte solvents, are lowered to form an insoluble
solid film before the electrolyte solvents decomposes [30]. We indicated the use of
tea polyphenols (TP) as a reaction-type additive in electrolyte for lithium-ion bat-
teries [30]. The aim of this research had been to examine the effect and reaction
mechanism of TP employing as an electrolyte additive for lithium-ion batteries
[30]. Electrochemical impedance spectroscopic (EIS), which is one of the most
potent devices to examine electrochemical mechanisms taking place at electrode/
electrolyte interfaces [310–313], had been utilized to elaborate the film-forming
properties of graphite electrode in the TP-containing electrolyte [30]. That the
introduction of TP can efficiently enhance the capacity and cyclic stability of the
graphite electrode by forming a thin, compact and smooth SEI film and scavenging
less stable radical anions had been demonstrated by the results [30].

Tin, a comparatively inexpensive and plentiful material with high theoretical
capacity is one alternative anode material [31]. Several researches have been
concentrated on high-capacity oxide, which is Sn-based, materials such as SnO2,
their composites and SnO, particularly with carbon [31, 314, 315]. The enhanced
cycleability of the tin oxide-based materials could be described via their lithiation
mechanism [31]. Composites with carbon-based materials [316], particularly with
graphene [317], are commonly used for enhancing the cycleability of the tin
oxide-based anodes [31]. It is required to employ high potentials (20–40 V) and
thereafter the formed tin oxide powders should be annealed in air at 700 °C for
obtaining the crystalline structure of the [318] oxide in order to derive tin oxide
under direct current conditions [31]. The use of sinusoidal alternating current can
substantially accelerate the process of tin oxide formation [31]. Pulse alternating
currents, on the other hand, offer novel opportunities for the synthesis of highly
dispersed metal oxides because of the non-equilibrium conditions of electrolysis
[31]. The rate of oxidation and dispersion of the metal under the impact of an
alternating current is greater than the rate of anodic oxidation under direct current
[31, 319]. The technique of pulsed alternating current for the synthesis of elec-
trochemically active nanomaterials had been efficiently utilized in our previous
researches [31, 320–322]. The technique of alternating current had been utilized for
the synthesis of NiO nanoparticles; these nanoparticles were evaluated as active
materials for hybrid supercapacitors [31, 322]. Under alternating pulse current as a
new strategy for the synthesis of SnO2 nanoparticles, we utilized the technique of
dispersion of tin and electrochemical oxidation [31].

Owing to its advantages including flat and low potentials (<0.25 V vs. Li+/Li),
stable cycling performance, and low expenses, graphite has been utilized as the
overwhelming vast majority of negative electrodes since the commercialization of
lithium-ion batteries [32]. Traditional carbonate-based electrolytes comprising of
ethylene carbonate (1,3-dioxa-cyclopentan-2-one, EC), lithium hexafluorophos-
phate (LiPF6), and other linear carbonate mixed solvents are usually introduced as
lithium-ion conductor between anode and cathode to match graphite-based
lithium-ion batteries [32]. Due to its high melting point, low ionic electrical
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conductivity at low temperature [323], and high viscosity, utilization of EC is
accompanied with numerous shortcomings to the low-temperature performance of
Li-ion batteries [32]. At low temperature, which limits the power and capacity of
the batteries [324–326], the SEI film, which is formed with EC, indicates low
Li+ electrical conductivity [32]. Adding low melting point cosolvent is one of the
most efficient methodologies to improve the low-temperature performance of the
lithium-ion batteries with traditional carbonate-based electrolytes [32, 327]. Jet
Propulsion Laboratory (JPL) previously indicated that numerous battery models
employing their Gen 3 low-temperature electrolyte, which is the mixture of ester
cosolvents and traditional carbonate-based electrolytes, revealed outstanding
low-temperature performances [32, 328–330]. His coworkers and K. A. Smith
asserted that fluorinated aliphatic carboxylate is one of the most fruitful cosolvent
for low-temperature electrolyte [329] in these reports [32]. K. A. Smith and his
co-workers’ results indicated that these cosolvents are contributing to the enhanced
performance of batteries and engaged to formation and properties of the SEI on
graphite electrode [32]. The SEI on graphite electrode in numerous traditional
carbonate-based electrolytes has been researched by numerous scholars during the
1990s [32, 331–336]. Through mixing traditional carbonate-based electrolyte and
the three RCOOCH2CF3 cosolvents, three modified electrolytes are obtained,
respectively [32].

In lithium-ion batteries, carbon materials of morphologies and various types are
utilized as anodes, primarily because of satisfactory cycling performance [337] and
their plausible theoretical capacity (372 mAh g−1) [33]. Research towards a more
effective material in regard to storage capacity is still on-going [33]. There is a need
to come up with a more stable and cheaper anode material [33, 185]. Silicon,
because of its high theoretical capacity of about 4200 mAh g−1 is regarded as a
replacement for graphite anodes in energy storage tools [33]. That pulverization
process gives rise to contact deterioration of anode materials, resulting in capacity
fading [33]. The silicon oxide nanostructures were evaluated as an alternative anode
material for Li-ion batteries [33, 338–341]. A high theoretical capacity of about
1965 mAh g−1 is shown by Silica as an anode material and is known to undergo
faradaic mechanisms in the presence of lithium ions at an enough high cathodic
potential [33]. A various mechanism with parallel lithium oxide creation [342] and
irreversible silicate formation: Above electrochemical reactions of SiO2 could be
the source of a high theoretical capacity, substantially greater than the capacity of
LiC6 [341] had been devised by Guo, [33]. We revealed that under lithiation
reversible, reactions took place on an anode material, which is derived from high
temperature reconfiguration of sea water diatoms [33]. The evaluated material had
been a composite of silica and the carbonaceous part [33]. All material from red
algae had been chemically discarded and just the part, which comes from diatoms,
has been utilized for anode preparation [33]. Electrochemical performance of silica
anodes, of diatomic origin, has been investigated by means of electrochemical
impedance spectroscopy (EIS) [33].
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In contrast with nickel-hydrogen and nickel-cadmium batteries, lithium-ion
battery has more advantages, including high voltage, high specific energy, security,
no pollution, no memory effect, long cycle life [343] and little self-discharge rate
[34]. It is difficult for graphite anode to satisfy the need of high energy storage tools
[34]. Silicon is regarded as fruitful alternative anode material because of its high
capacity (4200 mAh g−1) [34, 344]. The research of silicon-based anode materials
is primarily concentrated on increased electrical conductivity [345] and reducing
volume effect [34]. The rational design of a wide range of composite electrodes,
including Si/carbon [346] and Si/metal [347] composite electrodes can accommo-
date the serious volume expansion [34]. In environment-friendly energy storage and
light-weight tools [348, 349], electronically conducting polymers are commonly
used [34]. The theoretical capacity of conducting polymer ranges from roughly 100
to 140 mAh g−1 [350, 351], and the thin layers of these materials could be oxidized
and lowered with a quite high rate [34, 352, 353]. Since the polyaniline shell
accommodates the huge volume expansion and shrinkage of Si core during the
extraction and lithium intercalation process, which fosters the contact of electrode
materials [354], the Si/polyaniline core/shell composite anode exhibits reasonably
well cycling stability [34]. The polypyrrole nanofiber is favourable for gathering
and facile charge delivery, whilst the porosity of the electrode can effectively
cushion the volume expansion of Si [34]. Polythiophene-coated nano-silicon (Si/
PTh), which employs composite in situ oxidation polymerization technique, had
been prepared by us [34]. The Si/PTh composite electrode revealed satisfactory
cycling performance and high capacity [34].

Graphite is the most frequent anode material for lithium-ion batteries because of
next-generation electric vehicles’ low cost, durability, and availability, though the
practical capacity of graphite has a theoretical restrict of 372 mAh g−1 [35]. Tin in
particular has a theoretical capacity of 994 mAh g−1 and has been examined as one
of the most fruitful prospective next-generation anode materials [35, 355]. The
research and development of electrodeposited tin materials have been the principal
focus since tin layers could be formed on copper current collectors by plating [35].
The dealloying and alloying reactions consequence in a tremendous volume change
and eventual pulverization of the active tin material, leading to isolation of the tin
from the copper current collector during charge-discharge cycling, which generates
inferior cycleability [35]. Additionally improvements of both the practical specific
capacity and the cycleability of tin-based anodes, including the development of
practical fabrication mechanisms, are still needed [35]. Li and others have indicated
that a Sn/CNTs composite film, which electrodeposition displays formed, enhanced
first charge and discharge capacities compared with a tin film, even though the
capacity decreases with increased cycle number [35, 356]. Through fibrous objects
including the CNTs might potentially be efficient, an anode structure in which the
adhesion strength between the copper layer and the tin layer are bolstered in order
to improve the cycleability of tin active material layers [35]. A CNT-reinforced
noble tin anode structure in which the CNTs fasten the copper underlayer and the
tin active material layer had been generated employing a plating method, and the
electrochemical attributes of the resulting noble anode were assessed [35].
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Due to its outstanding capacity performance, excellent safety performance, and
cost advantage, the requirement for lithium-ion batteries with power density and a
high energy density in electric vehicle (EVs) and hybrid electric vehicle (HEVs) is
roaring up [36]. Much attention has been paid on the search for high capacity, safe,
and price-competitive, electrode materials [357–360] since the holistic advantage of
lithium-ion batteries primarily rests on its electrode materials [36]. The studies on
anode materials are centred whilst the examination on cathode materials focuses on
Li–M–O (M = Co, Ni, Mn), LiMPO4 (M = Co, Fe), and ASP materials [361–366],
etc. on carbon materials, alloy materials and transition-metal oxides, in recent
decades [36]. The spinel LiMn2O4, as lithium-ion battery cathode material, has
difficulties including serious capacity decay and meager cycling, particularly at
temperature [367–370], which is elevated [36]. The principal approach for the novel
stable LiMn2O4 materials is to restrain Mn break-up [36]. TiN coating can improve
the performance of silicon nanoparticles as a lithium-ion battery anode [371], TiN
had been observed to be helpful for enhancing the rate capability and long cycle
stability of Li4Ti5O12 [372] and lithium iron phosphate thin films [373], and
TiO2@TiN composite nanowires on carbon cloth revealed striking rate capability
for flexible lithium-ion batteries [36, 374]. TiN had been utilized as an additive to
enhance the performance of LiMn2O4/Li battery with 1 M LiPF6 in EC/DMC (1:1,
v/v) [36]. In contrast to pristine LiMn2O4, LiMn2O4 with TiN additive revealed
also better rate capability and excellent cycling stability though not just greater
specific capacity [36]. The impacts of TiN on the amelioration of cycle life of the
LiMn2O4/Li battery were examined [36].

Advances have been made on multiple facets of the cathode materials, including a
drive towards bigger working potential (spinel-type LiNi0.5Mn1.5O4 [375, 376] and
LiCoMnO4 [377], olivine-type LiNiPO4 [378]), including cathode capacity (Li-S
[379–382], Li-Air [383–385] batteries), which is increasing substantially [38].
Notwithstanding some advantages, the use of graphite electrode has proven difficult
due to its low specific capacity (theoretical 372 mAh g−1), low lithiation potential
that can give rise to lithium dendrite growth, and low rate capability, on the anode
side [38]. Materials with greater lithium storage capability, lower cost are required,
and safer operation, were anoded by Novel [38]. Tin oxides (SnO, SnO2) and Tin
(Sn) are a family of potential high-capacity anode materials [314, 386–388], which is
investigated extensively [38]. Sn has a volumetric capacity (2020 mAh cm−3)
similar to that of Si (2400 mAh cm−3) [38, 389]. Capacity retention is still one of the
largest hurdles; these hurdles impedes the commercialization of Sn-based materials
[38]. A tire-derived carbon (TC) anode has been shown as a fruitful application for a
recycled tire product, which haves greater capacity and considerably lower cost than
those of commercial graphite [38, 390–392]. Larger capacity is required from this
kind of anode material to be more appealing [38]. An easy process for a cheap is
indicated by us, high-capacity LIB anode made employing tin oxide (TC/SnO) and a
TC composite [38]. The carbon, which is based on waste tires, functioned as the
absorbing matrix; this matrix efficiently mitigated the degradation of the electrode
and the volume change [38]. Upon 300 cycles at a current density of 40 mA g−1, this
TC/SnO anode kept a capacity of 690 mAh g−1 [38].
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In roll-to-roll mechanisms where a slurry of active material, binder, and con-
ductive additives, are cast onto a conductive substrate, including copper, and dried,
Standard LIB anodes are fabricated [39]. The majority of LIB anodes nowadays
employ multiple modes of carbon as an active material, most frequently graphitic
carbon; these modes have a theoretical capacity of 372 mAh g−1 [39]. A new
technique that employs a facile in situ infiltration method with an aqueous infil-
tration solution, which includes silicon and binder nanoparticles, is examined by the
present study to fabricate silicon anodes [39]. The anodes fabricated through this
method might provide similar cycling performance compared to other
silicon-containing anodes if refined and enhanced [39]. The through-plane electrical
conductivity of the CNT mat is on the identical order as that of carbon black [393]
and this winding process has been the object of numerous researches; these
researches infiltrate or coat the CNTs with multiple active materials [394–399] or
resin [39]. A new binder for the anode, hydroxypropyl guar gum (HPG) is
examined by the current study [39]. Prior work [400–402] on native guar gum
observed that it is an efficient binder in LIB anodes whilst its cost is on the present
study identical order of magnitude, if not less this study’s, of traditional binders
including carboxymethylcellulose and polyvinylidene difluoride [39]. Several
researches have demonstrated that native guar gum is also capable of conducting
lithium ions with a maximal electrical conductivity of 2.2 � 10−3 S cm−1 at 303 K
[39, 403].

Si-premised materials have been extensively viewed as fruitful negative elec-
trodes for their high specific capacity, low cost [345, 404, 405] and proper
lithiation/delithiation voltage [40]. Reports, constructing stable structure for Si
particles had been considered to accommodate the tremendous volume expansion
and shrinkage during the charge-discharge process [40]. A convenient and
straightforward technique to construct systemic stable Si-premised anode materials
with high performance is quite required [40]. Powders prepared by spray-drying can
display more stable structure, which provides numerous advantages, including a
better electrochemical performance [406, 407] with the other techniques [40].
A new spray, which drys-technology to prepare Si/CNTs@C composite, is devised
by us [40]. Both carbon and CNTs were utilized to sustain the structure and make
up for the low electronic electrical conductivity of silicon [40]. The obtained
composite Si/CNTs@C had been preliminarily researched in regard of systemic,
electrochemical, and morphological, properties [40].

Organosilane-based compounds have been indicated as electrolyte solvents for
lithium-ion batteries due to their distinctive properties, including nonflammable,
biocompatible, nonvolatile, and thermally and electrochemically stable [41, 408–
410]. Li1.2Ni0.2Mn0.6O2/Li4Ti5O12 complete cell are incompatible with graphite
anode even with VC as a solid electrolyte interphase (SEI) film-forming additive,
resulting in a continuing decomposition reaction of the electrolyte solvent on
graphite anode [41]. The commercial electrolyte solvents include esters and organic
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carbonates, among which ethylene carbonate (EC) is an essential element due to its
SEI film-forming capability on graphite anode [41, 411]. The utilization of
organosilane compounds as SEI film-forming additive, including polyether-
functionalized disiloxanes [412], vinyl tris-2-methoxyethoxysilane [413], phenyl
tris-2-methoxydiethoxysilane [414], for the PC-based electrolyte has been shown
[415], where PC is utilized as the principal electrolyte solvent for graphite anode
[41]. That the compatibility issue of the TMSM2 electrolyte solvent with graphite
anode could be resolved by employing PC as an additive/co-solvent had been
indicated by us [41]. A highly effective performance of graphite/Li cells in
enhancing the discharge capacity retention and in increased the initial columbic
efficiency have been obtained in the electrolyte of 1 M LiPF6 in the dichotomous
solvent of PC (TMSM2: PC = 9:1, by vol) and TMSM2 [41].

That a PC-based electrolyte solution with a high lithium salt content showed
reversible lithium-ion intercalation/de-intercalation because of the decline in the
PC-solvation number of the lithium ions [416, 417] had been indicated by us [43].
That the solvation structure of PC-solvated lithium ions is inhibition of
co-intercalation reactions and a significant factor in the formation of an efficient SEI
had been revealed by this consequence [43]. That the addition of calcium ions as a
Lewis acid to a PC-based electrolyte solution fostered the intercalation/
de-intercalation of lithium ions [418, 419] had been indicated by us [43].
Influenced by these results, we turned our focus to employing a Lewis base in the
electrolyte solution as a means to control the solvation structure of PC-solvated
lithium ions [43]. Counter anion and the cosolvent are regarded as the Lewis bases
in the PC-based electrolyte solution [43]. “Lithium ions form aggregates with
counter anions in electrolyte solutions [43, 420–423].” It is possible that the for-
mation of an efficient SEI between electrolyte solution and the graphite negative
electrode might be fostered by exploiting the Lewis basicity of the counter and
cosolvent anion in the system [43]. We concentrated on the Lewis basicity of the
counter and cosolvent anion in a PC-based electrolyte solution [43]. We have
previously indicated that reversible intercalation and de-intercalation of lithium ions
occurs in PC-based electrolyte solutions upon addition of diethylene glycol dime-
thyl ether (diglyme); this place displays stronger Lewis basicity than PC [43, 424].
Through adding various glymes, the effect of the Lewis basicity of the solvent in a
PC-based electrolyte solution had been examined, and the effect of the Lewis
basicity of the counter anion had been examined employing various lithium salts
[43].

Due to the enormous volume change of Si during repeated charge-discharge
cycles [425–427], the cycle lives of Si anodes do not normally satisfy the com-
mercial standards [44]. A wide range of nanostructured Si materials have been
introduced, as the nanometre facets can efficiently release the strain constructed
during the volume expansion of Si in an effort to tackle the above-mentioned
problems linked to the volume expansion [44]. They suffer from low tap densities
and are more liable to undesired surface reactions because of the huge
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surface-to-volume ratios [152, 428] even though these nanostructured Si shown
enhanced cycling performance to considerable extents [44]. It is desired to build Si
microparticles in which internal nanostructures are enmeshed [44]. Since their
particle sizes are in the micrometer variety whilst the wall thicknesses of pores are
in the nanometre variety, microporous or meso-Si materials are well-aligned to this
design consideration [44]. Has been lately shown as an excellent LIB anode
material, exclusive use of SiRH leaves a disparity before immediate commercial
adoption while mesoporous Si originating from rice husk SiO2, namely SiRH [44].
Since unavoidable volume expansion of SiRH is still huge in such a way that the
electrode swelling and charge-discharge reversibility are not as controllable as those
of current graphite counterparts [44]. The current study is supposed to serve as a
helpful ground in developing high capacity LIB anodes incorporating Si materials,
with considerable potential towards commercialization from the perspectives of
resource scalability and volumetric energy density [44].

Relatively high energy density, long lifespan, light design, and low environ-
mental influence in comparison with other battery systems including
nickel-cadmium (NiCd), nickel-metal hydride (NiMH) could be provided by
lithium-ion batteries [45]. The issue with carbonaceous electrode materials is that
they are not useful for next-generation lithium-ion batteries, electric vehicles [429]
and that is, smart electrical grid systems [45]. These a lithium ion battery is con-
structed from a transition metal oxide cathode material and graphite anode material
[45]. In the first step, which lithium-tin alloy in the second step followed, the
electrochemical reaction of lithium and tin ions offers metallic lithium and tin
oxide: Metallic tin formation in reaction triggers volume transformations for tin
oxide-based electrodes as it is detected for pure metallic tin [45]. Through modi-
fication of the tin oxide electrode material in terms of structure and morphology,
this issue might be circumvented [45]. The hydrothermal process is commonly
used, particularly when tin oxide nanoparticles are attached to carbon materials
[317, 430–434] among those techniques [45]. It exemplified and revealed that a
porous carbon matrix acts as a buffer for volume expansion/shrinkage for tin and tin
oxide-based electrode materials [45, 435]. Carbon is quite important in terms of
employing carbon as a buffer in preventing electric contact deterioration of the tin
negative electrode with the current collector [45, 284]. That review is revolved
around the modification of tin oxide-carbon negative electrode materials in
lithium-ion batteries [45]. I wished to indicate the tactics utilized to enhance battery
performance by incorporation of tin oxide into the carbonaceous matrix as a neg-
ative electrode in energy conversion applications and energy storage [45].
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1.2 Graphene, Anode Materials, Lithium Storage,
Current Density, Reversible Capacity, Pore,
Nanoparticles

1.2.1 NiO/CNTs Derived from Metal-Organic Frameworks
as Superior Anode Material for Lithium-Ion Batteries
[1]

That the introduction of CNTs can enhance the lithium-ion storage performance of
NiO/CNT composites is demonstrated by the results [1]. That NiO/CNT composites
are appealing as potential anodes for Li-ion batteries is demonstrated by the results
[1]. At 100 mA g−1, NiO/CNTs-10 shows the highest reversible capacity of 812
mAh g−1 after 100 cycles [1]. The excellent electrochemical performance of NiO/
CNT composites must be attributable to the formation of 3D conductive network
structure with porous NiO microspheres connected by CNTs; this CNTs benefits the
buffering of the volume expansion during the cycling process and the electron
transfer ability [1]. Reveal performance, which is satisfied, is based on MOFs
always by the TMOs and have been extensively utilized in catalysis [436, 437],
biomedicine [438], supercapacitors [439, 440], etc. Li-ion batteries [441, 442],
because of high surface zones and their hierarchical structures [1]. That NiO/CNT
composites display excellent cycling stability and high specific capacity primarily
because of the synergetic effect between NiO and CNTs including the 3D network
porous structure is confirmed by the results [1].

1.2.2 Intergrown SnO2–TiO2@Graphene Ternary
Composite as High-Performance Lithium-Ion Battery
Anodes [2]

The obtained composite reveals a distinctive structure and high surface zones, in
which both TiO2 and SnO2 nanoparticles are reasonably well grown on the surface
of graphene [2]. The electrochemical tests suggest that as-prepared SnO2–

TiO2@graphene composite displays a high capacity of 1276 mAh g−1 after 200
cycles at the current density of 200 mA g−1 [2]. The specific capacity of 611 mAh
g−1 at an ultra-high current density of 2000 mA g−1, which is superior to those of
the indicated SnO2/graphene and SnO2 hybrids is kept by the composite [2]. The
striking electrochemical performance of ternary SnO2–TiO2@graphene composites
is primarily attributable to high surface zones, their distinctive nanostructure, and
the synergetic effect not just between graphene and metal oxides though also
between the intergrown SnO2 and TiO2 nanoparticles [2].
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1.2.3 Carbon and Few-Layer MoS2 Nanosheets
Co-modified TiO2 Nanosheets with Enhanced
Electrochemical Properties for Lithium Storage [3]

Few-layer and carbon MoS2 nanosheets co-modified TiO2 nano-composites (con-
ceptualized as MoS2-C@TiO2) were prepared via a facile single-step pyrolysis
reaction method [3]. The TiO2 nanosheets with stable structure serve as the
backbones, and carbon coating and few-layer MoS2 tightly conform onto the sur-
face of the TiO2 in this distinctive nanostructure [3]. The TiO2 needs to be noted
that the carbon coating enhances the overall electronic electrical conductivity and
the few-layer MoS2 fosters the diffusion of lithium ions and provides more active
sites for lithium-ion storage [3].

1.2.4 Preparation of Co3O4 Hollow Microsphere/Graphene/
Carbon Nanotube Flexible Film as a Binder-Free
Anode Material for Lithium-Ion Batteries [4]

Following a subsequent process, which is treated thermally, and a facile filtration
approach, a flexible Co3O4 hollow microsphere/graphene/carbon nanotube hybrid
film is efficiently prepared [4]. Following the morphology characterizations on the
hybrid film, the Co3O4 hollow microspheres are homogeneously and closely
attached on 3-D (3D) graphene/carbon nanotubes (GR/CNTs) network; this net-
work decreases the agglomeration of Co3O4 microspheres efficiently [4]. Following
the CV results, the electrochemical reaction between Co3O4 and Li+ could be
expressed as follows [55]: in the CV curves, it is notable that after the first cycle, the
CV curves of the subsequent 4 cycles were not coincident [4]. The 3D GR/CNT
network which improves prevents aggregation including conductance is a profit to
help Co3O4 to exert its lithium storage capacities enough in this hybrid film [4].

1.2.5 In Situ Growth of Ultrashort Rice-Like CuO Nanorods
Supported on Reduced Graphene Oxide Nanosheets
and Their Lithium Storage Performance [5]

A facile refluxing approach in aqueous solution had been involved to synthesize
ultra-short rice-like CuO nanorods/reduced graphene oxide (CuO-NRs/rGO) com-
posite [5]. A facile refluxing approach had been utilized to synthesize ultra-short
rice-like CuO-NRs/rGO composite [5]. The consequence of the high-resolution
transmission electron microscopy indicates that the as-synthesized rice-like CuO
nanorods have a homogeneous size of about 8 nm in width and 28 nm in length and
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are homogeneously dispersed on rGO nanosheets [5]. Through the graphene
nanosheets lowered from GO, the CuO nanorods are homogeneously dispersed and
immobilized [5].

1.2.6 A Facile Synthesis of Heteroatom-Doped Carbon
Framework Anchored with TiO2 Nanoparticles
for High Performance Lithium-Ion Battery Anodes [6]

We present a facile approach to synthesize N/S dual-doping carbon conceptual
framework, which is anchored with TiO2 nanoparticles (NSC@TiO2) as Li-ion
batteries anode, to circumvent these shortcomings [6]. The as-obtained
NSC@TiO2 electrode displays a high specific capacity of 250 mAh g−1 with a
columbic efficiency of 99% after 500 cycles at excellent rate performance and 200
mA g−1, suggesting its fruitful as anode material for Li-ion batteries [6]. At 1350
and 1580 cm−1, two distinctive peaks could be detected, corresponding to the D
and G band, respectively [6]. The plateaus still could be observed, representing a
reasonably well partial reversibility of the reaction after 200 cycles [6].

1.2.7 Dandelion-Like Mesoporous Co3O4 as Anode
Materials for Lithium-Ion Batteries [7]

A dandelion-like mesoporous Co3O4 had been fabricated and utilized as anode
materials of Li-ion batteries (Li-ion batteries) [7]. Electrochemical experiments
exemplified that the as-prepared dandelion-like mesoporous Co3O4 as anode
materials of Li-ion batteries showed high reversible specific capacity of
1013.4 mAh g−1 and 1430.0 mAh g−1 at the current density of 0.2 A g−1 for the
100th and first cycle, respectively [7]. Its high-rate capability including the
enhanced capacity made the as-prepared dandelion-like mesoporous Co3O4 to be a
satisfactory candidate as a high-performance anode material for Li-ion batteries [7].
It could be detected that the precursor looked like dandelion and consisted of
several irregular nanoneedles with length and diameter, which ranges from 2 to
10 lm, ranging from 30 to 50 nm [7]. The discharge capacities of 1st of
1427.9 mAh g−1, 2nd of 1025.5 mAh g−1, and 100th of 1013.4 mAh g−1 were all
greater than the theoretical capacity of Co3O4 (890 mAh g−1) as can be detected
[7]. A high charge specific capacity of 1013.4 mAh g−1 at 0.2 A g−1 with con-
siderable capacity retention can be detected after 100 cycles, as reasonably well [7].
At 2.13 V, an oxidation peak can be detected, arising from the reversible oxidation
reaction of Co to Co3O4 [7, 137].
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1.2.8 Template-Free Fabrication of Porous
CuCo2O4 Hollow Spheres and Their Application
in Lithium-Ion Batteries [8]

Once utilized in Li-ion batteries, the porous CuCo2O4 hollow spheres indicate
excellent lithium storage performance; this performance can deliver a high specific
capacity of 930 mAh g−1 after 150 cycles for 660 mAh g−1 and half-cell after 50
cycles for complete cell [8]. The satisfactory electrochemical properties of the
as-synthesized porous CuCo2O4 hollow spheres could be attributable to their dis-
tinctive porous structure, which is beneficial for alleviating the systemic stress of
volume change and shorting lithium ion-electron transmission path [8]. Full cells
and the better electrochemical performance in both half suggest that the
PHS-CuCo2O4 might have a potential application as electrode for Li-ion batteries
in the future [8]. Both the TEM and SEM results suggest that the as-synthesized
PHS-CuCo2O4 have a hierarchical porous hollow nanostructure [8]. It could be
observed from the curve that the octahedral Cu2+ at 933.6 eV is evidently pre-
dominant because this structure is more energetically stable [8, 446, 447]. In the
subsample [448, 449], the consequence suggests the existence of Co3+ and mixed
Co2+ [8]. The consequence suggests the stable cycling performance of
PHS-CuCo2O4 [8]. It could be detected that the cycling performance of the two
electrodes displayed differently [8]. That the PHS-CuCo2O4 could be utilized as a
fruitful anode material for Li-ion batteries is thought by us [8].

1.2.9 Nanoporous Carbon Microspheres as Anode Material
for Enhanced Capacity of Lithium-Ion Batteries [9]

In contrast with the NCMs with porous structure, RFs carbon microspheres (RF-C),
after activating with hot CO2 and high BET surface area of 2798.8 m2 g−1; this
g−1 offers plentiful lithium-ion storage site including stable lithium-ion transport
channel [9]. The porous spherical structure of NCM retains markedly lithium-ion
storage capability; this capability displays high discharge capacity and excellent
cycling stability at various current density [9]. The CO2 activating carbonaceous
materials utilized in anode materials can enormously improve the capacity storage;
this storage offers a fruitful modification approach to enhance the storage capacity
and cyclic stability of carbonaceous anode materials for Li-ion batteries [9].
Studying a sustainable and cheap synthetic technique to prepare micropores
spherical structure of carbon sphere as anode material for Li-ion batteries will
enormously enhanced lithium ion storage, which is crucial to the structure design
and modifier of carbon anode material application in Li-ion batteries in the future
[9]. More and more carbonized materials are utilized to Li-ion batteries, it will be
viewed as a fruitful stratagem to enhance the electrochemical performance of car-
bonaceous anode material application in Li-ion batteries in the future [9].
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1.2.10 Fe3O4 Quantum Dots on 3D-Framed Graphene
Aerogel as an Advanced Anode Material
in Lithium-Ion Batteries [10]

Fe3O4 quantum dots/graphene aerogel materials (Fe3O4 QDs/GA) were derived
from a facile hydrothermal approach, followed by a subsequently heat treatment
process were fabricated by 3-D [10]. The Fe3O4 QDs (2–5 nm) are anchored tightly
and dispersed homogeneously on the surface of 3-D GA [10]. On the 3D graphene
pore structure, the Fe3O4 QDs (2–5 nm) are homogeneously anchored [10]. The
enhanced electrochemical performance is attributable to that the GA not just acts as
a 3-D electronic conductive matrix for electrons and the fast transportation of Li+,
though also offers with pulverization of Fe3O4 QDs during cycling and double
protection against the aggregation [10]. The Fe3O4 QDs/GA composites are fruitful
materials as advanced anode materials for Li-ion batteries [10]. “The Fe3O4 QDs/
GA has an excellent reversible capacity of 1078 mAh g−1 after 70 cycles at a
current density of 100 mA g−1” [10].

1.2.11 Facial Synthesis of Carbon-Coated ZnFe2O4/
Graphene and Their Enhanced Lithium Storage
Properties [11]

Carbon-coated ZnFe2O4 spheres with sizes of *110–180 nm anchored on gra-
phene nanosheets (ZF@C/G) are efficiently prepared and utilized as anode materials
for Li-ion batteries (Li-ion batteries) [11]. The obtained ZF@C/G introduces an
initial discharge capacity of 1235 mAh g−1 and establishes a reversible capacity of
775 mAh g−1 after 150 cycles at a current density of 500 mA g−1 [11]. The
enhanced electrochemical performances could be attributable to the synergetic role
of graphene and homogeneous carbon coating (*3–6 nm), which can hinder the
volume expansion, enhance the electron transfer between carbon-coated
ZnFe2O4 spheres, and deter the pulverization/aggregation upon prolonged cycling
[11].

1.2.12 High Electrochemical Energy Storage
in Self-assembled Nest-Like CoO Nanofibers
with Long Cycle Life [12]

The electrochemical properties of hydrothermally synthesized CoO nanofibres of
diameter 30–80 nm, which is assembled in a nest-like morphology which revealed
a quite high reversible lithium storage capacity of 2000 mAh g−1 after 600 cycles at
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0.1 mA cm−2 as lithium-ion battery anode, are indicated by us [12]. Once inves-
tigated as a supercapacitor electrode in 1.0 M KOH, a capacitance of 1167 F g−1 is
accomplished from these 1D CoO nanofibres after 10,000 charge discharge cycles
at a high current density of 5, which reveals A g−1 satisfactory application potential
[12]. Upon 600 cycles, Nest-like CoO nanofibres revealed a reversible lithium
storage capacity of 2000 mAh g−1 as LIB anode and a capacitance of 1167 F
g−1 after 10,000 cycles as electrochemical supercapacitor [12]. The Raman, and
XRD, FTIR, spectroscopy results suggest successful synthesis of phase-pure CoO
by this straightforward hydrothermal process inside an autoclave where areal oxi-
dation to impurity stages like Co3O4 can be avoided [12]. In the discharge state and
in the charged state, remarkable difference in morphologies can be detected [12].

1.2.13 Shape-Controlled Porous Carbon from Calcium
Citrate Precursor and Their Intriguing Application
in Lithium-Ion Batteries [13]

The as-prepared commodities indicate homogeneous morphologies, in which the
FPCMs are self-assembled from PCNSs [13]. Upon 50 cycles at 100 mA g−1, these
carbon materials deliver a stable reversible capacity above 515 mAh g−1 as anodes
of lithium-ion (lithium ion) batteries [13]. That the new shape-controlled porous
carbon materials have potential applications as electrode materials in electronic
tools is revealed by the investigation [13]. It could be detected that the microspheres
are comprised of nanosheets via a characteristic self-assembly process from a
broken microsphere [13].

1.2.14 Novel Ag@Nitrogen-Doped Porous Carbon
Composite with High Electrochemical Performance
as Anode Materials for Lithium-Ion Batteries [14]

Upon 200 cycles at a current density of 0.1 A g−1, the reversible capacity of
Ag-NPC remained at 852 mAh g−1, demonstrating its striking cycling stability [14].
The reversible capacity for both materials progressively declined with the current
rate [14]. The enhancement of the electrochemical properties including reversible
capacity, cycling performance and rate performance of Ag-NPC, which is compared
to the NPC, led to the synergetic impacts between NPC and Ag nanoparticles [14].
At 0.35 and 0.12 V, the peaks linked to the dealloying process of Li–Ag could be
detected in the anodic scan [14]. It had been notable that for the charge-discharge
profile of the Ag-NPC, numerous small plateaus could be detected apart from the
one at 0.75 V [14].
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1.2.15 Graphene-Co/CoO Shaddock Peel-Derived Carbon
Foam Hybrid as Anode Materials for Lithium-Ion
Batteries [15]

The preparation of G-Co/CoO SPDCF had been according to the following two
steps [15]. That graphene had been homogeneously dispersed into the SPDCF and
the carbonized shaddock peels had hierarchical porous nanoflakes structures had
been demonstrated by the results [15]. The nano-sized Co/CoO had been formed on
the G-SPDCF [15]. The caused G-Co/CoO SPDCF hybrid can retain a high
capacity of 600 mAh g−1 at 0.2 A g−1 after 80 cycles, which had been considerably
greater than that of commercial graphite (372 mAh g−1) [15].

1.2.16 Porous NiO Hollow Quasi-nanospheres Derived
from a New Metal-Organic Framework Template
as High-Performance Anode Materials
for Lithium-Ion Batteries [16]

Once assessed as an anode material for Li-ion batteries, the MOF deduced NiO
electrode displays high capacity, rate performance (760 mAh g−1 at
200 mA g−1 after 100 cycles, 392 mAh g−1 at 3200 mA g−1) and satisfactory
cycling stability [16]. That superior lithium storage performance is primarily
attributable to the distinctive hollow and porous nanostructure of the as-synthesized
NiO; this hollow provide sufficiently space to accommodate the dramstic volume
change and ameliorate the pulverization issue during the repeated lithiation/
delithiation mechanisms, and offer more electro-active sites for fast electrochemical
reactions including foster lithium ions and electrons transfer at the electrolyte/
electrode interface [16]. Between 300 and 500 °C, which is attributable to the
combustion of adsorbed PVP, a final slight weight deterioration could be detected
[16].

1.2.17 Synthesis of ZnCo2O4 Microspheres
with Zn0.33Co0.67CO3 Precursor and Their
Electrochemical Performance [17]

Through a facile solvothermal technique, Zn0.33Co0.67CO3 (ZCCO) microspheres
are fabricated at various temperatures, and ZnCo2O4 (ZCO) microspheres were
additional obtained by pyrolysis of the relative ZCCO precursors at 450 °C [17].
Upon 70 cycles under the voltage variety of 0.01–3.0 V at the current density of
100 mA g−1, compared with the synthesized of 180 °C, the synthesized of 200
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(ZCCO-200) °C showed greater (1530 mAh g−1) discharge capacity and better rate
performance with the reversible capacity of 876 mAh g−1 [17]. In contrast with the
first cycle, the principal decrease peak in the following cycles had been shifted to
0.95 V, which is indicative of the various electrochemical reactions during the two
mechanisms (Wang and others [443]), [17]. In contrast with the ZCCO-180, the
as-prepared ZCCO-200 microspheres showed greater discharge capacity (1530
mAh g−1) and better rate performance with the reversible capacity of 876 mAh
g−1 after 70 cycles [17]. The as-obtained ZCO microspheres from the pyrolysis of
ZCCO-200 showed better cycling stability (741 mAh g−1 after 70 cycles) than that
for the microspheres from the pyrolysis of ZCO-180 and greater discharge capacity
of 1416 mAh g−1, suggesting that the electrochemical properties of ZCO might be
linked to the electrochemical performance of ZCCO [17]. Our present work indi-
cated that both the ZCO and ZCCO microspheres could be fruitful candidates as
new anode materials for lithium-ion battery applications [17].

1.2.18 Carbon Nanotubes Cross-Linked
Zn2SnO4 Nanoparticles/Graphene Networks as High
Capacities, Long Life Anode Materials
for Lithium-Ion Batteries [18]

Acting as bridge and the strut to open the graphene sheets, 3D RGO/MWCNT nets
not just deal with the issue of the aggregation of ZTO nanoparticles and volume
expansion, though retain the integration of anode materials for high electrochemical
performance in the designed hybrid nanostructure [18]. Material indicates high
reversible capacity, long-running cycle performance for Li-ion batteries (Li-ion
batteries) and superior rate capacity were anoded by the resultant [18]. Our
investigation reveals significant potential of ZTO/RGO/MWCNTs as anode mate-
rials for Li-ion batteries [18]. A restricted capacity of 372 mAh g−1 [444, 445] could
be just showed by graphitic carbon at complete lithiation [18].

1.2.19 Environmental-Friendly and Facile Synthesis
of Co3O4 Nanowires and Their Promising
Application with Graphene in Lithium-Ion Batteries
[19]

The 1D nanowire structure with a high facet ratio had been readily accomplished
through a magnetic-field-assisted self-assembly of cobalt ion complexes during
decrease [19]. In huge scale, the Co3O4 nanowires were prepared and willing to be
utilized as the anode material for lithium-ion batteries after air-calcinations [19].
The Co3O4 nanowires possessed a length, which ranges from 3 to 8 lm with the
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dimension ratio more than 15, and showed a reversible lithium storage capacity up
to *790 mAh/g when employing a small quantity of defect-free graphene flakes as
conductive additives [19]. The Co3O4 nanowire/graphene composite holds fruitful
application for lithium-ion batteries [19].

1.2.20 Porous ZnO@C Core-Shell Nanocomposites as High
Performance Electrode Materials for Rechargeable
Lithium-Ion Batteries [20]

A new porous spherical ZnO@carbon (C) nanocomposite, which is based upon
zeolitic imidazolate approaches (ZIFs-8)-directed technique, had been prepared for
lithium-ion batteries (Li-ion batteries) [20]. Via pyrolyzing the corresponding
ZnO@ZIF-8, the new porous spherical ZnO@C nano-composites were obtained
[20]. The new porous spherical ZnO@C nano-composites were typified with var-
ious analysis methods including scanning electron microscopy, X-ray powder
diffraction and transmission electron microscopy [20].

1.2.21 Synthesis of One-Dimensional
Graphene-Encapsulated TiO2 Nanofibers
with Enhanced Lithium Storage Capacity
for Lithium-Ion Batteries [21]

The unidimensional graphene/TiO2 composite nanofibres with the distinctive
microstructures have been efficiently synthesized through an effective technique
and revealed excellent high rate performances as anode materials for lithium-ion
batteries and the enhanced rate capacity [21]. The existence of graphene not just
enhances the electronic electrical conductivity for serving as the further transport
channel though avoids the agglomeration of anatase TiO2 nanofibres, hence
keeping their high active surface area [21].

1.2.22 Recent Progress in Cobalt-Based Compounds
as High-Performance Anode Materials
for Lithium-Ion Batteries [22]

A number of cobalt-based compounds (Co(OH)2, Co3O4, CoN, CoS, CoP,
NiCo2O4, etc.) have been devised over the past years as fruitful anode materials for
Li-ion batteries (Li-ion batteries) because of their high theoretical capacity,
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adequate cycleability and rich redox reaction [22]. The Li-ion batteries perfor-
mances of the cobalt-based compounds have been substantially enhanced in recent
decades, and it is anticipated that these materials will become a tangible reality for
practical applications in the near future [22]. That review briefly investigates recent
progress in this field, particularly highlights the synthetic methodologies and their
corresponding performances in Li-ion batteries and the prepared nanostructures of
the heterogeneous cobalt-based compounds, such as the storage capacity, cycling
stability, rate capability and so on [22]. That cobalt oxides can be a satisfactory
choice for the practical application in Li-ion batteries is revealed by the above
results [22]. It is anticipated that the Li-ion batteries performance of the
cobalt-based compounds will make significant progress and become a tangible
reality for practical applications in the near future [22].

1.2.23 Synthesis and Electrochemical Properties
of Tin-Doped MoS2 (Sn/MoS2) Composites
for Lithium-Ion Battery Applications [23]

Through employing SnCl2�2H2O and (NH4)6Mo7O24�4H2O as raw materials via a
straightforward solvothermal technique, which pyrolysis followed, SnO2–

MoO3 composites were synthesized [23]. “SnO2–MoO3 composites were formed
on the basis of Ostwald ripening mechanism (Li and others [253]), [23].” Tin-doped
MoS2 (Sn/MoS2) flowers have been synthesized by a solvothermal technique fol-
lowed with annealing in Ar(H2) atmosphere, with SnO2–MoO3, urea as starting
materials, and thioacetamide (TAA) [23]. Both greater reversible capacity and
better cycling performance at current density of 200 mA g−1, compared with
MoS2 without Sn doping is shown by all Sn/MoS2 composites as anode materials
for Li-ion battery (LIB) [23]. Both high reversible capacity and satisfactory cycling
performance is shown by nearly all Sn/MoS2 composites as anode materials for
Li-ion batteries [23]. That the Sn/MoS2 composite can be a fruitful candidate as a
new anode material for LIB application is demonstrated by the satisfactory elec-
trochemical performance [23]. That the Sn/MoS2 composites can be fruitful anode
materials for LIB applications is demonstrated by the satisfactory electrochemical
performance, and our present work offers a novel strategy to the LIB and fabrication
applications of MoS2 [23].
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1.2.24 N-Doped Graphene/Bi Nanocomposite
with Excellent Electrochemical Properties
for Lithium-Ion Batteries [24]

N-doped graphene/Bi nanocomposite had been prepared through a two-stage
technique, combining the gas/liquid interface reaction with the rapid heat treatment
technique [24]. “The prepared N-doped graphene/Bi nanocomposite as an anode
material for lithium-ion batteries delivers excellent electrochemical performance”
[24]. The N-doped graphene/Bi nanocomposite can still deliver a specific capacity
of 218 mAh g−1 even at the high current density of 1000 mA g−1 [24]. The
excellent electrochemical performance of the N-doped graphene/Bi nanocomposite
is supposed to profit from the synergetic effect of bismuth nanoparticles and
nitrogen-doped graphene and the high electronic electrical conductivity of
nitrogen-doped graphene [24]. It could be detected that the lumpish Bi2O2CO3 are
distributed on the surface of sheet-like graphene, though the size of the lump is not
homogeneous [24]. Various from the first discharge curve, one plateau could be
detected because of the overlapping in the subsequent discharge cycles [24]. It
could be detected the superior capacity retention could be obtained [24].

1.2.25 Fabrication of Urchin-Like NiCo2O4 Microspheres
Assembled by Using SDS as Soft Template for Anode
Materials of Lithium-Ion Batteries [25]

Through a facile protocol, which comprises microemulsion-solvothermal reaction
and subsequent calcining at 400 °C for 4 h, the urchin-like NiCo2O4 microspheres
assembled by employing sodium dodecyl sulfate (SDS) as soft template are effi-
ciently fabricated fabricated [25]. It has been clearly confirmed that the prepared
3-D urchin-like NiCo2O4 microspheres are represented by one-dimension nano-
wires [25]. The high reversible specific capacity, rate performance, and perfect
cycleability, are attributable to the distinctive urchin-like NiCo2O4 microspheres;
these microspheres can ameliorate the volume expansion and shorten the diffusion
path of ions and electrons during lithiation/delithiation process [25]. The
self-standing urchin-like NiCo2O4 microspheres might be a quite fruitful candidate
in place of the commercial graphite-based anode materials for high-performance
Li-ion batteries [25]. It could be observed that there is an apparent long discharge
plateau in the initial discharge curve, which is congruent with the consequence of
CV [25]. It could be observed that the urchin-like NiCo2O4 microspheres anode
offers a greater reversible capacity of 1034.2 mAh/g at 100 mA/g even after 40
cycles, which is more superior to other NiCo2O4 electrodes [25].
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1.2.26 Synthesis of Spherical Silver-Coated
Li4Ti5O12 Anode Material by a Sol-Gel-Assisted
Hydrothermal Method [26]

Ag-coated spherical Li4Ti5O12 composite had been efficiently synthesized through
a sol-gel-assisted hydrothermal technique, which employs silver and an ethylene
glycol nitrate mixture as the precursor, and the impact of the Ag coating contents on
the electrochemical properties of its had been intensively examined [26]. The
electrochemical impedance spectroscopy (EIS) analyses shown that the excellent
electric conductivity of the Li4Ti5O12/Ag caused from the presence of the silver
coating layer, which conducts highly [26]. The nano-thick silver layer had been
homogeneously coated on the particles and substantially enhanced the rate capa-
bility of this material [26]. The silver-coated micro-sized spherial
Li4Ti5O12 showed excellent electrochemical performance [26].

1.3 Silicon, SEI, Tin, Graphite, CNTs, Carbon, Anodes,
Film

1.3.1 Effects of Solid Polymer Electrolyte Coating
on the Composition and Morphology of the Solid
Electrolyte Interphase on Sn Anodes [27]

The composition and morphology of the solid electrolyte interphase (SEI) film on
the surface of Sn@PEO and Sn anode materials have been examined in order to
explore the effect of polymer coating layer on the Sn anode [27]. In contrast with
the bare cycled Sn electrode, the SEI on the surface of cycled Sn@PEO electrode is
thinner, more stable, and smoother [27]. Obtained from X-ray photoelectron
spectroscopy (XPS), the SEI formed on the Sn@PEO electrode is typified by
inorganic elements (Li2CO3)-rich outer layer and organic components-rich inner
which can make the SEI more stable and hinder the electrolyte, which immerges
into the active materials [27]. Notably better capacity retention than bare Sn elec-
trodes is demonstrated by the Sn@PEO electrodes [27].

1.3.2 Insights into Solid Electrolyte Interphase Formation
on Alternative Anode Materials in Lithium-Ion
Batteries [28]

Through electrochemical impedance spectroscopy (EIS), SEI formation on lithium
and silicon titanate (LTO) anodes had been researched and ex situ X-ray
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photoelectron spectroscopy (XPS) measurements to gain novel insight into the
formation of the solid electrolyte interphase (SEI) as a basis for the effective and
safe use of novel anode materials [28]. A decrease of the resistance in the second
cycle had been detected, which indicates the formation of a stable SEI with SiO2,
Li4SiO4, various carbonates as its principal elements, and LiF, on the silicon anodes
[28]. The resistance increasing by a factor of two, suggesting incomplete SEI
formation on the LTO anodes [28].

1.3.3 Effect of Fluoroethylene Carbonate as an Electrolyte
Additive on the Cycle Performance of Silicon-Carbon
Composite Anode in Lithium-Ion Battery [29]

The cycling performance of silicon-carbon anodes in the electrolyte with various
content (0, 2, 5, 10 wt%) fluorinated ethylene carbonate (FEC) had been researched
[29]. Based on 54.81–83.82%, the retention capacity of silicon carbon anode
enhanced after 50 cycles among all the electrolytes the injection of 2 wt% FEC into
carbonate electrolyte [29].

1.3.4 Tea Polyphenols as a Novel Reaction-Type Electrolyte
Additive in Lithium-Ion Batteries [30]

Tea polyphenols (TP) enhanced the electrochemical performance of the graphite
electrode including reversible capacity and cyclic stability by cyclic voltammetry
(CV), and electrochemical impedance microscope (EIS), which scans electron
microscope (SEM), discharge/charge test, and electrochemical impedance micro-
scope (EIS) to a certain extent [30]. “The first charge capacities of the graphite
electrodes in electrolytes without and with TP were 327.1 and 349.1 mAh g−1,
respectively” [30]. The amelioration had been benefited from the efficient scav-
enging the less stable radical anions and amelioration the oxidation stability of EC
and formation of a thin and compact, stable solid electrolyte interface (SEI) film
with lower resistance [30].
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1.3.5 Electrochemical Dispersion Method for the Synthesis
of SnO2 as Anode Material for Lithium-Ion Batteries
[31]

A technique of electrochemical oxidation and dispersion of tin electrodes under
alternating pulse current had been devised as a new strategy for the synthesis of
SnO2 nanoparticles useful as an alternative anode for Li-ion batteries [31].

1.3.6 Identification of Solid Electrolyte Interphase Formed
on Graphite Electrode Cycled in Trifluoroethyl
Aliphatic Carboxylate-Based Electrolytes
for Low-Temperature Lithium-Ion Batteries [32]

Trifluoroethyl aliphatic carboxylates with various length of carbon-chain in acyl
groups have been introduced into carbonate-based electrolyte as cosolvents to
enhance the low-temperature performance of lithium-ion batteries, both lowering
polarization of graphite electrode and in capacity retention [32]. The elements and
properties of the surface film on graphite electrode, which is cycled in, various
electrolytes are examined employing Fourier reshape infra-red spectroscopy
(FTIR), electrochemical measurements, and X-ray photoelectron spectroscopy
(XPS), to pinpoint the additional impact of trifluoroethyl aliphatic carboxylates on
graphite electrode [32]. XPS results and the IR indicate that the chemical species of
the solid electrolyte interphase (SEI) on graphite electrode strongly rely on the
selection of cosolvent [32].

1.3.7 Biosilica from Sea Water Diatoms
Algae—Electrochemical Impedance Spectroscopy
Study [33]

We report on an electrochemical impedance investigation of silica of organic origin
as an active electrode material [33]. The electrode is electrochemically stable during
subsequent cyclic voltammetry measurements taken in the potential variety from
0.005 up to 3.0 V versus Li/Li+ [33]. Electrochemical impedance spectroscopy,
which is carried out at an equilibrated potential E = 0.1 V in the temperature
variety 288–294 K, discloses low diffusional impedance and low charge transfer
resistivity [33]. Crushing is supposed to increase the active surface area, which is
needed for a sufficient current outcome [33]. That the relaxation time in SEI films
diminishes with temperature increase and is lower for T = 294 K and the fastest for
T = 286 K and equal to 0.00796 and 0.017 s, respectively is demonstrated by the
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results [33]. That naturally taking place, renewable source of nanoporous silica
from sea water diatoms are observed to be useful as the anode material for
lithium-ion battery applications with comparable time constants for the lithiation
process and a greater specific charge capacity than graphite is demonstrated by the
results [33].

1.3.8 Polythiophene-Coated Nano-silicon Composite
Anodes with Enhanced Performance for Lithium-Ion
Batteries [34]

Through in situ chemical oxidation polymerization technique, a novel
polythiophene-coated silicon composite anode material had been prepared [34]. The
better electric contact between silicon particles could be offered by the polythio-
phene [34]. The as-prepared Si/polythiophene composite electrodes attain better
cycling performance than the bare Si anode [34].

1.3.9 A Carbon Nanotube-Reinforced Noble Tin Anode
Structure for Lithium-Ion Batteries [35]

A carbon noble tin anode structure in which CNTs fasten the tin layer to a copper
underlayer, which is bolstered nanotube (CNT)-, has been fabricated employing
plating methods so as to enhance the cycleability of lithium-ion batteries [35].
Through a substitution-type electroless plating method, the surface of this com-
posite layer is subsequently coated with a tin layer, resulting in the CNT-reinforced
noble tin anode structure [35]. The electrochemical attributes of this noble tin anode
structure have been assessed and compared to those of a tin anode structure without
CNTs [35].

1.3.10 An Approach to Improve the Electrochemical
Performance of LiMn2O4 at High Temperature [36]

The XPS and XRD test results suggest that the TiN can efficiently deter Mn from
dissolving in electrolyte; galvanostatic discharge/charge test indicates that
LiMn2O4 electrode with TiN displays capacity retention at high temperature with
capacity of 105.1 mAh g−1 at 1 C in the first cycle at 55 °C, which is enhanced
remarkably, and the capacity establishes 88.9% retention after 150 cycles [36]. That
TiN, as an addictive, made apparent contribution to the electrochemical cycling
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performance of LiMn2O4, which is enhanced substantially, could be concluded by
us [36]. Upon the discharge/charge had been collapsed [450], the crystal lattice in
the electrodes is revealed by these results [36].

1.3.11 Effect of Different Binders on the Electrochemical
Performance of Metal Oxide Anode for Lithium-Ion
Batteries [37]

Once testing the electrochemical performance of metal oxide anode for lithium-ion
batteries (Li-ion batteries), binder played crucial role on the electrochemical per-
formance [37]. Which binder had been more useful for preparing transition metal
oxides anodes of Li-ion batteries has not been systematically studied [37]. SBR
+CMC binder had been more useful for making transition metal oxides anodes of
Li-ion batteries [37]. Test results indicate that active material had been easy to fall
off from the current collector if use PVDF for binder [37]. It could be detected that
fabricated with SBR+CMC binder, particularly when the slurry ratio had been
80:10:10, the electrode shown an outstanding electric conductivity, excellent charge
transfer, influential binding capability, satisfactory rate performance, and striking
cycling performance, and ultimately consequence in the brilliant electrochemical
performance [37].

1.3.12 Carbon/Tin Oxide Composite Electrodes
for Improved Lithium-Ion Batteries [38]

Tin and Tin oxide-based electrodes are fruitful high-capacity anodes for lithium-ion
batteries [38]. A technique to prepare scalable carbon, a cheap and tin (II) oxide
composite anode is indicated [38]. Through ball milling of carbon, which is
recovered from utilized tire powders with 25 wt% tin (II) oxide to form lithium-ion
battery anode, the composite material had been prepared [38]. Inside the pores of
carbon, which is waste-tire-derived, tin oxide powders were evenly distributed with
the influence of energy from the ball milling [38]. A technique to prepare cheap
carbon/tin (II) oxide (SnO) composite by ball milling is indicated [38].

1.3.13 A Silicon-Impregnated Carbon Nanotube Mat
as a Lithium-Ion Cell Anode [39]

A material for the anodes of lithium-ion batteries because of its high practical
charge capacity of 3600 mAh g−1, which is *10 times the specific capacity of
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traditional graphitic materials, which is studied extensively, is silicon [39]. Silicon
is a meager conductor so silicon should be coupled with conductive additives,
usually carbonaceous in character, to enhance electron conduction from the silicon
to the current collector [39]. We report a new silicon anode fabrication method; this
method entails winding an congruent carbon nanotube (CNT) sheet and com-
mensurately infiltrating it in situ silicon an aqueous solution, which includes silicon
nanoparticles and hydroxypropyl guar binder [39]. The resulting infiltrated felts
were assessed, processed, and compared to traditional silicon-carbon black anodes
with the identical carbon, silicon, and binder content as a proof of notion investi-
gation [39]. Through a drawing operation from a CNT vertical assortment, a new
fabrication technique is explained for the negative electrode for a lithium-ion bat-
tery: a CNT mat is formed whilst simultaneously being impregnated with a solu-
tion, which includes hydroxypropyl guar gum binder and silicon nanoparticles [39].
The resulting CNT-Si anode structure indicates enhanced life-time cycling per-
formance, which is compared to conventional slurry-based silicon anodes [39].

1.3.14 High Cycling Performance Si/CNTs@C Composite
Material Prepared by Spray-Drying Method [40]

Through a spray, the anode material Si/CNTs@C composite is prepared-drying
combined pyrolysis technology [40]. Excellent electrochemical performance is
demonstrated by the composite as anode for LIB [40]. AC impedance analysis and
the CV suggest that the prepared composite individually indicates low
charge-transfer impedance R ct and satisfactory electrode stability [40]. That the Si/
CNTs@C composite is a potential alternative to graphite for high energy-density
lithium-ion batteries is revealed by the results [40]. It could be observed that, as the
current density increases from 50 to 1000 mA g−1, the reversible specific capacity
is 633.4, 626, 617.3, 591.4, and 551.7 mAh g−1 at the current density of 50, 100,
200, 500, and 1000 mA g−1, respectively [40]. It could be observed that the charge
transfer resistance had been substantially declined after adding CNTs [40].

1.3.15 Synergistic Film-Forming Effect of Oligo(Ethylene
Oxide)-Functionalized Trimethoxysilane
and Propylene Carbonate Electrolytes on Graphite
Anode [41]

In graphite/Li cells employing the electrolyte of 1 M LiPF6 in the dichotomous
solvent of PC and TMSM2, with the PC content in the variety of 10–30 vol.%,
good SEI film-forming cycling and capability performance had been detected [41].
The graphite/Li cells delivered greater specific capacity and better capacity
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retention in the electrolyte of 1 M LiPF6 in TMSM2 and PC (TMSM2: PC = 9:1,
by vol), compared with those in the electrolyte of 1 M LiPF6 in TMSM2 and EC
(TMSM2: EC = 9:1, by vol) [41]. Through electrolyte solution structure analysis,
the synergetic SEI film-forming properties of PC and TMSM2 on the surface of
graphite anode had been typified via Raman surface and spectroscopy analysis,
which is observed by scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS), and Fourier reshape infra-red spectroscopy (FT-IR) analysis
[41].

1.3.16 Effect of Tungsten Nanolayer Coating on Si
Electrode in Lithium-Ion Battery [42]

The first charge capacities of uncoated electrode cells and the W-coated were
2558 mAh g−1 and 1912 mAh g−1, respectively with the electrochemical property
analysis [42]. Morphology transformations in the W-coated Si anode during cycling
electrochemical attributes were investigated via impedance analysis, and were
detected employing TEM and SEM [42]. Due to W-coated Si’s mechanical and
electrical conductivity properties from the atomic W layer coating via PVD, the
electrode enhanced the electrode’s cycleability and preserved the electrode’s
structure from volumetric demolition [42].

1.3.17 Solid Electrolyte Interphase Formation in Propylene
Carbonate-Based Electrolyte Solutions
for Lithium-Ion Batteries Based on the Lewis
Basicity of the Co-solvent and Counter Anion [43]

In PC-based electrolyte solutions and reversible intercalation and de-intercalation of
the lithium ions at the graphite negative electrode do not proceed, an efficient solid
electrolyte interphase (SEI) is not formed [43]. Another solution to this issue is to
control the structure of the solvated lithium ions [43]. We concentrated on the
Lewis basicity of the counter and cosolvent anion in the lithium salt to form an
efficient SEI and control the solvation in a PC-based electrolyte solution [43].
Tetraglyme and triglyme were utilized as the cosolvents, and lithium
trifluoromethanesulfonate and lithium bis (fluorosulfonyl) amide were utilized as
the anion sources [43].
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1.3.18 Rice Husk-Originating Silicon–Graphite Composites
for Advanced Lithium-Ion Battery Anodes [44]

Nearly 20 wt% of mesoporous SiO2 is contained by rice husk [44]. Through
reducing the rice husk-originating SiO2 employing a magnesio-milling process, we
yield mesoporous silicon (Si) [44]. Taking advantage of huge readily available
amount and meso-porosity, we employ rice, which husk-originates Si, to Li-ion
battery anodes in a composite form with commercial graphite [44]. The series of
electrochemical results indicate that rice, which husk-originates Si graphite com-
posites are fruitful candidates for high capacity Li-ion battery anodes, with the
influential advantages in scalability and battery performance [44].

1.3.19 Composites of Tin Oxide and Different
Carbonaceous Materials as Negative Electrodes
in Lithium-Ion Batteries [45]

Tin oxide and Tin have been regarded as useful materials with a high theoretical
capacity for Li-ion batteries [45]. The issue to circumvent with tin oxide, including
with other metallic materials, is high volume transformations during alloying/
dealloying, subsequent pulverization, delamination from current collectors, which
follows continuous degradation of the anode [45]. Much attention had been paid to
integrate carbonaceous materials [45]. Summarized results concerning utilization of
the tin oxide-carbonaceous negative electrode material are summarized [45]. These
an strategy caused in attaining a discharge capacity of over 140 mAh g−1 at a
current density equal to 400 mA g−1 for the Sn/SnO2/PC composite in a
sodium-ion battery [45].

1.4 Conclusion

That NiO/CNT composites display excellent cycling stability and high specific
capacity primarily because of the synergetic effect between NiO and CNTs
including the 3D network porous structure is confirmed by the results [1].
A maximal capacity of 812 mAh g−1 after 100 cycles at 100 mA g−1 is accom-
plished for NiO/CNTs-10 [1]. That NiO/CNT composites are appealing as potential
anodes for Li-ion batteries is demonstrated by the results [1].

A facile, one-pot, and easy, hydrothermal strategy has been summarized for
producing a new kind of SnO2–TiO2@graphene ternary composite with high sur-
face zones and distinctive structure [2]. Benefitting from the products’ distinctive
structure, the product displays outstanding cycle ability, high reversible specific
capacity, and satisfactory rate capability as an anode material for Li-ion batteries,
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which owes to the synergetic relationships between graphene and metal oxides [2].
Upon 200 cycles at a current density of 200 mA g−1, the as-prepared SnO2–

TiO2@graphene hybrid delivers a reversible discharge capacity as high as
1276 mAh g−1 [2]. The SnO2–TiO2@graphene composite could be utilized as a
fruitful anode material for next-generation Li-ion batteries in view of the superior
electrochemical properties [2].

A facile single-step pyrolysis reaction technique had been efficiently devised to
prepare carbon and few-layer MoS2 nanosheets co-modified TiO2 nano-
composites; these nano-composites are regarded to be of considerable profit to
enhance both the electronic electrical conductivity and ionic electrical conductivity
of TiO2 [3]. Once assessed as a LIB anode, the nano-composites display cycle
stability and enhanced specific capacity [3]. The specific capacity decreases slightly
from 180 to 160 mAh g−1 at the current density of 1.0 C after 300 cycles,
demonstrating a superior cycle stability [3].

Via a facile filtration approach, a flexible Co3O4/GR/CNT hybrid film had been
efficiently synthesized and thermally treated process [4]. In contrast with the GR/
CNT and Co3O4 films, the hybrid film showed an enhanced electrochemical per-
formance, which comprises an enhanced cycling stability of 863 mAh g−1 at a
current density of 100 mA g−1 after 55 cycles and excellent rate performances of
1195, 916, 707, 457, and 185 mAh g−1 at current densities of 100, 200, 400, 800,
and 1600 mA g−1, respectively [4].

In aqueous solution, a composite comprising of ultra-short rice-like CuO-NRs
supported on rGO nanosheets had been synthesized through a straightforward
refluxing approach [5]. Once the CuO-NRs had been functioned as anode active
material for Li-ion batteries, the CuO-NRs/rGO composite indicates substantially
enhanced satisfactory rate capability and cyclic stability compared to rGO
nanosheets and the pure CuO-NRs [5].

The utilization of N/S dual-doped carbon as conceptual framework for the
homogenous anchoring of TiO2 nanoparticles had been devised by us [6].
TiO2 nanoparticles are anchored into the porous graphene-based sheets with N, S
dual doping characteristic; this N is generated by KOH activation process and
carbonization [6]. Superior rate capacity and the excellent cycling performance
might correspond to the effect of the N/S heteroatoms doping of the well-defined
structure and carbon matrix [6].

The mesoporous dandelion-like Co3O4 material had been synthesized through a
facile hydrothermal technique, which calcining at 400 °C in air followed [7].
A greater first reversible charge capacity of 1430.0 mAh g−1 had been shown by
the electrode material [7]. The super electrochemical properties and the simplicity
of the preparation technique make the mesoporous dandelion-like Co3O4 material a
candidate for the next generation of anode materials for Li-ion batteries [7].

We have devised a facile template-free technique for the fabrication of
PHS-CuCo2O4 as a high-performance anode material for Li-ion batteries [8]. The
lithium storage property tests on half-cell system showed that the
PHS-CuCo2O4 electrode showed greater specific capacity, rate performance, and
better cycling stability, compared with SS-CuCo2O4 electrode [8]. Rate
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performance and excellent cycling performance had been also showed by
PHS-CuCo2O4 electrode for complete cell [8]. The excellent electrochemical per-
formance of the as-prepared PHS-CuCo2O4 is attributable to its distinctive porous
hollow structure [8].

Once NCM and RF-C are utilized to anode material for Li-ion batteries, at the
identical current density of 210 mA g−1, the retain capacity are 429.379 and
926.654 mAh g−1, respectively, and the initial specific discharge capacity are 482.4
and 2575.992 mAh g−1, respectively, after 50 cycles [9]. Upon activation with
CO2 atmosphere, the nanopores are formed on the carbon spheres; NCM as anode
material indicate stable specific discharge capacity at various current density in
continue cycling, and the performance of anode materials are enormously
enhanced; the NCM as anode material of Li-ion batteries displays greater discharge
capacity than RF-C [9]. The material still kept 780.744 mAh g−1 specific discharge
capacity at current density of 400 mA g−1 after continuous 250 cycles
charge-discharge testing at various current density [9].

Through subsequent annealing and a hydrothermal treatment, we have devised a
facile strategy to preparing Fe3O4 QDs/GA [10]. “The Fe3O4 QDs/GA has an
excellent reversible capacity of 1078 mAh g−1 after 70 cycles at a current density of
100 mA g−1” [10]. The bigger reversible capacity might be attributable to a short
Li+ transfer distance of Fe3O4 QDs and the quantum size impacts [10].

The electrochemical tests indicate that the fabricated ZF@C/G electrode displays
high capacity and satisfactory cycling performance, with an initial discharge
capacity of 1235 mAh g−1 that is kept over 770 mAh g−1 after 150 cycles [11].
A satisfactory rate capacity with a high current density of 2.5 A g−1, a reversible
specific capacity is 410 mAh g−1 is shown by the ZF@C/G electrode [11].
A potential alternative anode to high-performance Li-ion batteries is ZF@C/G [11].

It is shown that a scalable and straightforward low-temperature solvothermal
technique could be utilized to synthesize cubic brucite stage of CoO nanofibres with
a nest-like morphology [12]. Through the enhancement of Co2+ $
Cox+ (2 < x � 3) redox process in addition to formation of polymer like gel and
the morphological evolution, the mechanism of Li storage is described [12].

The FPCMs present the highest specific surface area (*1489 m2 g−1) due to
their distinctive structure that well-organized assembling FPCMs’ nanosheets [13].
The highest discharge/charge capacities during the first cycle are shown by the
FPCMs [13]. The rate capacity of FPCMs (378 mAh g−1 at 1 A g−1) is also greater
than that of PCNFs (364 mAh g−1 at 1 A g−1) and PCNSs (311 mAh g−1 at 1 A
g−1), suggesting a superior specific capacity compared with the graphite [13]. The
three kinds of porous carbon display significant improvements in cycling perfor-
mance and reversible capacities particularly for FPCMs [13].

In cycling performance including the reversible capacity (852 mAh g−1 after 200
cycles), striking enhancement had been demonstrated by the Ag-NPC composite,
compared to NPC without incorporated Ag nanoparticles [14]. That had been
attributable to the synergetic effect of N-doped and Ag nanoparticles porous carbon
[14]. The N-doped porous carbon functioned as a reliable matrix for Ag nanopar-
ticles; this NPs can deter particle aggregation and ameliorate the volumetric
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expansion [14]. The Ag nanoparticles that showed superior electrical conductivity
including a comparatively high specific capacity can effectively raise its reversible
capacity and improve cycling performance by enhancing the quality of SEI films in
return [14].

Convenient technique and a new had been devised to fabricate G-Co/CoO
SPDCF hybrid [15]. Due to the tremendous specific surface area of G-SPDCF, a
huge number of Co/CoO nanoparticles were homogeneously dispersed on the
surface of G-SPDCF and reasonably well immobilized [15]. Once utilized as anode
materials for Li-ion batteries, the G-Co/CoO SPDCF showed satisfactory
Li+ storage capacity (*600 mAh g−1 at 0.2 A g−1), long-cycling stability and
enhanced rate performance (405 mAh g−1 at high current density of 2 A g−1) [15].
The enhanced electrochemical performances of G-Co/CoO SPDCF hybrid were
attributable to the nanoflakes structures to increase the surface area of the target
materials and the satisfactory dispersion of a huge number of Co/CoO nanoparticles
[15].

The hollow porous structure of the MOF-derived NiO anode materials can
increase the electrode/electrolyte contact, shorten the diffusion length of both Li
ions and electrons, and efficiently accommodate the dramstic volume change and
ameliorate the pulverization issue during the repeated lithiation/delithiation mech-
anisms [16]. In high-capacity anode materials for next-generation Li-ion batteries,
taken into consideration the straightforward preparation process, satisfactory elec-
trochemical performances and mass production, the MOF-derived NiO indicates
considerable potentials [16].

In contrast with the ZCCO-180, the as-prepared ZCCO-200 microspheres
showed greater discharge capacity (1530 mAh g−1) and better rate performance
with the reversible capacity of 876 mAh g−1 after 70 cycles [17]. The as-obtained
ZCO-200 microspheres showed better cycling stability (741 mAh g−1 after 70
cycles) than that for the ZCO-180 and greater reversible discharge capacity of 1416
mAh g−1 [17]. The electrochemical properties of ZCO might be linked to the
electrochemical performance of ZCCO [17]. Our present work indicated that both
the ZCO and ZCCO microspheres could be fruitful candidates as new anode
materials for Li-ion batteries [17].

Through anchoring ZTO nanoparticles on the surface of entwined MWCNTs
and wrinkled graphene, to form an advanced electrode materials for Li-ion batteries,
we have devised a new ZTO/RGO/MWCNTs architectures [18]. That the intro-
duction of MWCNTs and GO efficiently ameliorate the capacity fading and max-
imize the ZTO electrodes with new porous structure and high specific surface area,
tremendous electronic carry out is confirmed by the results [18].

SAED results and the XRD suggested that the as-obtained Co3O4NW samples
displayed satisfactory quality in stage and chemical composition [19].
Through TEM and SEM, the Co3O4NWs with the mean diameter roughly nm 180
and the length, which ranges from 3 to 8 lm, were detected [19]. Such nanowires
display satisfactory electrochemical performance, volume-change-accommodating
character of the distinctive 1D-2D hybrid nanostructure in conjunction with 2D
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graphene and attaining lithium storage capacity greater than 700 mAh/g, as a
consequence of the fast electron transport [19].

The potent buffer capability of the porous carbon shell, which is beneficial to
enhance electrochemical performance and the superior capacity of the ZnO core is
combined by this unusual configuration [20]. In contrast with the commercial and
ZnO ZnO and other indicated ZnO-based materials, the nanocomposite with porous
core/shell structure of ZnO@C display high specific capacity (750 mAh g−1 at 100
mA g−1) and striking rate performance (351 mAh g−1 at 2000 mA g−1) [20].
Remarkable electrochemical performance of hollow porous ZnO@C composites
and the facile synthesis make it be a fruitful anode material for high performance
Li-ion batteries [20].

The G/TiO2 nanofibres revealed excellent rate performance, the high reversible
capacity, and superior cycle stability which were attributable to the complementary
and synergetic effect between anatase TiO2 nanofibres and graphene [21].

Various from traditional carbon negative electrodes, the redox operation of the
cobalt-based compounds versus lithium is based upon conversion reactions rather
than intercalation reactions [22]. It appears that the most fruitful one is the
cobalt-based ternary oxides because of the greater electrochemical activity with
various oxidation states, their cheaper and more environmentally friendly doped
elements and better electric conductivity than that of single element metal oxides
among the examined cobalt-based compounds [22]. Through combining the
cobalt-based compounds with highly conductive substrates or by designing
the heterogeneous structures of cobalt-based electrodes, the lithium ion storage of
the cobalt-based compounds could be substantially enhanced [22]. It is anticipated
that the Li-ion batteries performance of the cobalt-based compounds will make
significant progress and become a tangible reality for practical applications in the
near future [22].

That the doping of Sn in MoS2 can help to enhance the electrical conductivity of
pure MoS2, enhancing the cycling performance of MoS2 is demonstrated by the
results [23]. Both high reversible capacity and satisfactory cycling performance is
shown by nearly all Sn/MoS2 composites as anode materials for Li-ion batteries
[23]. That the Sn/MoS2 composites can be fruitful anode materials for LIB appli-
cations is demonstrated by the satisfactory electrochemical performance, and our
present work offers a novel strategy to the LIB and fabrication applications of MoS2
[23].

The synthesized nanocomposite delivers more superior electrochemical perfor-
mance in comparison with the other bismuth-based materials indicated previously
when utilized as an anode material for lithium-ion batteries; this material is
attributed to the high electronic electrical conductivity of N-doped graphene and the
synergetic effect of both bismuth nanoparticles and nitrogen-doped graphene [24].
The excellent electrochemical performance consequence makes it readily available
as a potential anode material for lithium-ion batteries, which might be positive and
encouraged to build more high-performance bismuth-based composites electrode
for lithium-ion batteries [24].
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The NiCo2O4 electrode displays an excellent cycling stability and rate perfor-
mance, which is attributable to its distinctive urchin-like NiCo2O4 microspheres
with more active sites, high lithium-ion diffusion coefficient, and satisfactory
electrical conductivity, as it is utilized to anode material for Li-ion batteries [25].

Through a sol-gel-assisted hydrothermal technique, anode materials spherical
Li4Ti5O12/Ag composites with a high tap density were prepared [26]. The excessive
silver content will cause the electrochemical properties of material poorer [26].
Appropriate Ag-coated spherical Li4Ti5O12 composite is a superior lithium storage
material with excellent safety and a high capacity, and it has real potential as a
fruitful material in power Li-ion batteries [26].

The morphologies and compositions of SEI layers formed on Sn@PEO and the
Sn anode material surfaces have been examined through a distinctive combination
of XPS, and SEM, TEM [27]. We have detected that the passivation layer on the
surface of the bare Sn electrode modes just when the first contact with the elec-
trolyte, various from the Sn@PEO electrode before cycling [27]. Based on TEM
measurement and the SEM, the Sn@PEO electrode indicates better film-forming
feature than bare Sn electrode, which has better capacity retention and clearer
separation of the Sn nanoparticles and a thinner SEI after cycling [27]. Reveal clear
variations between the bare Sn@PEO and Sn electrodes concerning the thickness
and composition of the SEI is spectraed by XPS [27]. Whereas the SEI formed on
the Sn@PEO is quite thin and Sn@PEO’s fluctuation extent upon cycling is less
than that on Sn [27]. The Sn@PEO electrode is favourable to form a stable and
compact SEI layer since the Sn@PEO electrode includes high insoluble passivating
actors including Li2CO3 in the outer part of SEI [27].

SEM, XPS, DRT analyses for silicon and LTO, and EIS, had been carried out by
us to investigation SEI growth in half-cells during the first cycle [28]. The com-
bined techniques revealed that a surface layer formed on both the LTO and silicon
anodes [28]. Surface layer formation on the lithium counter electrode can not be
overlooked as it relates substantially to the overall surface resistance, R Surf par-
ticularly in the case of LTO [28].

The cycling performance of silicon-carbon anodes with various concentrations
of FEC had been compared [29]. Cycle performance had been anoded by the
silicon-carbon and capacity retention rate has been substantially enhanced with the
FEC addition [29]. The excellent electrochemical performance of the silicon-carbon
anode in FEC-containing electrolytes is because of the stable SEI film [29].

TP had been shown as a stable and novel reaction-type additive for Li-ion
batteries in this work by FTIR, discharge/charge, CV, EIS measurements, and SEM
[30].

We have efficiently prepared for the first time SnO2 powder by employing
electrochemical oxidation-dispersion of tin under ac pulse operation [31]. The mean
grain size of crystallites of the as-prepared tin oxide had been 11–16 nm and it had
82.5 m2 g−1 specific surface [31]. The reversible capacity in the first cycle had been
around 680 mAh g−1 close to the theoretical capacity [31]. The columbic efficiency
in the first cycle had been 44% similar with that supposed for SnO2 anodes [31].
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Capacity retention of about 66% over 60 cycles had been demonstrated by the
material [31].

Carbonate-based electrolytes with trifluoroethyl aliphatic carboxylate as cosol-
vent were systematically examined for low-temperature lithium-ion batteries [32].
That the cells employing these cosolvents deliver greater Li+ intercalation capaci-
ties than baseline electrolyte at low temperature without compromise to the per-
formance at room temperature had been founded by us [32]. TFENH might be the
most useful cosolvent for low-temperature carbonate-based electrolyte [32].

The material, which pyrolysis of marine algae obtained, includes porous silica
[33]. The presence of distressed semicircles, in the form of constant stage elements
instead of pure capacitors in the electric equivalent circuit, suggests that the surface
is rough and that the material is porous, inhomogeneous [33]. In the SEI film,
Electrochemical mechanisms taking place and between SEI interface/silica particles
have been identified [33]. The time constant of SEI film impedance is 104 lower in
comparison with the time constant originating from modified Randles circuit values
linked to the charge transfer process between silica particles and the SEI interface
[33]. The slowest process is lithium-ion diffusion in the bulk film [33]. The
pseudocapacitance of the SEI film is constant and affects the charge transfer
capacitance though is not temperature-dependent [33]. We are cognizant that the
presence of crystobalite, quartz, traces of magnetite and albite would vary if one
goes from batch to batch [33]. That naturally taking place, renewable source of
nanoporous silica from sea water diatoms are observed to be useful as the anode
material for lithium-ion battery applications with comparable time constants for the
lithiation process and a greater specific charge capacity than graphite is demon-
strated by the results [33].

Improved electric contact between silicon particles could be offered by the
polythiophene [33]. “The electrochemical cycling performance of Si/PTh composite
anodes is better than the bare Si anode” [33]. Upon 50 cycles, the specific capacity
of Si/30% PTh composite electrode possesses 478 mAh g−1 [34].

A novel tin anode structure for lithium-ion batteries, in which CNTs fasten tin
active material layer and the copper underlayer, has been fabricated employing
plating methods [35]. CV measurements indicate that the lithiation rate is enhanced
by the presence of CNTs and that the lithiation mechanism of the novel tin anode is
various from that of a standard tin anode in the first cycle [35].

TiN is utilized as an active material additive to decline the practical capacity
decay of LiMn2O4 at high temperature [36]. Galvanostatic discharge/charge test
indicates that LiMn2O4 electrode with TiN displays enhanced cyclic stability at
high temperature with 93.4 mAh g−1 and capacity of 105.1 mAh g−1 at the first
cycle after 150 cycles at 1 C at 55 °C [36]. TiN can be an efficient addictive for
enhancing the cycling performance of LiMn2O4 and the application prospect of TiN
is fairly appealing [36].

That investigation has examined the electrochemical performance of CuO
electrodes deal with with various binders and studied the adhesive properties of the
organic PVDF binders or aqueous binders of SBR+CMC and LA133 could be
varied over the weight ratio of conductive slurry [37]. It could be detected that
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fabricated with SBR+CMC binder, particularly when the slurry ratio had been
80:10:10, the electrode shown an outstanding electric conductivity, excellent charge
transfer, influential binding capability, satisfactory rate performance, and striking
cycling performance, and ultimately consequence in the brilliant electrochemical
performance [37]. The experimental feasibility and theoretical proof of manufac-
turing Li-ion batteries anode materials employing inexpensive aqueous SBR+CMC
binder instead of poisonous solvent like costly PVDF and NMP had been offered by
this work [37].

We have shown a cheap electrode composite for Li-ion batteries by ball milling
of waste-tire-derived oxide (SnO) and tin (II) carbon (TC) powders [38]. The
influence energy of Ball milling fosters satisfactory bonding between the SnO and
TC matrix particles; this bonding has a positive synergetic effect on the composite
[38]. That TC/SnO composite indicates potential as a low cost, ecologically benign,
and performance-improved anode material for energy storage applications [38].

A novel technique of fabricating silicon-containing LIB anodes through a
straightforward infiltration-based process had been summarized by the present
study [39]. The resulting infiltrated CNT-Si anodes were typified and compared to
CB-Si control samples containing carbon black as a conductive additive instead of
CNTs [39]. The CNT-Si samples outperformed the CB-Si anodes in life-time
cycling and matched the CB-Si anodes in rate capability [39]. The focus of the
present study had been to examine a new silicon anode fabrication method, and
follow-up work is planned to maximize the infiltration process to enhance perfor-
mance and correlate anode structure with device performance [39].

The Si/CNTs@C particles have a homogenous morphology, CNTs is distributed
throughout the surface and the interior of the composite, and the surface of the
composite is coated with the carbon layer [40]. The Si/CNTs@C composites not
just indicate better dynamic performance compared with Si/C composite, though
display satisfactory electrochemical performance [40]. The amelioration on elec-
trochemical performance offered the possibility to build as a Si/CNTs@C fruitful
high-performance anode material for lithium, which demands power, and greater
energy density-ion batteries [40].

Based on the electrolyte of 1 M LiPF6 in the dichotomous solvent of PC and
TMSM2, the graphite/Li half cells can deliver an excellent specific discharge
capacity of 359.9 mAh g−1 after 60 cycles, which is even better than that with EC
as the cosolvent [41]. It could be inferred that there is a synergetic SEI film-forming
effect between PC and TMSM2 on graphite electrode to restrain the decomposition
of TMSM2 and limit the co-intercalation of PC from the electrolyte surface and
solution structure measurement analysis [41].

W had been coated onto a Si electrode employing the PVD protocol to enhance
the electrochemical performance of the electrode [42]. The capacity retention of the
W-coated electrode shown cycleability, which is enhanced, and had been sustained
at 61.1% via 50 cycles, while the retention of the uncoated electrode had been just
25.5% [42]. The W-coated layer reduced the resistivity of the electrode and
enhanced the electric conductivity of the cell [42].
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In PC-based electrolyte solutions, the co-intercalation of PC-solvated lithium
ions at about 0.5 V had been not adequately repressed [43]. In a mixed tetraglyme
and PC electrolyte solution, which includes LiOTf compared with the one con-
taining LiFSA, the co-intercalation of PC-solvated lithium ions had been more
substantially repressed [43]. Through the OTf anion, the Lewis basicity of the OTf
anion is bigger than that of the FSA anion; PC-solvated lithium ions were stabilized
[43]. The stability of the PC-solvated lithium ions had been observed to be an
crucial factor in the formation of an efficient SEI, and this stability is shaped by the
counter anion [43].

We have evaluated c-SiRH–graphite and c-SiRH alone composites with multiple
compositions as LIB anodes, in order to exploit of SiRH in both manufacturing and
systemic facets [44]. The electrochemical performance of c-SiRH–graphite com-
posites with multiple compositions showed a comparable tradeoff phenomenon,
impairing the charge-discharge reversibility with increased the c-SiRH fraction [44].
Additionally enhancement in the reversibility is an crucial ‘must-solve’ task for
these composites to be integrated into practical cells [44].

The practical specific capacity of a graphite electrode of 350 mAh g−1 is not
appealing anymore for next-generation lithium-ion batteries [45]. Materials
demonstrated were oxide-based by all tin all those materials included usage of the
carbonaceous matrix, and showed capacities greater than 430 mAh g−1 [45]. That
indicates that environmental benignity and the low cost make tin oxides able to
substitute graphite anodes [45]. That the main issue with tremendous volume
transformations of the tin oxide electrode might be efficiently circumvent by uti-
lization of the carbonaceous matrix as a stress-accommodating stage, which is
coupled with reducing the size of tin oxide particles, had been demonstrated by the
results [45]. That even though the size of tin oxide-based electrode material could
be lowered, it still itself undergoes volume transformations must be taken into
consideration by one [45]. There are still two principal difficulties to be resolved:
(1) transferring material preparation from the laboratory scale into the industrial
scale even though the engineering requirements and expectations concerning the
capacity level were fulfilled [45]. The point at which 80% of the initial capacity is
reached is the end of battery life [45]. A considerably lower capacity fade is needed
in a battery, which is utilized virtually [45]. The crucial parameter for usage of such
materials in next-generation lithium-ion batteries is the application of high capacity
and high cycleability tin oxide-carbonaceous-based materials manufactured by a
cost-efficient, industrial-scalable process [45].

1.5 Related Work

Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanos-
tructured anode materials for rechargeable lithium-ion batteries. Energy
Environ Sci 4:2682–2699 [https://doi.org/10.1039/c0ee00699h]
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“Yuan’s group [109] synthesized CuCo2O4, the discharge capacity of which still
remained 740 mA g−1 at 0.1 C (1 C = 1000 mA g−1) after 50 cycles” [8].
Exploration of novel anode materials with greater capacity is one of the main
research directions for Li-ion batteries (Poizot and others [179]; Ji and others [109];
Wang and others [180]; Manthiram and others [181]; Cheng and others [182]), [17].
Novel anode materials with greater capacity for LIB applications (Huang and others
[249]; Manthiram and others [181]; Wang and others [180]; Ji and others [109];
Cheng and others [182]) must be examined by us [23].

Park CM, Kim JH, Kim H, Sohn HJ (2010) Li-alloy based anode materials for
Li secondary batteries. Chem Soc Rev 39:3115 [https://doi.org/10.1039/
b919877f]

Several researches have been revolved around high-capacity oxide, which is
Sn-based, materials such as SnO2, their composites and SnO, particularly with
carbon [31, 314, 315]. Tin oxides (SnO, SnO2) and Tin (Sn) are a family of
potential high-capacity anode materials [314, 386–388], which is researched widely
[38].

Wu ZS, Ren WC, Wen L, Gao LB, Zhao JP, Chen ZP, Zhou GM, Li F,
Cheng HM (2010) Graphene anchored with Co3O4 nanoparticles as anode of
lithium ion batteries with enhanced reversible capacity and cyclic perfor-
mance. ASC Nano 4:3187–3194 [https://doi.org/10.1021/nn100740x]

TMOs, Co3O4 indicates comparatively high capacity and is regarded as most
potential candidate for Li-ion batteries (Wu and others [186]), [17]. It is the fact that
the conversion reaction-based electrodes exhibit low initial columbic efficiency
because of the incomplete conversion reaction, the irreversible stage transitions and
the irreversible lithium loss, which is based on the formation of a solid electrolyte
interphase (SEI) layer [22, 186, 230]. With regard to the preceding achievements,
heterogeneous graphene-based nanocomposites, extensively examined as anode
materials for lithium-ion batteries, have showed enhanced electrochemical perfor-
mance [24, 186, 262–266].
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Chapter 2
Cathode Materials, Samples, Pristine,
Layered, Doping, Discharge Capacity

2.1 Introduction

LiCoO2 has been commonly used in Li-ion batteries (Li-ion batteries) designed for
portable electronics [57, 58] as one of the earliest-emerged cathode materials [1].
The inherent shortcomings with toxicity, low capacity of LiCoO2, and high cost,
severely deter its widespread application in lithium-ion batteries (Li-ion batteries)
[1]. It remains a considerable challenge to simultaneously avoid the formation of
undesired metal ion impurities in the commodities and synthesize materials with
homogeneous cation distribution even though a wide range of progresses have been
obtained in the fabrication process [1]. At molecular level, molten-salt routes [59]
can attain homogeneous, which mixes of raw materials, though certain quantities of
metal ion impurities are formed in the commodities, which might worsen the
electrochemical performances [60] among the traditional preparation techniques
[1]. Li+ can not be coprecipitated together with other transition metal ions even
though many scholars can fabricate material without impurities formed in the final
commodities by employing special precipitant to substitute Na2CO3 [61] or NaOH
[1]. It is highly advantageous to examine a new path; this path can simultaneously
precipitate Li+ with transition metal ions [1]. Synthesis of LNMO cathode material
is summarized by the investigation through a modified oxalate coprecipitation
technique, which is combined with high-temperature solid-state reaction [1]. The
insoluble property of lithium oxalate, nickel oxalate in ethanol solution, and
manganese oxalate, assures the coprecipitation of all metal ions [1]. Lithium ions
are coprecipitated with transition metal ions, forming a precursor with homoge-
neous cation distribution at molecular level during the process [1]. Due to the
homogeneous cation distribution inside the material, the LNMO cathode, which the
modified oxalate coprecipitation technique prepared, displays high capacity,
superior rate capability, and excellent cycle performance [1].
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High-voltage LiNi0.5Mn1.5O4 (LNMO), as a derivative of the spinel LiMn2O4,
has been regarded as one of the hottest cathode candidates, because of the theo-
retical capacity of 146.7 mAh g−1, cubic spinel structure, satisfactory electro-
chemical performance, environment-friendly properties [56, 62–65], and low cost
of raw material [2]. Carbonate coprecipitation is viewed as one of the most efficient
ways to prepare excellent electrochemical performance of materials [56] and
multiple morphologies [2]. In recent decades [55, 66–68], hollow structures with
well-defined morphology, interior, and composition, have aroused intense attention
among the multiple structured electrode materials [2]. Hollowing the electrode
materials with well-defined nano-architectures might lead to the enhanced elec-
trochemical performance [2]. The hollow structure, which is made of nanoparticles,
frequently has a lowered efficient diffusion distance for Li+ and a bigger surface
area, leading to enhanced rate capability [2]. Throughout the lithium insertion/
extraction cycling, the void space in the hollow sphere might buffer against the local
volume change, fostering the systemic stability of the electrode material and
enhancing the cycleability [2, 55, 67–70]. Given the particular advantages of hol-
low structures, LNMO hollow structures might be a quite appealing cathode
material for Li-ion batteries [2]. A cheap and straightforward technique for syn-
thesis of LNMO hollow structures is required [2]. A facile coprecipitation approach
to fabricate hollow LNMO microspheres for LIB applications is summarized by the
investigation [2]. The (Ni0.25Mn0.75)CO3 precursors directly blend with a stoi-
chiometric quantity of Li2CO3, and calcine in air to derive the final commodities;
these commodities indicate satisfactory electrochemical performances including
rate capability, specific capacity, and cycling stability [2].

LiMn2O4 has been reasonably well indicated [71, 72]. Various cation-substituted
and it has been noted that co-doping of metal ions has a synergetic effect on the
amelioration of the cycle life [3]. Our earlier results [73] revealed that dual doping of
Zn and La into the LiMn2O4 cathode material substantially enhanced the electro-
chemical performance including charge capacity and cycling stability at high current
[3]. Spinel LiMn2O4 material doped with single metal ions provides a high initial
capacity though with restricted cyclability upon prolonged charge/discharge cycling
[3]. Through an impurity LixNi1–xO stage because of oxygen deficiency, synthesis of
heavily Ni-doped spinel LiMn2O4 is normally accompanied and partial Ni ions seem
to occupy the Li (8a) sites in the spinel matrix which results in inferior stability and
lower capacity during charge/discharge cycling [3, 74]. Especially in the handful
initial cycles [75], an attempt has been made in the past to co-dope vanadium ions
(V5+) along with Cr3+; a serious capacity fading had been noticed around 4.0 V [3].
Between 0.1 and 0.5, two things which are common to both reports are (i) employing
high-content dopants (Ni and/or Cr) x to substitute Mn and (ii) charge/discharge
researches at low current rates it is of paramount importance to examine the affects of
variability in dopant quantities particularly at low content on the electrochemical
performance of the material including the cycling performance at greater rates, i.e.
0.15 C. Therefore, and the identical is the aim of this quite report [3]. Given the
indicated scientific literature, many strong synergetic effect of Cr and Ni co-doping is
supposed to manifest substantially the enhanced electrochemical performance of
spinel LiMn2O4 [3].
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Since it can provide a high operating voltage of *4.7 V (vs. Li/Li+), which
emerges from fast 3D lithium-ion diffusion channels and Ni2+/Ni4+ redox couple,
within the cubic lattice [76–78], LiNi0.5Mn1.5O4 spinel has received significant
interest among the cathode materials [4]. For example, solid-state technique, the
Mn3+ content could be enforced by synthesis conditions (such as the kinds and
quantities of raw materials, calcining temperature and time, etc.), which have
critical relevance on the crystalline structure, then on the electrochemical perfor-
mance if the synthesis technique is fixed [4]. There have been various conclusions
about the effect of lithium excess quantities on electrochemical properties and the
crystalline to the optimal of our knowledge [4]. Porous MnCO3 microsphere had
been utilized by Chen and others [79] as precursor, and the lithium excess quantity
had been selected at 0, 2, 5, and 8%, respectively [4]. That the LixNi1–xO impurity
stage is progressively increasing with lithium excess quantity increased had been
founded by Chen and others [4, 79]. Octahedral LiNi0.5Mn1.5O4 cathode materials
were synthesizeded by Deng and others [80] via a single-step nonaqueous copre-
cipitation technique, and the lithium excess quantity had been selected at 0, 1, 3,
and 5% [4]. The subsample with 5% lithium excess quantity has the smallest lattice
parameter and Mn3+ content, which is just contrary to the results of Ref. [4].
Through a facile solid-state technique, LiNi0.5Mn1.5O4 cathode material had been
synthesized, and the impacts of various lithium excess quantities (0, 2, 6, and 10%)
on electrochemical properties including the physicochemical properties were sys-
tematically examined [4].

Throughout the first charging process, the huge initial ICL and fast capacity
fading primarily emerge from the activation reaction of Li2MnO3 element [5].
Some methodologies have been taken to enhance the electrochemical performance
of LMNC materials, such as surface modification [81, 82], mild acidic treatment
[83, 84], cation doping [85–87], and structure and morphology controlling [5, 88,
89]. Some metal cations (e.g., Mg [90], Zn [91], Al [92], and Cr [93]) have been
efficiently doped into the structure of Li-rich cathode materials [5]. That the Li
(Li0.19Mn0.54Ni0.13Co0.12Ru0.01)O2 cathode indicates a high discharge capacity of
182 mAh g−1 at 5 C with a capacity fade of 0.06% per cycle in 700 cycles because
the suitable Ru-doping can foster the stage transition from layered Li(Li1/3Mn2/3)
O2 to certain spinel-like stages [94] and enhance the Li+ diffusion in LMNC had
been indicated by B. Song and others [5]. Via a sol-gel technique, X. Jin and others
efficiently synthesized Mg-doped LMNC, and the Mg-doping can expand the
inter-slap distance of lattices to enhance the Li+ insertion/extraction and enhance
rate performance (160.5 mAh g−1 at 1000 mA g−1 and remains 127.5 mAh g−1

after 50 cycles) of cathode materials [95] and the cycle stability [5]. That Zr dopant
can enhance the Li+ diffusion, which efficiently improves the cycle stability and rate
performance of LMNC [96] and sustain the crystal structure of Li-rich cathode had
been founded by X. Jin and others [5]. Through improving the systemic stability
[97], the Sn4+ dopant can distinctively enhance the electrochemical performance of
cathodes [5]. There has no report on the amelioration in the electrochemical per-
formance of Li-rich Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials by the doping of
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Sn ions [5]. Sn4+ ions were introduced into the crystal structure of LMNC materials
to partially substitute Mn4+ through a sol-gel technique [5].

The comparatively low electrical conductivity of LiNi0.5Mn1.5O4 results in
meager high-rate performance and inevitably limits its practical applications [6, 98].
A surface coating treatment and a solid-state process are usually utilized to syn-
thesize and sustain LiNi0.5Mn1.5O4 with high electrochemical performance [99,
100] as a common technique [6]. The coating modification not just prevents the
direct contact of the electrolyte with the inner elements though also enhances the
reversible capacity, rate capability of LiNi0.5Mn1.5O4, and cycle performance [6].
The disproportionation reaction of Mn3+ and the oxidation decomposition of the
electrolyte could be lowered, and subsequently, the systemic stability of
LiNi0.5Mn1.5O4 will be increasing [6]. In surface modification due to its high
electronic electrical conductivity, excellent systemic stability [101], and huge sur-
face area, Graphene has attracted much attention [6]. Designing a LiNi0.5Mn1.5O4-
graphene composite structure has been shown as an effective way to enhance
electrochemical performance by offering a highly conductive matrix [6, 102]. The
distinctive nanostructure, enhanced electrocatalytic activity of the CNF, and gra-
phitic structure, extend their potential application in the electronic, electrochemical,
and electrocatalytic, energy-storage fields [6]. We synthesized
LiNi0.5Mn1.5O4 cathode materials with nano-micro structures by a process, which
spray-drys coprecipitation and calcining, and efficiently introduced the CNF into
the LiNi0.5Mn1.5O4 spheres during the coprecipitation spray-drying period [6].
CNF not just increases the bulk electrical conductivity of LiNi0.5Mn1.5O4 powders
though also protects the surface of sub-particles [6].

It is required to break the bottleneck of high capacity density, long cycle life,
excellent rate capability for lithium-ion batteries [103–105], and satisfactory
security, with the increased development of the portable electronic tools, hybrid
electrical vehicles (HEVs) and electric vehicles (EVs) [7]. Li(NixM1–x)O2 cathode
materials were layered by Nickel-rich with high discharge specific capacity, com-
paratively low cost and considerable rate capability are becoming one of the most
fruitful cathode materials for lithium-ion battery [7]. LiNi0.8Co0.15Al0.05O2 with a
high tap density, cycling stability and an excellent rate capability is regarded to be
the next generation cathode materials for green lithium-ion battery [106] as the
isomorphous solid solution of LiAlO2, and LiNiO2, LiCoO2 [7]. Cathode materials
have been devised in the direction of high tap density with the increased require-
ments of high volume capacity density had been layered by Nickel-rich [7]. An
suitable quantity of Ti, which dopes in Nickel-rich, layered materials can improve
thermostability and systemic integrity because the Ti4+ ions deter impurity
Ni2+ migration into the lithium sites [107–109] among the doping elements [7]. The
LiNi0.8Co0.15Ti0.05O2 cathode materials with a high tap density and a satisfactory
spherical morphology have been prepared efficiently by employing the spherical
Ni0.8Co0.15(OH)1.9 as precursor; this precursor had been synthesized through a
co-oxidation-controlled crystallization technique [7].

Two crucial improvements could be made to increase the electrochemical per-
formance of Li2FeSiO4, such as coating it with carbon materials [110, 111] and
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declining the Li2FeSiO4 particle size to circumvent these hurdles [8]. Through
tedious calcinations, employing a solid-state reaction technique, micro-sized
Li2FeSiO4 particles were prepared at high temperature although the huge particle
size had a negative effect on electrochemical performance [8, 112]. Based on iron,
soluble lithium, and silicon sources and hydrothermal-assisted or
microwave-solvothermal sol-gel techniques, Li2FeSiO4/C commodities can attain
satisfactory rate performance [8, 113, 114]. Both the carbon-coating method and
carbon source wide range can affect the electrochemical performance of Li2FeSiO4/
C [8]. One efficient strategy to enhance the electrochemical performance of
Li2FeSiO4/C is cation doping [8]. Hitherto, zinc-, copper-, nickel-, chromium-,
vanadium-, magnesium-doped Li2FeSiO4/C cathodes, and cobalt-, have been pre-
pared by the sol-gel technique [8, 115–120]. Our group indicated that the capacity
retention had been substantially enhanced by 10 proportion points after magnesium
doping, and doping with magnesium cation had been beneficial for enhancing the
cycle performance of Li2FeSiO4/C [8]. It might be supposed that strontium cation
doping can improve the electrochemical performance of Li2FeSiO4/C compared
with magnesium cation doping [8]. Through the sol-gel technique, we efficiently
synthesized strontium-doped Li2FeSiO4/C for the first time [8]. It had been proven
that rate performance and the special discharge capacity were enhanced after
strontium cation doping because of the Li+ diffusion capability, which is enhanced
substantially, via examining electrochemical impedance spectra of the undoped and
strontium-doped Li2FeSiO4/C cathodes for the cells [8].

LiCoO2 had been the cathode material since lithium-ion batteries (Li-ion bat-
teries) had been marketed by Sony in 1991 [121], which is utilized most extensively
[9]. Ni2+ is the just electrochemically active element to lead the high capacity whilst
Mn4+ plays as the stable octahedral ion to assure the stability of the layered structure
during the intercalation/de-intercalation of Li ions in this material [9]. That material
suffers from inherent low electronic electrical conductivity and meager lithium-ion
diffusivity that drastically lessen this material’s discharge capacity at high current
density even though the LiNi0.5Mn0.5O2 cathode material has many advantages [9].
Kiziltas-Yavuz and others [122] synthesized LiNi0.4Ru0.05Mn1.5O4 material
employing the citric acid-assisted sol-gel technique which delivered the enhanced
electrochemical performances [9]. The Ru-doped LiNi0.5Mn1.5O4 cathodes, which
summarized high-rate capability, which is enhanced pronouncedly, because of the
enhanced ionic and electronic electrical conductivity were indicated by Wang and
others [9, 123]. Through doping the Ru element, Wang and others [124] indicated
the amelioration of the electrochemical properties of LiFePO4 cathode materials [9].
We prepared LiNi0.5Mn0.45Ru0.05O2 employing a moist chemical technique, and the
structure and electrochemical property of the as-synthesized material were examined
for the first time [9].

The cathode material is a crucial material in lithium-ion batteries, and research
and development into high-potential cathode materials is one of the principal ways
to enhance the energy density of lithium-ion batteries [10]. At roughly 4.7 V,
Spinel LiNi0.5Mn1.5O4 has the advantage of discharge voltage plateaus: low cost,
heat stability, and excellent systemic stability, and is regarded one of the most
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fruitful cathode materials for lithium-ion batteries [10]. The cycling stability of
LiNi0.5Mn1.5O4 is meager, and cycling of this material results in the Jahn-Teller
effect and Mn break-up [10, 125–128]. Modification of the material by coating and
doping has been utilized to restrain the Jahn-Teller effect and to lessen Mn dete-
rioration in order to enhance the electrochemical properties of the material [10].
Through employing a small quantity of and doping, surface coating and, doping can
enhance the rate capability and cycling performance of the material [129–131], the
volume change in the material during the insertion/extraction process of Li ions
could be efficiently repressed [10].

Since an mean 4.0 V (*0.6 V greater than LiFePO4) extraction/reinsertion
voltage could be obtained between 3.0 and 4.8 V and the greater theoretical capacity
of 197 mAh g−1 for full removal of three lithium ions, NASICON conceptual
framework monoclinic Li3V2(PO4)3 (LVP) had been regarded as a prospective
candidate for employing as the cathode in lithium-ion battery [11]. LVP undergoes
serious capacity, which fades whilst charging up to 4.8 V for the extraction of more
than two lithium ions [11, 132]. One efficient strategy is aliovalent or isovalent
doping at the transition metal sites, for example, in Li3V2(PO4)3, V

3+ has been partly
replaced with W5+ [133], Ti4+ [134], Zr4+ [135], Fe3+ [136], Al3+ [137–140],
Cr3+ [141], Sc3+ [142], Y3+ [143], Mn2+ [144], Mg2+ [145, 146], and Co2+ [147]
to enhance the electrochemical performance by stabilizing the structure during high
voltage charging [11, 137]. That Li3V2–xWx(PO4)3/C (x = 0.10) showed better cycle
stability than the pure one and greater discharge capacity had been indicated by Xia
and others [11]. The initial discharge capacity had been 160.3 mAh g−1 and 95.5%
capacity retention had been detected after 50 cycles at 0.5 C rate [133] for the
optimum composition of Li3V1.93W0.07(PO4)3/C [11]. It is required to research metal
or LVP/C ions doping LVP/C as cathode material for Li-ion batteries [11]. LVP
displays greater capacity and better cycle stability than that of undoped LVP had
been carbon-coateded by the Y-doped and [11].

The high specific energy and power readily available from lithium-ion batteries
and the possibility to charge and discharge them hundreds of times are the reason
for their crucial relevance in electronic portable tools and future development of
hybrid vehicles [12, 148]. Once a battery is operative, the redox reactions affect the
electrode materials molecular/crystalline structure, influencing their stability, and
consequently necessitate frequent replacement after numerous cycles [12]. In the
electrodes that eventually give rise to performance degradation [149], the high rate
exchange of lithium ions requiring produces and more power faster charging strains
and significant emphasizes [12]. The issues rise from the effort to increase the cycle
life and stability of the cathode materials in standard commercial LIB’s [12, 150].
That work on AuPt alloy transition metal alloy-surface modified spinel
LiMn2O4 cathode materials can offer a network for electron diffusion because of a
shortened transportation path, i.e., highly crystalline nanostructures [151], enhanced
stage transition kinetics of Li-ion intercalation/deintercalation and high rate dis-
charge capacities [152], which connects better [12].
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Traditional cathode materials including LiFePO4, LiCoO2 suffer from high cost,
inferior cycle stability [153, 154], and huge capacity deterioration [13]. Traditional
cathode materials including LiFePO4, LiCoO2’s derivatives and Layered LiNiO2 are
fruitful cathode materials for lithium-ion batteries due to low cost [155] and
Traditional cathode materials including LiFePO4, LiCoO2’s high theoretical capacity
[13]. LiNiO2 is difficult to synthesize, and its structure is unstable during cycling due
to the cationmixing, which results from the comparable ion radius of Li+ (0.76Å) and
Ni2+ (0.69 Å) ions [13]. Ni relates to increase the specific capacity, though the
increase content of Ni results in irreversible initial capacities and more cation mixing
[13, 156, 157]. Ni-rich layered oxides LiNi1–y–zMnyCozO2 has been extensively
researched because of low cost and co’s high discharge capacity in recent decades
[158], including LiNi0.8Co0.15Al0.05O2 [159] and LiNi0.5Co0.2Mn0.3O2 [13, 160].
To circumvent the shortcomings of Ni-rich oxides LiNi1–y–zMnyCozO2 materials by
doping with cations [161, 162] and coating with an suitable material [163, 164] are
primary techniques till date, doping cations such as Cr3+ [165], Al3+ [166], Mg2+

[167], and so on [13]. We designed a novel composite material with the nominal
compositions of 0 in order to build alternatives of traditional cathode materials and
LiNiO2 [13]. The novel composite materials were among the medium-high nickel
class with low content of cobalt (0.1 � � � 0.19); this class had a comprehensive
advantage in the facets of cost control, capacity, and sintering technology compared
with Ni-poor or Ni-rich materials [13]. Four various compositions of cathode mate-
rials Li(Ni0.56Co0.19Mn0.24Al0.01)1–yAlyO2 (y = 0, 0.02, 0.04, 0.06) were undertaken
the researches on electrochemical behaviour [13]. The results were compared with
that of the traditional LiNi0.8Co0.15Al0.05O2 and LiNixCoyMn1–x–yO2 materials [13].

Due to its low cost, relative abundance, eco-friendliness, stability [168–170], and
high columbic efficiency, LiMn2O4 with a 3-D tunnel structure for the migration of
lithium ions appears to be one of the most fruitful cathode materials for Li-ion
batteries among the multiple cathode materials [14]. LiMn2O4 has satisfactory
cycle performance and high capacity, while lithium ions’ rate performance needs to
be enhanced compared with the other cathode materials [14]. Another of the tactics
to enhance the lithium-ion intercalation capacity and rate capability of electrodes is
to prepare and use materials with nano-size [14, 171–173]. The preparation of nano
materials normally entails some various mechanisms, such as sol-gel technique
[174], hydrothermal techniques [175–177], and coprecipitation [178], though these
techniques are normally expensive, complex, and time-consuming [14]. We have
synthesized nano-sized LiMn2O4 materials employing a comparatively straight-
forward single-step solid-state reaction technique [14]. Is utilized as a functional
material to lose volatile gases during the process of calcining in order to change the
particle size of materials [179–181] and control the morphology had been acided by
Oxalic [14]. The suitable crystallinity needs to be reasonably well controlled for
obtaining the surface area of the particles including satisfactory electrochemical
performance at high C-rates [14]. Through adjusting the content of oxalic acid, the
crystallite structure, capacity, powder properties, and power capability of obtained
LiMn2O4 with various morphologies and particle sizes have been assessed and
compared [14].
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High capacity cathode materials with long-lasting cycle life is one of the hottest
topics in lithium-ion battery research in recent decades [15]. The marketed cathode
materials for lithium-ion batteries including LiCoO2, LiMn2O4, LiNi1/3Co1/3Mn1/
3O2 and LiFePO4 indicate discharge capacities of below 200 mAh g−1 with the
operating voltage variety of 2.8–4.4 V [15, 182]. More and more scholars have
concentrated on the series of Li-rich layered composite xLi2MnO3�(1−x)
LiMO2 (M = Ni, Co, Mn, Ni1/2Mn1/2, Ni1/3Co1/3Mn1/3…) as cathode materials for
their high reversible capacities (200–300 mAh g−1) [15, 138, 183–188].
Li2MnO3 is the crucial element because it can offer further high capacity when
electrochemically activated above 4.4 V [189–192] and sustain the crystal structure
for the composite in this material [15]. The diffusion of lithium ions from octahedral
sites in the Li2MnO3 element to tetrahedral sites in the lithium-depleted layer,
considerably stabilizing the composite structure during the cycling process [15,
193]. Complete extraction of Li2O from the inactive Li2MnO3 element yields
electrochemically active layered MnO2 stage, improving the discharge capacity of
the material [15, 194, 195]. In the preparation of the Li-rich layered composites, by
which the starting materials could be mixed on molecular level, coprecipitation
technique is commonly used [15]. Throughout the washing process, employing
coprecipitation technique, many of the transition metal ions in the raw materials
will be lost [15]. Materials have been synthesized by hydrothermal technique [196–
198] had been layered by Li-rich [15]. There are handful reports about Li-rich
layered material preparation by a combined technique of hydrothermal process and
template [15]. We first report the use of carbon nanotubes (CNTs) as template actor
during hydrothermal process to synthesize nanosized Li-rich layered material
0 [15].

Lithium-ion batteries with LiNi0.5Mn1.5O4 as the cathode material are regarded
to be the most fruitful rechargeable energy storage systems due to the advantageous
properties of LiNi0.5Mn1.5O4, including its low production cost, long cycle life,
environmental compatibility, in particular, and satisfactory thermal stability, high
energy density of 630 Wh kg−1 [199–201] and its high discharge voltage of 4.7 V
[16]. The electrochemical performance of cathode materials is dependent upon both
academia and industry’s composition not just though also on both academia and
industry’s morphology and particle size [16, 202, 203]. Some scholars have sought
synthesizing LiNi0.5Mn1.5O4 with nanoparticles because small size and its huge
specific surface area favour fast electrode kinetics, shortening pathways for Li+ and,
nanoparticles aggregate readily electronic transportation, which can improve the
rate capability of the cathode material [56, 204, 205]; and have a small tap density,
which are disadvantageous to the other electrochemical properties of the material
[16]. Spherical secondary microparticles, formed via aggregation of nanosized
primary particles, are complementary to the insufficiency of the nanoparticles and
enhance the electrochemical performance of the cathode materials [16]. Some
spherical secondary LiNi0.5Mn1.5O4 particles have been synthesized [16, 206–210].
The principal techniques of preparing these spherical secondary particles are the
spray, which drys granulation [206, 207], and template techniques [16, 208–210].
Materials that are synthesized by this reaction display inferior electrochemical and
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physical properties due to huge particle sizes [211], and their block-like, irregular
morphology [16]. Micrometer-sized, spherical secondary LiNi0.5Mn1.5O4 particles,
comprised of nano-and/or sub-micrometer-sized particles, were efficiently prepared
employing this technique [16]. We synthesized two LiNi0.5Mn1.5O4 samples
employing the enhanced and conventional (LNMO-A) solid-state techniques
(LNMO-B) to examine the electrochemical properties [16].

Lithium-ion batteries (Li-ion batteries) have been extensively employed as the
storage of renewables and power vehicles, in view of their several virtues associate
with high-energy-density, environmental benignity, and long cycle life [17]. That
fosters the development of high-power cathode and high-energy materials
(Goodenough and Kim [138]; Tarascon and Armand [212]), [17]. Such lithium-rich
high-capacity materials suffer from meager cycle stability and inferior rate property;
this stability hinder their successful commercialization in high-energy-density
lithium-ion batteries (Boulineau and others [213]; Thackeray and others [194]; Xu
and others [214]), [17]. Under consequence in inferior cycling performance (Guo
and others [215]) and high operating potentials, these nanoscaled materials with
high surface activity might arouse undesired electrode-electrolyte reactions [17]. It
is reasonably well recognized that the morphology of the cathode materials has a
significant effect on the electrochemical performance [17]. Nano-sized hierarchical
hollow structures and Micro have been indicated as optimal architectures for
cathode materials to attain long cycling stability and high rate capability because
they present the advantages of both nano-sized building blocks and microsized
assemblies (Li and others [216, 217]; Wu and others [218]; Lin and others [219];
He and others [220]), [17]. Throughout electrochemical process, which ows to the
short diffusion pathways of electrons and an suitable contact area between electrode
and electrolyte, lithium ions, and stable structure, these hollow structure electrode
materials might exhibit excellent electrochemical performances [17]. An efficient
technique to prepare hollow sphere materials in microsize (Abdelaal and Harbrecht
[221]) is employing cetyltrimethylammonium bromide (CTAB) and Sucrose as a
combined template [17]. We employ sucrose and CTAB as a soft template, which is
combined with hydrothermal assisted homogenous precipitation technique to fab-
ricate hollow sphere cathode material, to improve the electrochemical performance
of the Li1.2Mn0.54Ni0.13Co0.13O2 material [17]. That technique indicates a route to
synthesize the hollow microspheres assembled by nano-sized primary particles and
provides a strategic strategy to enhance electrochemical performances for
lithium-ion batteries [17].

The layered structure series material LiNi1–x–yCoxMnyO2 (NCM) has received
increased attention [18, 222]. LiNi1/3Co1/3Mn1/3O2 compound, which Makimura
[223] and Ohzuku devised, has been regarded as a fruitful candidate of
next-generation cathode materials to substitute LiCoO2 for rechargeable Li-ion
batteries [18]. Since the combination of nickel, cobalt, and manganese, can offer
advantages including greater theoretical capacity, milder thermal stability, and
lower material cost, this material has aroused significant interest [18]. LiNi1/3Co1/
3Mn1/3

– O2 suffers from two shortcomings of the toxicity and high cost of cobalt; in
addition, thermal stability, the actual capacity, and rate capacity of LiNi1/3Co1/
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3Mn1/3O2 needs to be enhanced [18, 224]. The development of alternative cheap
cathode materials with satisfactory thermal stability and high-specific capacity
becomes the unavoidable trend [18, 225]. That Co3+ is just oxidized to Co4+ at
rather high voltage in this material [226] had been revealed by principles compu-
tation [18], Some scholars have attempted to cost decrease and enhanced the
capacity and thermal stability by employing other element to substitute of Co [18].
It has been shown that Al or Ti substitute of Coon LiNi1/3Co1/3Mn1/3O2 compound
enhanced the thermal stability [18, 227]. Fe3+ has variable valence; this valence
means ferrum additive on Li[Ni1/3Co1/3Mn1/3]O2 will have greater discharge
capacity in theory [18]. Preliminary discharge specific capacity of Li[Ni1/3Co0.67/
3Mn1/3Fe0.33/3]O2 had been 122.24 mAh/g with a charge and discharge rate of 36
mAh/g in 3.0–4.5 V, which had been similar to the specific capacity of the
state-of-art LiCoO2 cathode material of LIB [18, 228]. Li[Ni1/3Co1/6Mn1/3Fe1/6]
O2 compound has been revealed that Fe substitution gives rise to a lower potential
at the end of charge synthesized [18].

The spinel-type LiNi0.5Mn1.5O4 with a high operating-voltage (� 5 V) retains
the readily available 3-D channels for the fast diffusion of Li+ ions, providing a
high energy density of 640 Wh kg−1 and a theoretical specific capacity of 147 mAh
g−1 [229–232] with the previously marketed positive electrode materials including
LiCoO2, LiFePO4, etc. [19]. That material LiNi0.5Mn1.5O4 still suffers from
numerous difficulties that should be circumvented, including comparatively low
first-cycle columbic efficiency (75–85%) because of the electrolyte decomposition
at high operating voltage, dissatisfied rate performance [230, 233] and meager
cycling performance at high temperatures (50–60 °C) [19]. Some tactics including
surface coating, lattice doping, and high-voltage-tolerant electrolytes, are devised to
additional enhance its electrochemical properties to fulfil the commercial demands
[19]. Some articles have indicated various coating materials for LiNi0.5Mn1.5O4,
including Li4Ti5O12 [234], Li3PO4 [235], Al2O3 [236], carbon [237–239], ZnO
[240], and so on, which can safeguard the particle surface against the electrolyte
erosion at a high temperature or at a high voltage [19]. Zhong and others have
prepared lattice-doped LiNi0.5Mn1.5O4 materials employing trivalent Fe, Cr, Co,
and Al to substitute Mn or Ni in LiNi0.5Mn1.5O4 [19, 241, 242]. They have barely
accomplished considerably amelioration on their electrochemical properties com-
pared with the trivalent metal-doped LiNi0.5Mn1.5O4 and the pristine [19]. It is
reasonable to say that the lattice, which dops with high valence (>+2) metal ions,
has been quite mature, though the effect of divalent doping for the
LiNi0.5Mn1.5O4 is not good [19]. Especially at a high temperature (55 °C), the
LiNi0.45Cu0.05Mn1.5O4 subsample indicates satisfactory cycling stability [19].

Hereinto, the tavorite-like LiMPO4F (M = V, Mn, Fe, Co, Ni.) cathode materials
are composed of 1D chains of metal octahedral interlinked by phosphate tetrahe-
dral; this tetrahedral enable electron transport [20, 243]. It has been examined as
cathode materials for Li-ion batteries since LiFePO4F indicated by Barker and
others without electrochemical performance [20, 244]. LiFePO4F has been syn-
thesized efficiently through multiple techniques, including solid-state [245–248],
sol-gel [249], ionothermal [250] technique, solvothermal [251, 252], and others
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Recham and others highlight the efficacy of ionothermal synthesis in the prepara-
tion of irregular morphology LiFePO4F with the particle size of 2–5 lm, and the
as-prepared LiFePO4F displays *130 mAh g−1 at C/15 after ten cycles [20, 250].
A cheap and environmental friendly solvothermal process to prepare
matchstick-like LiFePO4F with lengths up to 1 lm, which exhibits a discharge
capacity of *123 mAh g−1 at C/50 [251] is indicated by Ellis and others [20].
Through Choudhury and others utilizing a low melting flux route, Plate-like
LiFePO4F with numerous hundred nanometers is prepared, and the synthesized
subsample retains the discharge capacity of 146 mAh g−1 (97% of theoretical
capacity) at C/50 [20, 253]. There are seldom indicated about almost monodisperse
LiFePO4F nanospheres [20]. It is highly advantageous to build an approach to
synthesize homogeneous LiFePO4F nanospheres [20]. We build an approach to
synthesize almost monodisperse LiFePO4F nanospheres through solid-state route,
which is correlated with precipitation technique [20]. The FePO4 had been subse-
quently mixed with LiF, and had been sintered to derive almost monodisperse
LiFePO4F nanospheres [20]. The structure and electrochemical performance of
almost monodisperse LiFePO4F nanospheres are examined [20].

Oxides xLi2MnO3�(1−x)LiMO2 (M frequently relates to Ni, Co, Cr, and Mn) are
regarded to be alternative cathode materials because of greater capacity (>250 mAh
g−1), winder voltage variety (2.0–4.8 V), better security [254–259], and lower cost,
were layered by the lithium-rich [21]. Some efforts have been indicated to enhance
the electrochemical performance by many techniques including surface modifica-
tion, doping [260–262], and nanoparticle, in order to satisfy requirement com-
mercialization [21]. Cations doping has been demonstrated as an efficient technique
to enhance the systemic stability of cycle stability [263] and cathode materials [21].
Partial substitutions of the transition metal in xLi2MnO3�(1−x)LiMO2 with Cr
[264], Zr [96], V [265], Mg [266], Al [267], or Na [268], have been indicated for
improving the longer-term cycle performance by enhancing the systemic stability
[21]. As one of the most efficient doping elements, Cr has been intensively utilized
by scholars to improve the electrochemical performance of lithium-rich layered
oxides over the past numerous years [21, 264, 269–272]. Some of the advantages of
Cr doping can be outlined as (i) Cr doping can improve the activation of
Li2MnO3 below room temperature [271] and (ii) the following: (i) Cr3+/Cr6+ redox
is electrochemically active in contributing capacity in Li-rich layered cathodes [21,
269]. The samples Li1.2Ni0.16Mn0.56Cr0.08O2 and Li1.2Ni0.2Mn0.6O2 were selected
as a representative material of the Mn-based layered oxides to highlight the
Cr-doping processes by the application of electron and lithium-ion diffusion X-ray
and coefficient diffraction (XRD) and XPS (before and after cycling) [21].

Previous studies were concentrated on understanding and tailoring either the
chemical composition or physical structure of the material (Ding and others [273];
Pampal and others [274]) for additional improving the comprehensive performances
of Li(Ni0.5Co0.2Mn0.3)O2 [22]. The physical structures, including particle size,
particle morphology and its distribution, stage purity, and crystallinity in addition to
Li+/Ni2+ cation mixing (Ding and others [273]; Kuriyama and others [275]; Yuan
and others [276]), which substantially impacted the electrochemical properties of
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the cathodes, were optimized, as reasonably well [22]. The crystallite size is as
crucial as crystalline stage, the elemental composition, and morphology because of
its feature systemic elements in between the isolated atoms and the bulk macro-
scopic material (Waje and others [277]) in a nanometer-sized crystalline material
[22]. Several relationship between crystallite sizes for multiple materials and the
properties have been examined (Pukazhselvan [278]; Mguni and others [279]; Iqbal
and others [280]; Upadhyay and others [281]; Zhao and others [282]; Tlili and
others [283]), [22]. It could be observed that the natures of the material could be
substantially dependent upon crystallite size (Burton and others [284]; Uvarov and
Popov [285, 286]; Yashpal and others [287]; Sikora and others [288]), [22]. XRD is
a method for crystallite size determination of nanocrystalline materials, which is
utilized potent and frequently, in the present time [22]. The impacts of the calcining
temperatures on the morphology, electrochemical performances of Li
(Ni0.5Co0.2Mn0.3)O2, and structure, have been deeply examined (Kong and others
[289, 290]) [22]. Calcination temperature had been observed to specify the
microstructure (particularly the crystallite size) of the material in the process of
preparing Li(Ni0.5Co0.2Mn0.3)O2 by a high-temperature solid-state technique [22].
In the thermal and electrochemical stability performances of the material, the
crystallite size plays a distinctive role [22]. No or handful researches have been
carried out systematically on insights into the correlation between crystallite size
and the performance of the Li(Ni0.5Co0.2Mn0.3)O2 active material up to now [22].

LiCoO2, LiNiO2, LiFePO4, LiMn2O4 and LiNixCoyMn1–x–yO2 are the most
frequent cathode materials utilized in Li-ion batteries [23, 291–293]. Spinel
LiMn2O4 has been intensively studied as cathode material for nontoxicity [294,
295] and its low cost among the several transition metal oxides [23]. The devel-
opment of hybrid electric vehicles (HEVs) and plugin hybrid electric vehicles
(PHEVs) demands for lithium-ion batteries with high power and safety stability,
though the conventional LiMn2O4 material can not satisfy the technical require-
ments [23]. Some studies have concentrated on the substitution of Mn with other
transition metal elements to form novel spinel cathode material [296, 297] to
enhance the cycle performance of LiMn2O4 [23]. LiNi0.5Mn1.5O4 cathode material
has been observed as one of the most prospective lithium-ion battery materials
because of high discharge platform [298, 299] and its high theoretical capacity (147
mAh g−1) among multiple doped materials [23]. Carbonate and oxalate are utilized
as precipitants for preparing LiNi0.5Mn1.5O4 cathode material by coprecipitation
technique [23]. Through hydroxide coprecipitation technique [300, 301], compared
with oxalate precipitation technique or carbonate, some spherical cathode materials
(LiCoO2, LiNiO2, LiCo1/3Ni1/3Mn1/3O2) with high tap density, better thermal sta-
bility and homogeneous particle size can be synthesized [23]. The high content of
OH− and Mn2+ is easy to form fine hydroxide precipitant nucleation [302], and the
pure LiNi0.5Mn1.5O4 cathode material with regular spherical morphology is hard to
be prepared by hydroxide coprecipitation technique [23]. Spherical
LiNi0.5Mn1.5O4 cathode material had been efficiently synthesized through copre-
cipitation technique with the help of sodium hydroxide as ammonia as complexing
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actor and precipitant [23]. Excellent electrochemical properties were shown by the
prepared pure LiNi0.5Mn1.5O4 cathode material with spherical morphology [23].

LiFePO4 has low electrical conductivity (� 10−11 S cm−1) and low lithium ion
diffusion dynamics (� 1.8 � 10−14 cm2 s−1) at room temperature (RT) [24, 303].
Two properties-small-sized cathode and homogeneous conductive coating-are
thought to substantially improve the ionic and electric kinetics of LiFePO4 under
low temperature and foster −20 °C’s low-temperature performance among multiple
techniques to solve this issue [24]. The nano-scale size of LiFePO4 and homoge-
neous carbon coating of 6.7 wt% by oleylamine medium and post-heat treatment for
4 h; this composite material, which is delivered excellent low-temperature perfor-
mance, had been accomplished by Fan [24, 304]. Wu [305] devised a polyol route
to fabricate two layers of carbon-coated nano-LiFePO4 cathodes with mean primary
particle size of ca 90 nm, which a later calcining process for 8 h to attain satis-
factory low-temperature performances followed [24]. Uniform carbon coating and
these nanosized commodities are responsible for the excellent low-temperature
performance [24]. The production expenses of these mechanisms are fairly high
because not just are the raw materials including Fe (Cl)2 costly and Fe (Ac)2,
though also these soluble raw materials might give rise to low crystallinity of the
commodities after liquid-phase decrease [24]. Such fine-sized particles below
100 nm might decline the tap density and give rise to inferior processing perfor-
mance, which is utilized when commercially as cathodes for lithium batteries [24].
We have observed that LiFePO4/C prepared by a polyol route retains a high
capacity retention after 300 cycles [306] and an excellent room temperature per-
formance with a high rate capability [24]. The low-temperature performance (0,
−10, and −20 °C) of as-prepared LiFePO4/C will be examined [24].

Since organic electronic tools are based upon thin films, flexibility, light weight,
large-area application [307–310] including semitransparency, such materials
showed their low processing and cost advantages [25]. CNTs have been intensively
studied for their distinctive properties including 1D tubular structure, high thermal
and electrical conductivities, exceedingly huge surface area and mechanical, optical
properties since discovery in 1991 [25, 311]. The development of novel electrodes
having a huge surface area, high electric/thermal conductions and a short diffusion is
required to circumvent the drawbacks of traditional materials [25]. Shao et al. [312]
has indicated the synthesis of SnO2-based composite coaxial nanocables with
multi-walled CNTs and polypyrrole (PPy), SnO2@CNTs@SnO2@PPy; these
nanocables display a reversible capacity as high as 600 mAh g−1 and a columbic
efficiency close to 100%, which is potential for practical application in lithium-ion
batteries [25]. Zhao et al. [313] indicated the synthesis of a new CNTs@SnO2@PPy
coaxial nanocable as superior anode material with SnO2 particle size of 2–3 nm,
furthermore this composite showed a high capacity of 823 mAh g−1 after 100 cycles
[25]. The combination of P3HT and CNTs might be interest materials for potential
cathode materials in Li-ion batteries [25]. The approach to increase the dispersion of
P3HT-g-CNTs in solution to form the nannocomposite, which additional utilized to
combine with doped spinel LiNi0.5Mn1.5O4 (LNMO) for fabrication of cathode
materials as LNMO/P3HT-g-CNTs nano-composites in Li-ion batteries had been
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summarized by us [25]. Through electrochemical impedance spectroscopy (EIS) and
cyclic voltammetry (CV), the efficiency of the electrode materials employing
LNMO/P3HT-g-CNTs nano-composites had been assessed [25].

Lithium-sulphur accumulators are one of the fruitful potential ways of com-
mercial accumulators’ development [26]. Practical use of lithium-sulphur accu-
mulators is quite tempting due to the quite high theoretical capacity of sulfur-1675
mAh/g; this mAh/g, in combination with the potential around 2.1 V against lithium,
means that its gravimetric energy density reaches about 3000 Wh/kg [26, 314, 315].
The theoretical capacity of sulfur is considerably greater than the capacity of cur-
rently readily available cathode materials as LiMn2O4 (148 mAh/g) [316], LiNi1/
3Mn1/3Co1/3O2 (280 mAh/g) [151, 316, 317] or LiFePO4 (170 mAh/g) [26, 318].
The fact that there is no intercalation process of lithium ions during conversion of
materials though cycling happens during cycling is one of the largest difficulties of
this accumulator kind [26]. A compound of sulfur and lithium-Li2S (lithium sulfide)
is the consequence of this conversion [26]. The resulting polysulphides, Li2S8 to
Li2S4, are soluble in the electrolyte and they deposit on the anode surface of metal
lithium during cycling which gives rise to a quite steep drop of the capacity during
cycling [26, 319]. Its low electrical conductivity (5 � 10−30 S/cm), which results
from the fact that sulfur is an insulator [320, 321], is an further drawback of the
material [26]. Another possibility is to encapsulate sulfur with carbon; this carbon
prevents the release of polysulphides into the electrolyte and increases electrical
conductivity of the sulfur particles [26, 322, 323]. Such polymers are conductive
and deter the break-up of polysulphides into the electrolyte and these materials have
their own capacity [26, 324]. The creation of a special 3D cathode structure into
which sulfur is enclosed, which prevents thereby the deposition of polysulphides at
the anode side [325–327], is another possibility [26].

The olivine LiFePO4 (LFP) has aroused more substantial attentions because of its
stable performance, high capacity retention, excellent thermal stability,
environment-friendly, and cheap since the first introduction to science community in
1997 [27]. Some synthesis procedures (e.g., ball-mill combination with
solvothermal/hydrothermal) were indicated to give the practical capacity closely to
theoretical value as 170 mAh/g [328] among various methodologies for improving
the electrochemical performance of LPF material; these methodologies were pre-
viously indicated [27]. A detailed review of advancements of issues of LiFePO4 and
lithium-ion batteries as one fruitful cathode material had been carried out by Li and
others [27, 329]. That significant progress was made in enhancing the electro-
chemical performance of LiFePO4 cathode material by coating, doping supervalent
cation, and minimization of particle size, had been concluded by previous reports
[27]. The exact mechanism for increasing electronic electrical conductivity to
comprehend the kinetic behaviour of LiFePO4 synthesis is required [27, 330, 331].
Based on carbon coating appears to be efficient strategy to improve electrochemical
performance of LiFePO4, particularly at high charge-discharge rate [27]. The results
were because of the wrapping of highly conductive thin rGO sheets; these sheets
increasing the electronic electrical conductivity of the LiFePO4 [27]. Several
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researches which examined the electrochemical performance of LiFePO4 composite
by use of graphene are observed in [27, 332–335]. The transport properties should be
greater, which depends additional on the mixing/coating of substances on molecular
level [332] in order to derive the satisfactory electrochemical performance of cath-
ode materials [27]. The principal issue is to synthesize the homogenous mixture of
LiFePO4 and C, and consequently, in situ techniques are required which motivated
authors to examine its electrochemical performance and build a novel cathode
material (nanocomposite) of LiFePO4/C [27].

Lithium-ion batteries (Li-ion batteries) continue to power consumer electronics
and are increasingly utilized in defense, aerospace, and automotive, applications due
to their high energy density (Larcher and Tarascon [336]; Thackeray and others
[337]) as a state-of-art energy storage system [28]. It is hard for sodium-ion batteries
(SIBs) to compete with Li-ion batteries in compact applications because of lowered
energy density, SIBs are considered as the most fruitful complements to Li-ion
batteries for large-scale electrical storage applications (Palomares and others [338]),
[28]. Mn-based cathodes for Li-ion batteries and a critical criterion for the devel-
opment of future Fe-is to attain similar or even greater energy densities [28].
Through discharge potential and its Li storage capacity, the energy density of
cathode material is dictated collectively [28]. Taking advantage of plentiful Na
sources, SIBs hold the promise to support large-scale energy storage applications,
which is critical in harnessing intermittent renewable energies including wind and
solar power [28]. The research advancements on Fe- and Mn-based cathode mate-
rials for Li-ion batteries and SIBs, respectively, which are grouped into polyanion
compounds, oxides, and hexacyanometalates (for SIBs) are presented by this review
[28]. We additional put forth many insight into the opportunity of Fe- and Mn-based
cathode materials and explore the impendent issues and prospects in this field with a
grasp of the inherent properties and up-to-date accomplishments of these candidates,
particularly highly stable SIB cathodes and high-energy LIB cathode candidates
[28]. That this review can inform Mn-based cathode materials and readers of the
rationality and priority of Fe-as candidates for future Li-ion batteries and SIBs, and
call for additional efforts to satisfy this aim is hoped by us [28].

LiNi0.5Mn1.5O4 has been acknowledged as one of the most tremendous
high-voltage cathode materials for Li-ion batteries [29, 339, 340]. The electrolyte
becomes instable and easy to be broken down at high voltage (4.7 V), leading to the
formation of a deleterious solid electrolyte interface (SEI) film that inhibits the
Li+ ion migration and induces the capacity fading [341, 342] the practical appli-
cation of the LiNi0.5Mn1.5O4 material is restricted because LiNi0.5Mn1.5O4 suffers
from serious drawbacks: (1) and (2) the break-up of Mn ion degrades the quality of
LiNi0.5Mn1.5O4 cathode during cycling, resulting in the irreversible capacity
deterioration [343, 344, 29]. A series of tactics have been undertaken to circumvent
these shortcomings, such as surface modification and cation substitution in order to
improve electrochemical properties of the LiNi0.5Mn1.5O4 material [29]. Surface
coating materials can deter the immediate contact between electrolyte and the spinel
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LiNi0.5Mn1.5O4 material so as to safeguard the active material from HF corrosion
[29]. Some compounds, including metal oxides (e.g., ZnO [240, 345], Bi2O3 [346],
Al2O3 [236]), metal phosphates (e.g., FePO4 [347], LiFePO4 [344]), and metal
fluorides (e.g., AlF3 [348], MgF2 [349], BiOF [350]), have been utilized as a
coating film of LiNi0.5Mn1.5O4, leading to the amelioration in cyclic stability of the
LiNi0.5Mn1.5O4 materials and the rate performance [29]. An optimal electrode
material for Li-ion batteries because of its high reversible capacity, huge theoretical
Li-storage capacity of 770 mAh g−1 (9 mol Li could be stored in 1 mol BiFeO3)
[351, 352], and excellent capacity retention, is BiFeO3 [29]. Given the semicon-
ductor character of BiFeO3 and the excellent electrochemical properties, it could be
reasonably anticipated that the surface coating of BiFeO3 might enhance the
electrochemical properties of LiNi0.5Mn1.5O4 cathode material [29]. Through a
BiFeO3 coating on the spinel LiNi0.5Mn1.5O4 through moist chemical technique
and a combined coprecipitation, the cathode materials were obtained [29]. It had
been demonstrated that the coating of BiFeO3 can improve the electrochemical
performance of coated materials [29].

The layered lithium transition metal oxides have been intensively examined as
the cathode materials in the next generation of the rechargeable lithium-ion battery
(LIB) [30, 223, 353]. In contrast with the commonly used layered ternary or
LiCoO2 cathode materials with a-NaFeO2 structure, layered Li-rich Mn-based ones
constituted as yLi2MnO3�(1–y)LiMO2 (M = Co, Ni, Mn, etc.) or Li[Li(1/3–2x/
3)MxMn(2/3–x/3)]O2 have many advantages including lower cost, safer on over-
charge [194, 354, 355], and less toxic [30]. They have high capacities about 250
mAh g−1 at high voltage, which can play a key role in stabilizing the electrode
structure [189, 194] and supply the excess lithium to the layered structure [30].
Such coatings are usually unfavourable for both lithium ion conduction and
interfacial charge transfer of the electrode, because above insulative coatings can
increase the Li+ diffusion length, which results in the deterioration of electro-
chemical performance [30, 356, 357]. Nano-sized monoclinic Li2TiO3 has a high
AC electrical conductivity of 10−3 S cm−1 [358], considerably greater than that
(10−6 S cm−1) of the layered Li-excess Mn-based oxides [30, 359]. 2.5 � 10−7 S
cm−1 [360], considerably greater than that (10−16–10−12 S cm−1) of the layered
Li-rich Mn-based ones [361, 362] because of the meager lattice and electrical
conductivity disorder of Li2MnO3 domain is the Li+ ion electrical conductivity of
Li2TiO3 [30]. Li2TiO3 has a 3-D diffusion path for lithium ion diffusion, where the
Li+ migration can occur along c-direction [357, 363] as a layered material [30]. The
impact of the Li2TiO3 loading on the rate capability and cyclability of the Li-rich
layered oxide had been especially tackled [30].

Nickel-rich layered Li(Ni1–x–yMnxCoy)O2, whereby the composition of Ni is
hegemonic over Mn and Co, is a fruitful material due to its lower cost, lesser
toxicity, enhanced thermal stability, safety [364–367], and sound cycling stability
[31]. High capacity is provided by Ni, Mn establishes an excellent cycling stability,
because of co’s sound chemical and electrochemical stabilities when electrolyte
contact happens, and Co offers an increasing electrical conductivity that affects rate
performance, in these materials [31]. The electrochemical performance of Ni-rich
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materials still needs to be additional enhanced [31]. The serious capacity fading of
Ni-rich materials during cycling, particularly those materials with high cut-off
voltage, is because of the comparatively meager low diffusion and electronic
electrical conductivity rate of Li+ within the structure [31, 368]. A handful studies
on Na-doped layered Li-rich materials have been carried out [31]. Ni-rich cathode
materials have not yet been examined whilst both of these groups indicated that Na
doping had been efficient for improving the rate capability, systemic properties of
Na-doped, layered and the impacts of Na+ on the cycling performances [31]. We
examined the impacts of Na doping on the structure, electrochemical performances
of the Ni-rich cathode material, and morphology, and explore the details [31].

Layered LiMO2 (M = Mn, Co, Ni), LiNi0.3Mn0.3Co0.3O2, olivine-type LiFePO4,
spinel-type LiMn2O4, lithium-rich material xLi2MnO3�(1−x)LiMO2 (M = Co, Fe,
Ni1/2Mn1/2), etc. are the principal cathode materials for rechargeable lithium-ion
batteries [32]. Throughout the cycling process [369–373], coating the cathode
material with multiple particles or films such as SiO2, ZnO, CeO2, LaF3, FePO4,
etc. can efficiently minimize the direct contact area between electrolyte and addi-
tional hinder the Mn break-up and the LiMn2O4 electrode [32]. ZnO had been
viewed as an advantageous surface-coating material because of thermal stability
and its excellent chemical [32]. Some researches of ZnO-coated LiFePO4,
LiMn1.5Ni0.50O4, LiMn2O4, and LiNi0.5Co0.2Mn0.3O2, have been indicated by
employing various coating methods to enhance their electrochemical performance
[32, 374–378]. Via the melting impregnation technique, ZnO had been coated by
Tu and others [379] on LiMn2O4 particles [32]. ZnO-coated LiMn2O4 had been
indicated by Liu and others [370] by the sol-gel technique [32]. An mean capacity
deterioration of 0.19% per cycle in 50 cycles under a current rate of 0.5 Zhao, C.
More recently and others [380] utilized the ALD technique to deposit highly
conformal and ultra-thin ZnO coatings onto LiMn2O4 cathodes had been delivered
by the 2 wt% ZnO-coated LiMn2O4 [32]. There are no reports on ZnO-coated
LiMn2O4 cathode materials prepared by a combustion technique till date to the
optimal of our knowledge [32]. ZnO had been sampled for coating over the surface
of LiMn2O4 cathodes to additional enhance cycling performance and their capacity
[32]. The impacts of coating on the structure, electrochemical performance of
cathode materials, and morphology, are examined in detail [32].

Layered LiNi1/3Co1/3Mn1/3O2 as cathode material has been paid extensive
attention because of its high reversible capacity, low cost, and excellent systemic,
thermal stability, as reasonably well [33, 223, 381]. Serious problems concerning
the capacity must be circumvented for their additional application, which would
consequence from the decomposition of electrolyte at the high operating voltage,
hydrofluoric acid (HF) attack in LiPF6-based electrolyte, and stage transition,
particularly at temperature [382, 383], which is elevated, even though tremendous
progress has been made in layered LiNi1/3Co1/3Mn1/3O2 as much inferior rate
performances and fading [33]. Tremendous efforts have been dedicated to the
amelioration of the cyclic stability and thermal stability for layered LiNi1/3Co1/
3Mn1/3O2 by coating with carbon or conducting materials, doping with metal ions,
and reducing the particle size [33]. Liu and others [384] have confirmed that the

2.1 Introduction 89



surface modification of LiNi1/3Co1/3Mn1/3O2 with FePO4 indicates high discharge
capacity of 143 mAh g−1 with a retention of 87.7% at a current density of 150 mAh
g−1 after 100 cycles [33]. The inherent semiconducting behaviour of metal oxide
might consequence in the meager rate performances and increase the electrical
resistance among LiNi1/3Co1/3Mn1/3O2 particles [33]. High electronic electrical
conductivity of coating layer must be highly advantageous for high rate lithium
batteries besides the protection from HF attack in electrolyte [33]. Owing to its
injecting photocurrent behaviours by irradiates, Eu2O3 is regarded as a fruitful
coating layer for examining the link between coating layer electrical conductivity
and the enhanced performances, and even for potential application in novel notion
batteries [33]. Eu2O3 material has excellent thermal stability, refractory properties,
and chemical stability [33]. LiNi1/3Co1/3Mn1/3O2@Eu2O3 present enhanced ther-
mal stability and considerably better electrochemical performances [33].

Significant attention has been paid to lithium-rich manganese-based layered
structure electrode materials [usually designated as xLi2MnO3�(1−x)
LiMO2 (M = Ni, Co, Mn, etc.)] and has been one of the most fruitful energy storage
tools for large-scale applications because of their high power density, long calendar
life (Yuan and others [385]; Zhou and others [386]; Jin and others [387]) and huge
theoretical specific capacity (*250 mAh g−1), [34]. That lithium-rich layered
materials are comprised of Li2MnO3 element and LiMO2 element to form a
homogeneous solid solution structure (Lee and Manthiram [388]; Tabuchi and
others [389]) is usually thought by scholars [34]. Upon the activation of the
Li2MnO3 element which refers to an irreversible potential platform for the extraction
of Li and oxygen (as Li2O) by initially charging to 4.5 V (Nayak and others [390]; Li
and others [391]), the lithium-rich layered materials display a high discharge specific
capacity [34]. In the subsequent discharge/charge process, the transition metal ions
occupy oxygen vacancies formed during the activation process and seem to migrate
to the octahedral vacancies in the lithium layers via the adjoining tetrahedral sites,
resulting in the reconstruction of the surface layer structure (Zheng and others [392];
Chen and others [393]; Zheng and others [394]), [34]. Rate performance of
lithium-rich layered materials and the unsatisfactory cycle performance need to be
additional enhanced [34]. The surface coating of lithium-rich layered cathodes can
offer a physical protective layer to change their surface chemistry, improving the
electrochemical properties of these cathode materials (Chen and others [395]; Zhao
and others [396]; Li and others [397]), [34]. It is indicated that FePO4-coated cathode
material Li1.2Mn0.54Co0.13Ni0.13O2 (Wang and others [398]) for delivering a dis-
charge specific capacity of 202.6 mAh g−1 between 2.0 and 4.8 V at 0.05 C with a
high coulomb efficiency of 85.1% after 100 cycles [34]. That excellent electro-
chemical performance had been attributable to the coating layer to electrochemical
performances of Al2O3 coated Li1.2Mn0.54Co0.13Ni0.13O2 materials and additional
research the structure [34].

The capacity deterioration upon cycling at elevated temperatures (55 °C) of
LiMn2O4 is still an obstacle for its practical application, which results from the
synergetic effect of following possible processes [169, 399–402]:
(1) Mn2+ break-up into the electrolyte through the disproportionation reaction of
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2Mn3+ ! Mn2+ + Mn4+, (2) irreversible systemic reconfiguration which is caused
by Jahn-Teller distortion, and (3) the thermal decomposition of electrolyte at high
voltages [35]. Doping with transition metal (Al [403, 404], Mg [405, 406], Ni
[407], Co [408, 409], Cr [410]) is utilized to enhance its performance at temper-
ature, which is elevated, and sustain the structure of LiMn2O4 [35]. One common
strategy is coating with metal oxides including Al2O3 [411], Fe2O3 [412], TiO2

[413], Y2O3 [414], and V2O5 [415] to lessen the electrochemically active surface
area and deter undesired side reactions between cathode material and electrolyte
[35]. The intercalation/de-intercalation of lithium ion will be hampered by those
metal oxides, so it is required to seek for an optimal coating layer to improve the
interfacial stability of LiMn2O4 electrode without influencing the Li ions’ transfer
between electrolyte and electrode [35]. Electrode material like LiNi0.5Mn0.5O2

[416], LiNi1/3Co1/3Mn1/3O2 [417], LiNi0.5Mn1.5O4 [418] as surface coating layer
for LiMn2O4, and LiNixMn2–xO4 [419], has drawn the attention of persons [35].
That Li2MnO3 can act as a stabilized coating layer on the surface of other cathode
materials to safeguard those materials from directly exposing to the electrolyte
without impeding the intercalation/de-intercalation of lithium ion had been antici-
pated by us [35]. We report a facile technique to synthesize LiMn2O4@
Li2MnO3 composites with multiple coating content, then the Li2MnO3 stage had
been coated on the surface of the spinel, which a sol-gel route LiMn2O4, and in
which the pristine LiMn2O4 powder had been fabricated through a characteristic
high-temperature solid-state reaction [35].

The most fruitful candidate among the 5 V cathode materials for Li-ion batteries
because of its flat plateau at 4.7 V [232], a two-electron process Ni2+/Ni4+, and
huge specific capacity (146.6 mAh g−1), where the Mn4+ ions remain electro-
chemically inactive [339, 420] is the high-voltage LiNi0.5Mn1.5O4 (LNMO) cath-
ode [36]. LNMO had been systematically studied and extensively examined as a
sort of HVLIB cathode material [36]. The advancements in the doping of LNMO
cathode material for 5 V Li-ion batteries, in which the rate capability, cyclic life of
multiple doped LNMO materials, and rate performance, were explained were
indicated by Yi and others [36, 421]. The progress in high-voltage cathode mate-
rials and corresponding matched electrolytes, in which they introduced LNMO as
high-voltage cathode materials had been presented by Hu and others [36, 291]. Zhu
and others [422] emphasised the advances in the development of advanced elec-
trolytes for enhancing the cycling stability and rate capacity of LNMO-based bat-
teries [36]. The advantages of LNMO as the HVLIBs cathode, electrolytes, etc. or
the modification techniques of doping were just outlined by these reviews [36]. It is
required to compare various modification techniques based upon cyclic degradation
processes of LNMO and the architectural elements and observe an efficient tech-
nique to enhance the cycle performance of LNMO [36]. Focus is given to the
methodologies to enhance the cycling stability of LNMO, which is based upon the
synthesis of highly purified LNMO, systemic reversibility of and cycling degra-
dation mechanism of undesirable reactions between electrolyte and LNMO [36].
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LiCoO2 has been the primary cathodematerial in commercial lithium-ion batteries
since 1992 [37]. A doping technique, which employs Mg2+, Al3+, Ti3+, Cr3+ or other
ions, is clear-cut considerably more and helpful to enhance the properties of
lithium-ion batteries [423–427], which is because the doping technique can lower the
extent of Li/Ni cationmixing and ameliorate voltage degradation [37]. That Ti-ion and
Al-ion were utilized to prepare LiNi0.5Mn0.45Ti0.05O2 and LiNi0.475Al0.05Mn0.475O2,
and in turn, the discharge capacity had been enhanced the extent of Li/Ni cation
maxing of the LiNi0.5Mn0.5O2 is 9.8% which lowers to 4.8 and 5.1% by Al-doping
and Ti-doping, respectively; and the cycle stability had been enhanced [428] is
indicated by Myung and others [37]. That Mg-ion had been replaced for Ni-ion in
LiNi0.5Mn0.5O2, which can keep the structure stable because of the greater bond of
dissociation energy of Mg–O (394 kJ mol−1) than that of Ni–O (391.6 kJ mol−1),
enhancing the cycle stability [429] is devised by Xiao and others [37]. Ca2+ is
replaced for Ni2+ to produce a series of LiNi0.5–xCaxMn0.5O2 (0 � x � 0.2)
cathode materials employing a combination of coprecipitation and O a solid-state
technique because of the greater bond of dissociation energy of Ca-and the effect on
declining the extent of Li/Ni cationmaxing in the present study [37]. The amelioration
of the electrochemical properties from Ca-doping is attributable to the increasing
stability of the structure, lower Li/Ni cation, which mixes, lowered polarization,
which is declined enhanced the migration rate of the Li-ion and migration resistance
[37].

Scholars have been attempting to synthesize materials which can operate at a
potential of Zhang, greater than 4.3 V. More recently and others indicated a
core-shell-structured LiNi0.5Co0.2Mn0.3O2 comprised of a shell of (Ni1/3Co1/3Mn1/
3)3/14(Ni0.4Co0.2Mn0.4)1/2](OH)2 [430] and a core of (Ni0.8Co0.1Mn0.1)2/7 to
improve the energy density of batteries [38]. At a current density of 18.5 mA g−1,
this material delivered a comparatively low capacity of 200 mAh g−1 and preserved
95% of its capacity when cycled for 40 cycles to an upper cutoff voltage of 4.5 V.
Arguably, the spinel shell of Li1+x[CoNixMn2–x]2O4 enhanced its stability; even
when the material had been charged to high potential of 4.5 V, it delivered just 200
mAh g−1 at 18 mA g−1 [38]. That they indicated Thackeray and others
Li2MnO3 plays a main role in supporting the structure stability during the
discharge/charge process, and preparing lithium-rich layered oxide materials
(LLOs) xLi2MnO3–(1−x)LiMO2 can consequence in high electrochemical capac-
ity � 250 mAh g−1 if charged to high potentials >4.6 V, had been indicated by
Thackeray and others [38]. We have indicated that manganese oxide shell can
substantially enhance the cyclic stability of LiMO2 [431] nickel-rich layered
materials, and replacing a small quantity of lithium with sodium can increase the
discharge capacity of the material [38, 431, 432]. Since it is a lithium-rich material,
this core-shell material delivers quite high discharge capacity, and this material is
thermally stable, Li2MnO3 is electrochemically active at a potential greater than
4.5 V. Furthermore and could be safely cycled at a high potential of 4.7 V and
delivers a considerably greater mean potential and a greater energy density than that
of traditional Ni-rich materials [38].
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Through the cathode materials, rechargeable lithium-ion batteries (LIB)’s per-
formances, including voltage and capacity, are predominately dictated as one of the
most fruitful energy storage tools [39]. The xLi2MnO3�(1−x)LiNi1/3Co1/3Mn1/
3O2 series compounds of the cathode materials in lithium-ion batteries have brought
about a considerable explosion in researches because of the high capacities, low
cost, and lowered toxicity [39]. The xLi2MnO3�(1−x)LiNi1/3Co1/3Mn1/3O2 series
compounds of the cathode materials in lithium-ion batteries are regarded as viable
alternatives compared with traditional LiCoO2 cathode materials [433, 434], as
reasonably well [39]. Surface coating, including AlPO4, CaF2 [84], CeF3 [435],
and graphene [436] coating on the surface of the cathode materials, can restrain the
undesirable reactions between cathode materials with electrolyte [39]. Metal ele-
ment doping, including Al, Zr [194], Y, Mo, and Mg [437] replaced for the tran-
sitional metal elements in the oxide materials, can weaken the adverse change of
crystal structure [39]. Cycling performance and systemic stability of cathode
materials, which are revealed by some inquiries [262, 434] could be enhanced by
these techniques [39]. We attempt to substitute traces of Al element for various
transitional metal elements of Li1.2Mn0.54Ni0.13Co0.13O2, in order to enhance the
electrochemical performance of the Li-rich materials [39]. The structure, electro-
chemical performance of the pristine, and morphology, and Al-doped materials
have been typified [39].

High stable reversible capacity of >250 mAh g−1 when it is cycled in the voltage
window of 2.5–4.8 V [194, 438–443] is delivered by LMR-NMC [40]. Throughout
cycling need to be tackled before it is regarded as a potential candidate for next
generation cathode material for lithium-ion batteries [194, 437–443], the energy
deterioration because of suppression of voltage profiles during cycling which is
linked with the stage reconfiguration from a layered structure to spinel structure,
capacity, and high irreversible capacity, fade [40]. That the substitution of 6 mol%
of Al3+ ions with Ni [Li1.15(Ni0.275–x/2Mn0.575–x/2Alx)O2] and Mn can avoid the
systemic deterioration of electrode material, which enables higher discharge
capacities of 210 mAh g−1 at a cut off voltage of 2.5–4.6 V, whilst the undoped
cathode delivers 150 mAh g−1 [444] had been confirmed by Park and others [40].
Through partial substituting 4% of Mg with [Li(Li0.2–2xMgxCo0.13Ni0.13Mn0.54)O2]
lithium in transitional metal layer and delivers an initial capacity of 272 mAh
g−1 (between 2.0 and 4.8 V) and preserves 93% of capacity after 300 discharge/
charge cycles [445], Wang and others stabilized the crystal structure [40].
Improvement in electrochemical performance, thermal stability, rate capability, and
tap density of NMC by substituting partially oxygen with fluorine which results
stabilization of the crystal lattice structure [446–453] because of smaller c-axis
variability and fluorine coatings had been indicated by Kim and others [40]. Kim
and others explained both magnesium and fluorine substitution in NMC [Li(Ni1/
3Co1/3Mn1/3–xMgx)O2–yFy] and asserted decrease in cation, which mixes during
amelioration in crystallinity, cycling, and tap density this density in turn impact
the amelioration in thermal stability [446, 451] and capacity retention; this density
in turn impact the amelioration in thermal stability [446, 451] and capacity
retention [40].
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LiCoO2 one of the layered structure cathode material has been commonly used
as cathode materials in commercial applications [41, 454]. Nevertheless; the
requirements for high energy applications could be not fulfilled by this cathode
material since, even though its theoretical capacity is 274 mAh/g, the practical
capacity in applications roughly 150 mAh/g by charging up to 4.2 V [41, 454, 455].
Of all cathode materials NMC’s (LiNi1–x–yMnxCoyO2) are mainly researched
materials because of their high discharge capacity, satisfactory systemic stability
[456] and high rate capability [41]. Another of these constraints is that NMC
cathode materials indicate undesireable irreversible capacity deterioration during
first charge-discharge [41, 457]. That due to an overlap of the metal: 3d band with
the top of the oxygen: 2p band, layered oxide cathode materials seem to loose
oxygen from the lattice at consequence in a tremendous capacity deterioration [458]
and deep charge had been asserted by Choi and others [41]. One restriction is that
when LiPF6 which is the crucial element of electrolyte decomposes in the existence
of moisture, one of the product is HF; this HF gives rise to transition metal break-up
in electrolytes resulting surface corrosion of cathode material [41, 459]. The
reactions between electrolytes and cathode materials decreases capacity and cyclic
performance of the battery [41, 455]. Surface modification can deter the reactions
between cathode materials and electrolytes and can lessen the oxygen activity of the
cathode at high voltages [41, 455, 460]. It is indicated that Al2O3 coating lowers
capacity difference between discharge and cathode surface corrosion [461] and first
charge [41]. The goal of the investigation is examining the effect of sonication
power on alumina distribution on the LiNi0.5Mn0.3Co0.2O2 cathode materials and
examining cathode performance [41].

More than 270 mAh g−1, though just half of this capacity could be delivered
because of the inherent systemic turbulence of the LCO material in a high
delithiated state and interfacial turbulence between the electrode and electrolyte
[462, 463] is the theoretical specific capacity of LCO [42]. It has been observed that
surface coating had been an efficient approach to enhance electrochemical perfor-
mance of cathode materials [42, 464, 465]. The surface coating indicates consid-
erable advantages on suppressing the break-up of Co into the electrolyte and the
decomposition of the electrolyte and altering the LCO surface chemistry to sustain
the structure at high cut-off voltage [42]. Numerous coating materials primarily
include (1) metal oxides, including ZrO2 [466–469], and Al2O3, ZnO, can act as
the HF scavenger and which are electrochemically inactive; (2) phosphates and
silicates [357, 470], which are beneficial to enhance thermal stability of bulk
materials and the overcharge safety; and (3) fluorides and other materials, including
AlF3, MgF2, and AlWxFy [471–473], which is useful for enhancing the systemic
stability of LCO materials at high cut-off voltage [42]. That the AZO-coated LCO
electrodes delivered a greater reversible capacity of 112 mAh g−1 at 12 C
(1680 mA g−1) between 3.0 and 4.5 V versus Li+/Li than ZnO-coated electrodes
had been demonstrated by the results [42]. It means that the coating layer with
electron transport or enhanced lithium-ion might be efficient to enhance the elec-
trochemical performance of LiCoO2 at high cut-off voltage [42]. Based on 0.5–4,
the LiCoO2 cathode materials coated with multiple quantities of NaAlO2 wt [42].
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High power lithium-ion rechargeable batteries and enhanced high capacity is
needed by these applications [43]. A wide range of cathode materials have been
devised to satisfy the expanding requirement for high power lithium-ion batteries
and high capacity, though just handful of them have cycle stability and high specific
capacity [43]. Due to electrochemical properties and a better cycling stability, Co
and Al co-substituted material (LiNi0.8Co0.15Al0.05O2) is regarded as one of the most
fruitful candidates as positive electrode materials for high-power lithium-ion bat-
teries [43]. LiNi0.8Co0.15Al0.05O2 as a cathode material for automotive applications
has been a commercial success ever since the inception of Tesla [43].
LiNi0.8Co0.15Al0.05O2 with compositionally homogenous mixing at the atomic level
and micron-sized spherical particle with narrow size distribution is readily obtained
by coprecipitation, and this technique has been utilized for the commercial synthesis
of LiNi0.8Co0.15Al0.05O2 cathode material [43]. It is of paramount importance to
build a straightforward, effective, and rapid, synthesis approach to allow large-scale
synthesis of LiNi0.8Co0.15Al0.05O2 cathode material, without compromising its
electrochemical performance [43]. Solid-state technique is useful for large-scale
production of cathode materials for lithium-ion batteries because it is cost-efficient
and straightforward [43]. That the electrochemical properties of Ni-rich cathode
material, which traditional solid-state technique prepared, are not good, which is
primarily attributed to the inhomogeneous distribution of transition metal ions,
despite repeated mechanical ball milling before calcining is confirmed by these
results [43]. The Ni–Co–Al oxide precursor based on the decomposition of oxalates
displays small particle size, which is beneficial to the mixing with lithium source and
a porous and loose structure [43]. Through traditional solid-state technique, the
LiNi0.8Co0.15Al0.05O2 cathode material is synthesized, as reasonably well [43].

That they indicated Thackeray and others Li2MnO3 plays a main role in sys-
temic stability during the charge-discharge process, and preparing lithium-rich
layered oxide materials (LLOs) xLi2MnO3–(1−x)LiMO2 can produce high elec-
trochemical capacities of � 250 mAh, which is charged g−1 when to high poten-
tials of >4.6 V, had been indicated by Thackeray and others [44]. Kim and others’
results revealed that the pristine material delivered a discharge capacity of � 200
mAh g−1 at 0.5 C and preserved 85% of its capacity after 30 cycles in the potential
variety 2–4.6 V, whilst the material, which is surface-modified and fluorine-doped,
preserved 92% of its capacity when cycled under the identical conditions [44, 474].
The aims of the present study were (1) to enhance the thermal stability of this
material by making it a core-shell structured material with a core of LiMO2 and a
shell of Li2MnO3, and (2) to increase the discharge capacity of NCM 111 by
preparing NCM 111 with the formula xLi2MnO3–(1−x)LiMO2, i.e., a lithium-rich
material with a high capacity [44, 194]. Li2MnO3 has two advantages: this material
can increase the systemic and thermal stability of the material during the
charge-discharge process [474–476], and this material can partake in the electro-
chemical reactions at potentials >4.5 V, resulting in greater capacities, in this
structure [44]. Since potentials greater than this can give rise to a rapid decline in
systemic disintegration [477] and capacity, whilst the core-shell material can be
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cycled to an upper cut-off potential of 4.7 V with high stability, the pristine sub-
sample had been charged by us to an upper cut-off potential of 4.5 V [44].

Lithium intercalation compounds based upon manganese oxides are safer
cheaper, and, provide an especially appealing replacement for the latter compound as
a cathode material in Li-ion batteries [478–481] and less toxic than the layered
compound, which is based upon cobalt or nickel oxides [45]. Of the lithium man-
ganese oxides cathode materials researched, layered oxides (LiMnO2), spinel oxides
(LiMn2O4), and Li-rich Mn-based layered compounds [Li2MnO3�LiMO2 (M = Mn,
Ni, Co)] cathodes have been devised and extensively examined [45, 97, 482–487].
Due to their high theoretical capacity (285 mAh g−1), layered LiMnO2 compounds
have come to be of interest as cathode material, though layered LiMnO2 is not
thermodynamically stable, which is readily converted to a spinel-like structure
during electrochemical extraction/insertion of Li ions [45, 488]. Li-rich Mn-based
layered compounds have been regarded as one of the most fruitful cathode material
for future Li-ion batteries due to their advantage of high reversible capacity (>200
mAh g−1), which is charged when above 4.5 V [45, 476, 489–491]. Throughout the
first charge, a common characteristic of Li-rich Mn-based layered compound cath-
ode is an irreversible high voltage plateau at around 4.5 V versus Li/Li+ [45],
Preliminary discharge capacity values of this materials are usually high after acti-
vation of Li2MnO3 stage, though inherently inferior rate capability and cycling
turbulence are detected in all reports [45, 479, 492, 493]. It might be beneficial to
reinvestigate the properties of Li2MnO3 material to help additional understanding of
the properties of Li-rich Mn-based layered compounds [45].

Owing to high-performance rechargeable batteries’ high voltage, high specific
capacity, excellent and other advantages, lithium-ion batteries (Li-ion batteries) are
viewed as the most likely power sources for electric vehicles [46]. Great efforts
have been made to maximize the cathode materials with high energy densities [182,
494, 495] because the performances of lithium-ion batteries are largely dictated by
the cathode materials [46]. The primary strategy to enhance the energy density of
batteries is to build cathode materials with greater operating voltages [496, 497] and
high capacity [46]. A competitive candidate of the active cathode material due to its
low cost, high specific capacity [498, 499], and low toxicity, is layered nickel-rich
oxide LiNi0.5Co0.2Mn0.3O2 (NCM523) [46]. An efficient approach to enhance the
electrochemical performance of LiNixCoyMn1–x–yO2 is coating the powder parti-
cles with many metal oxides including CeO2 [500], and Al2O3 [501], ZrO2 [46,
502]. Lithium-containing oxides, including LiTiO2 [503], Li3VO4 [504], Li2SiO3

[505], and Li2ZrO3 [506], have been extensively examined as the coating materials
because offer 3-D paths for the migration of lithium ions during the charge and
discharge process [357] though they not just provide a protective layer against side
reactions on the surface [46].

The cathode material had been an essential part of lithium-ion battery [47].
Ni-rich layered oxide LiNi0.8Co0.1Mn0.1O2 is regarded as one of the most fruitful
cathode materials, because LiNi0.8Co0.1Mn0.1O2 has lower cost and bigger rever-
sible specific capacity (*200 mAh g−1) and is more environment-friendly
[507–512] among multiple types of the cathode materials [96, 493, 513, 514, 47].
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The nickel-rich material has a highly water absorption issue, resulting in an
impurity stages (LiOH/Li2O) on the particle surface; this surface triggers an
irregular thickness on Al foil, which coates cathode material [47]. That the coating
should be thick sufficiently had been founded by scholars and can not respond with
the raw material [47]. The LiAlO2 as the coating material has been utilized for some
cathodes, including LiNi0.4Co0.2Mn0.2O2, and the LiAlO2-coated material displays
better electrochemical performance, and Li[Li0.2Mn0.54Co0.13Ni0.13]O2, LiNi1/3Co1/
3Mn1/3O2 [47]. An excellent coating material comparable to the layered structure of
LiNi0.8Co0.1Mn0.1O2 materials [515, 516] is the a-LiAlO2 [47]. LiAlO2 retains
satisfactory lithium-ion electrical conductivity due to the material, which is
inhabited partly, internal lithium ion sites [47, 517]. Thermal stability and the
cycling stability at a high temperature of LiAlO2-coated LiNi0.8Co0.1Mn0.1O2,
which hydrolysis obtained, -hydrothermal were investigated in detail [47].
A hydrolysis-hydrothermal strategy for the successful preparation of LiAlO2-coated
LiNi0.8Co0.1Mn0.1O2 cathode material is indicated by us [47]. The impurity stages
(LiOH/Li2O) on the surface of LiNi0.8Co0.1Mn0.1O2 are discarded as raw materials
to synthesize a novel LiAlO2 coating layer [47]. In contrast with conventional
coating materials, the LiAlO2 coating layer not just inherited the advantages of
Al3+ doping though also discarded the impurity stage on the raw materials [47].

Research in the field of Li-ion batteries is revolved around the development of
systems with increased energy and longer life and power density; with the goal of
employing Li-ion batteries as a power source for pure electric (EV) [435] or hybrid
vehicles (HEV) [48]. In recent decades, a significant number of research groups
worldwide have invested considerable effort to enhance the electrochemical prop-
erties of materials previously utilized and build novel materials for electrolytes
(ionic liquids, polymeric electrolyte, inorganic solids) and separators positive
electrodes (oxides, phosphates), negative (various kinds of carbon, alloys, etc.);
these electrodes have better performance in terms of energy, power, cost, validity,
time of life, and safety [48]. A series of fluorophosphates materials including
LiVPO4F [518], Na3V2(PO4)2F3 [519], NaVPO4F [520], and Li2MPO4F (M = Fe
and Co) [251], have demonstrated tremendous promise as possible replacements for
the current generation of materials [48]. Through solid-state carbothermal decrease
(CTR), which employs two-stage reaction process involving VPO4, the electro-
chemical properties of NASICON-type Na3V2(PO4)2F3 were investigated by Gover
and others [519], it had been prepared as intermediate and followed by reaction
with NaF [48]. More than 90% of the specific capacity had been preserved by the
material, so it might be of interest to enhance the detected electrochemical prop-
erties of this stage [48]. Another way to improve the electrochemical properties is to
investigation the aliovalent doping [521], positive impacts detected, such as
enhanced electric conductivity and structure stability attributed and for instance, the
impacts of the vanadium substitution with other elements (Mg2+, Co2+, Al3+) in
various materials including Li3V2(PO4)3 have been examined [48, 522]. The effect
of Al substitution on the electrochemical and systemic properties of cathode
materials have been examined [48].
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Owing to its high capacity, low toxicity [523, 524], and excellent thermal sta-
bility, cheap, the LiNixCoyMn1–x–yO2 might be supposed to substitute the con-
ventional LiCoO2 cathode material in the next generation of lithium-ion battery
[49]. The hydroxide precursor NixCoyMn1–x–y(OH)2 for the LiNixCoyMn1–x–
yO2 cathode materials are primarily synthesized through coprecipitation, which
employs NH3�H2O, as chelating actor [49, 525]. He and others [526] have indicated
that the hydroxide precursor Mn(OH)2 had been synthesized employing citric acid
and oxalic acid as the chelating actor to control the activity of Mn2+ in the solution,
and then the spherical spinel LiMn2O4 cathode materials with tap density as high as
1.9 g cm−3 and the initial discharge capacity, which reachs 116 mAh g−1 were
obtained [49]. Zhang and others [527] and Zhao and others [528] have indicated
that the sol-gel synthesis of LiNi1/3Mn1/3Co1/3O2 and Li[Li0.2Co0.13Ni0.13Mn0.54]
O2 had been carried out employing tartaric acid (TA), oxalic acid, and then sug-
gested that the tartaric acid-derived cathode materials owns excellent columbic
efficiency, and succinic acid (SA) as chelating actors [49]. Zhou’s group [290, 529,
530] indicated that the spherical cathode materials with excellent electrochemical
properties were synthesized employing oxalic acid as chelating actor [49]. The
quasi-spherical hydroxide precursor (Ni0.5Co0.2Mn0.3)(OH)2 has been synthesized
employing sodium lactate as chelating actor through coprecipitation technique
[531], and the corresponding cathode materials display stable cycleability and
satisfactory rate capability [49]. The impact of lactic acid concentration on the
structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode mate-
rial has not yet been investigated till now [49]. Lactic acid had been utilized to
synthesize the spherical LiNi0.5Co0.2Mn0.3O2 cathode materials in here [49].

Due to operating voltage and low capacity, LiCoO2 cathode material in com-
mercial lithium-ion batteries, which is utilized frequently, have confined energy
density [50]. Overcharging frequently triggers significant systemic distortions (re-
configuration from hexagonal to monoclinic structures), which yield extensive
defects between and within the particles, and induces potential surface reactions
including Co break-up at voltages above 4.4 V [50, 223, 532].
LiMn1.5Ni0.5O4 sometimes includes the LixNi1–xO impurity stage and it triggers huge
lattice stress during cycling, which results in degradation of the electrochemical
performance [50, 533–535]. Surface modification by coating with metal oxides
including ZnO, Bi2O3, AlPO4, and Al2O3, has been demonstrated to improve the
cycleability and lessen the corrosion reaction between the cathode and the electrolyte
[50, 98, 346]. The nitridation process in battery and the photocatalyst has been
investigated to increase the efficiency, electrochemical property, and electric con-
ductivity, because it can aid the formation of the nitride film on the surface [536, 537]
and change the oxygen stoichiometry [50]. Above the valence band edge, the replaced
N 2p states in the O-sites are situated, inducing a decline in the bandgap as a con-
sequence in the case of nitridation of a surface, which is coated with a metal oxide
[50]. That process has been utilized for surface modification of electrode materials, as
reasonably well [50]. Some groups have indicated that surface nitridation of an active
material can enhance electrochemical performance and the electric conductivity [50].
The as-synthesized subsample had been assessed for its suitability as a cathode
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electrode material for lithium-ion batteries; it revealed satisfactory cycling perfor-
mance and greater rate capability when compared to pristine LiMn1.5Ni0.5O4 [50].

Water-based binders having high resistances to electrochemical oxidation during
charging process must be devised to use these fruitful high-capacity and
high-voltage cathodes in the next-generation lithium batteries prepared in ecolog-
ically compatible electrode fabrication mechanisms with a water-based binder [51].
An aqueous hybrid polymer (TRD202A, JSR) had been comprised of fluoropoly-
mer and acrylic polymer and had been sampled as a binder for the Li-rich
solid-solution layered cathode material Li[Ni0.18Li0.20Co0.03Mn0.58]O2 [51].
A cathode, which is prepared with Li[Ni0.18Li0.20Co0.03Mn0.58]O2 particles, con-
ductive carbon additive, and TRD202A binder, CMC, had been evaluated and
examined for charge/discharge capacity, cycle stability, rate performance, resistance
of electrochemical oxidation, mechanical resistance, and transformations of the
surface composition and structure after water-treatment utilized for preparing
water-based slurry [51]. Wu and coworkers have not investigated the water-based
binders for charge/discharge capacities, long cycle stability, rate performance,
resistance of electrochemical oxidation, mechanical resistance, or transformations
of the surface composition and structure after water-treatment, which is utilized for
preparing the water-based slurry [51]. Li-rich solid-solution layered cathode
materials’ stable charge/discharge performances are accurate for the performance
tests of the water-based TRD202A binder with a high-voltage Li-rich solid-solution
layered cathode material; the TRD202A binder had been blamed for the perfor-
mance degradation of the cathode, which is prepared with that binder [51]. The
relative merits of the PVdF and TRD202A binders are outlined relating to the
charge/discharge capacities, long cycling stability, rate performance, resistance of
electrochemical oxidation, mechanical resistance, and transformations of the sur-
face composition and structure after water-treatment for the preparation of a
water-based slurry [51].

The main element within the Li-ion batteries, which offers significant influence
on electrochemical performance and capacity is Cathode [52]. Lithium manganese
phosphate (LiMnPO4) is primarily centred as a useful candidates in the olivine
group among LiFePO, LiNiPO and LiCoPO for cathode application [52, 538, 539].
701 Wh kg with low electronic/ionic electrical conductivity, which affect the
electrochemical property [540, 541] and meager lithium diffusion is the theoretical
energy density of LiMnPO [52]. Haemoglobin-like LiMnPO microspheres were
prepared for better electrochemical activity because of presence of 3-D (3D) hier-
archical structures [52, 542]. That irregular flaky influenced LiMnPO4 is accom-
plished by a hollow-sphere Li3PO4 precursor, which is utilized to control the
particle growth of LiMnPO had been indicated by Cui et al. [52, 543]. That dry ball
milling showed satisfactory electrochemical properties at high temperature and high
charge/discharge rate of 2 C and the carbon-coated nanostructured LiMnPO
through combination of spray pyrolysis had been indicated by Nam et al. [52, 544].
Cation, which dopes in LiMnPO, is observed to be an alternative technique to
upgrade ionic electrical conductivity [52, 545]. Previous work suggested that

2.1 Introduction 99



cesium (Ce)-doped LiMnPO contributed to easy diffusion of Li-ion in bulk mate-
rials [52, 546]. Given this fact, this work is an effort to enhance LiMnPO by partial
natrium substitution on lithium sites [52]. Numerous attempts have been done to
enhance electrochemical performance of cathode materials by partial natrium
doping [52]. That Na substitution for Li minimizes, which mixes cation, enhances
reversibility and constrains charge transfer impedance during cycling had been
indicated by Chen et al. [52, 547]. Partial Na substitution for Li site has not been
centred for LiMnPO-based energy storage application [52].

That novel trend in the car market suggests that requirement for Li-ion batteries
will be continually expanding [53]. An increase in Li-ion batteries entails that there
will be more battery waste in the near future [53]. One fact is that Li-ion battery
waste includes useful metal elements including Li, Ni, Co, Cu, and Mn [53]. There
have been some efforts to recycle Li-ion batteries [53, 548–551]. Lithium ion
battery recyclers centred solely on cobalt as LiCoO2 had been the principal cathode
material in the market; the high price of cobalt motivated recycling efforts [53, 552–
554]. The waste stream comprises Li-ion batteries with various cathode chemistries
[53]. An effective Li-ion battery recovery process must not target a single cathode
chemistry [53]. A “mixed cathode” recycling process had been first devised and
devised [555, 556], by which certain quantities of Li-ion batteries with heteroge-
neous cathode materials could be recovered together without battery sorting [53].
Through plasma optical emission spectrometry (ICP-OES), which is coupled
inductively, the concentrations of these useful metal elements could be dictated and
adjusted by adding MSO4 (M = Ni, Mn, Co) salts, cathodes with various Ni and so
metal hydroxide precursors: Mn: Co molar ratios could be synthesized directly [53].
The leaching solution from the recovery stream had been employed to synthesize
heterogeneous LiNixMnyCozO2 cathodes [53]. The molarities of transition metal
elements were adjusted to 5:3:2 and 6:2:2 to derive LiNi0.5Mn0.3Co0.2O2 and
LiNi0.6Mn0.2Co0.2O2 [53].

2.2 Cathode Materials, Samples, Spinel, Calcination,
Discharge Capacity

2.2.1 Synthesis of Spinel LiNi0.5Mn1.5O4 as Advanced
Cathode via a Modified Oxalate Co-precipitation
Method [1]

Spinel-type LiNi0.5Mn1.5O4 (LNMO) cathode materials for Li-ion batteries have
been synthesized through a modified oxalate coprecipitation technique [1].
Following one-pot reaction, the target materials could be obtained without subse-
quent mixing with lithium salts by virtue of the coprecipitation of Li+ with tran-
sition metal ions [1]. The results confirm that the as-prepared material owns a cubic
spinel structure with a space group of Fd-3 m, high crystallinity, excellent
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electrochemical performances, and homogeneous particle size [1]. Superior rate
performance and a greater initial capacity are delivered compared with that of
material by traditional coprecipitation technique [1].

2.2.2 LiNi0.5Mn1.5O4 Hollow Nano-micro Hierarchical
Microspheres as Advanced Cathode for Lithium-Ion
Batteries [2]

Hollow LNMO microspheres have been synthesized through coprecipitation tech-
nique, which is accompanied with high-temperature calcinations [2]. The results
confirm that the microspheres combine hollow structures inward and own high
crystallinity, a cubic spinel structure with space group of Fd-3m, and excellent
electrochemical performances [2]. The hierarchical LNMO microspheres display
138.2 and 108.5 mAh g−1 at 0.5 and 10 C, respectively with the short Li+ diffusion
length and hollow structure [2].

2.2.3 Low Content Ni and Cr Co-doped LiMn2O4 with
Enhanced Capacity Retention [3]

Nanoparticles of the pure and Ni–Cr codoped lithium manganese oxides Li
[NixCryMn2–x–y]O4 (x = y = 0.01–0.05) have been synthesized by sol-gel tech-
nique, which employs citric acid as a chelating actor [3]. That low-content Ni-Cr
substitution considerably enhances the systemic stability and high rate cycling
performance of LiMn2O4 had been established by impedance and electrochemical
measurements [3]. 82% of the initial discharge capacity at 0.1 C is preserved at a
considerably high current rate of 5 C [3]. A discharge capacity of 104 mAh g−1 is
resumed upon reducing the current rate to 0.1 C which is 91% of the specific
capacity in the first cycle after deep cycling at high rates [3]. It could be observed
that the stoichiometry of all the samples is close to the nominal compositions [3]. It
could be observed that the cycling performance of the Ni–Cr-substituted samples is
substantially enhanced [3].

2.2.4 Effects of Lithium Excess Amount
on the Microstructure and Electrochemical Properties
of LiNi0.5Mn1.5O4 Cathode Material [4]

The effect of lithium excess quantity on the microstructure, electrochemical prop-
erties of LiNi0.5Mn1.5O4 materials, and morphology, had been systematically
examined [4]. With the increase of lithium excess quantity, the cation disordering
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extent (Mn3+ content) and stage purity first increase and then decline, whilst the
cation mixing extent has the opposite trend [4]. The LiNi0.5Mn1.5O4 material with
6% lithium excess quantity displays greater disordering lower impurity content and
extent and cation mixing extent, leading to the optimal electrochemical properties,
with discharge capacities of 125.0, 126.1, 124.2, and 118.9 mAh/g at 0.2-, 1-, 5-,
and 10-C rates and capacity retention rate of 96.49% after 100 cycles at 1-C rate [4].
Recent reports [558, 559] indicate that the spinel LiMn2O4 with the I 311/I 400
intensity ratios between 0.96 and 1.1 normally indicates better electrochemical
performances than those outside this region [4].

2.2.5 Sn-Doped Li1.2Mn0.54Ni0.13Co0.13O2 Cathode
Materials for Lithium-Ion Batteries with Enhanced
Electrochemical Performance [5]

Sn-doped Li-rich layered oxides of Li1.2Mn0.54–xNi0.13Co0.13SnxO2 have been syn-
thesized through a sol-gel technique, and electrochemical performance and their
microstructure have been researched [5]. The electrochemical performance of
Li1.2Mn0.54–xNi0.13Co0.13SnxO2 cathode materials is substantially enhanced after
doped with an suitable quantity of Sn4+ [5]. The superior rate capability with dis-
charge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g−1 at 0.2, 0.5, 1, 2,
and 5 C, respectively, which are considerably greater than those of
Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g−1 at 0.2, 0.5,
1, 2, and 5C, respectively) is shown by the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode
[5]. The substitution of Sn4+ for Mn4+ widens the Li+ diffusion channels because of
its bigger ionic radius compared to Mn4+ and improves the systemic stability of
Li-rich oxides, leading to the enhanced electrochemical performance in the Sn-doped
Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials [5].

2.2.6 Co-precipitation Spray-Drying Synthesis
and Electrochemical Performance of Stabilized
LiNi0.5Mn1.5O4 Cathode Materials [6]

Through a process, which spray-drys coprecipitation and calcining, the
LiNi0.5Mn1.5O4 cathode materials of lithium-ion batteries are synthesized [6].
Through a calcining treatment at the optimized temperature of 750 °C, the use of a
spray-drying process to form particles, followed to generate spherical
LiNi0.5Mn1.5O4 particles with a cubic crystal structure, a specific capacity of 132.9
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mAh g−1 at 0.1 C. and a specific surface area of 60.1 m2 g−1, a tap density of
1.15 g mL−1 [6]. The carbon nanofragment (CNF) additives, introduced into the
spheres during the coprecipitation spray-drying period, substantially improve the
rate performance and cycling stability of LiNi0.5Mn1.5O4 [6].

2.2.7 Synthesis and Electrochemical Performance
of Spherical LiNi0.8Co0.15Ti0.05O2 Cathode Materials
with High Tap Density [7]

Through X-ray diffraction (XRD) and scanning electron microscopy (SEM),
respectively, the crystal structure and particles morphology of the as-prepared pow-
ders were typified [7]. “All samples correspond to the layered a-NaFeO2 structure
with R-3m space group” [7]. The LiNi0.8Co0.15Ti0.05O2 prepared at 800 °C intro-
duces better spherical particles and a better hexagonal ordering structure and retains a
high tap density of 3.22 g cm−3 [7].

2.2.8 A Strontium-Doped Li2FeSiO4/C Cathode
with Enhanced Performance for the Lithium-Ion
Battery [8]

That a strontium cation occupies the Fe site in the lattice and that strontium-doped
Li2FeSiO4 has a monoclinic P21/n structure is revealed by rietveld refinement [8].
The grain size of strontium-doped Li2FeSiO4 is roughly 20 nm, and the nanopar-
ticles are interlinked tightly with amorphous carbon layers [8]. Strontium-doped
Li2FeSiO4/C delivers a high discharge capacity of 181 mAh g−1 at a rate of 0.5 as
the cathode material of a lithium-ion battery C [8]. It could be concluded that
strontium cation doping enables to increase the Li+ diffusion capability and
weakens side reactions between the electrode and electrolyte by examining the
electrochemical impedance spectra [8]. Throughout charging and discharging after
strontium cation doping, the amelioration of the electrochemical performance could
be attributable to the undermined crystal structure stability [8]. The evident capacity
degradation can not be detected and all the capacity retentions stayed above 90%
for the three cathodes, as the rate ranged from 2 to 5 C [8].
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2.2.9 Enhanced Electrochemical Performances of Layered
LiNi0.5Mn0.5O2 as Cathode Materials by Ru Doping
for Lithium-Ion Batteries [9]

Through a moist chemical technique, which a high-temperature calcining process
followed, Ru-doped LiNi0.5Mn0.5O2 cathode materials and the pristine are syn-
thesized [9]. The galvanostatic charge/discharge measurements highlight that the
electrochemical properties of the LiNi0.5Mn0.5O2 subsample are enhanced by Ru
doping [9]. Ru doping is regarded an efficient way to improve the electrochemical
performances of LiNi0.5Mn0.5O2 cathode materials [9]. Two apparent splittings of
(006)/(102) and (108)/(110) doublet peaks could be detected, which indicate a
well-ordered layered structure [9, 560]. It could be observed that the lattice
parameters (a and c) of LiNi0.5Mn0.45Ru0.05O2 are greater than those of
LiNi0.5Mn0.5O2 [9]. The SEM images indicate that the as-prepared samples have a
polyhedral or spherical morphology in the primary particle [9]. The SAED patterns
of LiNi0.5Mn0.45Ru0.05O2 show a characteristic hexagonal ɑ-NaFeO2 structure
(3m) diffraction in the [03] zone, and corroborate that the primary particles are
single crystalline [9].

2.2.10 Synthesis and Electrochemical Properties
of LiNi0.5Mn1.5O4 Cathode Materials with Cr3+ and
F− Composite Doping for Lithium-Ion Batteries [10]

Through the solid-state technique, F− and a F−5 composite-doped
LiNi0.5Mn1.5O4 cathode material had been synthesized, and the impact of the
doping quantity on the electrochemical and physical properties of the material had
been examined [10]. The results of the charge/discharge tests, electrochemical
impedance spectroscopy (EIS) test results, and cyclic voltammetry (CV), indicated
that LiCr0.05Ni0.475Mn1.475O3.95F0.05 in which the F− and F−5 doping quantities
were both 0.05, had the optimum electrochemical properties, with discharge rates of
0.1, 0.5, 2, 5, and 10 C and specific capacities of 134.18, 128.70, 123.62, 119.63,
and 97.68 mAh g−1, respectively [10]. LiCr0.05Ni0.475Mn1.475O3.95F0.05 revealed
exceedingly satisfactory cycling performance, with a capacity retention rate of
97.9% and a discharge specific capacity of 121.02 mAh g−1 after 50 cycles at a rate
of 2 C [10].
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2.2.11 Y-Doped Li3V2(PO4)3/C as Cathode Material
for Lithium-Ion Batteries [11]

On the structure and electrochemical performance of Li3V2(PO4)3, the Y-doping
quantity plays a crucial role [11]. The capacity retention had been observed to be
93.9% after 50 cycles and the capacity of Li3Y0.03V2(PO4)3/C stayed around
100 mAh g−1 at a current density of 100 mA g−1. the Li3V2(PO4)3/C samples
(LVP) doped with various quantities of Y were synthesized [11]. That the Y-doping
quantity plays a crucial role on the structure and electrochemical performance of
Li3V2(PO4)3/C is demonstrated by the results [11]. The cycle performance of the
samples is quite satisfactory and the reversible capacity of the as-prepared
Li3Y0.03V2(PO4)3/C is greater than the theoretical capacity (148.99 mAh g−1 after
50 cycles) [11]. That the aggregation of the sub-micrometer size particulates in both
Li3YxV2(PO4)3/C and Li3V2(PO4)3/C powders, since the materials were prepared
by a rheological stage reaction at high temperature with a comparatively long
duration is clearly demonstrated by the SEM pictures [11]. It could be observed that
porous carbon layers enmeshed the networks of aggregated particles or coated on
the surface of the particles [11]. AC impedance curves of the LVP samples indicate
that Li3YxV2(PO4)3/C with 3% Y-doping is the optimal material to examine the
modification of Li3V2 (PO4)3/C [11].

2.2.12 Nano Transition Metal Alloy Functionalized Lithium
Manganese Oxide Cathodes-System for Enhanced
Lithium-Ion Battery Power Densities [12]

Manganese oxide cathode material of rechargeable lithium-ion batteries provides a
distinctive blend of lower cost and toxicity, which is compared to the usually
utilized cobalt, and has been shown to be safer on overcharge [12]. Alloy
nanoparticles were synthesized and utilized as coating material with the aim to
enhance the catalytic and microstructure activities of pristine LiMn2O4 [12]. The
pristine modified and LiMn2O4 materials were investigated employing a combi-
nation of microscopic and spectroscopic methods along with in detail galvanostatic
charge-discharge tests [12]. Microscopic results showed that the new composite
cathode materials had high stage purity, congruent morphological structures with
narrow size distributions and well-crystallized particles [12]. The systemic changes,
which take place during Li+ ion insertion with exchange current density i 0 (A
cm−2) of 1.83 � 10−4 and 3.18 � 10−4 for LiMn2O4. greater electrode columbic
efficiency of the LiPtAuxMn2–xO4 and the enhancement of the capacity retention
were significant, particularly at high C rate were efficiently accommodated by the
LiPtAuxMn2–xO4 cathode [12].
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2.2.13 Synthesis and Electrochemical Properties of
Li(Ni0.56Co0.19Mn0.24Al0.01)1−yAlyO2 as Cathode
Material for Lithium-Ion Batteries [13]

The LiNi0.5376Co0.1824Mn0.2304Al0.0496O2 (y = 0.04) cathode material had the
optimal electrochemical performance [13]. At 0.1 C, the reversible capacity of
174.9–115.9 mAh g−1 at 1 C between 2.75 and 4.4 V. had been offered by the
material [13] Electrochemical impedance spectroscopy (EIS) and cyclic voltam-
metry (CV) were carried out to additional investigation the novel composite cath-
ode materials, as reasonably well [13].

2.2.14 One-Step Solid-State Synthesis of Nanosized
LiMn2O4 Cathode Material with Power Properties
[14]

That optimum LiMn2O4 particles (S0.5) is synthesized when the molar ratios of total
Mn source and oxalic acid are 0.5:1 is revealed by the electrochemical test results
[14]. The obtained subsample S0.5 with middle size displays a high initial discharge
capacity of 125.8 mAh g−1 at 0.2 C and 91.4% capacity retention over 100 cycles
at 0.5 C, superior to any one of other samples [14]. In this work, the optimum
S0.5 can still attain a discharge capacity of 80.8 mAh g−1 when cycling at the high
rate of 10 C [14]. That observation could be tackled to the fact that the middle size
particles balance the conflicting of diffusion length in solid stage and particle
agglomeration; this stage gives rise to perfect contacts with the optimum perfor-
mance of S0.5, and the conductive additive, substantial evident lithium ion diffusion
rate [14]. It could be observed that among all the samples, S0.5 acquires a minimum
value of I222/I400 ratio, suggesting that the crystal orientation in S0.5 along the
(400) direction is more influential than that in other samples [14].

2.2.15 Nanosized 0.3Li2MnO3�0.7LiNi1/3Mn1/3Co1/3O2

Synthesized by CNTs-Assisted Hydrothermal Method
as Cathode Material for Lithium-Ion Battery [15]

Through a hydrothermal process with carbon nanotubes as template,
3Li2MnO3�0.7LiNi1/3Mn1/3Co1/3O2 as new cathode material had been synthesized
[15]. 3Li2MnO3�0.7LiNi1/3Mn1/3Co1/3O2 material revealed excellent electrochemi-
cal performance, and the LR-1.0 subsample had rate capability and the optimal
cycling stability [15]. Once the LR-1.0 subsample had been evaluated as a cathode
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at 0.1 and 2.0 C the LR-1.0 sample’s its initial discharge capacities can attain up to
267.0 and 146.6 mAh g−1, respectively [15]. 3Li2MnO3�0.7LiNi1/3Mn1/3Co1/
3O2 prepared by this technique had been a novel fruitful cathode material for Li-ion
batteries [15]. To additional show the electrochemical behaviour of the 0 [15].

2.2.16 Improvement of the Electrochemical Properties
of a LiNi0.5Mn1.5O4 Cathode Material Formed
by a New Solid-State Synthesis Method [16]

To avoid the drawbacks of huge particle size and meager homogeneity of material,
which the conventional solid-state technique synthesized, straightforward amelio-
ration of calcining process is employed (i.e., calcining-milling-recalcination) based
upon the conventional solid-state synthesis to efficiently prepare a huge number of
well-distributed, micrometer-sized, spherical secondary LiNi0.5Mn1.5O4 particles
[16]. Findings of the electrochemical performance tests indicate that the material
displays a striking cycle performance and rate capability, which is compared with
that derived from conventional synthesis technique; the spherical
LiNi0.5Mn1.5O4 particles can deliver a huge capacity of 135.8 mAh g−1 at a 1 C
discharge rate with a high retention of 77% after 741 cycles and a satisfactory
capacity of 105.9 mAh g−1 at 10 C. Cyclic voltammetry measurements corroborate
that the substantially enhanced electrochemical properties are because of enhanced
electronic electrical conductivity and lithium-ion diffusion coefficient, which results
from the optimized morphology and particle size [16].

2.2.17 Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 Hollow
Spherical as Cathode Material for Li-Ion Battery [17]

High reversible capacity, excellent rate property, and satisfactory cycling stability,
is shown by the as-prepared material [17]. The as-prepared material delivers a high
initial discharge capacity of 305.9 mAh g−1 at 28 mA g−1 with columbic efficiency
of 80% [17]. The subsample indicates a stable discharge capacity of 215 mAh
g−1 even at high current density of 560 mA g−1 [17]. The enhanced electrochem-
ical properties are attributable to the stable hierarchical hollow sphere structure and
the suitable contact area between electrode and electrolyte, efficiently enhance the
lithium-ion intercalation and deintercalation kinetics [17]. That the hollow structure
is capable of enabling the layered lithium-rich cathode with an outstanding rate
performance could be thought by us [17]. Apart from, it could be detected that the
subsample HS exhibits a pair of reversible redox peaks at 3.25 V in the second
cycle, in congruent with the decrease and oxidation reaction of Mn3+/Mn4+ (Sathiya
and others [557]), [17].
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2.2.18 The Properties Research of Ferrum Additive
on Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material
for Lithium-Ion Batteries [18]

Through means of cyclic voltammetry (CV), galvanostatic charge/discharge test,
and electrochemical impedance spectroscopy (EIS), the electrochemical properties
of Li[Ni1/3Co(1–x)/3Mn1/3Fex/3]O2 were compared [18]. Electrochemical test results
suggest that Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3]O2 decline charge transfer resistance and
improve Li+ ion diffusion velocity and [18]. The initial discharge specific capacity
of Li[Ni1/3Co0.9/3Mn1/3Fe0.1/3]O2 had been 178.5 mAh/g and capacity retention had
been 87.11% after 30 cycles at 0.1 C, with the battery, which indicates satisfactory
cycle performance [18]. The initial columbic efficiencies and the initial discharge
capacity reaches the highest value when x = 0.1 [18].

2.2.19 Comparative Study of the Electrochemical Properties
of LiNi0.5Mn1.5O4 Doped by Bivalent Ions
(Cu2+, Mg2+, and Zn2+) [19]

Scanning X-ray diffraction and electron microscopy analyses suggest that these
doped LiNi0.45M0.05Mn1.5O4 samples remain the 5 V-positive electrode materials
LiNi0.45M0.05Mn1.5O4 (M = Cu, Mg and Zn)’s spinel structure with an octahedral
morphology [19]. The LiNi0.45Mg0.05Mn1.5O4 and LiNi0.45Cu0.05Mn1.5O4 samples
display excellent rate performance with specific capacities of 98.3 and 92.4 mAh
g−1, respectively, at the charge-discharge rate of 10 C, whilst the
LiNi0.5Mn1.5O4 subsample delivers just 78.9 mAh g−1 at 10 C. Apart from, the
LiNi0.45Cu0.05Mn1.5O4and LiNi0.45Mg0.05Mn1.5O4 samples indicate satisfactory
capacity retention at high temperature (55 °C) with the capacities of 117.6 and
119.5 mAh g−1, respectively, after 100 cycles at 1 C [19].

2.2.20 Nearly Monodispersed LiFePO4F Nanospheres
as Cathode Material for Lithium-Ion Batteries [20]

Through a solid-state route, which is correlated with chemically caused precipita-
tion technique for the first time, almost monodisperse LiFePO4F nanospheres with
high purity are efficiently synthesized [20]. Approximately monodisperse nano-
spheres particles are summarized by the synthesized LiFePO4F with mean particle
size of *500 nm [20]. That the initial discharge capacity is 110.2 mAh g−1 at 0.5
C, after 200 cycles is still preserved 104.0 mAh g−1 with the retention rate of 94.4%
is demonstrated by the results [20]. The excellent cycle performance is primarily
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attributable to the homogeneous nanospheres-like morphology; this homogeneous
is not just beneficial to shorten the transport distance of electrons and ions, though
also enhance the interface area between electrode and electrolyte, and [20]. The
excellent cycle performance could be attributable to the homogeneous
nanospheres-like morphology; this homogeneous is beneficial to enhance the
interface area between electrolyte and electrode, shorten the transport distance of
electrons and ions and improve the power and energy densities of batteries, and
enhance the kinetics of Li ions [20].

2.2.21 Investigation of the Structural and Electrochemical
Performance of Li1.2Ni0.2Mn0.6O2 with Cr-doping
[21]

Cr-doped layered oxides Li[Li0.2Ni0.2–xMn0.6–xCr2x]O2 (x = 0, 0.02, 0.04, 0.06)
were synthesized by high-temperature solid-state reaction and coprecipitation [21].
HRTEM results and XRD patterns suggest that Cr-doped Li1.2Ni0.2Mn0.6O2 and the
pristine indicate the layered stage [21]. The first discharge specific capacity of
Li1.2Ni0.16Mn0.56Cr0.08O2 is 249.6 mAh g−1 at 0.1 C, whilst that of
Li1.2Ni0.2Mn0.6O2 is 230.4 mAh g−1 [21]. The discharge capacity of
Li1.2Ni0.16Mn0.56Cr0.08O2 is 126.2 mAh g−1 at 5.0 C, whilst that of the pristine
Li1.2Ni0.2Mn0.6O2 is about 94.5 mAh g−1 [21]. XPS results indicate that the content
of Mn3+ in the Li1.2Ni0.2Mn0.6O2 could be restrained after Cr doping during the
cycling, which results in restraining formation of better mid-point voltages and
spinel-like structure [21].

2.2.22 An Insight into the Influence of Crystallite Size
on the Performances of Microsized Spherical
Li(Ni0.5Co0.2Mn0.3)O2 Cathode Material Composed
of Aggregated Nanosized Particles [22]

Relationships between the performance and the crystallite size of the microsized
spherical Li(Ni0.5Co0.2Mn0.3)O2 cathode material, which is comprised of aggre-
gated nano-sized primary particles, have been comprehensively researched [22].
The electrochemical attributes of Li(Ni0.5Co0.2Mn0.3)O2, including discharge
capacity, thermal stability, and rate performance, are closely linked to the crystallite
size [22]. Through that of crystallite size, the retention of discharge capacity is
dictated in Li(Ni0.5Co0.2Mn0.3)O2 after 100 cycles [22].
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2.2.23 Synthesis and Electrochemical Performances
of High-Voltage LiNi0.5Mn1.5O4 Cathode Materials
Prepared by Hydroxide Co-precipitation Method [23]

X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical
measurements were undertaken to LiNi0.5Mn1.5O4 cathode material, which is pre-
pared describe [23]. Electrochemical tests at 25 °C indicate that the
LiNi0.5Mn1.5O4 cathode material, which is prepared after annealing at 600 °C, has
the optimal electrochemical performances [23]. The initial discharge capacity of
prepared cathode material delivers 113.5 mAh g−1 at 1 C rate in the variety of 3.50–
4.95 V, and the subsample possesses 96.2% (1.0 C) of the initial capacity after 50
cycles [23]. The discharge capacities of obtained cathode material could be
maintained at about (0.1 C) 145.0, (0.5 C) 113.5, (1.0 C) 126.8 and 112.4 (2.0 C)
mAh g−1, the corresponding initial coulomb efficiencies maintain above 95.2 (0.1
C)%, 95.0 (0.5 C)%, 92.5 (1.0 C)% and 94.8 (2.0 C)%, respectively under various
rates with a cut-off voltage variety of 3.50–4.95 V at 25 °C [23].

2.2.24 Highly Enhanced Low-Temperature Performances
of LiFePO4/C Cathode Materials Prepared by Polyol
Route for Lithium-Ion Batteries [24]

Based on 25 to −20 °C, the electrochemical performance of the LiFePO4/C, which
polyol route prepared, had been examined at a temperature variety [24]. In contrast
to commercial ones, as-prepared LiFePO4/C indicates a considerably better
low-temperature performance with a reversible capacity of 30 mAh g−1 even at 5 C
under −20 °C and a capacity retention of 91.1% after 100 cycles at 0.1 C under
0 °C [24].

2.2.25 Synthesis and Characterization of Nanocomposites
Based on Poly(3-Hexylthiophene)-Graft-Carbon
Nanotubes with LiNi0.5Mn1.5O4 and Its Application
as Potential Cathode Materials for Lithium-Ion
Batteries [25]

The nanocomposite, which is premised doped spinel LiNi0.5Mn1.5O4 (LNMO) and
on P3HT-g-CNTs, have been fabricated through mixing process [25]. The structure
and morphologies of LNMO/P3HT-g-CNTs nano-composites have been carried out
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by SEM, TEM and XRD, as reasonably well [25]. The structure and morphology of
the electrode were typified employing XRD, TEM and SEM [25]. Through elec-
trochemical impedance spectroscopy and cyclic voltammetry, the electrochemical
performance of LNMO/P3HT-g-CNTs nano-composites as cathode materials of
lithium-ion batteries were examined and showed the high diffusion of lithium ions
in the charge-discharge process [25]. That the electrochemical reaction of LNMO/
P3HT-g-CNTs nano-composites is better than that of LNMO/VC materials as a
consequence of high diffusion of lithium ions in the charge-discharge process is
revealed by these results [25].

2.2.26 Lithium-Sulphur Batteries Based on Biological 3D
Structures [26]

Enough space is offered by this 3D electrode for sulfur [26]. The electrode structure
enables high sulfur loading [26]. The resultant novel cathode configuration enables
reaching quite high sulfur area loading of 4.9 mg/cm2 which is nearly four times
more than in the case of a standard coated electrode [26]. Throughout cycling in
comparison with a standard electrode, the electrode establishes high stability and
the electrode structure reaches considerably greater square capacity, exceeded 3.0
mAh/cm2 despite the high sulfur loading [26]. The results indicate that the 3D
structured electrode establishes a stable plateau at 2.4 V including its stability [26].

2.2.27 Carbon-Coated LiFePO4–Carbon Nanotube
Electrodes for High-Rate Li-Ion Battery [27]

A fruitful cathode material for high-rated lithium-ion batteries is Olivine
LiFePO4 (LFP) [27]. A serious drawback of low electrical conductivity and slug-
gish transportation of Li+ ions, which slows down hence the retention capacity of
battery and the chemical reactions had been confronted by Olivine [27]. A mixing
of carbon nanotubes (CNTs) on the composite electrode had been examined to
improve the electrochemical performance of nanocomposite LiFePO4/C [27]. An
increase of DLi had been detected with the increase of CNT quantity in electrode
composite [27]. Upon 200 cycles, an excellent performance in rate capability and
cycling test had been shown by the composite electrode LFP/C/10% CNTs; a
retention capacity of 98% had been detected [27].
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2.2.28 Recent Advances on Fe- and Mn-Based Cathode
Materials for Lithium and Sodium Ion Batteries [28]

The ever-increasing market of electrochemical energy storage impels the
advancements on environment-friendly and cost-efficient battery chemistries [28].
The development of cathode materials, which is based upon Earth’s plentiful ele-
ments (Fe and Mn), largely determines the prospects of the batteries [28]. The
development of a high-performance and cheap battery necessitates the advance of
the anode part [28]. Prospects and issues are outlined to direct the possible
development of high-performance and cost-efficient cathode materials for future
rechargeable batteries [28]. Mn-based cathodes for Li-ion batteries and a critical
criterion for the development of future Fe-is to attain similar or even greater energy
densities [28]. That this review can inform Mn-based cathode materials and readers
of the rationality and priority of Fe-as candidates for future Li-ion batteries and
SIBs, and call for additional efforts to satisfy this aim is hoped by us [28].
Considering the cost’s elemental relative abundance, Fe-based and Mn-cathode
materials are hence preferable decisions, and the cost’s sodium analogues are
attracting considerably attention, as they would allow the future of Li-free SIBs,
which might be optimal decisions for large-scale applications [28]. We assume
better development of Fe and understanding-and Mn-based cathode materials will
help to make rechargeable Na-ion and lithium batteries cheaper, better, and greener
[28].

2.3 Pristine, Layered, Cathode Materials, Samples,
Coating Layer

2.3.1 BiFeO3-Coated Spinel LiNi0.5Mn1.5O4 with Improved
Electrochemical Performance as Cathode Materials
for Lithium-Ion Batteries [29]

BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared through the structure,
morphology and a moist chemical technique, and electrochemical performance of
the materials were researched [29]. Cubic spinel structure with space group of
Fd3m is shown by all BiFeO3-coated LiNi0.5Mn1.5O4 materials [29]. The coating of
1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 displays a substantial
enhancement in specific capacity, rate performance, and cyclic stability [29]. The
coating of BiFeO3 has no apparent impact on the crystal structure of
LiNi0.5Mn1.5O4 [29]. 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode indicates
excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8

112 2 Cathode Materials, Samples, Pristine, Layered, Doping …



mAh g−1 at 1, 2, 5, and 10 C, respectively, which is greater than that of
LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g−1, respectively) [29]. The surface
coating of BiFeO3 efficiently decreases charge transfer resistance and impedes side
reactions between electrolyte and active materials and induces the enhanced elec-
trochemical performance of LiNi0.5Mn1.5O4 materials [29]. That the rate perfor-
mance of the LNMO electrode is substantially enhanced after being coated with 1.0
wt% BiFeO3 is revealed by these results [29].

2.3.2 Li-Ion-Conductive Li2TiO3-Coated Li
[Li0.2Mn0.51Ni0.19Co0.1]O2 for High-Performance
Cathode Material in Lithium-Ion Battery [30]

Li2TiO3 is utilized as a new coating material to alter Li(Li0.2Mn0.51Ni0.19Co0.1)
O2 electrode to improve the electrochemical performance of the host material [30].
The subsample coated with optimal cyclability (discharge capacity of 207.1 mAh
g−1 at 0.5 C after 100 cycles), 3 wt% Li2TiO3 displays the highest rate capability
(169.9 mAh g−1 at 2 C rate and 149.1 mAh g−1 at 5 C rate), and enhanced initial
columbic efficiency (69.5%) in the voltage variety of 2.0–4.8 V [30]. The elec-
trochemical impedance spectroscopy (EIS) tests confirm that the suitable
Li2TiO3 coating layer can efficiently restrain the increased impedance of the host
electrode [30]. That the efficient Li+-conductive Li2TiO3 coating layer can sustain
the host structure, restrain the undesirable surface side reactions on the electrode
surface, which the EIS tests demonstrated, and safeguard the electrode surface from
HF attack, is-confirmed by the charge discharge curves [30].

2.3.3 Na-Doped Layered LiNi0.8Co0.1Mn0.1O2 with
Improved Rate Capability and Cycling Stability [31]

That Na-doped LNMCOs deliver a rate capability and cycling stability at high
cut-off voltages of 4.3 and 4.5 V that are more efficient than those of undoped
LNMCO is shown by electrochemical measurements [31]. Electrochemical impe-
dance spectroscopy (EIS) measurement reveals that Na doping reduces both the
impedance of the charge transfer and the solid electrolyte interface layer [31]. The
superior electrochemical performances of Na-doped LNMCOs are attributable by
us to a pillared structure; this structure simultaneously favours the amelioration of
cycling stability and Li+ mobility [31].
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2.3.4 ZnO-Coated LiMn2O4 Cathode Material
for Lithium-Ion Batteries Synthesized
by a Combustion Method [32]

Through a combustion technique, which employs glucose as fuel, ZnO-coated
LiMn2O4 cathode materials were prepared [32]. Through X-ray diffraction (XRD),
the stage structures, size of particles, electrochemical performance of pristine, and
morphology, and ZnO-coated LiMn2O4 powders are researched in detail, scanning
electron microscopy (SEM), transmission electron microscopy (TEM), cyclic
voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic
discharge/charge test, and X-ray photoelectron spectroscopy (XPS) [32]. Rate
performance and galvanostatic charge/discharge test revealed that the ZnO coating
can enhance the capacity and cycling performance of LiMn2O4 [32]. Upon 500
cycles at 0.5 C. Apart from, a satisfactory rate capability at various current densities
from 0.5 to 5.0 C could be acquired, the 2 wt% ZnO-coated LiMn2O4 subsample
showed an initial discharge capacity of 112.8 mAh g−1 with a capacity retention of
84.1% [32].

2.3.5 Enhanced Electrochemical Properties and Thermal
Stability of LiNi1/3Co1/3Mn1/3O2 by Surface
Modification with Eu2O3 [33]

The Eu2O3-coated subsample reveals better electrochemical performances and
thermal stability than that of the pristine one [33]. The Eu2O3-coated LiNi1/3Co1/
3Mn1/3O2 cathode reveals stable cycleability with capacity retention of 92.9%,
which is greater than that (75.5%) of the pristine one in voltage variety 3.0–4.6 V.
Analysis from the electrochemical measurements demonstrates that the remarkably
enhanced performances of the surface-modified composites are primarily attributed
to the presence of Eu2O3-coating layer, which can effectively restrain increased
impedance and the undesired side reaction, and improve the systemic stability of
active material after 100 cycles at 1 C [33]. In Ar-filled glove box, the both cells
were disassembled and the electrodes were immersed into DEC solution respec-
tively after 100 cycles [33]. The obtained results show that the presence of
Eu2O3 on LiNi1/3Co1/3Mn1/3O2 surface plays important roles in declining the
interfacial impedance, fostering kinetic behaviours of Li ions, suppressing reactivity
between electrolyte and electrode and enhancing systemic stability [33].
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2.3.6 Surface Modification of Cathode Material
0.5Li2MnO3�0.5LiMn1/3Ni1/3Co1/3O2 by Alumina
for Lithium-Ion Batteries [34]

Preliminary discharge specific capacity of 211.7 mAh g−1 between 2.0 and 4.8 is
delivered by the 2-wt% coated subsample at a rate of 1 C V with an initial columbic
efficiency of 73.2% as a cathode material for lithium-ion batteries [34]. The results
displays the highest discharge specific capacity of 206.2 mAh g−1 with 97.4%
capacity retention after 100 cycles considerably elevated rate capability and at
compared to uncoated material [34]. More superior rate property and the excellent
cycling stability could be attributed to alumina coating layer, which has a surface
stabilization effect on these cathode materials, lessening the break-up of metal ions
[34]. Cyclic voltammetry researches and the electrochemical impedance suggest
that coated by alumina enhanced the kinetic performance for lithium-rich layered
materials, demonstrating a prospect for practical lithium battery application [34].
That lithium-rich layered materials are comprised of Li2MnO3 element and
LiMO2 element to form a homogeneous solid solution structure (Lee and
Manthiram [388]; Tabuchi and others [389]) is usually thought by scholars [34].
Through hydrothermal technique, 5Li2MnO3�0.5LiMn1/3Ni1/3Co1/3O2 cathode
material had been prepared and a thin layer of alumina had been efficiently coated
on the surface of material, which is prepared, under the hydrolysis of aluminium
isopropoxide which could be detected by TEM images [34].

2.3.7 Enhanced High Power and Long Life Performance
of Spinel LiMn2O4 with Li2MnO3 Coating
for Lithium-Ion Batteries [35]

In contrast with the pristine subsample, 3 wt% Li2MnO3-coated subsample reveals
an excellent cycle performance with a capacity retention of 94.17% after 500 cycles
at 25 °C and 89.75% after 200 cycles at 55 °C [35]. An excellent rate performance
with a capacity of 97.6 mAh g−1 at 12 C, which could be primarily attributable to
the stable stage interface between host LiMn2O4 material and Li2MnO3 coating
layer is shown by the composite material [35]. An efficient way to improve the
electrochemical performance of LiMn2O4 is the functionalized Li2MnO3 coating
[35]. There is no further peak corresponding to Li2MnO3 that could be detected;
this peak which could be attributable to its tiny amount [35]. The electrochemical
results indicate that the 3 wt% Li2MnO3-coated subsample introduces excellent
electrochemical performances compared with the pristine one, delivering a dis-
charge capacity of 97.6 mAh g−1 at 12 C, with a capacity retention of 94.17% after
500 cycles at 25 °C and 89.75% after 200 cycles at 55 °C [35].
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2.3.8 Research Progress in Improving the Cycling Stability
of High-Voltage LiNi0.5Mn1.5O4 Cathode
in Lithium-Ion Battery [36]

High-voltage lithium-ion batteries (HVLIBs) are regarded as fruitful tools of energy
storage for hybrid electric vehicle, electric vehicle, and other high-power equipment
[36]. High-voltage lithium-ion batteries (HVLIBs) with moderate theoretical dis-
charge capacity, stable high discharge platform, and high thermodynamic stability,
provide novel possibilities for next batteries with high energy density [36, 513, 561,
562]. Lithium nickel manganese spinel LiNi0.5Mn1.5O4 (LNMO) cathode is the
most fruitful candidate among the 5 V cathode materials for HVLIBs because of its
flat plateau at 4.7 V. Nevertheless, the degradation of cyclic performance is quite
serious when LNMO cathode operates over 4.2 V [36]. We summarize many
techniques for improving the cycling stability of LNMO cathodes in lithium-ion
batteries, which comprises doping, electrolyte altering, cathode surface coating, and
other techniques [36].

2.3.9 Improvement in the Electrochemical Performance
of a LiNi0.5Mn0.5O2 Cathode Material at High Voltage
[37]

The results of XRD, Rietveld refinement, SEM and XPS measurements confirmed
that Ca-doping can lower the quantity of Li/Ni cation mixing and increase the
stability of the structure [37]. The results of electrochemical measurements indicate
that a 3 mol% Ca-doping displays the optimal electrochemical performance, which
comprises the optimal cycle stability and rate performance and the highest capacity
[37]. Ca-doping had been not detected to affect the morphology or oxidation states
of the LiNi0.5Mn0.5O2 [37]. The electrochemical measurements revealed that the
pristine LiNi0.5Mn0.5O2 material has the lowest discharge capacity of 88.6 mAh
g−1 between 4.5 V and 3 at a constant density of 0.2 C; this C had been enhanced
38% by doping with 3 mol% of Ca [37]. The capacity retention of the 3 mol%
Ca-doping is 20% greater than that of the pristine LiNi0.5Mn0.5O2 material in the
voltage variety of 3.0–4.5 V. Furthermore, we examined the source of the
enhancement of the electrochemical properties from Ca-doping [37].
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2.3.10 High Energy Density and Lofty Thermal Stability
Nickel-Rich Materials for Positive Electrode
of Lithium-Ion Batteries [38]

We have prepared a core-shell material, which is comprised of a monoclinic (C2/m)
Li2MnO3 shell and a core of NCM811 (R-3m), to circumvent this barrier [38]. That
core-shell is quite various from the traditional core-shell materials [38]. The tra-
ditional core-shell materials are layered R-3 m structures which are instable at state
(>4.5 V) because of the high repulsion between the two oxygen atoms facing every
other across the empty Li site, which is delithiated highly, whilst our synthesized
material could be safely cycled at high upper cutoff potential of 4.7 V with high
capacity retention [38]. Based on 4.3–4.7 V. Differential scanning calorimetry
(DSC) results indicate that the exothermic peak of the core-shell structured material
seems at 360 °C with a heat evolution of 575.1 J g−1, whilst that of the pristine
material seems at 250 °C with a heat evolution of 239.1 J g−1, the upper cutoff
potential is elevated [38].

2.3.11 Effects of Doping Al on the Structure
and Electrochemical Performances of Li
[Li0.2Mn0.54Ni0.13Co0.13]O2 Cathode Materials [39]

That all the materials revealed surface morphology and comparable XRD patterns
had been confirmed by the results [39]. Nonetheless kept a discharge capacity of
135.6 mAh g−1at 5.0 C. and the discharge capacity had been 265.2 mAh g−1 at 0.1
C [39]. The capacity retention can still be 58.2 and 66.8% after 50 cycles at 1.0 and
2.0 C, respectively [39]. Electrochemical impedance spectra results demonstrated
that cycling performance and the rate capability, which is enhanced remarkably, can
be attributed to enhanced reaction kinetics and the low charge transfer resistance
[39].

2.3.12 Synergistic Effect of Magnesium and Fluorine
Doping on the Electrochemical Performance
of Lithium-Manganese Rich (LMR)-Based
Ni–Mn–Co–Oxide (NMC) Cathodes for Lithium-Ion
Batteries [40]

Through combustion technique, which is followed by fluorine doping by solid-state
synthesis, Mg-doped-LMR-NMC (Li1.2Ni0.15–xMgxMn0.55Co0.1O2) is synthesized
[40]. Mg–F-doped LMR-NMC (Mg 0.02 mol) composite cathodes indicates
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excellent discharge capacity of *300 mAh g−1 at C/20 rate while pristine
LMR-NMC indicates the initial capacity around 250 mAh g−1 in the voltage variety
between 2.5 and 4.7 V. Mg–F-doped LMR-NMC indicates lesser Ohmic and
charge transfer resistance, cycles reasonably well, and delivers a stable high
capacity of *280 mAh g−1 at C/10 rate [40]. In Mg–F-doped LMR-NMC, the
voltage decay which is the main problem of LMR-NMC is mitigated compared to
pristine LMR-NMC [40]. That a handful nanometer-thick Lipon film is an efficient
way to enhance the interfacial stability against high voltage cycling, which gives
rise to better high C-rate performance, greater usable capacity [440], and cycle life,
is demonstrated by researches [40].

2.3.13 Effect of Sonication Power on Al2O3 Coated
LiNi0.5Mn0.3Co0.2O2 Cathode Material for LIB [41]

In battery performance, these difficulties mainly linked with cathode materials, an
amelioration in cathode materials might cause significant transformations [41]. To
circumvent cycle life issue, which coates Al2O3 on LiNi0.5Mn0.3Co0.2O2 cathode
material, which sol generated, gel technique [41]. At 600 °C, last heat treatment for
Al2O3 crystallization had been done for 4 h. X-ray (XRD) diffraction measurements
revealed that the material had a layered structure, which is ordered reasonably
well-ordered layered structure and Al had been not in the LiNi0.5Mn0.3Co0.2O2 after
the second gel is obtained [41]. Improved cycling performance is demonstrated by
Al2O3 coated materials compared to the pristine material [41]. It is thought that, this
amelioration is induced by the fact that Al2O3 layer prevents direct contact between
electrolyte and reducing decomposition reactions and active material [41].

2.3.14 Improved Electrochemical Performance of NaAlO2-
Coated LiCoO2 for Lithium-Ion Batteries [42]

The NaAlO2 layer is coated on the LiCoO2 particles efficiently [42]. The enhanced
cycling stability and rate capability at a high cut-off voltage of 4.5 V versus Li+/Li
is shown by NaAlO2-coated LiCoO2 materials [42]. NaAlO2-coating layer acts as a
physical barrier; this barrier separates the LCO electrode and electrolyte, which will
restrain the oxidation of solvents, the evolution of oxygen at high cut-off voltage,
and break-up of cobalt ions [42]. Two-dimensional ion diffusion channel for lithium
ions, which results in amelioration of electrochemical performance for LiCoO2,
could be offered by the NaAlO2 layer [42]. It could be observed that all samples
display the comparable diffraction peaks, matching reasonably well with R-3m
space group (JCPDS No. 50-0653) and a-NaFeO2-layered structure, and no
diffraction peaks from possible impurities (e.g., NaAlO2, Al2O3) in all samples were
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observed [42]. It could be observed that the NA-coated LCO samples indicate a
slight lower capacity than the pristine one; particularly, the capacity of
LCO@NA-4% is 10% smaller than that of pristine LCO [42].

2.3.15 A Ternary Oxide Precursor with Trigonal Structure
for Synthesis of LiNi0.80Co0.15Al0.05O2 Cathode
Material [43]

Through calcining Ni–Co–Al composite oxalates formed by employing a facile
chemical strategy, a Ni–Co–Al ternary oxide precursor with a trigonal structure,
which could be utilized to synthesize LiNi0.8Co0.15Al0.05O2 cathode material, had
been prepared [43]. The LiNi0.8Co0.15Al0.05O2 cathode material, which is calcined
at a temperature as low as 650 °C, had satisfactory electrochemical performance
with an initial discharge capacity of 183.9 mAh g−1 [43]. Through traditional
solid-state technique, the LiNi0.8Co0.15Al0.05O2 cathode material is synthesized, as
reasonably well [43]. That investigation offers a facile way to synthesize layered
cathode material with satisfactory electrochemical performance at a lower calcining
temperature [43]. That the electrochemical properties of Ni-rich cathode material,
which traditional solid-state technique prepared, are not good, which is primarily
attributed to the inhomogeneous distribution of transition metal ions, despite
repeated mechanical ball milling before calcining is confirmed by these results [43].

2.3.16 LiMO2@Li2MnO3 Positive-Electrode Material
for High Energy Density Lithium-Ion Batteries [44]

Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111)’s capacity of 155 mAh g−1 is fairly low, and
cycling at potentials above 4.5 V gives rise to rapid capacity deterioration [44].
A successful synthesis of lithium-rich layered oxides (LLOs) with a shell of
Li2MnO3 (C2/m) (the molar ratio of Ni, Co to Mn is the identical as that in NCM
111) and a core of LiMO2 (R-3m, M = Ni, Co) is indicated by us [44]. The
core-shell material Li1.15Na0.5(Ni1/3Co1/3)core(Mn1/3)shellO2 could be cycled to a
high upper cut-off potential of 4.7 V, delivers a high discharge capacity of 218
mAh g−1 at 20 mA g−1, and possesses 90% of its discharge capacity at
100 mA g−1 after 90 cycles; the use of this material in Li-ion batteries can con-
siderably increase their energy density [44].
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2.3.17 Enhanced Electrochemical Performances
of Li2MnO3 Cathode Materials by Al Doping [45]

The Al-LMO subsample displays a considerable amelioration on the rate capability
and cycling stability, which is compared to the LMO subsample [45]. The differ-
ential capacity versus voltage (dQ/dV) results show that Al doping might be to
downturn the rate of reconfiguration upon cycling and deter the first charge stage
reconfiguration from a layered stage to a cubic spinel-like stage [45].
Electrochemical impedance spectroscopy (EIS) results corroborate that Al doping
decreases the charge-transfer resistance and enhances the electrochemical reaction
kinetics [45]. Li-rich Mn-based layered compounds have been regarded as one of
the most fruitful cathode material for future Li-ion batteries due to their advantage
of high reversible capacity (>200 mAh g−1), which is charged when above 4.5 V
[45, 476, 489–491].

2.3.18 Improving the Electrochemical Performance
of LiNi0.5Co0.2Mn0.3O2 by Double-Layer Coating
with Li2TiO3 for Lithium-Ion Batteries [46]

The dual-layer Li2TiO3 coating of LiNi0.5Co0.2Mn0.3O2 (NCM523) compound has
been efficiently synthesized by a facile technique for the first time [46]. The
enhanced electrochemical performance is attributable to the stable dual-layer
Li2TiO3; this dual-layer serves as a protective layer that prevents side reactions
between electrode and electrolyte and a 3D-diffusion pathway for Li+ ions [46].
A fruitful technique to enhance rate capability and cycle performance of NCM523
is the double-layer coating by Li2TiO3 [46]. The surface of the double-layer coated
subsample N5@ (0.5 + 0.5)% LT is smoother than those of the single-layer and
more homogeneous coated samples as could be observed from the SEM images
[46].

2.3.19 Modification Research of LiAlO2-Coated
LiNi0.8Co0.1Mn0.1O2 as a Cathode Material
for Lithium-Ion Battery [47]

Through hydrolysis-hydrothermal technique, the LiNi0.8Co0.1Mn0.1O2 with
LiAlO2 coating had been obtained [47]. That the LiAlO2 layer had been nearly
totally covered on the surface of particle had been demonstrated by the results, and
the thickness of coating had been about 8–12 nm [47]. At 40 °C, side reaction
between electrolyte and composite had been repressed by the LiAlO2 coating; the
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electrochemical performance of the LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 had been
enhanced [47]. Upon 100 cycles at room temperature and 87.4% capacity retention
after 100 cycles at 40 °C, the LiAlO2-coated subsample delivered a high discharge
capacity of 181.2 mAh g−1 (1 C) with 93.5% capacity retention [47].

2.3.20 Aluminum Doped Na3V2(PO4)2F3 via Sol-Gel
Pechini Method as a Cathode Material
for Lithium-Ion Batteries [48]

The solid solution series Na3V2–xAlx(PO4)2F3 (where x = 0, 0.02, 0.05, and 0.1)
powders have been prepared employing the Pechini technique to investigation the
effect of aluminium doping on the electrochemical properties of these cathode
materials for Li-ion batteries [48]. Through X-ray diffraction, differential and
thermo-gravimetric analysis, specific surface area, the structure, morphology, and
composition, of the compounds were examined, and pore size analysis, which
employs Brunauer-Emmett-Teller-Barret-Joyner-Halenda techniques, scanning
electron microscopy, elemental chemical analysis with caused coupled
plasma-optical emission spectrometry, and charge/discharge galvanostatic experi-
ments [48]. The stage with 0.05 mol of aluminium gave the optimal consequence
electrochemical charge/discharge capacities of 123–101 mAh/g with a capacity
retention of 82% and cell voltage of 4.4 V versus Li, compared to undoped material
which gave 128–63 mAh/g, and 49% capacity retention [48]. Improved electro-
chemical performance maybe attributed to enhanced structure stability had been
demonstrated by Al-doped samples compared to the undoped material [48].

2.3.21 Co-precipitation Synthesis of Precursor with Lactic
Acid Acting as Chelating Agent
and the Electrochemical Properties
of LiNi0.5Co0.2Mn0.3O2 Cathode Materials
for Lithium-Ion Battery [49]

Through coprecipitation, which employs lactic acid as the environmentally friendly
chelating actor, hydroxide precursor Ni0.5Co0.2Mn0.3(OH)2 had been efficiently
prepared [49]. Through sintering the mixture of Li2CO3 and as-prepared
Ni0.5Co0.2Mn0.3(OH)2 precursor, the LiNi0.5Co0.2Mn0.3O2 cathode materials were
obtained [49]. Through employing X-ray diffraction (XRD), land battery tester, and
field-emission scanning electron microscopy (FE-SEM), electrochemical perfor-
mances of LiNi0.5Co0.2Mn0.3O2 cathode materials, and Morphological, were
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examined [49]. The results revealed that the quasi-spherical LiNi0.5Co0.2
Mn0.3O2 with the size of about 5 lm showed the excellent electrochemical per-
formance when its Ni0.5Co0.2Mn0.3(OH)2 precursor had been synthesized at the
molar ratio of 1:1 between transition metal ion and lactate ion [49].

2.3.22 Effect of Nitridation on LiMn1.5Ni0.5O4 and Its
Application as Cathode Material in Lithium-Ion
Batteries [50]

Through a solid-state reaction, which nitridation followed, Nitridated
LiMn1.5Ni0.5O4 had been prepared to examine the effect of nitrogen on the electro-
chemical and systemic performance of LiMn1.5Ni0.5O4 cathode material for
lithium-ion batteries [50]. Electrochemical researches on the nitridated
LiMn1.5Ni0.5O4 had been carried out employing the galvanostatic
charge-electrochemical impedance spectroscopy and discharge process [50]. Rate
capability and enhanced cycleability had been shown by the nitridated
LiMn1.5Ni0.5O4 compared with LiMn1.5Ni0.5O4, which originated from the enhanced
electric conductivity, which the increasing number of Mn3+ hopping carriers
including increasing proximity between active Ni redox centres triggered [50].

2.3.23 The Application of a Water-Based Hybrid Polymer
Binder to a High-Voltage and High-Capacity Li-Rich
Solid-Solution Cathode and Its Performance
in Li-Ion Batteries [51]

Uniform cathode films were prepared with a Li-rich solid-solution
(Li[Li0.2Ni0.18Co0.03Mn0.58]O2) cathode material and a water-based hybrid poly-
mer binder (TRD202A, JSR, Japan), which is comprised of acrylic polymer and
carboxymethylcellulose, fluoropolymer, and conducting carbon additive [51].
A cathode film, which is prepared with the water-based hybrid polymer binder,
revealed long-term validity including greater electrochemical resistance when
compared with a cathode film, which employs the traditional polyvinylidene
difluoride binder, after 80 cycles in the chemical environment of lithium ion
cells [51].
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2.3.24 Na-Doped LiMnPO4 as an Electrode Material
for Enhanced Lithium-Ion Batteries [52]

Via a straightforward sol-gel technique, Li1–xNaxMnPO4 with various mole ratios
(0.00 � x � 0.05) of sodium is synthesized [52]. The discharge capacity of
Li1–xNaxMnPO4 differs relating to mole ratios of sodium incorporated [52]. In
Li0.97Na0.03MnPO4, which is greater than that of pristine LiMnPO4 and other
Na-incorporated LiMnPO4, the maximal discharge capacity of 92.45 mAh g−1 is
detected [52].

2.3.25 Synthesis of Diverse LiNixMnyCozO2 Cathode
Materials from Lithium-Ion Battery Recovery
Stream [53]

In some nations, a huge quantity of spent Li-ion batteries is being landfilled every
year; in order to recover and re-use critical materials, an a high-efficiency Li-ion and
cheap battery recovery process had been devised at Worcester Polytechnic Institute
[53]. It had been revealed that high performance Ni1/3Mn1/3Co1/3(OH)2,
Ni0.5Mn0.3Co0.2(OH)2, LiNi1/3Mn1/3Co1/3O2 and Ni0.6Mn0.2Co0.2(OH)2 precursors,
LiNi0.5Mn0.3Co0.2O2, LiNi0.6Mn0.2Co0.2O2 cathode materials could be synthesized
from the leaching solutions of a Li-ion battery recovery stream [53].
Electrochemical tests results shown that all cathode materials synthesized from
spent Li-ion battery recovery streams carried out at a discharge capacity greater
than 155 mAh/g at first cycle of 0.1 C, and after 100 cycles at 0.5 C, with over 80%
of the capacity preserved [53]. An increase in Li-ion batteries signifies that there
will be more battery waste in the near future [53]. That LiNi1/3Mn1/3Co1/3O2,
LiNi0.6Mn0.2Co0.2O2, and LiNi0.5Mn0.3Co0.2O2, have excellent specific rate
capacities is demonstrated by the electrochemical test results [53].

2.4 Conclusion

Without an further mixing process of lithium salts and retains homogeneous cation
distribution, the material could be obtained with the coprecipitation of Li+ with
transition metal ions [1]. The material delivers enhanced electrochemical perfor-
mances such as cycle stability and rate capability, as shown by a high reversible
capacity of 104.0 mAh g−1 at 10 C, and more than 98.5% capacity retention after
100 cycles at 1 C. On the basis of this work, LNMO materials prepared by the
present synthetic route can be a fruitful candidate cathode for high-power Li-ion
batteries [1].
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Hierarchical hollow LiNi0.5Mn1.5O4 microspheres as a 5-V cathode material for
Li-ion batteries has been synthesized by a coprecipitation strategy accompanied
with high-temperature calcinations [2]. The obtained commodities deliver enhanced
electrochemical performances with satisfactory rate capability and cycle stability;
this stability makes it a fruitful cathode candidate for high-energy density Li-ion
batteries [2].

Electrochemical measurements have demonstrated that Ni-Cr codoped samples
display more stable cycling performance than the pure LiMn2O4 [3]. The cycling
performance had been considerably better at high current rates even though the
initial discharge specific capacity of the LiNi0.01Cr0.01Mn1.98O4 cell had been
observed lower than the pure LiMn2O4 [3]. A discharge capacity of 91% of the
initial has been regained upon reducing the current rate to 0.1 C. In contrast with the
pure LiMn2O4, the enhanced capacity retention of LiNi0.01Cr0.01Mn1.98O4 had been
attributable to the inhibition of the Jahn-Teller distortion effect, considerably easier
Li+ ion diffusion because of shortening of the diffusion length and formation of
homogeneous smaller particle size after cycling at 5 C [3].

Spinel LiNi0.5Mn1.5O4 cathode materials were synthesized through a facile
solid-state technique and the impacts of various lithium excess quantities on the
crystalline structure, particle morphology, and electrochemical performance were
systematically examined [4]. The slightly inferior electrochemical performance of
LNMO-10% subsample could be attributed to the greater cation, which mixes more
LixNi1–xO impurity stage and extent [4]. It could be concluded that in solid-state
technique, the lithium excess quantity has little impact on size and particle mor-
phology, and the electrochemical performance is primarily dependent upon the
crystalline structure, more specifically, Mn3+ content (disordering extent), extent,
which mixes cation, and LixNi1–xO impurity quantity (stage purity) [4].

The Sn4+-doped LMNC cathode materials with the enhanced electrochemical
performance were synthesized employing the sol-gel technique [5]. The electro-
chemical performance of Sn4+-doped LMNC cathode has been substantially
enhanced, particularly when the doping quantity of Sn4+ is 0.01 [5]. A faster
Li+ diffusion process and better systemic stability, which are favourable for the
electrochemical performance of the LMNC cathode material is demonstrated by
these [5].

The usage of CNF and the synthetic technique offer an alternative for the syn-
thesis of LiNi0.5Mn1.5O4 cathode materials with greater performance and suggest
their promise in practical applications [6].

The LiNi0.8Co0.15Ti0.05O2 subsample prepared at 800 °C displays a greater
extent of the least cation mixing and ordering hexagonal structure and demonstrates
excellent electrochemical performance with the capacity retention of 86.7% after 30
cycles at 0.2 C. and the discharge capacity of 174.2 mAh g−1 [7].

The integrity of the Li2FeSiO4 crystal structure can be enhanced by strontium
cation doping because of lowered Li/Fe anti-site disorder in the lattice [8]. The 1%
strontium cation-doped Li2FeSiO4/C delivered a high discharge capacity of 181
mAh g−1 at 0.5 C rate as a cathode material of a lithium-ion battery [8]. Li2FeSiO4/C
cathode showed high specific capacity, satisfactory rate performance had been
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cation-doped by the 1% strontium, and stable cycle performance, which is attributed
to the enhanced Li+ diffusion capability, undermined crystal structure stability, and
restrained side reactions between the electrode and electrolyte [8].

Through XRD, SEM, TEM, XPS, galvanostatic discharge/charge test, CV, and
EIS, the structure and electrochemical properties of the materials are examined [9].
That LiNi0.5Mn0.45Ru0.05O2 can deliver a preferable electrochemical performance
is revealed by the electrochemical measurement [9]. The EIS and CV results cor-
roborate that LiNi0.5Mn0.45Ru0.05O2 has a satisfactory reversibility, an enhanced
diffusion coefficient to assure excellent electrochemical performance, and a low
charge-transfer resistance [9].

“The specific discharge capacities of LiCr0.05Ni0.475Mn1.475O3.95F0.05 at 0.1, 0.5,
2, 5, and 10 C were 134.18, 128.70, 123.62, 119.63, and 97.68 mAh g−1,
respectively” [10]. The specific discharge capacity had been 121.02 mAh g−1 after
50 cycles at 2 C, which is of 97.9% the initial discharge capacity [10]. The capacity
retention rate of LiCr0.05Ni0.475Mn1.475O3.95F0.05 had been the largest among the
samples [10]. Cr3+, F− codoped of the materials substantially enhanced the specific
discharge capacity at greater rate, enhanced the cycling stability, lowered the
impedance value, and enhanced the reversibility of lithium ions [10].

Li3YxV2(PO4)3/C composites with various quantities of Y-doping were effi-
ciently prepared by a rheological stage reaction process [11]. Y-doping and the
carbon coating have considerably impact on the electrochemical properties of
Li3V2(PO4)3 [11]. The optimal electrochemical performance with the initial dis-
charge capacity of 158.75 mAh g−1 and the capacity of 148.99 mAh g−1 after 50
cycles at a current density of 0.1 C. Hence, carbon coating and metal ions doping
are efficient ways to attain materials of greater capacity and better cycling stability
is shown by Li3Y0.03V2(PO4)3/C among all materials [11].

LiMn2O4 had been coated by new transition metal alloy (Mx = PtAu) with
enhanced high rate performances have been efficiently designed and synthesized [12].
The smaller potential variations of alloy functionalized-LiMxMn2–xO4 cathodes
indicate smaller polarization because of faster insertion/extraction of Li+ ions in the
spinel structure [12]. The amelioration in diffusivity of Li+ ions might be attributable
to three reasons [12]. The vacancies at the octahedral sites created byMx coating offer
further diffusion pathways for lithium ions [12]. The increase in lattice parameter after
Mx coating helped faster lithium diffusion [12]. Such improvements are because of
enhanced lithium and electronic electrical conductivity diffusivity, which results from
transition metal alloy coating [12]. That the PtAu0.02 coating particles act as a pro-
tective layer can be a novel viable strategy for generating advanced Li-ion battery
cathodes with enhanced electrochemical properties and that prevents the oxygen from
outgoingwhich contributed tomain improvements is demonstrated by the results [12].

In the compound, increased the relative content of aluminium can enhance
structure stability and decline the extent of cation mixing [13]. Changing the rel-
ative content of aluminium properly is an efficient and straightforward technique to
enhance the electrochemical performance of LiNi0.56Co0.19Mn0.24Al0.01O2 cathode
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composite materials for lithium-ion batteries [13]. Structure and rate capacities of
the novel material need to be additional enhanced in later investigation [13].

The resulting S0.5 material displays an excellent cycling performance that 91.4%
of its discharge capacity can be preserved after 100 cycles [14]. S0.5 with excellent
rate performance that the discharge capacities of S0.5 subsample are 125.7, 118.1,
111.7, and 96.6 mAh g−1 at 0.2, 0.5, 2, and 5 C [14]. The discharge capacities of
the S0.5 subsample are 80.8 mAh g−1 even at greater rate (i.e., 10 C) [14]. The
middle particle size of S0.5 subsample balances the conflicting of diffusion length in
solid stage and particle agglomeration; this stage gives rise to perfect contacts with
the conductive additive, substantial evident lithium ion diffusion rate, and the
optimum performance [14].

The highest discharge capacity, the most excellent rate capability and the opti-
mal cycling performance is shown by the LR-1.0 among all the samples [15]. The
discharge capacity retention of 93.3% after 50 cycles and the discharge capacity of
266.6 mAh g−1 is shown by the LR-1.0 at 0.1 C [15]. 266.6 mAh g−1’s discharge
capacity can retain at 146.6 mAh g−1 at 2.0 C [15]. That investigation offers a novel
applicable route to synthesize advanced Li-rich layered cathode materials [15].

Through utilizing an enhanced (i.e., calcining-milling-recalcination) calcining
technique, which had been based upon a conventional solid-state synthesis,
micrometer-sized, spherical LiNi0.5Mn1.5O4 had been prepared [16]. The spherical
particles composed a huge number of nano-and/or sub-micrometer-sized primary
particles and showed striking rate capability and cycling performance than the
reference material, which is formed through the conventional synthesis route [16].
A convenient and effective strategy for the solid-state synthesis of
LiNi0.5Mn1.5O4 cathode material is amelioration of the calcining process [16].

A hierarchical hollow spherical lithium-rich, which employs
Li1.2Mn0.54Ni0.13Co0.13O2 cathode material CTAB and sucrose as a soft template,
which is combined with hydrothermal assisted homogenous precipitation technique,
had been efficiently synthesized by us [17]. That this hollow spherical cathode
composite displays high electrochemical performance in terms of reversible
capacity and cycle stability life including rate capacity is shown, in comparison
with the solid sphere subsample, by the results [17]. Especially cycled at
560 mA g−1, the hollow spherical subsample indicates high discharge capacity of
215 mAh g−1 and can attain 143.3 mAh g−1 after 100 cycles [17]. That work offers
an strategy to enhancing cycling ability of the layered lithium-rich cathode and the
rate capacity [17].

Li[Ni1/3Co(1–x)/3Mn1/3Fex/3]O2 (x = 0.0, 0.1, 0.3, 0.5, 0.7, 0.9) cathode materials
have been synthesized through hydroxide coprecipitation technique [18]. A small
quantity of Fe3+ replaced for Co3+ when preparing cathode materials will give
excellent electrochemical performance [18].

Both have a well-defined cubic structure, which includes the P4332 space group,
with Mg2+ and Cu2+ ions replacing Ni2+ occupying the 4b sites is randomly
selected by analyses, LCNM and the LMNM [19]. Especially at a high temperature
(55 °C), LMNM and the LCNM samples both display cycling stability and
excellent rate performance [19].
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Through a solid-state route, which is correlated with chemically caused pre-
cipitation technique for the first time, the tavorite-structured LiFePO4F nanospheres
are efficiently synthesized [20]. Exhibits homogeneous almost monodisperse
nanospheres-like particles with the mean particle size of 500 nm had been based on
FePO4 nanospheres by the LiFePO4F [20]. The Li-ion diffusion coefficient (D) of
LiFePO4F is 1.0 � 10−11 cm2 s−1 computed on account of EIS data [20]. The
excellent cycle performance could be attributable to the homogeneous
nanospheres-like morphology; this homogeneous is beneficial to enhance the
interface area between electrolyte and electrode, shorten the transport distance of
electrons and ions and improve the power and energy densities of batteries, and
enhance the kinetics of Li ions [20].

In contrast with pristine Li1.2Ni0.2Mn0.6O2 cathode material, better cycling and
rate performance and a greater coulomb efficiency is demonstrated by the Cr-doped
Li1.2Ni0.16Mn0.56Cr0.08O2 material [21]. The XRD and XPS results after cycling
indicate that the spinel stage could be restrained after Cr doping in the layered
Li1.2Ni0.2–xMn0.6–xCr2xO2 materials [21]. Electronic electrical conductivity in the
Cr-doped Li1.2Ni0.16Mn0.56Cr0.08O2 material and lower transfer resistance, and
greater structure stability, lithium ion, might be responsible for the better electro-
chemical performance of Li1.2Ni0.16Mn0.56Cr0.08O2 [21].

The calcining temperature had a considerable impact on the crystallite (XS) size
though had little effect on the microstructures including lattice (a, c and V)
parameters, the extent of the cation mixing, and refined density, during the process
of preparing Li(Ni0.5Co0.2Mn0.3)O2 cathode employing a microsized spherical
(Ni0.5Co0.2Mn0.3)(OH)2 precursor, which a high-temperature solid-state technique
in the variety of 750 to 820 °C comprised of aggregated nano-sized particles [22].
The electrochemical properties of the Li(Ni0.5Co0.2Mn0.3)O2 cathode heavily rely
upon its crystallite size [22]. The variability trend of the retention for the electro-
chemical capacity is nearly the identical as that of the retention for the crystallite
size [22].

Through hydroxide coprecipitation technique, the high-voltage spherical
LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries had been efficiently
synthesized [23]. The discharge capacity is 109.2 mAh g−1 at 1.0 C with a cut-off
voltage variety of 3.50–4.95 V at 25 °C and the capacity retention is 96.2% after 50
cycles [23]. Under various rates with a cut-off voltage variety of 3.50–4.95 V at
25 °C, when the obtained LiNi0.5Mn1.5O4 cathode material discharges, the dis-
charge capacities are maintained at about (0.1 C) 145.0, (0.5 C) 113.5, (1.0 C)
126.8 and 112.4 (2.0 C) mAh g−1 and the initial coulomb efficiencies maintain
above 95.2 (0.1 C)%, 95.0 (0.5 C)%, 94.8 (2.0 C)%, respectively and 92.5 (1.0 C)%
[23]. The results might lead to performance amelioration and industrial production
of LiNi0.5Mn1.5O4 cathode materials for 5 V lithium batteries [23].

The low-temperature properties of LiFePO4/C prepared by polyol route were
completely examined [24]. The as-prepared LiFePO4/C summarized an excellent
low-temperature electrochemical properties, delivering 146.7, 128.7, and
109.2 mAh g−1 at 0.1 C under 0, −10, and −20 °C, respectively [24]. That pre-
pared LiFePO4/C can maintain a specific discharge capacity of 133.7 mAh, which
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is recycled g−1 when at 0.1 C under 0 °C, after charge/discharge measurements at
lower targeted temperatures and greater rates [24].

We have efficiently prepared the cathode materials based upon LNMO/
P3HT-g-CNTs through mixing process [25]. The LNMO/P3HT-g-CNTs
nano-composites has been typified and demonstrated a remarkably greater effi-
ciency of and Ni2+/Ni4+ redox couples in comparison to conventional cathodes
based upon LNMO/vulcan carbon [25]. LNMO/P3HT-g-CNTs nano-composites
can act as fruitful cathode materials for the development of potential power lithium
rechargeable batteries with this proof of notion [25].

It had been clearly shown that an easily accessible, environment-friendly and
cheap material of the sea sponge Spongia officinalis could be utilized as a con-
ductive matrix for electrodes of lithium-sulphur accumulators [26]. The biological
material of the sea sponge had been, employing a quite straightforward technique,
converted to a conductive carbon network with high concentration of nanopores on
the surface [26]. In the 3D structured electrode, which is based upon the sea sponge,
we attained exceedingly high loading of sulfur-nearly 5 mg/cm2 even though the
most basic possible electrode slurry, which comprises of the Super P carbon and the
basic binder PVDF, had been utilized [26]. That is presumably because of the
presence of nitrogen inside the 3D carbon matrix; this matrix enhances the poly-
sulphide retention inside the electrode [26].

The current study emphasised the research issue (low electrical conductivity and
sluggish transportation of Li+ ions) on employing olivine LiFePO4 (LFP) as a
cathode material for high-rate lithium-ion batteries [27]. The electrochemical results
revealed that electrode composite LFP/C/10% CNTs delivered a specific capacity of
190 mAh/g at C/10 rate after 200 cycles [27]. An excellent performance at rate
capability had been detected with a capacity near to 200 mAh/g [27]. The gener-
alization of this protocol on the bigger scale can improve the manufacturing of
batteries with greater scored capacity; this capacity is highly desired for automotive
industry applications including electric vehicles [27].

Cathode materials entail removable Li ions as charge carriers, and transition
metal ions serving as redox centres, which account for most of the cost as the
costliest sector of a LIB [28]. Considering the cost’s elemental relative abundance,
Fe-based and Mn-cathode materials are hence preferable decisions, and the cost’s
sodium analogues are attracting considerably attention, as they would allow the
future of Li-free SIBs, which might be optimal decisions for large-scale applications
[28]. That review entails the discussion of most of the Mn-based and Fe-cathode
materials for SIBs and Li-ion batteries, such as polyanion compounds, oxides, and
hexacyanometalates (for SIBs) [28]. It is easy to comprehend the various devel-
opment stages and objectives of cathode materials for SIBs and Li-ion batteries
from the clear-cut comparison [28]. In (1) the intensively examined tactics of
tailoring particle size and constructing conductive composites readily cause further
materials and processing expenses including inadequate volumetric and gravimetric
energy densities, significant issues in this field remain: to satisfy the requirement of
practical applications [28]. Some electrode materials have been indicated for
cycling performance and outstanding rate capability (over 50 °C) by tailoring
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particle shape and size and forming conductive composites in the case of cathodes
for Li-ion batteries [28]. Regarding SIB cathodes, which are experiencing even
quicker advancements with a variety of candidatures being devised, instead of
merely mimicking the host structures of Li+ during synthesis, many novel complex
structures have been introduced to cope with the issues because of the distinct ionic
size and electron configuration of Na+ [28].

The cubic spinel structure with space group of Fd3 m is shown by all
LiNi0.5Mn1.5O4-basedmaterials [29].The1.0wt%BiFeO3 LiNi0.5Mn1.5O4 electrode
displays the excellent cyclic stability with the capacity retention of 89.11% after 100
cycles that is greater than that of the LNMO (77.6%) [29]. The rate capability of 1.0 wt
% BiFeO3 LiNi0.5Mn1.5O4 has been evidently enhanced, displaying discharge
capacities of 85.8 and 74.8 mAh g−1 at 5 and 10 C, respectively [29]. Good cyclic
stability of BiFeO3-coated LiNi0.5Mn1.5O4 electrode and the enhanced rate capability
must be attributable to the surface modification of BiFeO3; this modification impedes
side reactions at electrolyte and reduces the charge transfer resistance and the cathode
[29].

At room temperature, the significant improvements in the initial columbic effi-
ciency, cyclic performance, and rate capability, are accomplished with proper
quantity of Li2TiO3 coating layer [30]. The subsample coated with 3 wt%
Li2TiO3 displays the highest rate capability, enhanced initial columbic efficiency,
and optimal cyclability [30].

We utilized Na doping to Ni-rich, cycling stability of Li-ion batteries and layered
LNMCO (LiNi0.8Mn0.1Co0.1O2) to enhance the rate capability [31]. The electro-
chemical properties of Na-LNMCOs were examined by us, and the results indicate
the excellent rate capability (142 mAh g−1 at 7 C) and cycling stability (94.9% of
capacity-retention rate after 100 cycles) of 0.2Na-LNMCO [31]. For the LNMCO
along with Na doping we can derive rate capability and cycling stability that are
both sound [31].

The enhanced performance of the surface-coated subsample is because the ZnO
coating on the surface of LiMn2O4 can efficiently minimize electrochemical charge
and polarization transfer resistance during discharge/charge cycling [32]. In the
electrode material, the XRD results of the 2 wt% ZnO-coated LiMn2O4 material
after 500 cycles confirmed that ZnO coating enhances the stability of the spinel
structure, making lithium ions efficiently diffuse [32]. ZnO coating enhances the
electrochemical performances of LiMn2O4 comparing with the pristine subsample
in terms of rate capability and cycling [32].

In contrast to the bare LiNi1/3Co1/3Mn1/3O2, stability and better electrochemical
performances are showed by LiNi1/3Co1/3Mn1/3O2@Eu2O3 [33]. Thermal safety,
which is enhanced Notably, is shown by LiNi1/3Co1/3Mn1/3O2@Eu2O3 because of
the stabilized interface [33].

Through hydrothermal technique, 5Li2MnO3�0.5LiMn1/3Ni1/3Co1/3O2 cathode
material had been prepared and a thin layer of alumina had been efficiently coated on
the surface of material, which is prepared, under the hydrolysis of aluminium iso-
propoxide which could be detected by TEM images [34]. Good electrochemical
performance,which comprises the loweredfirst irreversible capacity deterioration and
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the cycling stability, were accomplished forA-LMNCOmaterials and the reversibility
of 2 wt% of A-LMNCO subsample had been the optimal [34]. The 2 wt% of
A-LMNCO subsample still had a discharge specific capacity of 206.2 mAh g−1 after
100 cycles at 1 C rate with a high capacity retention of 97.4%, and the discharge
specific capacity rebuilt to the original 95% ormore assessed at low rates after cycling
at high rates [34]. The alumina coating layer, which acts as a fast electron-conducting
path, efficiently alleviates the side reaction between the electrolyte and the cathode
material, with a low charge-transfer resistance and repress the change of surface
structure [34].

An efficient approach has been introduced to improve cycle ability and rate
capacity of the LiMn2O4 cathode [35]. The structures and electrochemical perfor-
mances of the LiMn2O4 cathodes with various quantities of Li2MnO3 coating were
examined [35]. The results of XPS, and SEM, TEM, highlight that Li2MnO3 has
been efficiently coated onto the surface of LiMn2O4 cathode by the sol-gel route
[35]. An efficient way to enhance the performance of LiMn2O4 cathode materials
for Li-ion batteries is surface modification by Li2MnO3 [35].

The cycling degradation of LNMO at high voltage becomes the largest restrict in
application [36]. Several types of tactics were utilized to lessen cycling degradation;
this degradation can be presented as doping, electrolyte altering, cathode surface
coating, and other efficient techniques [36]. Doping enhanced the cycle perfor-
mance of LNMO primarily through metal ion changing structures, the crystal
compositions, and parameters, including fostering the formation of structure [36].
Through employing the coating layer on the surface of LNMO, cathode surface
coating can efficiently deter the undesirable side reactions, though the coated
technology is complex under normal conditions [36]. Electrolyte altering is an
optimal approach compared with doping and cathode surface coating; it not just
prevents the undesirable side reactions between electrolyte and cathode though
retains easy technology [36]. They are not able to stop the undesirable side reac-
tions even though other techniques can enhance the cycle stable of LNMO in
HVLIBs [36]. Electrolyte altering, and Doping, cathode surface coating, are able to
attain the desired cycling stability in HVLIBs [36]. We outlined these method-
ologies to enhance the cycling stability of LNMO cathodes based upon cyclic
degradation processes and its architectural elements [36]. The inquiries for
high-voltage LNMO cathodes goal to ascertain the ways to enhance service and
cycle performances of LNMO for the life [36]. The cycle performance of LNMO,
which is based upon the synthesis of highly purified LNMO, cycling degradation
mechanism of undesirable reactions between LNMO and electrolyte, and systemic
reversibility of, must be enhanced by us [36]. Electrolyte additives and organic
coating might be satisfactory ways to enhance the cycle performance of LNMO in
multiple modification techniques [36].

The results of systemic analysis revealed that all of the materials have satis-
factory crystallinity, comparable morphology and comparable size distribution [37].
The results of electrochemical measurements indicate that a 3 mol% Ca-doping
displays the optimal electrochemical performance, which comprises the optimal
cycle stability and rate performance and the highest capacity [37]. The charge

130 2 Cathode Materials, Samples, Pristine, Layered, Doping …



transfer resistance of the 3 mol% Ca-doped cathode material is substantially smaller
than that of the un-doped material; this material means that it has a faster
lithium-ion migration rate [37]. 3 mol% Ca-doping can lower Li/Ni cation mixing,
increase the systemic stability, decline the migration resistance, lessen polarization
and enhance the migration rate of the Li-ion, which, in turn, improves the elec-
trochemical properties of LiNi0.5Mn0.5O2 [37].

We have revealed that the materials are core-shell structured, and the core is a
layered LiMO2 stage (R-3 m), whilst the shell is a monoclinic Li2MnO3 stage
(C2/m) by employing the XPS, and XRD, TEM, methods [38]. That the core-shell
structures make Li+/Ni+2 cation disorder less than the pristine material does, and
XPS indicates that the quantity of Ni2+ increases along with the increase of Mn
content is demonstrated by the Rietveld refinements [38]. It is thought make the
composite functionally sounder and its thermal stability greater and that many
Mn+4 in the shell and Ni+2 in the core interdiffuse into the counter parts [38]. The
core-shell-structured materials could be safely cycled to greater upper cutoff
potential of 4.7 V, in contrast to that of the pristine material, just 4.3 V; this
material suggests that the Li2MnO3 shell has considerably enhanced the electro-
chemical performance of NCM811 in terms of energy density and discharge
capacity [38]. The thermal analyses of the highly delithiated materials, which are
prepared by charging a surface-modified material to 4.3 and 4.7 V respectively and
the cells of the pristine and maintaining potential for 2 h, corroborate the greater
stability of the core-shell structured materials [38]. At 360 °C, the exothermic peak
of the surface-modified material seems with a heat evolution of 239.144 J g−1,
whilst those of the pristine material seem at 250 °C with a heat evolution
575.136 J g−1 [38].

FESEM and XRD results of Al-doped materials indicate surface morphology
and the comparable XRD patterns to those of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 [39].
Electrochemical discharge and charge measurements suggest that LNCMAl1 dis-
plays better rate capability, greater discharge capacity, and better cycling perfor-
mance than the other materials [39]. A high reversible capacity of 213.7 and
193.8 mAh g−1 at 1.0 and 2.0 C, respectively is displayed by LNCMAl1 [39]. The
corresponding capacity retention ratio can still be 58.2 and 66.8% after 50 cycles at
1.0 and 2.0 C. EIS results indicate that substituting traces of Al element for Co
element of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 can decline charge-transfer impedance
and improve the reaction kinetics; these kinetics is thought to be the main reason for
satisfactory rate capability of LNCMAl1 [39].

F and Mg doping does not change the crystal system of LMR-NMC which is
apparent from XRD plot where no impure stage peaks are detected [40]. At C/20
rate, 10, F-doped LMR-NMC indicate excellent electrochemical performance and
(1:50 wt%-LiF: LMR-NMC) doped subsample particularly 0.02 mol% of Mg,
delivers capacity *300 mAh g−1 −15% excess capacity than pristine LMR-NMC
[40]. Doped subsample indicates enhanced capacity retention, mitigated voltage
decay, and high C rate performances compared to pristine LMR-NMC [40]. The
enhanced electrochemical performance is attributable because of minimize stabi-
lization of crystal structure and cation mixing during cycling [40].
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LiNi0.5Mn0.3Co0.2O2 cathode material had been generated by sol-gel technique
[41]. Al2O3 had been coated on LiNi0.5Mn0.3Co0.2O2 cathode material by
employing ultrasonic stirrer and selected as a surface modifier [41]. The first dis-
charge capacities of the samples are 99.01 178.28, 130.22 and 141.34, respectively
and columbic efficiencies are observed to be 91.95 and 99.56% for pristine,
NMC-45 and NMC-100 samples [41]. The first discharge capacities and charge
variations of the samples are computed as 54.62, 30.94 and 31.99 for pristine,
NMC-100 and NMC-45 respectively [41].

Through heating method and means of hydrolyzing, the LiCoO2 cathode
materials coated with multiple quantities of NaAlO2 were synthesized [42]. The
NaAlO2 layer had been coated onto the LiCoO2 particles efficiently without
influencing the crystal structure of LiCoO2 [42]. An effective strategy to enhance
the electrochemical performance of LiCoO2 at high cut-off voltage of 4.5 V versus
Li+/Li, which could be referred for other cathode material including Li-and Mn-rich
and the nickel-manganese-cobalt materials layered oxide materials is the
NaAlO2 coating [42].

A facile approach has been devised to synthesis LiNi0.8Co0.15Al0.05O2 cathode
material by chemically pretreating raw reactants to derive a ternary oxide precursor
with a trigonal structure [43]. In LiNi0.8Co0.15Al0.05O2 cathode material, which
traditional solid-state reaction at low-temperature prepared, a small quantity of
impurity stage LiCoO2 had been detected [43]. That the ternary oxide precursor
with a trigonal structure is beneficial to the formation of pure stage high perfor-
mance of the materials and LiNi0.8Co0.15Al0.05O2 is regarded by us [43].

The core-shell material is comprised of a core of a layered LiMO2 stage
(R-3 m), whilst the shell is a monoclinic Li2MnO3 stage (C2/m) [44]. That the
core-shell structured material has less Li+/Ni2+ cation disorder than the pristine
material is demonstrated by rietveld refinements [44]. That stronger M \* -O (M
* = Mn, Co, Ni) ties are present in the core-shell material, which gives rise to high
systemic stability during the charge-discharge process is confirmed by rietveld [44].
At a greater upper cut-off potential of 4.7 V than that of the pristine material
(4.5 V), the core-shell material could be cycled [44]. The core-shell material
exhibits a greater mean voltage, better cycling stability than those of the pristine
material, and a greater energy density [44].

The electrochemical behaviour of cycled Al-LMO and LMO samples suggests
the stage reconfiguration from a layered to a spinel [45]. The Al-LMO subsample
showed a considerable amelioration on rate performances and cycle compared to
the LMO subsample [45]. The dQ/dV results indicate that Al doping might
downturn the rate of spinel stage reconfiguration of stage, which is layered, in the
following cycles and deter the stage reconfiguration in the first charge process [45].
EIS results corroborate that Al doping decreases the charge-transfer resistance and
enhances the electrochemical reaction kinetics [45].

It is demonstrated that both single-layer coating and double-layer coating can
enhance the cycling stability and rate capability of this high-energy cathode
material [46]. The double-layer Li2TiO3-coated subsample N5@ (0.5 + 0.5)% LT
indicates the optimum properties due to its homogeneous and full coating layer,
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even increases the specific capacity at all current densities, which is compared with
the bare non-coated powder [46].

LiAlO2-coated LiNi0.8Co0.1Mn0.1O2 material has been efficiently prepared by
hydrolysis-hydrothermal technique [47]. The results indicate that the LiAlO2-coated
layer of 8–12 nm enhances the thermal stability of the material at 40 °C via a series
of electrochemical tests, morphology, and characterization of the structure [47].
A rate capability, thermal stability compared with the pristine material, and cyclic
performance, which is enhanced markedly, had been shown by LiAlO2-coated
material [47].

The Al-doped Na3V2(PO4)2F3 with various Al concentration (x = 0, 0.02, 0.05,
and 0.1) have been synthesized by Pechini technique [48]. Since ionic radius of
Al3+ is smaller than V3+, the cell parameters of the vanadium fluorophosphates
lattice could be declined by aluminium doping [48]. The Na3V2(PO4)2F3 with just
5% (x = 0.05 mol) of Al doping displays greater discharge capacity, capacity
retention and better charge/discharge stability than the pristine Na3V2(PO4)2F3 [48].
Al-doping Na3V2(PO4)2F3 provides many favourable properties to be look at as a
fruitful cathode material for Li-ion batteries [48]. The results of this first strategy to
the investigation and preparation of this material highlight that Al-doping is a novel
approach for improving the electrochemical performance of the Na3V2(PO4)2F3
[48].

Through coprecipitation technique, which employs lactate ion as the chelating
actor, Ni0.5Co0.2Mn0.3(OH)2 precursors were efficiently synthesized [49]. At the
molar ratio of 1:1 between transition metal ion and lactate ion, when the
Ni0.5Co0.2Mn0.3(OH)2 precursor had been synthesized, its LiNi0.5Co0.2Mn0.3O2

cathode revealed retention rate (93.3%) and the highest discharge capacity
(194.2 mAh g−1) after 100 cycles [49].

Through a solid-state reaction, which post-process nitridation and characteriza-
tion by XRD, XPS, and electrochemical analysis followed, Nitridated
LiMn1.5Ni0.5O4 had been synthesized [50]. In terms of its bulk crystallographic
structure, grain size, and morphology, the nitridated LiMn1.5Ni0.5O4 had been not
basically altered [50]. Excellent cycleability and high rate capability, which is
attributable to the increasing number of Mn3+ hopping carriers including the
enhanced electric conductivity, which active Ni redox centres triggered, had been
shown by the nitridated LiMn1.5Ni0.5O4 [50].

Throughout the preparation of a water-based slurry, the charge/discharge
capacities, cycle stability, rate performance, mechanical resistance, resistance of
electrochemical oxidation, structure and transformations of the surface composition
were researched after water-treatment [51]. The TRD202A binder had been iden-
tified as a fruitful water-based binder that satisfies some required attributes for the
development of environment-friendly cathodes and high-performance [51]. Some
Li-rich solid-solution cathode materials having various compositions of Li, Mn, Co
ions, and Ni, showed gradual decreases in the discharge capacity [51]. Especially
after water-treatment of the cathode particles, the stability of the charge/discharge
performance could be enhanced by the protective layers [51]. To recognize stable
charge/discharge performances at all compositions, a water-stable surface layer,
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including Al2O3 or carbon, must be formed on the cathode particles [51]. We will
try to pinpoint protective surface layers for a wide range of Li-rich solid-solution
cathode materials, which haves various compositions of Li, Mn, Co ions, and Ni, in
our next work [51].

That work shown the effect of Na doping in LiMnPO [52]. In the LiMnPO
system through the sol-gel technique, na of various concentrations had been
replaced [52]. Through natrium addition (LiNaMnPO, irreversible capacity dete-
rioration had been lowered compared with pristine LiMnPO [52]. That superior
electrochemical performance could be achieved via optimizing adequate Na doping
in LiMnPO towards Li-ion battery application had been demonstrated by these
experimental results [52].

The following heterogeneous cathode commodities synthesized from the
leaching solution were investigated: LiNi1/3Mn1/3Co1/3O2, LiNi0.6Mn0.2Co0.2O2,
and LiNi0.5Mn0.3Co0.2O2 [53]. The recycling process becomes a “closed loop”
process raising the possibility of scaling the recovery process up and having a
viable commercial battery recovery and re-use process by synthesizing novel
cathode materials that could be implemented into novel batteries [53]. The elec-
trochemical properties of the LiNixMnyCozO2 synthesized via re-use (recycling)
and recovery are satisfactory compared to those synthesized from pure commercial
product [53].

2.5 Related Work

Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Benedek R, Hackney SA
(2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion
batteries. J Mater Chem 17:3112–3125 [https://doi.org/10.1039/b702425h]

Complete extraction of Li2O from the inactive Li2MnO3 element yields electro-
chemically active layered MnO2 phase, improving the discharge capacity of the
material [15, 194, 195]. Such lithium-rich high-capacity materials suffer from
meager cycle stability and inferior rate property; this stability hinder their successful
commercialization in high-energy-density lithium-ion batteries (Boulineau and
others [213]; Thackeray and others [194]; Xu and others [214]), [17]. In contrast
with the commonly used layered ternary or LiCoO2 cathode materials with
a-NaFeO2 structure, layered Li-rich Mn-based ones constituted as yLi2MnO3�(1–y)
LiMO2 (M = Co, Ni, Mn, etc.) or Li[Li(1/3–2x/3)MxMn(2/3–x/3)]O2 have many
advantages including lower cost, safer on overcharge [194, 354, 355], and less toxic
[30]. They have high capacities about 250 mAh g−1 at high voltage, which can play
a key role in stabilizing the electrode structure [189, 194] and supply the excess
lithium to the layered structure [30]. Metal element doping, including Al, Zr [194],
Y, Mo, and Mg [437] replaced for the transitional metal elements in the oxide
materials, can weaken the adverse change of crystal structure [39]. High stable
reversible capacity of >250 mAh g−1 when it is cycled in the voltage window of

134 2 Cathode Materials, Samples, Pristine, Layered, Doping …

http://dx.doi.org/10.1039/b702425h


2.5–4.8 V [194, 438–443] is delivered by LMR-NMC [40]. Throughout cycling
need to be tackled before it is regarded as a potential candidate for next generation
cathode material for lithium-ion batteries [197, 437–443], the energy deterioration
because of suppression of voltage profiles during cycling which is linked with the
stage reconfiguration from a layered structure to spinel structure, capacity, and high
irreversible capacity, fade [40]. The aims of the present study were (1) to enhance
the thermal stability of this material by making it a core-shell structured material
with a core of LiMO2 and a shell of Li2MnO3, and (2) to increase the discharge
capacity of NCM 111 by preparing NCM 111 with the formula xLi2MnO3–(1−x)
LiMO2, i.e., a lithium-rich material with a high capacity [44, 194].

Ohzuku T, Makimura Y (2001) Chem Lett 7:642–643 [https://doi.org/10.1246/
cl.2001.642]

LiNi1/3Co1/3Mn1/3O2 compound, which Makimura [223] and Ohzuku developed,
has been regarded as a fruitful candidate of next-generation cathode materials to
substitute LiCoO2 for rechargeable Li-ion batteries [18]. The layered lithium
transition metal oxides have been intensively examined as the cathode materials in
the next generation of the rechargeable lithium-ion battery (LIB) [30, 223, 353].
Layered LiNi1/3Co1/3Mn1/3O2 as cathode material has been paid extensive attention
because of its high reversible capacity, low cost, and excellent structural, thermal
stability, as reasonably well [33, 223, 381]. Overcharging frequently triggers sig-
nificant systemic distortions (transformation from hexagonal to monoclinic struc-
tures), which generate extensive defects between and within the particles, and
induces potential surface reactions including Co break-up at voltages above 4.4 V
[50, 223, 532].
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Chapter 3
Ionic Conductivity, Polymer Electrolyte,
Membranes, Electrochemical Stability,
Separators

3.1 Introduction

The most commonly used separators in Li-ion batteries are the polyolefin mem-
branes due to their satisfactory electrochemical stability, useful thickness and
advantageous mechanical strength [1]. The most commonly used separators in
LIBs’ low porosity, inferior thermal dimensional turbulence and inadequate elec-
trolyte wettability might give rise to high cell resistance or an internal short circuit;
this circuit seriously hinders the electrochemical and safety performance of Li-ion
batteries (Lee and others [20]; Yanilmaz and others [21]), [1]. Some attempts have
been devoted to the development of new separators with excellent thermal stability
and satisfactory electrolyte wettability [1]. Cellulose-based materials have been
examined as separators in Li-ion batteries due to their outstanding properties, such
as excellent thermal stability (Chun and others [22]; Jabbour and others [23]; Kim
and others [24]; Xu and others [25]; Zhang and others [26, 27]; Jiang and others
[28]; Weng and others [29]; Liao and others [30]) and the desired electrochemical
stability in recent decades [1]. Via an electrospinning method, co-workers (Zhang
and others [26]) and Cui have prepared a superior and renewable thermal-resistant
cellulose/poly(vinylidene fluoride-co-hexafluoropropylene) composite non-woven
separator for high-performance Li-ion batteries [1]. Through a force-spinning
method, Alcoutlabi and others (Weng and others [29]) have mass-produced fibrous
cellulose membranes as a fruitful alternative to commercial polyolefin separators
[1]. The BC nanofibrous membrane has been devised as a separator for Li-ion
batteries through a facile hot-pressing fabrication approach by co-workers (Jiang
and others [28]) and Zhang [1]. The tensile strength of the devised BC separator is
meager as compared to the commercial Celgard membrane [1]. Hydrophilic inor-
ganic Al2O3 powders are normally utilized as supports to alter the surface of the
separators due to their chemical inertness, excellent thermal stability (Deng and
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others [31]; Jeon and others [32]) and satisfactory wettability [1]. A BC/Al2O3

nanofibrous composite membrane as an LIB separator had been appropriately
prepared by coating Al2O3 on BC nanofibres via a straightforward in situ thermal
decomposition technique [1]. The porosity, thermal shrinkage, tensile strength,
ionic electrical conductivity and electrolyte wettability of the devised BC/Al2O3

membrane were typified [1].
The separator does not entail directly in any cell reactions, though properties and

its structure play important roles in determining the battery performance, which
comprises cycle life, safety, power density [33], and energy density, in Li-ion
batteries [2]. Some modification methodologies, including polymer coatings [34],
electrospinning technique [35], and polydopamine treatment [36], have been
examined to circumvent the shortcomings of polyolefin-based separators [2].
A ZrO2-added composite separator had been devised by Scrosati and others [2, 37].
A new silica tube-coated PE composite separator had been devised by Zhang and
others [2, 38]. It could be concluded that multiple kinds of ceramic-coated com-
posite separators have been demonstrated, resulting in enhanced separator, which
wets thermal shrinkage and ability, at high temperature [2]. That incorporation of
pottery particles into the separators is an appealing technique to derive
high-performance separators is demonstrated by some reports [2]. The nanosized
pottery particles including TiO2, and Al2O3, SiO2, can substantially enhance ther-
mal stability the mechanical strength, including their thermal resistance [33] and
ionic electrical conductivity of separators because of their high hydrophilicity and
high surface area [2]. It could be surmised that the new composite separator retains
superior performances compared with traditional separators if the traditional pottery
oxides were substituted by zeolites or molecular sieves [2]. In terms of morphology,
structure, thermal stability, the electrochemical performances, and electrolyte wet-
tability, the attributes of the separator are assessed [2].

Porous polyolefin separators including polyethylene (PE), PP/PE/PP, and
polypropylene (PP), are the most popular separators for Li-ion batteries due to
advantages including high mechanical strength, low cost [39–41], and satisfactory
electrochemical stability [3]. In high-performance Li-ion batteries [42], low
porosity and their meager thermal stability restrict their application [3]. Developing
an optimum separator to ameliorate the shortcomings of traditional polyolefin
separators is required to satisfy the increased performance and safety demands of
Li-ion batteries to this effect [3]. Some recent research initiatives have been carried
out in effort to circumvent the drawbacks of the polyolefin separator to satisfy the
requirements of high-performance Li-ion batteries [3, 43]. Zhu and others devised a
new, ceramic-grafted PE separator, which is fabricated with electron beam irradi-
ation; the ceramic-grafted PE separator showed highly enhanced dimensional
thermal stability without any deviation from its original primitive thickness and
pore structure [3, 44]. That a PE-coated PI nonwoven composite membrane not just
indicates excellent thermal shutdown function though displays considerably greater
thermal stability, lower internal resistance than the PP/PE/PP separator [45], and
better wettability with the polar electrolyte, had been shown by Shi and others, [3].
The incorporation of pottery particles and nonwoven fabrics has been shown that
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nanosized inorganic fillers can substantially enhance the mechanical strength, ionic
electrical conductivity of composite separators [46], and thermal stability [3].
Various basic properties of the composite separator, which comprises its surface
morphology, porosity, thermal stability, ionic electrical conductivity, and elec-
trolyte wettability, were assessed and compared to those of the commercial Celgard
2500 separator [3].

All of the above exploit of the special properties of Li-ion batteries: no memory
effect, high energy density, high operation voltages, and long cycle life (Fang and
others [47]; Liang and others [48]; Kumar and others [49]), which self-discharges
low [4]. A critical element of a LIB is the separator membrane [4]. Architecture and
the separator membrane’s property play a crucial role in affecting the cell perfor-
mance, which comprises energy density, power density, service life, and safety,
even though the separator does not take part directly in electrochemical reaction of a
LIB cell [4]. Lots of contextual factors should to be regarded whilst choosing useful
separators for Li-ion batteries [4].

The pore structure and thickness of the separator should be carefully controlled,
as a satisfactory balance between mechanical strength and ionic electrical con-
ductivity should be kept (Arora and Zhang [40]; Lee and others [33]; Zhang [50]) in
order to satisfy these two functions [5]. The pore structure and porosity of the
material are clearly quite crucial to the performance of the separator in a battery in
addition to the separator material [5]. To enhance systematic researches of the
impact of these properties on the performance of Li-ion batteries there is hence a
need for clear-cut techniques by which the pore structure and porosity of a specific
material could be varied conveniently [5]. We are, however, not cognizant of any
researches on cellulose premised LIB separators revolved around the thickness
reliance of the pore structure, porosity and i.e. the pore size distribution [5].
A clear-cut paper-making filtration process by which CC separators with pore
structures and various thicknesses could be manufactured simply by differing the
quantity of cellulose utilized is explained by us [5]. CC separators with pore
structures and various thicknesses are permitted by this strategy to be manufactured
without various drying methods or utilizing external pressure [5]. It is demonstrated
that thinner separators display a less compact structure with greater porosities and
bigger pores and that this leads to Li-ion batteries with lower cell resistances [5].

Lithium-ion battery with light weight, long cycle life, and huge capacity, has
demonstrated to be an optimal choice for electric vehicles [51] under the nervous
circumstance in the energy resources [6]. The safety problem of high-power
lithium-ion battery has aroused more and more attention [52] with the rapid
development of lithium ion battery industry [6]. High temperature running of
battery systems normally triggers the shrinkage of conversional battery separator,
leading to quite fast internal shorting of the battery [6]. Due to the high-power
charge and discharge, violent oscillation, long time, and collision, which might give
rise to the contraction of the conventional separators [53, 54], which works,
overcharge, the normal working temperature can be surpassed by the local tem-
perature inside battery, as reasonably well [6]. The amelioration of thermodynamic
stability for the separators of lithium batteries is problematic [55–58] and crucial
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[6]. It is urgently required to build heatproof and anti-shrink separators for a safer
lithium-ion battery [6]. Through porous polyethylene (PE), polypropylene (PP),
and/or PP/PE/PP membrane because of their satisfactory electrochemical perfor-
mance [46], the separators for commercial lithium-ion batteries are normally
comprised [6]. Some researches focus on the amelioration of the safety and stability
of lithium-ion battery [6]. It is pointed out that electrospun is a convenient tech-
nique to prepare lithium-ion battery separator with some excellent performances,
including small holes, high porosity, distribution homogeneity [57, 59], and huge
specific surface area [6].

Safety problem is still a largest obstacle for the large-scale applications [60] in
spite of the widespread application of lithium-ion batteries [7]. The safety concern of
lithium-ion batteries is a serious obstacle in the technology development [7]. Since
the state-of-art electrolytes of lithium-ion batteries use highly flammable
carbonate-based organic electrolytes; these electrolytes may be ignited and then
presumably cause serious hazards of firing and upsurge under abused conditions
(heat, overcharge, short circuit, etc.) [7]. A novel sort of multi-component
(MC) additive is summarized by us for lithium-ion battery electrolyte (1.0 mol/L
LiPF6/ethylene carbonate (EC) + diethyl carbonate (DEC) (1:1 wt.%)) [7]. The
impacts of MC additive in enhancing the cell performance of the lithium-ion cell and
the thermal stability of the electrolyte were investigated [7]. How the MC additive
might behave on the surface of electrodes needs additional research, and its possi-
bility as the flame retardant for commercial lithium-ion battery needs to assess [7].

Electrolyte cum separator Beside electrodes, the separator cum electrolyte is an
indispensable element of the battery, as it plays a significant role in the transportation
of ions during charging and discharging mechanisms, so it should be in stable form
during battery operation [8]. Lithium batteries is superior to all existing systems
because of its safety, high energy density, light weight, cost effective, and shape
flexibility, among these [8]. Mostly fast ionic conductors are based upon inorganic
materials with excellent transport properties, though inferior electrolyte stability
limits their use as electrolyte cum electrode separator [8]. Through Michael Faraday,
the phenomena of ionic conduction had been identified in the 1800s on solid elec-
trolytes PbF2; later in 1964, first-time polymer electrolytes came in existence which
had been based upon CdCl2 and multivalent salts HgCl2 [8]. The presence of both
crystalline stage and amorphous stage makes attempting to investigation the prop-
erties of polymer electrolytes correctly [61, 62] as multivalent cations are easier to
deal with and cheap than widely used alkali metal salts [8]. The electrolyte along
with a separator serves as a medium to keep electrodes individually when liquid
electrolytes are utilized and for transportation of ions in any battery system [8]. The
polymer electrolyte is utilized as a thin-film membrane which can function for both
ion conduction and separation of electrodes for the solid-state Li-ion batteries [8].
Polymer electrolytes formed by dissolving Li salt in a high molecular weight
polymer host including PEO are dual ionic conductors [8]. In the electrolyte,
polymers with low T g are preferred for excellent flexibility and fast ion transport [8].

In a matrix of organic solvent display, lithium batteries based upon liquid
electrolytes consisting of a lithium salt dissolved a low flash point and are
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susceptible to leakage (Tasaki and others [63]), [9]. Suitable electrochemical sta-
bility, satisfactory mechanical strength, tremendous lithium ion transference num-
ber, high ionic electrical conductivity, advantageous compatibility with electrode
materials (He and others [64]; Li and others [65]; Isken and others [66]) and thermal
stability must be possessed by polymer electrolytes as separator in lithium batteries
[9]. The most often investigated polymer electrolytes for Lithium-ion batteries (Sil
and others [67]) is the complexes of Li salts with high molecular weight PEO [9].
To combine the benefits of SPEs and liquid electrolytes gel polymer electrolytes
have been introduced (Deka and Kumar [68]) that display high ionic electrical
conductivity at ambient temperature by retaining huge quantity of liquid electrolyte
in the polymer host (Sil and others [67]), [9]. While the electrolyte introduces high
mechanical stability for application as separator in lithium batteries (Ramesh and
others [69]), high ionic conductivities could be accomplished [9]. LiClO4 retains
huge size anions, low dissociation energy and is exceedingly soluble in most
organic solvents, offering so high ionic electrical conductivity (Park [70]) and a
high concentration of free ions [9]. EC and PC solvents are normally utilized as
high dielectric constant of 66 and 89 [71], respectively and high-permittivity ele-
ment in fabrication of lithium batteries because of their low-viscosity [9]. Applying
low concentrations of PMMA caused in formation of GPEs, which constitutes high
ionic conductivities comparable to liquid electrolytes [9]. At high concentration of
PMMA the ionic electrical conductivity of GPEs had been declined which had been
attributed to greater relationships between the electrolyte and the polymer matrix
[9]. That the kind of utilized polymer, Li salt and plasticizer play crucial role in
determining electrochemical performances of the prepared GPEs [70] and the ionic
electrical conductivity is revealed by these studies [9].

An polymer system with a polymer as separator/electrolyte, which conducts
ionically, is of extreme interest because of their various applications, such as super
capacitors, fuel cells, solar cells, Li ion batteries, and electro chromic windows [10].
The advantageous electrolyte for any application in energy storage/conversion tools
should have (a) high ionic electrical conductivity, (b) an electrochemical stability
window (>4 V), (c) a low melting point, (d) a high boiling point, (e) high chemical
stability, (f) low cost and satisfactory compatibility with electrodes [40, 72–74], and
(g) non-toxicity [10]. The majority of of the tools are based upon liquid/gel polymer
electrolytes because of compatibility with electrodes and their high ionic electrical
conductivity (10−3 to 10−2 S cm−1) [10]. That elicits the scholars toward replace-
ment of the traditional liquid polymer electrolyte with a solvent-free polymer
electrolyte, which haves high ionic electrical conductivity, leak proofing, better
flexibility, a wide electrochemical window, satisfactory mechanical strength, ease
of preparation [75–77], and light weight [10]. Polyethylene oxide (PEO) is
undoubtedly the optimal host polymer utilized as SPEs with strong, unstrained C–
O, C, and C–C, –H ties and it has a SPEs dielectric constant, easy availability, high
ionic electrical conductivity in the amorphous stage, low glass transition temper-
ature, satisfactory dimensional and chemical stability, and high flexibility, out of the
aforesaid host polymers [10]. Incorporation of the nanofiller enables in impeding
the recrystallization tendency of the polymer chain and decreases the glass
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transition temperature of the composite polymer electrolyte; this electrolyte sug-
gests enhancement in ionic electrical conductivity [10, 78] The nanofiller supports
ion dissociation and strengthens the ion migration by offering further conducting
paths for the cation within the host polymer matrix [10, 79, 80].

Given the practical applications, the SPEs must owns the properties of high ionic
conductivities (exceeded 10−4 S cm−1 at operator temperature), huge
Li+ transference number (close to unity), wide electrochemical stability window (4–
5 V vs. Li/Li+), excellent mechanical strength, low interfacial resistance between
the electrolyte and the electrode [81–85], and satisfactory thermal stability [11].
A block copolymer, which is comprised which of soft and hard segment, is poly-
urethane [11]. A polyurethane-based gel polymer electrolyte for Li-ion batteries had
been synthesized by Liu and others [11, 86]. A single-ion electrolyte, which is
based upon polyurethane and the LiFePO4/Li cell, which employs, this electrolyte
that revealed outstanding rate performance, had been indicated by Porcarelli and
others [11, 87]. At least a handful works have focus on the SPEs based upon
polyurethane, Liu and others [88] indicated series of cationic PU for SPEs; this PU
revealed high ionic electrical conductivity at room temperature [11]. The perfor-
mance of all-solid-state Li-ion batteries employing these PU-based SPEs have not
been evaluated even though these polyurethane-based SPEs have been confirmed to
owns excellent mechanical properties and high ionic conductivities [11]. Through
changing the composition of the hard and soft segment [89], the properties of
polyurethane could be readily tailored [11]. The polyether-based soft segment in
polyurethane with (−CH2–CH2–O) n unit can offer the transport path way for the
Li+ ions [90] and dissolve the cations [11]. Isophorone diisocyanate (IPDI) [91] and
4, 4′-methylenediphenyl diisocyanate (MDI) [88, 92, 93] had been utilized by the
earlier literatures for the hard segment, and the rigidity alicyclic and aromatic
structure with strong hydrogen bonding between the hard and soft segment confined
the segmental movements of give rise to low ionic electrical conductivity and the
polyurethane [11]. Given that the high ionic electrical conductivity depends upon
the rapid segmental movements of the polymer matrix [94], both hard segment and
soft segment are flexible will useful [11].

Such difficulties have been resolved by replacing liquid electrolyte with solid
polymer electrolyte in the batteries [12, 73]. Due to their distinctive properties,
including leakage proof, flexibility and satisfactory toughness, and easy fabrication
into shapes [95, 96] and advantageous sizes, polymer electrolyte films attract an
increased interest [12]. Some shortcomings of the polymer electrolyte films,
including electrochemical stability and comparatively low ionic electrical conduc-
tivity, still deter their practical application in batteries [12, 97]. Confronted with
these limitations, gel polymer electrolyte films have attracted considerable attention
as they owns the enhanced ionic electrical conductivity and improve the interfacial
property substantially [12, 98, 99]. In organic solvents, this sort of salt could be
dissolved totally, so that the Li-ions could be transferred in polymer electrolyte
films [12]. A 85PVdF–HFP: 15LiBF4 complexed polymer electrolyte had been
devised, displaying ionic electrical conductivity [100] and comparatively high
amorphicity [12]. The 85PVdF–HFP: 15LiBF4 polymer electrolyte had been
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selected to be the host system for preparing gel polymer electrolyte films in the
present study [12]. Ion pairing could be lowered by the plasticizer, improve the
flexibility of polymer chains, increase ionic electrical conductivity and lithium-ion
battery property, and enhance the stability of electrode/electrolyte interface [12].
Firstly, the gel polymer electrolyte films were prepared based upon the 85PVdF–
HFP: 15LiBF4 system along with plasticizers PC and EC in a weight ratio of 1:1
[12]. The 2032 coin cells were assembled employing their charge-discharge cycling
performance had been assessed employing a computerized battery cycling unit and
the self-made gel polymer electrolyte films [12].

Polymer electrolytes are the crucial class of materials for the applications in
clean energy tools including batteries, sensors [101–103] because of its flexibility
and safety, and fuel cells, and it is non-corrosive [13]. Ion transport mechanism,
mechanical stability in polymer electrolyte and improving electrical conductivity, is
critically crucial in the past century [13]. Through the incorporation of inert fillers
including TiO2, SiO3, Al2O3, etc. [104, 105], nanocomposite polymer electrolyte is
prepared in order to attain the greater ionic electrical conductivity at ambient
temperature [13]. To attain the hybrid polymer electrolyte for the fabrication of
Li-ion polymer battery, electrochemical and electrical performance has been
examined in the present work [13]. The principal aim of the current study is to
prepare lithium-ion: PVdF, which is incorporated with TiO2 nanofiller by solution
casting method, which conducts hybrid polymer electrolyte based upon PVA [13].
Structural, vibrational, electrical conductivity, mechanical, thermal, electrochemical
behaviour of the prepared samples, and morphological, have been examined
employing XRD, FTIR, AC impedance spectroscopic method, stress-strain mea-
surement, DSC, TGA, SEM, cyclic voltammetry (CV), respectively, and linear
sweep voltammetry (LSV) [13].

There are many fatal shortcomings such as leakage, blast [106] in the liquid
Li-ion batteries, and flame, even though lower cost of organic liquid electrolyte and
the high ion electrical conductivity can preferably derive economical battery and the
high energy density [14]. Upon Fenton and others observed the polymer electrolyte
with ionic electrical conductivity; this electrical conductivity is composed of poly
(ethylene oxide) (PEO) and alkali metal salt in 1973 [107], polymer electrolyte has
been extensively researched due to ease of processing, satisfactory plasticity, and
efficient prevention of electrolyte leakage [14, 108]. Solid macromolecule, which
limits the migration of lithium ions to a certain extent and additional gives rise to a
decline in the ionic electrical conductivity of the electrolyte is the matrix of polymer
electrolyte [14]. That issue has been demonstrated to be solved by gel polymer
electrolyte (GPE) because it comprises of polymer matrix, plasticizer, and lithium
[14]. There are handful applications for commercial Li-ion batteries with cellulose
as the GPE matrix due to transfer number [109–111] and low ionic electrical
conductivity even though cellulose is the most plentiful biopolymer resources on
the earth [14]. The second plentiful biopolymer on the earth [112], a novel kind of
biopolymer of lignin and extensively exists in the cell wall of plants, as the GPE
matrix, which not just can dramatically lessen the cost, though can derive high ionic
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electrical conductivity, lithium-ion transference number, wide electrochemical
stability window, and stable cycling performance had been founded by us [14].

The LiFePO4 (LFP) is one of the most useful cathode materials for LIB because
of its environmental compatibility, low cost, high theoretical capacity (170 mAh
g−1), non-toxicity [113, 114], and excellent thermal stability [15]. That cathode
material usually suffers from many shortcomings including deterioration of
capacity, inferior stability, rate performance, and Li+ ion diffusivity
(*10−14 cm2 s−1), at high discharge/charge current density [15, 115, 116]. That
inferior performance, which is correlated with defects in side reaction between
cathode material and electrolyte decreases or olivine structure of LFP, Li+ electronic
electrical conductivity and ion diffusion rate [15]. That graphitic and carbon carbon
coating is an effective strategy for enhancing electronic electrical conductivity and
electrochemical performance of the cathode material in a LIB [117] is revealed by
the most recent report [15]. Since a blocking layer is formed between electrolyte
and active material particles, carbon coating method has concentrated on enhancing
the electrochemical performance of LFP [15]. The carbon-coated active material
particle is not an effective way to enhance discharge and charge performance at high
current rate because most of the carbon is amorphous [118] and the contact area
between LFP particles is quite less [15]. Salt LiTFSI has been selected because it
could be readily disassociated into anions and cations [119] and it indicates low
lattice energy, and IL EMIMFSI is utilized because it indicates low viscosity,
satisfactory electrochemical/thermal stability, high ionic electrical conductivity, and
satisfactory plasticizer effect including a supplier of free charge carriers [15, 120].
We have examined thermal stability, electrochemical performance of the prepared
ILGPE, and ionic electrical conductivity, and assembled coin cell by employing 80
wt% IL containing GPE with lithium metal foil as anode with a standard GO@LFP
and LFP (i.e., without coating) cathode [15].

Ionic liquid electrolyte has devised into entire solid polymer electrolyte [121,
122] and gel polymer electrolyte [16]. Gel polymer electrolyte with better security
and greater electrical conductivity has aroused more attention [16, 123–125]. Ionic
liquids recognize environment protection, the cleaner generate, and cycle economics
because of its advantages such as non-flammable and non-toxic property, low
vapour pressure, high electrical conductivity, high ion transference number, wide
electrochemistry window, and satisfactory stability performance [16, 126–128].
Ionic liquids are one of main elements in the ionic liquid polymer electrolyte (IL-PE)
membrane since it is one of principal carry out mediums [16]. The gel polymer
electrolyte is prepared by Jae-Kwang Kim with N-methyl-N-butyl pyrrolidinium bis
(trifluoromethanesulfonyl) imide (Py14TFSI), which the electrostatic spinning
technique this technique indicates the electrical conductivity of 1.1 � 10−4 S
cm−1 at 0 °C [129] based upon poly(vinylidene fluoride-co-hexafluoropropylene) (P
(VdF–HFP)); this technique indicates the electrical conductivity of 1.1 � 10−4 S
cm−1 at 0 °C [16, 129]. Polymer matrix is one of the essential materials as sup-
porting conceptual framework of gel polymer electrolytes [16, 130]. There are pri-
marily four systems as polymer matrix for polymer lithium-ion battery, such as
polyvinylidene fluoride (PVDF) system [131], polyether (PEO) system [132–134],
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polyacrylonictrile (PAN) system [135], and polymethyl methacrylate (PMMA) [16,
136]. BF4/PVDF–HFP/PMMA gel polymer electrolyte by the stage inversion
technique which has the electrochemistry stability window of 4.5 V and the elec-
trical conductivity of 1.4 � 10−3 S cm−1 is prepared by Wei Zhai [16].
Light-sensitive urethane acrylate (PUA) and the polymethyl methacrylate (PMMA)
is contained by the IL-PE membrane as the electrolyte matrix, the lithium bis
(trifluoromethanesulfonyl) imide (LiTFSI) as the lithium salt and the
N-methyl-N-propyl pyrrolidinium bis (trifluoromethanesulfonyl) imide (Py13TFSI)
ionic liquid as enhancing actor of the electrical conductivity [16].

Lithium ion batteries have been enhanced employing polymer nanofibrous
electrolyte membrane with its highly porous structure, ionic electrical conductivity
and high electrolyte uptake to transport as considerably as lithium ions via it [17].
Scholars in this field are more involved to prepare polymer electrolyte membranes
by blending or forming composites employing metal oxides or various polymers to
increase ionic electrical conductivity, electrochemical stability than that of pure
polymer electrolytes [137–141], and electrolyte uptake [17]. Some various syn-
thesis techniques are utilized to prepare polymer electrolyte membrane by stage
inversion [142], solution casting [139, 143] and electrospinning [17, 144].
A straightforward technique for preparation of nanofibrous membranes with high
porosity because of tunable fiber diameter, which is controlled by differing utilized
electric field, distance between grounded collector and syringe needle, flow rate of
viscous polymer solution, and polymer solution concentration, is Electrospinning
[17]. Porosity is the size-dependent property; hence, electrospun nanofibres of
blended polymers synthesized by electrospinning owns high porosity which is
responsible for high ionic electrical conductivity at room temperature [145, 146]
and increase in electrolyte uptake [17]. Attempts have been made to maximize the
composition of PMMA and PVdF to fabricate their composites nanofibrous
membrane by electrospinning so as to increase the ionic electrical conductivity [17].
The fabrication of polymer nanofibrous electrolyte membranes of PVdF–PMMA
composites in various percentage (PVdF: PMMA = 100:0, 80:20 and 50:50) by
electrospinning is indicated to examine the impact of PMMA on Li-ion battery
performance [17].

Ionic liquids (ILs) are comprised of completely charged species and owns high
ionic electrical conductivity, wide electrochemical window, excellent thermal sta-
bility, non-volatility, nonflammability [147–149] and ecologically benignity [18].
Solubility of Li salt is high in BF4− and TFSI− ions, and in particular, TFSI−

anion-based ionic liquids indicate greater electrochemical and thermal stability than
the other counter anions of the IL [18, 150]. It is reluctant to generate effective solid
and stable electrolyte interface (SEI) [151, 152] even if the ILs owns wide elec-
trochemical window and high ionic electrical conductivity [18]. Menne and others
has researched the combination of LiTFSI salt with an organic solvent, which is
dissolved in N-butyl, N-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide
(Pyr14-TFSI) (50:50 wt%) as an electrolyte for Li battery, and the results show
better thermal stability including greater performance than the pristine ILs [18,
153]. Of the various kinds of the ILs examined till date, quaternary
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ammonium-based acyclic and cyclic cations including pyrrolidinium, tetraalky-
lammonium and piperidinium high cathodic stability towards lithium metal [154]
and display wide electrochemical window [18]. LiTFSI mixed with alkyl carbonate,
which includes Pyr24TFSI indicates nonflammability, enhanced electrical conduc-
tivity and electrochemical stability window, which is compared when to traditional
alkylcarbonate-based electrolyte, as pointed out by Lombardo and others [18, 155].
The symmetric salts owns high thermal including wide electrochemical window
and cathodic stability [18]. Olivine structured transition metal phosphates, including
LiFePO4 (LFP), have gained considerably attention because of its cost efficacy this
IL’s high theoretical capacity, nontoxicity, thermal, chemical including high cycling
stability, electrochemical stability and flat voltage plateau [156, 157] among the
various cathode materials [18].

Binder, as a required functional material of electrode in Li-ion battery, has a
crucial impact on the electrochemical performance [19]. Polyvinylidene fluoride
(PVDF), which is costly, difficult to recycle [158] is the most frequent binder, which
is utilized in the Li-ion battery [19]. He and others [159] have utilized the cya-
noethylated carboxymethyl chitoan (CN–CCTS) as the binder for cathode LiFePO4

and it displayed better resistance to the organic electrolyte solvents than that with
sodium carboxymethylcellulose (CMC) and PVDF [19]. Qiu and others [160] have
indicated the carboxymethylcellulose derivative (CMC–Li) as the binder for
LiFePO4 electrode [19]. In contrast with the PVDF, these water-soluble binders are
environment-friendly and carry out excellent electrochemical performance [19].
Very few studies have been carried out on humics as the binder for LiFePO4 cathode
till now [19]. The electrochemical performance could be considerably enhanced with
many reasonable regulation with the humics as the principal binder [19].

3.2 Separators, Porosity, Shrinkage, Uptake, Ionic
Conductivity, Thermal Stability, Membranes

3.2.1 A Bacterial Cellulose/Al2O3 Nanofibrous Composite
Membrane for a Lithium-Ion Battery Separator [1]

The bacterial cellulose (BC)/Al2O3 nanofibrous composite membrane as a
lithium-ion battery separator has been efficiently prepared by coating Al2O3 on the
BC nanofibres via a straightforward in situ thermal decomposition of Al
(NO3)3�9H2O [1]. The half lithium-ion battery, which is assembled with the BC/
Al2O3 separator, reveals satisfactory cycling performance and huge discharge
capacity, implying that the BC/Al2O3 membrane could be utilized as a lithium-ion
battery separator [1]. That the tensile strength of the BC membrane is considerably
lower than that of the PP-PE-PP membrane, whilst the value of the BC–
Al2O3 membrane substantially increasing, similar to that of the PP-PE-PP mem-
brane is revealed by the results [1].
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3.2.2 Hollow Mesoporous Silica Sphere-Embedded
Composite Separator for High-Performance
Lithium-Ion Battery [2]

A high-performance composite separator based upon hollow mesoporous silica
spheres, poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF–HFP), and poly
(ethylene terephthalate) non-woven had been examined as lithium-ion battery
separator through a dip coating method, which a stage separation moist process
followed [2]. Due to comparatively polar components and the preferable
microstructure, the composite separator displays greater porosity, outstanding
thermal stability, and superior electrolyte wettability [2]. A straightforward strategy
to prepare high-performance separator, which is shown to be a satisfactory candi-
date for lithium-ion batteries is summarized by this research [2].

3.2.3 Al2O3/Poly(Ethylene Terephthalate) Composite
Separator for High-Safety Lithium-Ion Batteries [3]

Separators have garnered considerable attention from developers and scholars in
respect to their important role in the safety of lithium-ion batteries [3]. Through
scanning electron microscopy and other specific measurements in regard to a
composite separator’s morphology, electrolyte wettability, porosity, and a com-
posite separator’s application in lithium-ion batteries including thermal shrinkage,
the basic properties of the Al2O3-coated PET nonwoven composite separator were
typified [3]. The lithium-ion battery assembled with this composite separator
indicates better electrochemical performance (e.g., cycling and discharge C-rate
capability) compared to that with the Celgard 2500 separator [3]. The results of the
present study constitute a straightforward strategy to preparing high-performance
separators; these separators could be utilized to improve the safety of lithium-ion
batteries [3].

3.2.4 Recent Developments of Cellulose Materials
for Lithium-Ion Battery Separators [4]

The recent advancements of cellulose materials for lithium-ion battery separators
are studied [4].
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3.2.5 Thickness Difference Induced Pore Structure
Variations in Cellulosic Separators for Lithium-Ion
Batteries [5]

The pore structure of the separator is important to the performance of a
lithium-battery as it affects the cell resistance [5]. It is shown that the pore size and
porosity of the CC separator could be increasing simply by declining the thickness
of the CC separator by employing less CC in the manufacturing of the separator [5].
It is clear that the various pore structure of the separators had been an crucial factor,
which affects the battery performance in addition to the separator thickness, as the
results revealed that a greater ionic electrical conductivity had been obtained for the
10 µm thick CC separator than for the 20 and 40 µm thick CC separators [5]. The
present clear-cut, yet effective, approach for modifying the pore structure conse-
quently holds significant promise for the manufacturing of separators with perfor-
mance, which is enhanced, including for fundamental researches of the impact of
the properties of the separator on the performance of lithium-ion cells [5].
Contemporary LIB separators usually are made from polyolefin-based polymer
materials and usually suffer from low thermal stabilities and electrolyte wettabilities
(Chun and others [22]; Prasanna and others [161]; Ryou and others [36]; Weng and
others [29]; Xu and others [25, 162]; Zhang and others [46, 163]; Zhou and others
[164]); these wettabilities has caused in a search for alternative separator materials
[5]. That CC is a fruitful separator material that is worth additional researches
especially as such separators most most likely could be manufactured employing
up-scalable paper-making mechanisms is demonstrated by these results [5].
A LiFePO4/Li battery, which includes a 10 µm CC separator, displaying the largest
pores and the highest porosity, is demonstrated to characteristic a specific capacity
of about 100 mAh g−1 at a rate of 2 C. Ionic electrical conductivity data, clearly
indicate that the cell resistance for a thinner separator had been substantially
declined as a consequence of its more open pore structure [5]. The SEM images
indicate that the CC-25 separator featured bigger pores and a less compact structure
than the CC-50 and CC-100 separators, despite the fact that the fiber morphology
and overall structure (entangled CC fibres with a thickness of around 30 nm) were
the identical in all three instances [5].

3.2.6 A Heatproof Separator for Lithium-Ion Battery Based
on Nylon66 Nanofibers [6]

Membrane is utilized as lithium-ion battery separator, demonstrating satisfactory
thermodynamics properties through thermo-gravimetric analysis (TG), tension test,
and thermal shrinkage experiment, had been nanofiber-based by Electrospun
nylon66 (PA66) [6]. Electrospun nylon66 separator premised battery displays better
safety than the battery, which applys Celgard commerce separator under the
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condition of serious vibration and high temperature [6]. Such facts confirm that the
electrospun nylon66 separator is an optimal separator candidate for power
lithium-ion battery of electric vehicles [6].

3.2.7 The Effect of Multicomponent Electrolyte Additive
on LiFePO4-Based Lithium-Ion Batteries [7]

In a LiPF6 baseline electrolyte, which is called flame-retarding electrolyte, one
multi-component (MC) additive is utilized to enhance the safety of lithium-ion
battery [7]. The electrochemical performances of LiFePO4/Li half cells with
flame-retarding electrolytes and baseline were assessed, respectively [7]. The MC
additive enhances the thermal stability and does not deteriorate the battery elec-
trochemical performance with LiFePO4 cathode, hence, the combination is a
fruitful additive for the safer lithium-ion battery with the MC additive, the cycling
performances of LiFePO4/Li half cells were enhanced efficiently at the rate of 0.1 C.
Therefore, and the resistance of flame-retarding electrolyte didn’t increase [7]. It
could be observed that the rest mass of both electrolytes are equal (both are
0.316 g), though compared to the extinguishing time (60 s) of baseline electrolyte,
flame-retarding electrolyte employs more time (66.8 s) [7]. It could be observed
that the electrical conductivity of flame-retarding electrolyte is 9.42 mS/cm, which
is greater than that of baseline electrolyte (7.80 mS/cm), suggesting better electrical
conductivity [7]. It could be observed that there are two principal exothermic peaks
at 244.2 °C and 220.3 °C, respectively, with the total heat generation of −158.5 J/g
[7].

3.3 Ionic Conductivity, Electrochemical Stability, Polymer
Electrolytes, Salt

3.3.1 Polymer Electrolytes for Lithium-Ion Batteries:
A Critical Study [8]

The present review essay on a brief history, polymer electrolytes (PEs)’s brief
application of polymer electrolyte systems, and advantage [8]. The essay began
with a brief introduction of polymer electrolytes followed by extreme employs and
their varieties [8]. The role of host polymer matrix by taking several examples of
polymer electrolyte, which the various renowned group of the preoccupied field
published, has been examined [8]. The criteria for selection of suitable host poly-
mer, salt, aprotic solvents to be utilized in polymer electrolyte, and inorganic filler/
clay, have been outlined in detail [8]. That essay includes various methods for the
preparation of polymer electrolyte films [8]. The various self-proposed processes
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(like VTF, WLF, free volume theory, dispersed/intercalated processes, etc.) have
been outlined in order to elucidate the Li-ion conduction in polymer electrolyte
systems [8].

3.3.2 Electrochemical Investigation of Gel Polymer
Electrolytes Based on Poly(Methyl Methacrylate)
and Dimethylacetamide for Application in Li-Ion
Batteries [9]

Solution-casting method had been utilized to fabricate GPEs containing various
weight proportion of PMMA [9]. Spectroscopy had been utilized to investigation
the level of relationships between PMMA and lithium salt in the prepared GPEs had
been infra-red by fourier reshape [9]. Through estimating the bulk resistance of
polymer electrolytes from Nyquist plot, Li-ion electrical conductivity of GPEs had
been dictated [9]. Increased PMMA content of GPEs caused in an amelioration in
the electrochemical potential window from 4.2 to 4.5 V [9]. Moreover the optimal
electrochemical properties and the highest lithium transference number (0.42) were
obtained for GPE containing 10 wt% PMMA and 0.75 M LiClO4 [9]. Optimized
electrochemical properties and the highest lithium transfer number (0.42) were
obtained for GPEs containing 10 wt% of PMMA [9].

3.3.3 Effect of Variation of Different Nanofillers
on Structural, Electrical, Dielectric, and Transport
Properties of Blend Polymer Nanocomposites [10]

The effect of multiple nano-fillers with various particle sizes and dielectric constants
(BaTiO3, Er2O3, CeO2, or TiO2) on blend solid polymer electrolyte, which includes
PVC and PEO, complexed with bulky LiPF6 has been examined [10]. Evidence of
interaction among the functional groups of the nanofiller in terms of shifting and
change of the peak profile and the polymer with the ions is offered by FTIR [10].
The particle size and the dielectric constant indicate an abnormal trend with various
nano-fillers [10]. “The particle size of the pristine nanofiller follows the trend
Er2O3 ≅ BaTiO3 > CeO2 > TiO2” [10]. The particle size of CeO2 is greater than
that of TiO2, though the dielectric constant of the polymer nanocomposite, which is
dispersed with TiO2, is greater than that of the CeO2 [10]. The AC electrical
conductivity follows the universal Jonscher power law, and an efficient mechanism
has been devised to comprehend the nanofiller interaction with cation co-ordinated
polymer [10]. The high-frequency dispersion region corresponding to bulk relax-
ation phenomena falls outside the assessed frequency variety and can not be
detected for the high-conductivity system [10]. That dielectric constant and the
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particle size have an crucial effect on systemic, microstructural, dielectric, and
electric, properties is shown by the results [10]. The ion transference number
(*0.99) results suggest the SPE films to be predominately ionic with a broad
voltage stability window (*3.5 V) [10].

3.3.4 Effect of the Soft and Hard Segment Composition
on the Properties of Waterborne Polyurethane-Based
Solid Polymer Electrolyte for Lithium-Ion Batteries
[11]

An increase in hard segment content declined the crystallinity and thermal stability
of WPU [11]. The ionic electrical conductivity increasing first with the increased of
the hard segment content and declined [11]. The ionic electrical conductivity
against the temperature of WPU10–25% Li is linear, suggesting that the ionic
electrical conductivity of this electrolyte showed Arrhenius-like behaviour [11, 92].
Through the hard segment content, the compatibility of WPU-based SPEs with
lithium electrode had been shaped [11]. The compatibility of WPU-based SPEs
with lithium electrode were examined conducting the AC impedance spectra of Li/
SPE/Li cell [11]. All-solid-state LiFePO4/SPE/Li battery, which is based upon
WPU12–20% Li electrolyte, delivered discharge specific capacities of 159 and 162
mAh g−1 under 60 and 80 °C at 0.1 C, respectively [11]. All-solid-state LiFePO4/
SPE/Li battery, which is based upon WPU12–20% Li electrolyte delivered the
discharge capacities of 159 mAh g−1 at 60 °C and 162 mAh g−1 at 80 °C at 0.1 C
[11]. Tuning the suitable soft and hard segment composition of WPU might
eventually give rise to the successful use of WPU-based SPEs for all-solid-state
Li-ion batteries [11]. The LSV results indicate that the WPU-based SPEs showed an
electrochemical stability up to 5.0 V and offer feasibility for the application in
Li-ion batteries [11]. The consequence suggests that the battery can deliver a
comparatively high specific capacity at high temperature and low rates [11]. The
consequence suggests that the WPU-based battery can deliver similar capacities at
low rates to that of PEO one [11]. The uncontrolled passivation, which gives rise to
the continuous impedance growth [165], is revealed by this consequence [11].

3.3.5 Preparation, Properties, and Li-Ion Battery
Application of EC + PC-Modified PVdF–HFP Gel
Polymer Electrolyte Films [12]

Following poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF–HFP) and
lithium tetrafluoroborate (LiBF4) salt along with blending plasticizers, propylene
carbonate (PC) and ethylene carbonate (EC), high Li-ion-conducting gel polymer
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electrolyte films are devised [12]. Lithium-ion batteries based upon the gel polymer
electrolyte film display striking charge-cycling and discharge performances [12].
The initial discharge capacity of this battery is as high as 165.1 mAh g−1 at 0.1 C
and indicates a small capacity fading of 4.8% after 120 cycles, suggesting that the
85PVdF–HFP: 15LiBF4 + 150 (EC + PC) system is an excellent electrolyte can-
didate for lithium-ion battery applications [12]. The charge-discharge performance
of the lithium ion cell, which is fabricated with this gel polymer electrolyte film, is
apparently better than that of the previously indicated lithium ion cells fabricated
with other PVdF–HFP-based gel polymer electrolyte films [12]. Performances of
the button cells fabricated with the present gel polymer electrolyte films were
assessed at ambient temperature are-discharged by the charge [12].

3.3.6 Influences of LiCF3SO3 and TiO2 Nanofiller on Ionic
Conductivity and Mechanical Properties of PVA:
PVdF Blend Polymer Electrolyte [13]

Solid polymer electrolytes have been intensively studied because of its flexibility,
safety, electrochemical stability, and long life for its applications in multiple
electrochemical tools in recent decades [13]. Interaction of LiCF3SO3 and
TiO2 nanofiller in the optimized composition of PVA:PVdF (80:20-system-A
possessing *2.8 � 10−7 S cm−1 at 303 K) blend polymer electrolyte have been
examined in the current study [13]. The effect of various concentration of TiO2 in
system-B has been examined and the optimized system is regarded as system-C
(*3.7 � 10−3 S cm−1 at 303 K) [13]. Vibrational, systemic, mechanical, electrical
conductivity, electrochemical properties, and thermal, have been investigated
employing FTIR, DSC, XRD, stress-strain, AC impedance spectroscopic method
and TGA, LSV, and CV respectively to ascertain the optimized system [13].

3.3.7 A High-Performance and Environment-Friendly Gel
Polymer Electrolyte for Lithium-Ion Battery Based
on Composited Lignin Membrane [14]

Mechanical property, the morphology, and thermal stability of the composite
lignin-PVP membrane and the electrochemical properties of LP-GPE are examined
[14]. A high ionic electrical conductivity of 2.52 � 10−3 S cm−1 at room tem-
perature, outstanding electrochemical stability of LP-GPE, and excellent
lithium-ion transference number of 0.56, are revealed for electrochemical properties
[14]. That LP-GPE could be utilized as a new electrolyte for Li-ion battery with
high-performance, environmentally friendly properties, and cheap, is shown by all
these results [14].
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3.3.8 Electrochemical Characterization of Ionic Liquid
Based Gel Polymer Electrolyte for Lithium Battery
Application [15]

The 80 wt% IL containing GPE indicates satisfactory thermal stability (*200 °C),
ionic electrical conductivity (6.42 � 10−4 S cm−1), wide electrochemical stability
window (*4.10 V versus Li/Li+ at 30 °C), and Li-ion electrical conductivity
(1.40 � 10−4 S cm−1 at 30 °C) [15]. LiFePO4 cathode indicates enhanced elec-
trochemical performance with cyclic stability up to 50 cycles and a satisfactory
discharge/charge capacity at 1 C rate, as compared with the without coated LiFePO4

had been oxide-coated by the graphene [15]. The discharge capacity reaches a
maximal value of 104.50 and 95.0 mAh g−1 for graphene oxide-coated LiFePO4

and without coated LiFePO4 at 1 C rate respectively at 30 °C [15]. LiFePO4 cathode
after coating with graphene oxide, these results revealed enhanced electrochemical
performance of pristine [15]. That the GO@LFP cathode indicates electronic
electrical conductivity and satisfactory electrochemical reactivity is revealed by this
consequence [15]. Complex impedance spectroscopic researches indicate that the
80 wt% IL containing GPE has ionic electrical conductivity of 6.42 � 10−4 S
cm−1 at 30 °C [15].

3.3.9 A Novel and Shortcut Method to Prepare Ionic Liquid
Gel Polymer Electrolyte Membranes for Lithium-Ion
Battery [16]

The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet
(UV) cross-linking technology with polyurethane acrylate (PUA), methyl-
methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), benzoyl
peroxide (BPO), and ethylene glycol dimethacrylate (EGDMA) [16]. The room
temperature the lithium ions transference number of 0.22 and ionic electrical
conductivity of 1.37 � 10−3 S cm−1 is displayed by the resultant electrolyte
membranes [16]. The interfacial resistances between the electrodes and the IL-PE
have the less change after 10 cycles than before 10 cycles [16]. Upon 10 cycles,
IL-PE has better compatibility with the Li electrode and the LiFePO4 electrode
[16]. 131.9 mAh g−1 with 95.5% columbic efficiency after 80 cycles is the dis-
charge capacity [16]. The battery, which employs the IL-PE, displays a satisfactory
rate and cycle performance [16].
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3.3.10 Poly(Methyl Methacrylate) Reinforced Poly
(Vinylidene Fluoride) Composites Electrospun
Nanofibrous Polymer Electrolytes as Potential
Separator for Lithium-Ion Batteries [17]

Fabrication of nanofibrous polymer electrolyte membranes in various percentage
(PVdF: PMMA = 100:0, 80:20 and 50:50) by electrospinning and poly(methyl-
methacrylate) (PMMA) of poly(vinylidene fluoride) (PVdF) is indicated to examine
the impact of PMMA on Li-ion battery performance of PVdF membrane as sepa-
rator [17]. At room temperature, PVdF–PMMA (50:50) polymer electrolyte
membrane revealed ionic electrical conductivity 0.15 S/cm and electrolyte uptake
290% [17]. Nanofibrous PVdF–PMMA (50:50) polymer electrolyte membrane had
been observed to be a potential separator for Li-ion batteries [17]. That the PVdF–
PMMA membrane has a satisfactory thermal stability with minimum weight%
deterioration is revealed by these results [17].

3.3.11 Asymmetric Tetraalkyl Ammonium Cation-Based
Ionic Liquid as an Electrolyte for Lithium-Ion
Battery Applications [18]

Performance of N-butyl N,N,N-triethylammonium bis (trifluoromethanesulfonyl)-
imide (N2224TFSI) as a room temperature ionic liquid (RTIL), which includes
ethylene carbonate (EC)/diethylcarbonate (DEC) and lithium salt has been exam-
ined as an electrolyte for lithium-ion battery [18]. The electrolyte is highly sus-
ceptible to fire during direct exposure to the flame, suggesting an electrolyte for
lithium-ion battery’s non-flammable character [18]. The performance of the IL
electrolyte has been evaluated with lithium-ion half cells employing mesocarbon
and LiFePO4 microbead (MCMB) electrodes, demonstrating satisfactory galvano-
static cycling with high capacity retention of about 84 and 90%, respectively [18].
The impedance plots show that when the lithium metal is in contact with IL
electrolyte, the impedance notably increases with time [18].

3.3.12 The Investigation of Humics as a Binder
for LiFePO4 Cathode in Lithium-Ion Battery [19]

Binder, as a required functional material of electrode in Li-ion battery, has a crucial
impact on the electrochemical performance [19]. The methods of galvanostatic
discharge/charge and cyclic voltammetry (CV) were carried out to assess the per-
formance of humics binder in LFP electrode [19].
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3.4 Conclusion

Through coating Al2O3 on the BC nanofibres via a straightforward in situ thermal
decomposition technique, we have efficiently prepared a BC–Al2O3 nanofibrous
composite membrane as an LIB separator [1]. Smaller interfacial resistance,
superior thermal dimensional stability and better electrochemical stability as com-
pared to the PP-PE-PP and BC separators is shown by the BC–Al2O3 membrane
[1]. The BC–Al2O3 composite membrane must be a quite fruitful candidate sepa-
rator for high-power Li-ion batteries [1].

Hollow mesoporous SiO2 spheres/PVdF–HFP-coated PET non-woven com-
posite separators had been devised by us as an advanced separator for lithium-ion
battery [2]. With greater porosity, greater ionic electrical conductivity which have
significant affects on the cell performances, and superior electrolyte wettability, the
incorporation of the distinctive SiO2 spheres allows the composite separator [2].

Higher porosity, enhanced electrolyte wettability, greater ionic electrical con-
ductivity, which is compared to the commercial Celgard 2500 separator, and greater
electrolyte uptake, had been shown by the Al2O3/PET separator [3]. The Al2O3/PET
separator displayed superior dimensional thermal stability, implying that it can be
utilized to noticeably improve the safety of Li-ion batteries [3]. The cell, which
includes the Al2O3/PET separator, showed superior electrochemical performance
(e.g., cycling and C-rate capability) compared to the cell containing the Celgard
2500 [3]. Electrochemical performance and nonwoven PET’s excellent thermal
makes the Al2O3/PET composite separator a fruitful candidate as the next-generation
separator for high-safety Li-ion batteries [3].

In the application of LIB separators, Cellulose has received considerably
attention due to thermal stabilities and its satisfactory chemical [4]. Cellulose can
not play a role as a supporter, a gelator in LIB separators, and an enhancer, though
also be endowed new functions by modification [4]. The preparation techniques for
cellulose LIB separators include traditional coating, casting, electrospinning,
papermaking, including ISISA and stage inversion and forcespinning [4]. The use
of cellulose materials for LIB separators is supposed to be more extensive with
diversified applications of Li-ion batteries and the increasingly restrictive envi-
ronmental requirements [4]. The preparation technique for cellulose LIB separators
needs to be enhanced to lessen the environmental influence and decline the pro-
duction cost [4]. Structural design of cellulose-based LIB separators and functional
modification are satisfactory directions for the next generation of high-performance/
high-safety batteries [4].

A surprisingly facile paper-making strategy has been explained for the manu-
facturing of stratified Cladophora cellulose (CC) separators with pore structures and
various thicknesses [5]. Through differing the quantity of CC, which is utilized in
the manufacturing process, as an increasing thickness leads to a declined peak and
porosity pore size in the paper-making process, the pore size distribution and
porosity of the separators could be controlled simply [5]. The technique enables the
manufacturing of CC separators with thicknesses down to 10 µm and fosters the
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manufacturing of separators premised with various pore structures and conse-
quently ionic conductivities though on the identical material [5]. It has been
demonstrated that a decline in the CC separator thickness from 40 to 10 µm results
in an increase in the peak pore size from 12 to 21 nm including an increase in the
porosity from 33 to 44%, resulting in an increase in the ionic electrical conductivity
of the electrolyte soaked separators from 0.69 to 0.82 mS cm−1 [5].

Electrospun nylon66 nanofiber separator displays excellent mechanical and
thermal properties [6].

The MC additive had been added into the baseline electrolyte as the flame
retardant, and the impacts of the flame-retarding electrolyte were examined in this
work [7]. The flame-retarding electrolyte, which includes MC, additive indicates
the better nonflammability and electrical conductivity than that of baseline elec-
trolyte [7]. The specific capacity of flame-retarding electrolyte indicates more
excellent cycling performance than that of baseline one at 0.1 in the electrochemical
cycling tests C [7]. Following nonflammability, electrochemical performance, and
thermal stability, it could be concluded that the MC additive enhances the thermal
stability substantially and indicates better electrochemical performance in the
LiFePO4/Li half cells; hence, the MC additive is a possible excellent choice of
electrolyte additive [7].

A thorough critical review of the PEs (published over the last three decades)
utilized in electrochemical tools has been outlined and examined appropriately [8].
A thorough ion transport processes for Li-ion transport like VTF, WLF, free vol-
ume theory, dispersed/intercalated processes, etc., in polymer electrolysis are
examined and studied [8]. The fillers/clays have been utilized for improving the
properties like ionic electrical conductivity, surface structure/microstructure, elec-
trochemical, stability, etc. [8]. A thin/safe/flexible/cheap electrolyte cum separator
is asserted for electrochemical tools, and it could be achieved by employing solid
polymer electrolytes cum separators [8].

The PMMA-based gel polymer electrolytes were efficiently prepared employing
solution-casting method with differing polymer content from 2 to 10 wt% [9]. The
PMMA-based gel polymer electrolytes has been demonstrated that the ionic elec-
trical conductivity of the GPEs increases with decline in polymer content displays a
maximal value of 2.3 � 10−3 S cm−1 at ambient condition from AC impedance
spectroscopy [9]. Electron transfer and lithium transfer number number enhanced
substantially which is requirement for Li ion batteries whilst in increasing polymer
content [9]. Through estimating the bulk resistance of polymer electrolytes from
Nyquist plot, Li-ion electrical conductivity of GPEs had been dictated [9]. Based on
4.2–4.5 V, the electrochemical potential window had been enhanced by increased
PMMA content in GPEs [9]. Optimized electrochemical properties and the highest
lithium transfer number (0.42) were obtained for GPEs containing 10 wt% of
PMMA [9].

Free-standing polymer nanocomposite films consisting of (PEO–PVC) + LiPF6
with 10 wt% nanofiller, which haves dielectric constant (BaTiO3 and a various
particle size, CeO2, TiO2), and Er2O3, have been prepared via the solution cast
method [10]. That dielectric constant and the particle size have an crucial effect on
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systemic, microstructural, dielectric, and electric, properties is shown by the results
[10]. X-ray diffraction results confirmed the polymer nanocomposite formation
[10]. The FTIR investigation revealed clear empirical evidence for polymer-ion,
ion-ion, and polymer-ion-nanofiller interaction [10]. The dielectric spectroscopy
offers important information of the increase in three to four orders of the dielectric
constant as compared to the nanofiller free polymer salt matrix [10]. The supremacy
of the erbium oxide nanofiller as compared to other nano-fillers for enhancing the
energy-storage performance of nano-composites is revealed by the present
study [10].

Solid polymer electrolytes (SPEs) based upon LiTFSI and WPU were fabricated
through an organic solvent free process [11]. The crystallinity of WPU declined and
the surface of WPU membrane became homogenous and smooth with the increase
of hard segment content [11]. The ionic electrical conductivity increasing first with
the increased hard segment content and declined [11]. The WPU12–20% Li elec-
trolyte (55 wt% soft segment content) revealed an ion electrical conductivity of
5.14 � 10−5 S cm−1 at 25 °C and 1.26 � 10−3 S cm−1at 60 °C with the electro-
chemical stability window reached around (vs. Li+/Li) 5.0 V [11]. All-solid-state
LiFePO4/SPE/Li battery, which is based upon WPU12–20% Li electrolyte deliv-
ered the discharge capacities of 159 mAh g−1 at 60 °C and 162 mAh g−1 at 80 °C at
0.1 C [11].

“The 85PVdF–HFP: 15LiBF4 + x (EC + PC) (x = 0, 50, 100, 150, and 200 wt
%) gel polymer electrolyte films are prepared” [12]. The 85PVdF–HFP:
15LiBF4 + 150 (EC + PC) film displays the optimal properties, whose crystallinity,
ionic electrical conductivity, melting temperature, and electrochemical stability
window are 9.5%, 115 °C, 4.6 V, respectively, and 8.1 � 10−4 S cm−1 [12]. The
performance of the present cell is in the optimal position in comparison to the
indicated lithium ion cells fabricated with PVdF–HFP-based gel polymer elec-
trolyte films [12]. The 85PVdF–HFP: 15LiBF4 + 150 (EC + PC) gel polymer
electrolyte film can be an excellent electrolyte candidate for lithium-ion
batteries [12].

Influence of nanoTiO2 and LiCF3SO3 with the polymer blend PVA: PVdF
(system-A) have been investigated [13]. XRD pattern demonstrates that the inter-
action of nanoTiO2 and LiCF3SO3 with the host polymer by the inference of greater
width of peak and change in peak intensity [13]. The incorporation of TiO2

improves the properties of polymer electrolyte and it has been assessed its elec-
trochemical performance and configured as the cell [13].

The prepared lignin-PVP composite membrane displays satisfactory mechanical
property and advantageous thermal stability [14]. A high liquid electrolyte uptake
of lignin-PVP composite membrane gives rise to good electrochemical perfor-
mances of the corresponding LP-GPE, such as excellent ionic electrical conduc-
tivity, high Li-ion transference number, better compatibility with active electrode,
and wide electrochemical stability window [14]. The exploration of the LP-GPE
will be a brand-new candidate to satisfy zero environmental influence Li-ion bat-
teries and high-performance [14].
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Free-standing 80 wt% IL, which includes GPE membrane based upon polymer
PVdF–HFP, salt LiTFSI, and the electrochemical properties of membrane, which is
prepared, were examined and IL EMIMFSI had been prepared for lithium battery
application [15]. Complex impedance spectroscopic researches indicate that the 80
wt% IL containing GPE has ionic electrical conductivity of 6.42 � 10−4 S cm−1 at
30 °C [15]. We have computed electrochemical stability window (*4.10 V vs. Li/
Li+) for 80 wt% IL, which includes GPE membrane which is useful for lithium
battery application, and the Li-ion electrical conductivity (Li+ = 1.40 � 10−4 S
cm−1) [15]. The surface of LiFePO4 cathode particle had been modified with
coating of graphene oxide [15]. The graphene oxide coating not just offers as a
protective layer though also enhanced the electronic electrical conductivity of
cathode [15]. Upon surface coating with graphene oxide, electrochemical perfor-
mance of pristine LFP cathode material enhances [15].

A series of tests on the Py13TFSI/LiTFSI/PUA/PMMA ionic liquid polymer the
Li/IL-PE/LiFePO4 half-cell and electrolyte membrane were undertaken and
examined [16]. An electrochemical stabilization window of about 4.8 V had been
obtained, and the electrolyte membrane had sufficient electrochemical stability to
act as an electrolyte material in the Li/IL-PE/LiFePO4 half-cell [16]. The ionic
liquid polymer electrolyte membrane had a satisfactory compatibility with Li
electrode and LiFePO4 electrode; the discharge and charge performance of lithium
ion battery had been investigated [16]. In lithium-ion battery, the Py13TFSI/LiTFSI/
PUA/PMMA kind ionic liquid polymer electrolyte membranes were fruitful [16].

PVdF–PMMA composite fibres with diameter in nano-scale membranes were
efficiently prepared by electrospinning [17]. The increase in proportion of PMMA
improves electrolyte uptake and ionic electrical conductivity of PVdF–PMMA
composites membranes [17]. That the preparation approach for PVdF/PMMA
composites membranes by electrospinning with PVdF/PMMA (50:50) nanofibrous
polymer electrolyte membrane had been observed to be fruitful and potential sep-
arator for Li-ion batteries than that of PVdF and pure PVdF–PMMA (80:20) had
been demonstrated by these results [17].

The addition of EC/DEC solvent mixture to the IL improves the efficient SEI
layer formation and prevents the graphitic disorder of MCMB during discharge/
charge cycling [18]. An initial high irreversible capacity in the variety of 557 mAh
g−1 at 0.1 C rate is demonstrated by the MCMB half cell [18]. High reversible
capacity and satisfactory rate capability are obtained, where the capacity retention
(94%) is kept up to 75 cycles due to the presence of high content of graphitic
behaviour and microspores [18]. Preliminary capacity of 132 mAh g−1 at 0.1 C rate
after the formation cycle with more than 85% capacity retention for 50 cycles is
demonstrated by the LFP [18].

The way raw materials are mixed is an crucial factor for the quality of electrode
and can substantially affect the electrochemical performance [19].
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3.5 Related Work

Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang XW (2014) A review of recent
developments in membrane separators for rechargeable lithium-ion batteries.
Energy Environ Sci 7:3857–3886 [https://doi.org/10.1039/c4ee01432d]

The separator does not entail directly in any cell reactions, though properties and its
structure play important roles in determining the battery performance, which com-
prises cycle life, safety, power density [33], and energy density, in LIBs [2]. The
nanosized pottery particles including TiO2, and Al2O3, SiO2, can substantially
enhance thermal stability the mechanical strength, including their thermal resistance
[33] and ionic electrical conductivity of separators because of their high
hydrophilicity and high surface area [2]. The pore structure and thickness of the
separator should be carefully controlled, as a satisfactory balance betweenmechanical
strength and ionic electrical conductivity should be kept (Arora and Zhang [40]; Lee
and others [33]; Zhang [50]) in order to satisfy these two functions [5].
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Chapter 4
Models, SOC, Maximum, Time, Cell,
Data, Parameters

4.1 Introduction

Previous studies on the hazards and incidents correlated with thermal runaway in
lithium-ion batteries have been studied by numerous scholars [1, 39–41]. The sus-
pected processes which cause the thermal runaway in lithium-ion batteries are
obscure even now and required to be researched thoroughly [1]. To seek the physics
or chemistry in relation to such uncontrollable reactions and to elucidate the phe-
nomenon of the tremendous self-heat rate when a lithium-ion battery displays
thermal runaway necessitate extensive efforts [1]. The plot of pressure versus
absolute temperature is capable of verifying whether decomposition or the runaway
reaction is a vapour, gassy or hybrid system within lithium-ion battery [1]. Our
earlier works on thermal runaway of multiple 14,500 lithium-ion batteries, electrode
materials and reaction chemistry between the elements of electrolytes have been
investigated step by step by employing DSC and the restricted instrument to examine
the obscure thermochemistry inside lithium-ion batteries [1, 42–46]. Four kinds of
commercial E-One Moli 18,650 lithium-ion batteries were dynamically screened to
thermal runaway under external heating in restricted settings in view of the tolerance
limits of thermal abuses [1]. In every sampled E-One Moli 18,650 lithium-ion
battery, goals of safety-concerned elements in conjunction with the following points:
(1) exothermic onset temperature, (2) adiabatic temperature rise, (3) enthalpy
change, (4) maximal temperature, (5) maximal pressure, (6) maximal self-heat rate,
respectively, could be corroborated under the abusive circumstances of thermal
runaway [1]. Through taking into account important temperature, maximal pressure,
maximal self-heat rate in these lithium-ion batteries and maximal temperature,
repercussions inferred from credible worst scenarios will be validated [1].

Li-ion batteries consist a positive and negative electrode capable of Li+ ion
insertion/de-insertion, and a separator; this separator is soaked with a lithium salt,
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which includes mixture of liquid organic solvents, to assure the rapid transfer of
Li+ ions within the cell [2, 47, 48]. The electrode active materials, enmeshed in a
mixture of binder [49] and conductive additive [50, 51], are coated on current
collectors, where Cu foil (8–18 µm) is preferably utilized for Al foil (12–20 µm) for
the positive electrode [47–51, 52–55, 56–60] and the negative electrode [2, 56]. The
negative electrode is forced to accommodate electrons from the positive electrode;
these electrons flow via the external current circuit [2]. Li+ ions, which are retrieved
at the positive electrode side into the solution stage and migrate and diffuse via the
bulk electrolyte to the negative electrode side, to assure the charge balance are
inserted by the negative electrode [2]. The negative electrode acts as the positive
electrode as cathode and anode during the discharge process [2]. Throughout charge
and discharge of the LIB, the active Li+ ions are shuttled between two insertion host
electrodes in the overall reaction of the LIB portrayed in Scheme [2]. The positive
electrode is named as the negative electrode as the anode and the cathode in the
remainder of this manuscript and throughout the scientific literature [2].

The groundbreaking cathodematerial of LiCoO2 where Li-ion can be lithiated and
delithiated between cathode [61, 62] and anode had been created by Mizushima and
Goodenough [3]. Respectively, safety issue is apparently challengeable till now even
after the first commercialization of lithium-ion battery, which employs, which SONY
Co. announced, petroleum coke and LiCoO2 as anode [63] and cathode [3]. Lithium
transition metal oxides of LiNiO2, LiCoO2, LiMn2O4, LiFePO4 and
LiNixMnyCozO2 have been most devised as cathode materials for commercial
lithium-ion batteries [3, 64, 65]. The majority of the organic solvents in electrolytes
responded with the released O2 or broken down on the surface of cathodematerials to
ignite exothermic runaway; this runaway might cause leakage, upsurge, or catch fire
or rupture in case of thermal abuses [3]. Trends of thermal stabilities in cathode
materials utilized in commercial lithium-ion batteries need to be proclaimed or ranked
in entire from the perspective of safety [3]. Reactions of EC with eight cathode
materials including LixCoO2, NiO2, LixNiO2, LixNi0.8Co0.2O2, Mn2O4, Lix Mn2O4,
FePO4 and Co3O4, lithiated transition metal oxides traditionally utilized in
lithium-ion batteries, are going to be implemented by confinement tests [3]. Thermal
runaway in a lithium-ion battery is always attributable to the most exothermic reac-
tion, which cathode materials with electrolytes led [3]. Phenomena or results on
thermal runaway in EC and these delithiated cathodematerials are validated to divulge
the conflicts emphasised on the thermal runaway in lithium-ion batteries above 200 °
C; these batteries are suspected from either anode or cathode apartment [3].

Between the two electrodes, ions shuttle back-and-forth through liquid elec-
trolyte (this electrolyte is made up of a useful lithium salt, including, dissolved in an
suitable organic electrolyte) during operation [4]. Porous separator sandwiched
between two porous electrodes is contained by the cell [4]. “Consider the discharge
operation of this cell” [4]. The ions produced at anode-electrolyte interface because
of deintercalation will move toward cathode because of a combined impact of
electric field-induced migration and concentration gradient-driven diffusion [4].
Efficient operation of a lithium-ion cell rests on proper functioning of every of these
transport mechanisms [4]. The cell performance varies from its theoretical
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(thermodynamic) behaviour, which is given various geometrical configurations of
operating conditions including multiple stages [4, 66, 67]. Mathematical modelling
has demonstrated to be an appealing tool in governing Li-ion batteries examining
the physics and helping us understand the behaviour of these cells [4]. Established
mathematical models for performance inferences of these cells, with useful instance
simulations are described by the present chapter [4]. Thermodynamic, transport,
and kinetic, attributes of LIB constituent materials, the building blocks for per-
formance analyses, are thorough first [4]. In the above-mentioned model to clarify
the non-isothermal operation of the cell, thermal impacts are integrated, as rea-
sonably well [4]. Deterioration of battery health could be attributable to two sets of
events: (a) mechanical impacts-repeated intercalation/deintercalation gives rise to
strain lowered effectiveness of the intercalation process and cycling of the electrode
materials inducing damage, and (b) chemical impacts-highly reactive lithium metal
responds with electrolyte to yield insoluble and/or gaseous commodities, inducing
decrease in cyclable inventory [4]. Cell failure can consequence from anomalous
operation, i.e., under misuse conditions like thermal misuse [39, 68, 69], and
overcharge, external short [4].

Previous studies on the hazards correlated with thermal runaway happened in
lithium-ion batteries were studied [5, 39–41]. The suspected processes which cause
the thermal runaway in lithium-ion batteries are obscure even now and required to be
investigated thoroughly [5]. Explanations among the elements of cells or on the
phenomena or results of thermal runaway in lithium-ion batteries are needed more
discriminative studies [5]. A entire cell is often introduced in an adiabatic
calorimeter to examine the phenomena of thermal potential or runaway hazards in an
18,650 lithium-ion battery [5]. Pressure in relation to absolute temperature is capable
of verifying whether decomposition or the runaway reaction is a vapour, gassy or
hybrid system in lithium-ion battery [5]. Through restricted instrument to examine
the misty thermochemistry inside lithium-ion batteries [42–46]. Thermal runaway of
multiple 14,500 lithium-ion batteries, cathode materials responded with organic
carbonates and lithium responded with electrolytes, had been efficiently carried out
[5]. Runaway under restricted settings, seven kinds of commercial 18,650
lithium-ion batteries are dynamically screened to excessive temperature in pursuit of
thermal [5]. Objectives of safety-concerned elements are aiming at the following
points: (1) the important temperature in which the temperature will be accelerating or
not returnable (2) average value of adiabatic temperature rise (3) enthalpy change in
an 18,650 lithium-ion battery (4) maximal temperature could be reached under
thermal runaway (5) maximal pressure (6) maximal self-heat rate [5]. Through
combining exothermic onset temperature, important temperature, maximal self-heat
rate, maximal pressure in these lithium-ion batteries and maximal temperature,
repercussions caused from credible worst scenarios will be validated [5].

Lithium-ion batteries are compact, effective, rechargeable [70] and high energy
[6]. Under abnormal environmental conditions, the chemical contents of lithium-ion
batteries might go via thermal runaway reactions [6]. Such reactions are differing
depending upon the kind of electrochemistry inside the lithium-ion battery [6].
Upon the rupture of battery, fire or upsurge is subsequently triggered by the thermal
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runaway reactions [6]. Little data exist concerning with upsurge response recom-
mendations and battery fire since the rapid exploitation of high-power lithium-ion
batteries into industrial and commercial applications [6]. Use Evaluation and the
Lithium-Ion Batteries Hazard had been published by the National Fire Protection
Association to offer many research data of lithium-ion batteries fires [6, 71]. Some
other scholars have carried out a set of fire experiments about single lithium-ion
battery, and the state of charge (SOC) is regarded to be the principal factor of
influencing the fires in these studies [6, 72–76]. Parallel and series connection is
dangerous cause if one battery undergoes thermal runaway reactions and the other
battery intends to balance the voltage or current, the system, which is destroyed
maybe [6]. When fire had been caught by one battery, it generates sufficiently heat
to cause adjoining batteries to become thermally unstable as reasonably well [6].
Heat propagation and the heating will also be various if the batteries pack is heated
in various ways [6]. The 18,650 lithium-ion batteries configurations inside the
laptops maybe have a direct relationship with the fire accidents based upon the
realistic consideration [6]. This work carried out many experiments in Lhasa in
order to investigation the burning variations of various configurations batteries
fires [6].

Lithium transition metal oxides (Li1+xNiyCozMnwO2, NCM with y + z + w = 1)
of various composition frequently substitute the “classic” LiCoO2 (LCO) cathode
material in nowadays’s lithium-ion batteries (Li-ion batteries) [7, 77]. The NCM
stages, frequently denoted as next-generation cathode materials, indicate greater
specific capacities because of the addition of nickel and have a lower price than
LCO thanks to the content of manganese, whilst still maintaining satisfactory
cycleability [7, 78]. A non-negligible contribution to capacity degradation results
from gassing, i.e., from the decomposition of electrolyte elements into gaseous
compounds, particularly at elevated temperatures [7]. A thorough and systematic
examination of these gassing mechanisms is unavoidable in order to observe an
approach for the development of enhanced complete cells employing NCM cath-
odes [7]. It is the result of electrolyte and/or electrode material oxidation at the
cathode side due to the requirement for high terminal voltages [7]. That the in situ
identification of CO through quadrupole mass spectrometry in a gas mixture is not
clear-cut, since CO2 modes molecular pieces that superimpose the CO spectrum is
pointed out by us [7]. The Ni-rich NCM523 stage is one of the main marketed
NCM materials [7]. In NCM523-based complete cells, we present a comprehensive
analysis of the gassing phenomena [7]. We indicate the longer-term cycling tests,
the details of the first cycle, the gassing during a characteristic battery formation
cycle, and the gases because of SEI formation [7].

It is required to carry out an additional investigation on the thermal attributes of
Li-ion batteries to have a better understanding of LIB safety [8]. Under outer
radiation, Wang and others [79] and Huang and others [80] examined the com-
bustion behaviours of large-scale lithium-ion battery by assessing flame/surface
temperature, flame topography and mass deterioration rate, heat release rate [8].
Some experiments have been carried out to examine the effect of state of charge
(SOC) on the fire behaviours of Li-ion batteries [8, 73, 75, 76, 81]. Under the help
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of cone calorimeter, Fu and others [75] and Chen and others [76] had taken
experiments of Li-ion batteries with various SOCs (0–100%) and observed that LIB
with greater SOC might owns greater fire hazards [8]. Ye and others [82] evaluated
the thermal behaviours of Li-ion batteries under power cycling with the help of
accelerating rate calorimeter (ARC) and the charge/discharge cycle instrument
under adiabatic condition [8]. That the temperature rise or temperature rise rate
increasing with the growth of circulation rate and the temperature of Li-ion batteries
had been greater under discharge condition had been founded by Ye and others, [8].
Scarce work examines the thermal runway of Li-ion batteries with various SOCs
under discharging condition, particularly for the overcharge condition, and varia-
tions in the thermal fire and runaway behaviours of Li-ion batteries without dis-
charging and with had not been examined [8]. Cone calorimeter, as an crucial
apparatus in the evaluation of combustible materials, has not been utilized to
analyze the fire behaviours of Li-ion batteries under discharging condition [8]. This
work aims to examine the thermal behaviours of Li-ion batteries with and without
discharge employing the cone calorimeter in order to fill in the disparity [8].

Up to their full destruction, overdischarge, i.e., overreaching certain minimum
allowable voltage region upon discharge of a lithium battery is regarded to conse-
quence in the irreversible degradation of cathode materials [9]. Overdischarge
phenomena have been researched for batteries with LiCoO2 [83], LiFePO4,
LiMn2O4 cathodes [84], and LiNiO2 [9]. Say, a conclusion, which is drawn for cells
with LiCoO2, cathodes [85] states that declining voltage to below than 1.5 V triggers
no significant capacity losses [9]. In the composition ranges of 0 � x � 0.5 and
0.5 � x � 1.0. In the composition ranges of 0 � x � 0.5 and 0.5 � x � 1.0,
the reaction occurs in two phases the electrochemical intercalation/deintercalation of
lithium-ions into/from the lattice happens at about 4 V, if the lithium manganese
spinel LiMn2O4 is utilized as a cathode. though the spinel keeps its cubic structure
(space group Fd3m, Z = 8) [86–88] with the lattice parameter a = 8.248 Å and the
unit call volume V = 539.75 Å3 [9]. That upon longer-term cycling, particularly at
small overdischarge, the surface of LiMn2O4 particles enriches with lithium is
emphasised by coworkers and Thackeray [9]. That implies tetragonal
Li2Mn2O4 arises, the Jahn-Teller reconfiguration, and finally Li2MnO3 and soluble
MnO are forming via the disproportionation reaction [89, 90] as That means that
upon longer-term cycling, a combined overdischarge and break-up impacts reshape
the better part of electrode material from LiMn2O4 to Li2MnO3 reasonably well
detectable in XRD researches [9]. Another can conclude that overdischarge sub-
stantially increases the probability of its occurrence, and the formation of
Li1+xMn2O4 in modern Li-ion batteries is a negative phenomenon [9].

A crucial dimension in the application of Li-ion batteries (Li-ion batteries) with
liquid, flammable and volatile organic solvent-based electrolytes [91–95] is safety
[10]. The analysis of organic electrolyte additives in LIB and organic carbonate
solvents electrolytes through GC is reasonably well established [10]. The majority
of researches, revolved around the identification through utilized GC-FID or
GC-MS for quantification and utilized organic solvents for the dilution of samples
prior to liquid injection [10, 96–99]. They, diluted their samples with the organic
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solvent acetonitrile whilst the organic carbonates dimethyl carbonate (DMC), die-
thyl carbonate (DEC), ethyl methyl carbonate (EMC) and propylene carbonate
(PC) with limits of detection (LODs) in the variety of 11.7–31.7 mg/kg had been
efficiently quantifyed by Grützke and others [10, 100]. Sloop and others [101, 102]
firstly diluted LIB electrolyte solutions with water in contrast to most researches
[10]. The focus of this work had been the development of a quantification technique
for the organic carbonates EMC, DEC, ethylene carbonate (EC) and vinylene
carbonate (VC) in aqueous solutions of cell culture medium and cell pellet solutions
incubated with commercial LIB electrolytes based upon a liquid-liquid extraction
and subsequent analysis through GC-MS [10]. The technique had been validated
and utilized for the transfer across the blood-cerebrospinal fluid (CSF) barrier in a
porcine cell culture model to gain more insights into the toxic impacts of these
compounds and the analysis of the cellular uptake of organic carbonates in human
lung adenocarcinoma cells [10].

The transition metal intercalation oxides have induced the main research interests
as the LIB cathodes since layered LiCoO2 had been firstly utilized as a cathode
material for Li-ion batteries in 1991 [11]. The traditional cathode materials include
layered LiMO2 (M = Co, Ni, Mn) compounds [103–105], Li-rich materials [106],
spinel LiMn2O4 [107], orthorhombic structure Li2MSiO4 (M = Fe, Co, Mn, Ni)
compounds [108, 109], olivine LiMPO4 (M = Fe, Co, Mn, Ni) compounds [110,
111], and tavorite LiMSO4F (M = Fe, Mn, Co) [11, 112, 113]. The layered
LiMO2 (M = Co, Ni, Mn) compounds have been the most intensively utilized and
examined cathodes, though they suffer from greater cost (LiCoO2), toxicity (LiCoO2),
thermal turbulence (LiNiO2), serious voltage decay (Li-rich material), systemic tur-
bulence (LiNiO2), and serious security ramifications (LiNiO2) and (LiCoO2) [11].
Several non-toxic polyanionic compounds including LiMSO4F, and LiMPO4,
Li2MSiO4, have aroused interest for use as possible cathode materials in Li-ion bat-
teries, though the inherent inferior electronic electrical conductivity and low ionic
diffusivity, including the systemic turbulence because of Jahn-Teller distortion
Li2MnSiO4, (LiMnPO4, and LiMnSO4F) restrict the practical application [11]. Spinel
LiMn2O4 is one of the most sought-after cathode due to low toxicity, its safety, and
high thermal stability, though the meager high-temperature performance restrict its
additional application because of the Jahn-Teller distortion of the structure [11].
LiNi0.5Mn1.5O4 has been viewed as one of themost fruitful high-voltage candidate for
lithium-ion batteries [11]. It is required to observe suitable electrolyte systems to then
exert the perfect electrochemical performance of LiNi0.5Mn1.5O4 material, and
increase the stabilization of a LiNi0.5Mn1.5O4 cathode/electrolyte interface [11]. “The
stability of electrolytes at high voltages become a constraining factor for the devel-
opment of LiNi0.5Mn1.5O4 electrode” [11].

That becomes a primary concern for battery users, and consequently a
non-destructive technique is needed to access the harmful effect of the overcharging
in order to decide if one must change the cell from the safety and validity viewpoint
[12]. Whether one can pinpoint the internal elements in a cell that are most sus-
ceptible to excessive cut-off voltage COV, they can enhance their cells so as to
make the cell more reliable against this misuse from battery manufacturers point of
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view [12]. The degradation of every individual elements inside a cell could be
dictated via its discharging curve (i.e., terminal voltage versus time during dis-
charging) alone with the recent development of electrochemistry-based electrical
(ECBE) model (Leng and others [114]), [12]. The ECBE technique is utilized by us
to analyze the effect of excessive COV on the degradation of every element
experimentally [12].

Gases formed in the sealed cells give rise to the buildup of internal pressure and
swelling of the cell, de-contacting of the active material and hence present safety
difficulties [115] and de-lamination of the electrodes [13]. In an LIB that can
sometimes be detected after the battery has been utilized for many time or after
electrical misuse tests, a characteristic instance is the swelling [13]. The swelling
normally results from the reductive decomposition of the electrolyte on the negative
electrode; this electrode gives rise to excess pressure within the cell [13, 116]. Gas
bubbles on the graphite electrodes in LIB cells employing in situ neutron image
analysis [117] were detected by Goers and others [13]. Such authors did not carry
out experiments to examine the traces of gas bubbles generated in the process of
disassembling the cell or inside the disassembled cell [13]. In dry rooms,
Commercial LIB manufacturers usually assemble batteries to lessen the moisture
within the cells [13]. The wound cell is positioned in a foil pouch or an aluminium
body case, and linkages are made between the external battery terminals and the
electrodes [13]. The link between the swelling of those batteries during their cycle
life and the generation of gas bubbles in prismatic batteries during longer-term
storage has not been indicated yet [13]. Throughout longer-term storage, which
employs cell disassembly analysis and CT, the electrode deformation phenomena of
cells and the initial generation of gas bubbles had been examined by us, and we
carried out a failure analysis on the swelling that happens during the lifecycle of the
battery such as longer-term storage [13].

Due to its well-established advantages, i.e., high theoretical capacity (roughly
170 mAh g−1), low cost, useful lithium-ion insertion/extraction potential (roughly
3.45 V vs. Li+/Li) [111, 118, 119], and low toxicity, olivine-type lithium iron
phosphate (LiFePO4) electrode has extensively aroused attention [14]. The
well-established combination of the positive electrode of LiFePO4 in lithium-ion
battery and negative electrode of graphite are one of the most fruitful candidate
power sources for electric vehicle [14, 120, 121]. A complex set of interacting
mechanisms is Lithium-ion battery ageing [14]. A variety of various ageing pro-
cesses for lithium-ion batteries have been devised, such as deterioration of elec-
trolyte, separator, active materials, and composite electrode structure, including
evolution of solid electrolyte interphase (SEI) [14, 122–124]. Post mortem analysis
confirmed the break-up of Fe2+ from the LiFePO4 electrode and its subsequent
deposition on the carbon anode; this anode acts as a catalyst that accelerates the
formation of SEI layer and continually consumes active lithium [14]. Through
employing multiple methods, such as destructive analyses on internal materials
[125–127] and nondestructive electrochemical techniques, taking into account the
wide range of processes contributing to the ageing of lithium-ion batteries, we
diagnosed battery ageing [14]. Electrochemical methods, including galvanostatic
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cycling at differential capacity and differential voltage analyses [128–135] and
various rates [136, 137], offer an evaluation of kinetic deterioration, which results
from increase in resistance, and low-rate capacity deterioration [14]. Destructive
techniques, such as half-cell test, scanning electron microscopy (SEM), and X-ray
diffraction (XRD), were carried out to additional clarify capacity fading [14].

Spent LIB are rich source of useful metals like lithium, cobalt, manganese,
nickel, aluminium, copper, etc. [15]. Several chemical and physical mechanisms
have been indicated which comprises crushing, dismantling, sieving, electro-
chemical techniques and chemical precipitation to effectively recover the useful
metals [15]. Through employing separation and chemical precipitation, alkaline or
acidic leaching is undertaken for extraction of useful metals in hydrometallurgical
process [15]. In the scientific literature, it is indicated that the leaching efficiency of
the useful metals employing the strong acids lies in the variety of 85–99% [138,
139] while for weak acids lies in the variety of 70–99% [15, 140, 141]. Leaching
efficiency comprises of efficiencies of all the steps incurred in extraction of the
useful metals [15]. Extractions of useful metals from the spent lithium-ion battery
comprise of three principal steps, viz. (1) peeling of active cathode materials from
the cathode (2) electrode break-up of active materials into the acid (3) and
extraction of useful metals from the dissolved active materials employing chemical
precipitation [15]. The high efficiency of these steps eventually results in high
recovery of useful metals [15]. Whether high purity of retrieved metals is accom-
plished then those metals in the form of oxalates or carbonates could be combined
to form the active cathode material for consequently overexploitation rate from
global reservoir of these metals could be lowered to many extent and manufacturing
of cathode of the lithium-ion battery [15]. The cobalt oxalate is retrieved employing
precipitation technique at the optimum operating condition with effective technique
with high purity [15].

An experimental parametric investigation to evaluate the thermal attributes of
heat pipe cold plates (HPCPs) for lithium-ion cell/pack with numerous cooling
methodologies and various charge rates had been carryed out by Ye and others [16,
142]. The excellent thermal performance of heat pipe, which is premised BTMSs
primarily on the cooling effect at constant charge/discharge rate with various
configurations, had been shown by the above pertinent studies [16]. Given the
miniaturization and compaction of the cooling/heating device to satisfy the
requirements on arrangement and optimum structure in EVs, the advantage of heat
pipes’ bi-directional feature must be completely employed for high-efficient heat
pipe BTMS and a well-design to offer not just satisfactory cooling effect at high
temperatures though also excellent preheating performance under low temperatures
[16]. The principal contributions of this work are developing such a small sized heat
pipe and presenting its application to a BTMS with both cooling and heating, and
then the experimental temperature attributes of UMHPs could be carried out to
guide thermal analysis and optimization of heat pipe BTMSs [16]. This chapter
explains an UMHP BTMS for a lithium-ion battery pack, which is utilized in EVs;
and introduce an experimental setup established for thermal assessment of the
UMHP pack; then the cooling performance of the UMHP pack is assessed under
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constant discharging conditions and transient heat inputs on the federal urban
driving timetable (FUDS) highway condition, and two preheating techniques by
sticking (1) on the surface of cells, heating films and, (2) on the fins of UMHPs are
compared to evaluate the heating efficiency under subzero temperatures in this
chapter; finally, numerous conclusions are drawn [16].

That well-established statistical techniques, e.g. the log-linear model [143],
characterize satisfactorily the link between the design parameters [144–147] and the
battery life-time had been demonstrated by some researches [17]. Owing to the
huge number of contextual factors engaged, some problems persist to solve the
issue of the battery size optimization over a prefixed time horizon of interest [17].
Cycle life (CL, as assessed by the charge-discharge cycles), or battery life-time,
depends upon some parameters, including design maximal specific power, oper-
ating environment, depth-of-discharge, etc. [17, 148]. In real operating conditions,
the randomness of the above parameters, reliable techniques to examine these
dependences are required, since these uncertainties might cause significant differ-
ences in cycle-life estimation, so that huge variations are detected between the
battery CL, which is supposed experienced and, as exhaustively demonstrated in a
number of experimental works [149–151] by taking into consideration [17].
A number of researches, which is based upon stochastic technique for calculating
the likelihood distributions of the battery life-time, have been lately dedicated to
observe accurate solutions to such an issue [17]. With a proper stochastic input, had
been devised for deducing the battery life-time, adopting a probabilistic strategy,
based on an extension of the (deterministic) Virudhula and Rakhmatov battery
model [152, 153] in [154] an advanced battery model [17]. In [155] the devised
probabilistic technique has been utilized to the design of lead-acid battery modules
[17]. The technique enable to conceptualize battery module parameters that assure,
with a high extent of likelihood, that the CL is greater than a prefixed value by
stemming the time-to-failure probabilistic density function from a statistical anal-
ysis of experimental data [17].

Battery models are a crucial element of a dynamic electric vehicle simulator [18,
156]. It is hence required to build battery models; these models precisely imitate
real battery attributes [18]. The models should be fast, highly reliable, straight-
forward, should imitate the attributes that conceptualize a battery and less memory
intensive [18]. Battery models that are included in EVs/HEVs should be capable of
reliably predicting SOH and the SOC to enhance the validity of the vehicle [18]. In
considerable detail, electrochemical models [157–159] characterize the battery
chemistry making these models highly reliable [18]. Such models seem to become
too complex as a set of partial differential equations describing diffusion phe-
nomena and the ion transport, mass and charge balance, temperature and ion dis-
tribution impacts have to be resolved to observe the behaviour of battery [18]. Both
models depend on the high-level representation of battery with analytical expres-
sions based upon physical regulations [18]. Such models are useful and computa-
tionally complex for predicting just individual behavioral facets of the battery [18].
Complex impedance network is utilized by these models to match the battery ac
response [18]. The ability of these models to match the complex transient attributes
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of the battery is restricted, as reasonably well [18]. Such models are misleading and
considerably complex in predicting battery attributes [18]. The focus of this work is
modelling the steady-state and transient behaviour of battery, which employs
Thevenin-based circuit model [18]. The transient I-V and steady-state performance
of battery is persuasively replicated with the model [18]. Battery internal voltage,
which is constituted as CVS, is experimentally demonstrated to be various from
OCV and it is modelled as a function of SOC [18].

Commonly utilized battery models include electrochemical models [160] and
equivalent circuit models [19]. Following the dynamic attributes and working prin-
ciples of batteries, the equivalent circuit model is devised employing resistors, voltage
sources, and capacitors, to form a circuit network [19, 161, 162]. A straightforward
model is normally reluctant to reflect all the dynamic impacts of a battery, whichmight
consequence in errors in the identification of parameters; hence, the precision of the
equivalent circuit model must be enhanced [19, 163]. The electrochemical model of a
lithium-ion battery, which Newman (the DFN model), and Doyle, Fuller, devised, is
based upon porous electrode theory and concentrated solution theory [19, 164]. An
electrochemical model can be an accurate and reliable candidate for the model-based
design of battery management system (BMS) [19, 165]. A single-particle model
(SPM) is set up following [166] to generate an reliable and straightforward electro-
chemical model of a battery [19]. The model captures most of the electrochemical
reaction inside the battery, is more reliable than the equivalent circuit models, and has
a simpler structure than the DFN model [19]. The single-particle model of a
lithium-ion battery includes fewer parameters than the DFN model, though it is time,
which consumes and complex to pinpoint all the parameters in the model [19].
Initially, a single-particle model, which explains the electrochemical attributes of a
lithium-ion battery, is set up based upon the electrochemical reactionmechanism [19].
The single-particle model is simplified employing the volume-average integration
technique and the three-parameter polynomial approximation technique [19].
Through the BFOA, the parameters characterizing the electrochemical attributes of
the single-particle model are identified [19].

Dynamical models of the battery pack could be a useful tool to design these
estimators [20]. In the scientific literature for this sort of batteries including purely
electric models [167] or fuzzy models [168], or electrochemical models [169–171],
some models exist [20]. An extensive analysis on Li-ion batteries modelling is
devised in [20, 172]. Fractional order models, models that could be explained by
fractional differential equations [173, 174], are devised [20]. These an strategy
makes it possible to convey the parameters of the simplified model as a function of
the electrochemical and dimensional constants of the lithium-ion cell [20]. That
model has an crucial physical meaning, unlike purely electric models devised in the
scientific literature [20]. The introduction of fractional differentiation that enables to
characterize many parts of the model with a small number of parameters again
directly linked to the electrochemical parameters of the battery is another interest
[20]. That last model is utilized to design a State of an aging estimator and Charge
(SOC) [20]. A solution is devised to conceptualize if the model parameters adjust-
ment is needed as because of aging model and cell behaviour discrepancy [20].
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There are also various explanations for disagreements among discussed models
[175]: the specific experimental conditions and the dependency of delithiation/
lithiation kinetics and stage compositions on the morphology, the particle size, and
physical properties of the LiFePO4 material, which is researched to name a handful
[21]. The “many-particle” model had been introduced by Dreyer and others [176,
177], which posits that equilibrium potential of LFP material is a non-monotonic
function of lithium concentration and lithiation/delithiation of particles happens
randomly [21]. Farkhondeh and others devised a mesoscopic model [178] to cir-
cumvent this limitation of quasistatic operation of the LFP electrode and to
incorporate a mechanism for mass transfer/phase transition within individual par-
ticles [21]. In Safari and Delacourt [179]’s RR model introduced to emulate LFP,
Delacourt [179] and Safari presumed four spherical particle groups with various
electronic connectivities to the conductive matrix though with the identical particle
size [21]. They are still not ideally suited to performing tedious researches including
ageing and battery pack level simulation and examine the cycling conditions even
though VSSD and RR models appear satisfactory methodologies to emulate the
inferior electronic electrical conductivity of LFP and the slow solid-state Li ion
transport [21]. Aiming at introducing a straightforward model to take into con-
sideration the resistive reactant characteristic of LFP, Marcicki [180] combined his
simplified lithium-ion battery model with a resistance; this resistance differs linearly
with the depth of discharge (DOD) [21]. His modelling results indicate a satis-
factory concordance when compared to experimental data derived from a cylin-
drical graphite/iron phosphate cell for a variety of galvanostatic discharge
experiments from C/3 to 4.8 C. Nevertheless, there is also a need to investigation
the resistive reactant effect of LFP in the entire fraction of discharge/charge curves
of a Li/LFP cell [21].

The microstructure of the optimized electrode gives rise to increasing surface
area, shorter lithium-ion transport pathways, collectively resulting in a significant
enhancement of the battery performance [181–183], and enhanced inter-particle
active material relationships [22]. LIB models that characterize electrode structures
are grouped into four distinct groups: (1) models that characterize electrodes
comprising of homogeneous single-sized spherical particles [164, 184, 185];
(2) models that characterize electrodes consisting of multi-sized spherical particles
[186–188]; (3) models that employ sophisticated mathematical techniques to
emulate electrode structures [189–191]; (4) models that reconstitute real electrode
microstructures employing two imaging techniques of X-ray tomography (XCT),
which is computed, and focused ion beam-Scanning electron microscopy
(FIB-SEM) in the scientific literature [22]. The group (4) model which employs
reconstruction of real electrode morphologies has been made possible with recent
advancements in 3D imaging technologies [22]. Several groups have devised
models to predict LIB performance, which is based upon real 3D electrode
microstructures [22]. That the distribution of lithium-ion concentrations, global
polarization, which XCT-based electrode model obtained, and current density, were
substantially various from those of 1D single-sized spherical models had been
demonstrated by Yan and others [22, 192, 193]. The 3D electrode morphology,
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which employs nano-XCT, had been reconstructed by us, whilst for macro-scale,
the galvanostatic discharge behaviour had been simulated by utilizing Newman
psedudo-2D model [157, 158] and the homogenization theory for the micro-scale
model [22]. The multiscale model included the real 3D morphology of the electrode
and had been an amelioration over the Newman pseudo-2D model, while the
present RVE model is an advancement over the single-particle model [194, 195];
this model enables the formation of a computationally effective conceptual
framework for such as reconstructed 3-D morphology of the electrode [22].

There are some useful research works on prognostics and the battery degradation
modelling for battery SOH estimation [196, 197] in recent decades [23]. In the SOH
estimation of battery, in which the empirical degradation models are frequently
utilized to develop the dynamical system equation, Stochastic filtering method-
ologies including Kalman filtering [198], extended Kalman filtering [199, 200],
Bayesian filtering [201] and unscented filtering are extensively devised [23]. Some
methodologies have been devised including the Dempster-Shafer theory for battery
SOH estimation and RUL prediction [202] and a prognostic algorithm, which is
based upon a Bayesian Monte Carlo technique [23]. Liu and others [203] utilized
the Gaussian process regression (GPR) to carry out SOH prediction for lithium-ion
battery, where the degradation trends are learnt from battery data sets with the
combination of Gaussian process functions [23]. A new strategy to lithium-ion
battery SOH estimation is summarized via the integration of particle filtering and
the MGP model learning [23]. The devised technique comprises of two stages, and
the first is the MGP is utilized to learn the statistical properties of the degradation
model parameter, which integrates training data sets from unclear battery conditions
[23]. Following the parameter distribution information for the degradation process,
particle filtering is exploited to derive the battery SOH estimation [23]. In two
points, the contributions of the present study could be presented: the first is a fusion
prognostics conceptual framework for the lithium-ion battery SOH estimation is
devised by combining the degradation conditions from various batteries, the second
is the devised algorithm implements distribution, which learns for the multimode
process under uncertainty [23].

The lithium-ion and NiMH batteries have a considerable potential for a greater
efficiency HEVs [24]. A big advancement in HEVs necessitates to generate novel
designs capable to incorporate the lithium-ion battery technologies with vehicles
engines of high efficiency, as is noted in [24, 204]. The lithium batteries design
must be congruent in conformity with the international standards specs for “vi-
bration, shocks, temperature effects, acceleration, crush impact, heat, overcharge
and over-discharge cycles, and short circuit”, as is discussed in [24, 204, 205].
A lithium-ion battery cell has a short term life because of the inside presence of
physical transformations that affect significant its electrical performance [205] or
the undesired irreversible chemical [24]. The Li-Ion battery SOC remains one of the
main operational condition battery parameter, which BMS monitored tightly,
though it can not be assessed directly [24]. The reason for this model selection is to
profit of its simplicity and its ability to uncover reliably the whole dynamics of
Li-Ion battery, and to be implemented readily in real time with satisfactory variety
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of performance [24]. Extensive simulations undertaken in MATLAB R2017a
simulation environment demonstrated that this electrical circuit model is compar-
atively reliable to uncover the principal dynamic circuit attributes of a Li-Ion bat-
tery cell, including the open-circuit voltage, transient response, and terminal voltage
[24]. The NREL Li-Ion battery model, which is integrated in ADVISOR MATLAB
platform, is a Li-Ion battery model 6 Ah and nominal voltage of 3.6 V generated by
the corporation SAFT America, as is discussed in [24, 205, 206].

Batteries are the prototypical easily accessible storage device, and Li-ion batteries
are among the most helpful because of low rate of self-discharge [207] and their high
energy density [25]. In tools ranging from cell phones to electric vehicles, Li-ion
batteries are observed and will continue to remain crucial for these and other energy
storage applications in the future [25]. That work examines how Li-ion batteries
could be utilized to transform mechanical work into electrical energy, a property; this
property has not been examined in detail [25]. Previous work on battery electrode
mechanics has examined how strains and utilized emphasizes can affect electro-
chemistry for multiple systems, such as lithium-silicon, sulfuric acid-graphite [208–
214], and lithium-graphite [25]. The results of this earlier research were extended to
graphite electrodes, and a straightforward conservation of energy model finds a
comparable linear correlation between a corresponding increase in voltage [208] and
utilized strain on a battery [25]. In energy harvesting applications, the coupling
between electrochemistry and mechanical strain could be employed [25]. Battery
intercalation materials, or “piezoelectrochemical” materials, exploit of the
stress-voltage coupling in intercalation materials and harvest energy at exceedingly
low frequencies (less than 1 MHz) [25]. Two antiparallel Li-ion batteries linked via
an external load were utilized by us to highlight how to harvest small quantities of
energy by squeezing one battery [25, 215]. We build a model to then use this model
to describe the harvesting system and specify its maximal theoretical efficiency and
investigation the process with Li-ion batteries, which harvests piezoelectrochemical
[25]. Our model leverages the fundamental coupling between electrochemistry in
battery materials and mechanics and could be utilized to other intercalation materials
to predict their efficacy for energy harvesting applications [25].

The mechanical integrity of Li-ion batteries has captured the interest of techni-
cians and scientists from the fields of electrochemistry, mechanics, and material
science, thereby becoming a hot research topic [26]. Several loading conditions,
including indentation [216, 217], radial compression [216, 218, 219], and bending
[216, 220], on completely drained Li-ion batteries with low state of charge (SOC),
were utilized to imitate real-life loadings to comprehend mechanical-electrochemical
behaviours [26, 216, 218, 219, 221]. The qualitative onset of short-circuit criteria
had been dictated on the basis of the mechanical behaviours of Li-ion batteries to aid
mechanical integrity [26, 216]. Owing to the continuous charge/discharge cycles of
batteries, state of health (SOH) of Li-ion batteries and the SOC continually differ,
which gives rise to various strain statuses within the cell [26, 222, 223]. That the
mechanical properties [224, 225] and volumes [226] of the active particles change
due to differing SOC values had been shown by recent evidences [26]. The quali-
tative relationship between mechanical behaviours and SOC status were dictated via
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experiments [227] to additional reliably characterize and predict the electrochemi-
cally reliant mechanical behaviours of Li-ion batteries exposed to abusive
mechanical loadings [26]. The coupling effect that induced SOC and SOH and the
lifecycle of Li-ion batteries were not regarded [26]. Through choosing 18,650 Li-ion
batteries as target cells, the present study analyzes the mechanical integrity beha-
viour of Li-ion batteries under various SOC and SOH values to bridge this disparity
[26]. Governing parameters that describe the mechanical integrity of Li-ion batteries
are presented, compared, and examined at various SOCs and SOHs and among
various kinds of Li-ion batteries [26]. The experimental results on the three kinds of
batteries are outlined by forth this chapter [26].

The majority of the capacity deterioration, which is detected in the first lithiation/
delithiation cycle of secondary lithium-ion batteries, is because of this SEI layer
formation [27]. Previous studies [37, 228–230] have demonstrated that surface
coatings including SiO2 on nanotubes and nanoparticles can enhance the cyclic
performance of high energy density electrode materials by stabilizing the SEI layers
and minimizing the mechanical degradation [27]. In SiO2 samples, depending upon
the subsample configuration (nanoparticle, nanotube, or thin film); electrochemical
conditions (charge rates, potentials, or potential sweep rate); and kind of materials
in contact (electrolyte and components of composite electrode), a combination of
two concurrent reactions, either one reaction, or all possible reaction processes take
place simultaneously during lithiation/delithiation [27]. Through numerous other
researches [228, 231, 232], they were able to cycle the films reversibly with stable
capacities of *500 mAh/g, implying that the Li2Si2O5 reaction is reversible; this
had been revealed [27]. Some crucial questions relating to their mechanical beha-
viour remain unanswered even though the characterization researches [231–236]
enabled in understanding electrochemical and systemic change behaviour of lithi-
ated SiO2 commodities and the material design efforts [37, 228, 229, 230] caused in
innovative core-shell microstructures [27]. That the mechanical properties of
electrode materials (both anodes and cathodes) change during electrochemical
cycling had been indicated by numerous researches [213, 237–241]; and similarly,
the properties of SiO2 might change continually during the lithiation/delithiation
process because of the formation and decomposition of reaction commodities in
(Eqs. 1–3), [27]. The primary aim of the present study is to measure the magnitude
of emphasizes produced in SiO2 material, additional, comprehend how the vari-
ability of mechanical properties affect the mechanics of core-shell kind of particles,
and comprehend how these emphasizes differ during electrochemical cycling [27].

Mechanical failure, which emerges from the insertion/extraction of lithium-ions, is
one of the principal reasons for capacity deterioration of electrodes [242] as is
well-established [28]. Plenty of scientific literature clarified the mechanism of elec-
trode failure based upon the diffusion-induced strain [28, 243–249]. Verbrugge and
Chen devised analytic expressions of strain within a spherical electrode particle under
either potentiostatic or galvanostatic operation [28, 247]. The quantitative trends for
isotropic electrode particles could be given by this analysis, though might be an
over-simplification for anisotropic electrodes and can not elucidate many experi-
mental results of anisotropic electrode; this electrode encourages us to investigation
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the impacts of anisotropy and to shed light on something various though significant for
battery design or battery application [28]. Regrettably, researches of anisotropic
electrodes are still restricted, and the specific impacts of anisotropic properties on the
diffusion-induced strain for spherical electrodes have not been indicated [28]. The
researched electrodes are posited to be spherically isotropic (i.e., the special case of
anisotropy) [28]. The first one is that no experimental data ascertain that spherical
electrode particles are all isotropic [28]. The second is the existence of spherically
isotropic complete andmedium anisotropic electrodes [28, 250, 251].We, based upon
this premise, focus considerably attention on the impacts of anisotropic properties on
the diffusion-induced strain inside spherically isotropic electrodes; these electrodes
might show many positive signals for anisotropic electrodes in practical application
[28]. Our findings indicate that more depth of delithiation (or lower depth of lithia-
tion), which lithiation (or delithiation) followed, is a satisfactory approach to mini-
mize strain and improve battery performance for anisotropic elastic electrodes [28]. It
is plausible that the principal results in the present study are instructive for complete
anisotropic electrodes [28].

The volumetric change for the silicon electrode is considerably bigger than the
carbonaceous anode [29]. That might consequence in substantially high emphasizes
and henceforth cracking or delamination of the electrodes [29, 252]. Patterned sil-
icon islands are fabricated as active material [253], which might avoid the in-plane
cracking [29, 254]. The delamination in the interface between current collector and
active material still exists [29, 252, 253]. In thin film electrodes, the delamination
had been tackled by numerous experimental and theoretical works [29]. The
shear-lag model had been utilized by Haftbaradaran and others [255] to predict the
critical size, in which the energy release rate is utilized as the delamination criteria in
both 2D and axisymmetric structure [29]. Following the cohesive model Pal and
others [256] revolved around the influence of elasto-plastic deformation in the
current collector on interfacial delamination [29]. The evolution of the interfacial
delamination has been researched by utilizing the cohesive model under the
axisymmetric condition [29]. Plane strain and plane stress are two extreme instances
for the 3-D issue of the rectangular plate to many extent [29]. The edge surface of the
rectangular plate is in accord with the plane strain condition [29]. The stress/strain
conditions in the rest region of the rectangular plate are in many measure between
plane strain and plane stress [29]. The plane analysis will be utilized to assess the
delamination for the rectangular island electrode as two extreme instances [29].

The volume change of anode electrode active materials can trigger huge empha-
sizes; these emphasizes can cause damages of the electrode including delamination
and crack when the solute atomsmigrate to the anode in Li-ion batteries [30, 253, 257,
258]. The stable crack growth in hollow nanoparticles had been studyed by Aifantis
and others [259] spherical electrode [30]. Some literatures have investigated the strain
fields of hollow spherical electrode theoretically and experimentally [30]. Yao and
others [260] researched the interlinked silicon hollow nanospheres and indicated that
the emphasizes of the hollow electrodes are smaller than that of solid ones [30]. Liu
and others [261, 262] established a theoretical conceptual framework to investigation
the strain fields in hollow core-shell spherical electrodes, and offered explicit
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formulations for the emphasizes [30]. The coupling effect between electrochemical
reactions andDIS in lithium-ion battery electrodes has not been studied systematically
[30]. The process of electrochemical reaction will simultaneously take place when
lithium-ions are inserted into the electrode [30]. That relative low rate of diffusion and
reaction and the high displacement density can profit stability of solid spherical
electrodes and the cycling capacity had been studied by Liu and others [30, 263]. In
cylindrical electrodes with the effect of reversible electrochemical reaction, strain and
the diffusion had been studyed by Zhang and others [30, 264]. A novel model is
established to examine the DIS with the effect of electrochemical reaction-induced
strain and investigation the coupling effect from the following three facets: (1) which
computes reaction-induced strain in various spherical electrode on potentiostatic
charging operation, (2) comparing the coupling effect of DIS the DIS and electro-
chemical and electrochemical reaction-induced strain in hollow and solid sphere, and
(3) examining the DIS and electrochemical reaction-induced strain with the various
thickness in the hollow spherical electrode [30].

Lithium-ion batteries have been commonly used as rechargeable power for
electric vehicles for the big advantages of light-weight and its high energy density
[31]. More and more electric vehicle fire accidents induced by lithium-ion batteries
have been indicated, and the safety performance of lithium-ion battery has aroused
considerable attention as the explosive growth of electric vehicle, which is equipped
with lithium-ion batteries [31]. The serious damage of a lithium-ion battery can
consequence in an internal short circuit condition, which follows a thermal runaway
[31]. It is required to investigation the response of the lithium-ion battery under
mechanical loading in order to lessen the risk of catching fires in electric vehicle
crash accidents [31]. Sahraei and others [217, 218, 220, 221, 265] carried out a set
of loading test on various kinds of lithium-ion cells and devised homogenized
model which captured the short-circuit point reasonably well [31]. Choi and others
[266] undertaken various types of mechanical tests to investigation the response of
lithium-ion pouch cells, examined its mechanical behaviour toward stress rate,
temperature, and anisotropy [31]. All of those literatures discussed before are pri-
marily concentrated on the examination of mechanical properties on lithium-ion
battery cell level, and most of these test conditions are quasistatic [31].

Ceramic materials are one of the principal groups in the Materials Science by
reason of their applications in modern life [32]. There are numerous techniques of
preparation including chemical technique, which comprises sol-gel and hydrother-
mal process, and mechanical technique, which comprises solid-state reaction [32].
Ceramic materials, alkaline-earth-metal pyrophosphates, with the general formula
A2MP2O7 (A = Li, K, Na, Ag.; M = Ba, Ni, Cu, Zn.) [267–269], are well estab-
lished for their potential applications as magnetic and luminescent materials [32,
270]. The theoretical methodologies of transport phenomena at the microscopic level
could be undertaken taking into consideration two principal contextual factors: the
structure of the compound and the concentration of the ionic species responsible for
the transport which could be typified by its ionic radius, its charge, and polarizability
[32]. Compound, which is Titled, has been previously investigated magnetic and
systemic viewpoint whilst the electrical properties were not indicated [32]. Structural
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co-ordination of the prepared materials and thermal behaviour were examined,
respectively, employing FT-IR and DTA/TGA measurements [32]. The DTA/TGA
results yielded two endothermic peaks: An endothermic peak at 571 K is attributable
because of the chemical decomposition and releasing of ligands and a peak at 721 K
is because of the irreversible stage transition of the compound [32]. Here, we have
the interest to present and explore for the first time the dielectric and electrical
properties of the Li-ion pyrophosphate compound Li2CuP2O7 as function of tem-
perature, which employs impedance spectroscopy, and frequency for that [32].

Sony Corporation first marketed Li-ion batteries in 1991, employing a
carbon-based anode, organic liquid electrolytes solvents (Blomgren [271]), and
lithium cobalt oxide cathode [33]. Specific combinations of nickel, cobalt
(NixMnyCo(1-x-y)), and manganese, are utilized as Li-ion battery cathodes to com-
bine their inherent properties of high capacity, huge electronic electrical conduc-
tivity, and enhanced electrochemical stability, respectively (Myung and others
[272]), [33]. A transition in the anode material, from traditional graphite to lithium
metal, is of paramount importance for increased the energy density of present-day
electric vehicles [33]. The majority of the above methods for increased energy
density entail lithium metal as an anode, as it retains an exceedingly low electro-
chemical potential of −3.04 V relating to hydrogen reference electrode, and theo-
retical specific capacity of 3870 mAh/g, which is nearly an order-of-magnitude
greater than the traditional graphite premised anodes (375 mAh/g) (Xu and others
[273]; Lin and others [274]), [33]. In the second half of the last few decades for
usage in Li-ion batteries, lithium metal anodes were actively studied, though did not
see commercial success because of numerous problems (Blomgren [271]; Cheng
and others [275]): (a) Loss of electrolyte because of reaction with the anode surface
and formation of a solid electrolyte interface; this interface gives rise to significant
capacity fade (b) Formation of dead lithium that does not partake in the electro-
chemical reaction and can potentially give rise to capacity fade if Growth of den-
dritic protrusions that can penetrate via the separator and short is excess lithium not
utilized (c) the cell (d) Thermal runaway because of internal shorting and subse-
quent upsurge of the cell Nucleation and propagation of dendritic protrusions
during lithium deposition are linked to all of these difficulties [33].

At ca 1 V versus Li+/Li0, utilized electrolytes, based upon mixtures of organic
carbonates, undergo decrease mechanisms with the formation of a passivation
layer-the solid electrolyte interphase (SEI) [34]. The SEI layer limits additional
decrease of the electrolyte and affects some crucial battery parameters including
power density and the capacity fade [34]. A spontaneously formed SEI triggers a
significant decrease in battery capacity, which is additional deteriorated by subse-
quent charge-discharge cycles, so the application of a “functional” electrolyte is
recommended [34, 276]. These an electrolyte comprises of salt (s), solvent (s), and
special functional additives; whereof SEI-forming additives are responsible for rapid
creation of an SEI layer and the controlled [34]. Some such researches have con-
centrated on explaining the decrease processes correlated with SEI formation, pri-
marily for carbonate compounds including VC [277–284], through a homolytic
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ring-opening mechanism, and EC, DMC [34]. A greater l gives rise to a stronger
nonbonding interaction with Li+, while weak binding between the lithium cation and
the additive fosters mechanisms on the anode and assures rapid formation of the SEI
[34, 285]. Han evaluated numerous various DFT functionals with the goal of
assessing additive performance by describing the decrease of VC [282] and EC [34].

4.2 Electrolytes, Cathode, Thermal Runaway, Cell, Case,
Organic, Point

4.2.1 Thermal Runaway on 18,650 Lithium-Ion Batteries
Containing Cathode Materials with and Without
the Coating of Self-terminated Oligomers
with Hyper-Branched Architecture (STOBA) Used
in Electric Vehicles [1]

The mean exothermic onset temperature had been assessed to be (159.1 ± 8.3) °C
[1]. Lithium-ion batteries comprised of cathode materials made of
LiNixMnyCozO2 have been shown to display the calamitous attributes of thermal
runaway if they rise above the important temperature of (204.8 ± 16.5) °C [1].
Surface coating of self-terminated oligomers with hyper-branched architecture
(STOBA) upon cathode materials had been reluctant to deter the uncontrollable
thermal runaway under external heating in these lithium-ion batteries [1]. The
results of the present study must foster the pursuit of safer lithium-ion battery
chemistries; these chemistries display less response to thermal misuse [1].

4.2.2 Interfaces and Materials in Lithium-Ion Batteries:
Challenges for Theoretical Electrochemistry [2]

That review explores the Li-ion battery as the leading electrochemical storage
technology, examining its principal elements, namely electrode (s) as active and
electrolyte as inactive materials [2]. State-of-the-art (SOTA) anode and cathode
materials are studied, stressing viable methodologies towards validity of Li-ion
batteries and advancement of the overall performance; existing issues are not
overlooked [2]. Liquid aprotic electrolytes for Li-ion batteries constitute a Li-ion,
which conducts salt, a mixture of multiple additives and solvents [2]. Owing to its
role in a given cell chemistry and its complexity, the most fruitful, element for
additional amelioration of Li-ion batteries, including electrolyte, besides the cath-
ode materials, is identified as most prone [2]. The advantages and shortcomings of
SOTA lithium battery systems are emphasised by this overview, aimed to motivate
scholars to carry forward and bolster the research towards advanced Li-ion bat-
teries, tailored for specific applications [2].
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4.2.3 Thermal Stability of Ethylene Carbonate Reacted
with Delithiated Cathode Materials in Lithium-Ion
Batteries [3]

Confinement tests are implemented for assessing exothermic behaviours of eight
non-lithiated or delithiated cathode materials mixed with ethylene carbonate (EC);
these materials are widely used in lithium-ion batteries [3]. Eight delithiated and
non-lithiated cathode materials, namely lithium cobalt oxide (LixCoO2), nickel oxide
(NiO2), lithium nickel oxide (LixNiO2), lithium nickel cobalt oxide (LixNi0.8Co0.2O2),
manganese oxide (Mn2O4), cobalt oxide (Co3O4), lithium manganese oxide
(LixMn2O4) and iron phosphate (FePO4) are mixed with EC under a programmed rate
of heating, respectively [3]. The ranking of thermal stabilities of delithiated cathode
and non-lithiated materials with EC is compared and outlined [3]. Safety problem,
which regards lithium-ion battery, remains to be a fight even in the near future [3]. At
least quite small exothermic peaks can be detected by DSC [43, 44] for both
LiFePO4 and FePO4 with electrolytes [3]. Not just the stability of the structures
themselves though also the complex reaction processes between electrolytes
responded with lithiated cathode materials caused in the exothermic behaviours [3].

4.2.4 Porous Media Applications: Electrochemical
Systems [4]

Through heat and mass transport in the porous electrodes, electrochemical phe-
nomena including thermal management of Li-ion batteries are substantially shaped
[4]. Direct numerical simulation (DNS) is utilized by present chapter to assess the
species transport via the composite electrodes of Li-ion batteries [4].

4.2.5 Characterization on the Thermal Runaway
of Commercial 18,650 Lithium-Ion Batteries
Used in Electric Vehicle [5]

Through confinement tests, 18650A Panasonic and 18650B lithium-ion batteries at
full-charged state are carried out to run via thermal runaway [5]. The majority of the
maximal temperatures within the batteries under thermal runaway surpass both 800
auto-ignition and °C temperature of organic carbonates to ignite the flammable vapors
of the electrolytes in the air [5]. Under thermal runaway, the calamitous attributesmust
be carryed by Panasonic 18650A and 18650B lithium-ion batteries if they rise above
the important temperature of (188.0 ± 4.4) °C [5]. Averaged enthalpy change, which
thermal runaway of a Panasonic 18,650 lithium-ion battery induced, is similar to the
equivalence of heat released by 0.71 g of gasoline under combustion [5].
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4.2.6 An Experimental Study About the Effect
of Arrangement on the Fire Behaviors of Lithium-Ion
Batteries [6]

The knowledge on the battery combustion behaviour is restricted [6]. The fire
hazard of lithium-ion batteries must be regarded to increase the safety margin [6].
An experimental investigation of various configurations: horizontal 4 � 1, hori-
zontal 2 � 2 and vertical 2 � 2 lithium-ion batteries fire behaviours had been
carried out [6]. The mass deterioration rate, heat flux and heat release rate were
utilized to examine the combustion behaviour, which is thorough more [6]. The
mass deterioration, heat flux and heat release rate were assessed [6]. Lithium-ion
batteries are burning with potentially deadly explosions and volatile [6].

4.2.7 On the Gassing Behavior of Lithium-Ion Batteries
with NCM523 Cathodes [7]

For the first time, the gassing behaviour of one of the main marketed cathode
materials, namely Ni-rich Li1+xNi0.5Co0.2Mn0.3O2 (NCM523 with
0.01 < x < 0.05), is indicated [7]. The generation pattern of the most characteristic
gases CO2, H2, C2H4, and CO during 30 cycles by means of differential electro-
chemical mass spectrometry, which is combined with Fourier reshape infra-red
spectroscopy, is examined by us [7]. We monitor its gas, which is
potential-resolved, evolution and assess the total quantity of gas from cycle to cycle
in a longer-term test of an NCM523/graphite cell [7]. Through combining total and
the spectrometric gas pressure data, an explanation on the feature elements of
pressure versus time curves during cycling is given [7].

4.2.8 Experimental Study on the Thermal Behaviors
of Lithium-Ion Batteries Under Discharge
and Overcharge Conditions [8]

Through a cone calorimeter, many tests were carried out to have a better under-
standing of the thermal behaviours of lithium-ion batteries (Li-ion batteries) under
overcharge and discharge conditions [8]. Various parameters were assessed
including the battery surface temperature, voltage, the time to thermal runaway, the
time to maximal temperature, total heat released and heat release rate [8]. The
current treatment (discharge) can accelerate the warming up, lessen the heat
released, and consequence in previous thermal runaway [8].
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4.2.9 Effect of Overdischarge (Overlithiation)
on Electrochemical Properties of LiMn2O4 Samples
of Different Origin [9]

Overdischarge (overlithiation) effect on electrochemical parameters of lithium
manganese spinels of various origin is researched [9]. In reduced and recommended
potential ranges, charge/discharge tests for 240 cycles are carried out [9]. Insertion
of lithium-ions into spinels by declining potential to +2.4 or +1.5 V against Li/
Li+ is observed to give rise to the formation of the overlithiated Li2-x Mn2O4 spinel
stage [9]. Repeated cycling, which entails the low-potential areas, deteriorates
electrochemical parameters: specific capacity decreases and cell resistance increases
[9]. The microsized BE-30 (NEI) subsample better tolerates cycling at reduced
potentials [9]. That might connote that at least half of the gram equivalent of extra
lithium-ions could be electrochemically inserted into the 16c voids in the spinel
structure, which results in the Li1.5Mn2O4 compound this compound is able to
reversibly work within the 2.4–4.6 V potential variety; this compound is able to
reversibly work within the 2.4–4.6 V potential variety [9]. Manganese ions share
these identical oxygens, so that a subsequent increase in Mn–O ionicity must be
detected [9]. That even small overdischarge is completely unacceptable for the MTI
and JDEES samples is shown by comparisons [9].

4.2.10 Towards Quantification of Toxicity of Lithium-Ion
Battery Electrolytes—Development and Validation
of a Liquid-Liquid Extraction GC-MS Method
for the Determination of Organic Carbonates in Cell
Culture Materials [10]

A new technique, which is based upon mass spectrometric detection (GC-MS) for
the quantification of organic carbonates in cell culture materials and liquid-liquid
extraction with subsequent gas chromatography separation, is summarized [10].
The approach had been utilized to cell culture models incubated with commercial
Li-ion battery (LIB) electrolytes to gain more insights into the potential toxic
impacts of these compounds [10]. The stability of the organic carbonates in cell
culture medium after incubation had been investigated [10]. The stability of EC and
EMC in cell culture medium had been examined, and the transfer of EMC, EC and
DEC across the blood-CSF barrier had been examined [10]. It can be demonstrated
that a transfer of organic carbonates into the compartment, which faces brain, took
place in a porcine model of the blood-cerebrospinal fluid (CSF) barrier [10]. The
character of the subsample matrices might have a significant impact on the outcome
[286] in qualitative analytical analysis [10].
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4.2.11 Recent Progress in the Electrolytes for Improving
the Cycling Stability of LiNi0.5Mn1.5O4 High-Voltage
Cathode [11]

The main aim of this review is to underscore the recent advances in the develop-
ment of advanced electrolytes for enhancing the cycling stability and rate capacity
of LiNi0.5Mn1.5O4-based batteries [11]. An insights into the future research and
additional development of advanced electrolytes for LiNi0.5Mn1.5O4-based batteries
is outlined [11].

4.2.12 Quality Decision for Overcharged Li-Ion Battery
from Reliability and Safety Perspective [12]

The effect of excessive COV on the discharging ability of cell, and the use of a new
non-destructive technique to assess if the damage, which the excessive COV made
in the cell, is rendering the cell from additional safe usage or it is still satisfactory
with minor degradation in validity and safety, offering a basis for quality consid-
eration of the cell is demonstrated by this work [12]. The technique allows battery
manufacturers to pinpoint the internal elements for their cells that are most sus-
ceptible to the excessive COV so that quality amelioration of their batteries could
be generated and designed [12]. That technique alerts electric vehicles user on the
hidden safety problems of battery manufacturers’ battery pack, and allows battery
management system to carry out validity balancing, a novel patented method to
assure the accurate and safe operation of battery pack [12].

4.2.13 Failure Analysis of Swelling in Prismatic
Lithium-Ion Batteries During Their Cycle Life After
Long-Term Storage [13]

Upon longer-term storage, the first cell is investigated, traces of side reactants are
observed around the centre of the anode electrode, and in which case a void space,
probably a gas bubble, is detected around the Ni tap in the cell [13]. That cell is
compared with a swollen cell, in which, according to the CT results before and after
gas removal, gas is observed inside the space between the can body and the jelly
roll and inside the jelly roll, which is investigated after undergoing numerous cycles
after longer-term storage [13]. The gas bubbles are demonstrated by the results and
side reactants produced as a consequence of longer-term storage are dictated to be
responsible for the swelling in the cell because of prolonged cycling [13].
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4.2.14 Cycle-Life and Degradation Mechanism of LiFePO4-
Based Lithium-Ion Batteries at Room and Elevated
Temperatures [14]

At elevated temperatures and room, cycle-life tests of commercial 22,650-type
olivine-type lithium iron phosphate (LiFePO4)/graphite lithium-ion batteries were
carried out [14]. A number of nondestructive electrochemical methods, i.e.,
capacity recovery, which employs a small current density, differential voltage and
differential capacity analyses, and electrochemical impedance spectroscopy, were
carried out to infer the degradation mechanism of these batteries [14]. We disas-
sembled the batteries, and material analyses were carried out to additional describe
these batteries’ internal materials [14].

4.2.15 Manufacturing of Lithium Cobalt Oxide from Spent
Lithium-Ion Batteries: A Cathode Material [15]

Disposal of huge quantity of spent lithium-ion batteries will cause will generate
waste management issue including adverse environment influence [15]. Use of
Extracted metals from recycling for manufacturing of cathode active material, i.e.,
lithium cobalt oxide will help in reducing the rate of overexploitation of these
useful metals [15]. Recycling process comprises of peeling, extraction steps, and
break-up [15]. Variations of parameters for improving the peeling and the break-up
steps along with extraction of cobalt oxalate and manufacturing of lithium cobalt
oxide have been researched here [15]. The extraction efficiency of cobalt oxalate is
observed to be 91% with purity of 90% [15]. The purity of manufactured lithium
cobalt oxide is observed to be 91% [15].

4.2.16 Experimental Investigation on Cooling/Heating
Characteristics of Ultra-thin Micro Heat Pipe
for Electric Vehicle Battery Thermal Management
[16]

Owing to the heat pipes’ transient conduction, fluid dynamics and stage change
during cooling/heating with high frequency charging/discharging of batteries, it is
important to examine in depth the experimental dynamic thermal attributes in such
complex heat transfer mechanisms for design of a BTMS and more reliable thermal
analysis [16]. The use of ultrathin micro heat pipe (UMHP) for thermal manage-
ment of a lithium-ion battery pack in EVs is examined by experiments to show the
cooling/heating attributes of the UMHP pack [16]. That heating films stuck on the
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fins of UMHPs brought about adequate high heating efficiency comparing with that
stuck on the surface of cells under the identical heating power is revealed by
experimental data, though has less cost for the BTMS and more convenient
maintenance [16]. The experimental dynamic temperature attributes of UMHP
which is observed to be a low-energy and high-efficient consumption, which
cooling/heates technique for BTMSs, could be carried out to guide thermal analysis
and optimization of heat pipe BTMSs [16].

4.3 SOC, Models, Stress, Parameters, Function,
Conditions, Estimation

4.3.1 Probabilistic Battery Design Based upon Accelerated
Life Tests [17]

A probabilistic battery design technique is outlined, with reference to lithium-ion
batteries, based on linked economical facets and battery life-time [17]. The reliance
of battery life-time on various parameters, including operating environment and
design maximal specific power is taken into consideration by the technique [17].
A probabilistic technique for battery design is devised which assures the mini-
mization of a useful cost function which has the supposed life-time as a basic input
after a detailed statistical data analysis [17]. The technique enables to assure the
needed robustness design against the random differences in specific power expe-
rienced by a Li-ion battery, which is designed for a small electric bus (public
transport service) [17].

4.3.2 A Novel Approach for Electrical Circuit Modeling
of Li-Ion Battery for Predicting the Steady-State
and Dynamic I-V Characteristics [18]

The dynamic and steady-state behaviour of battery is mimiced by the model [18].
Internal charge distribution of the battery is modelled employing two RC circuits
[18]. Self-discharge feature of the battery is modelled employing a leakage resis-
tance [18]. The internal voltage source of the battery model differs dynamically
with SOC to replicate the experimental terminal voltage attributes of battery [18].
The internal voltage CVS is accomplished as a second-order polynomial function of
SOC to retain the simplicity of model including to reliably portray the terminal
attributes [18].
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4.3.3 Electrochemical Modeling and Parameter
Identification Based on Bacterial Foraging
Optimization Algorithm for Lithium-Ion Batteries [19]

This chapter aims to characterize a single-particle model of a lithium-ion battery
that has a straightforward structure, could be enmeshed in simulation computer
program for on-line applications, and offers a high-accuracy characterization of the
dynamics [19]. A simplified electrochemical model that underlies the dynamic
voltage response is the single-particle model; this model is explained by a set of
partial differential equations [19]. The single-particle model is simplified employing
the volume-average integration technique and the three-parameter polynomial
approximation technique [19]. A protocol for reducing the model, which is based
upon the volume-average integration technique and the three-parameter polynomial
approximation, is devised to simplify the partial differential equations of the
single-particle model [19]. The single-particle model of a lithium-ion battery is set
up in Simulink and MATLAB [19]. Comparing the terminal voltages of the model
and the battery, the accuracy of the single-particle model is ascertained [19]. That
the single-particle model of a lithium-ion battery is straightforward and quite reli-
able, verifying the validity of the parameter identification process is demonstrated
by the results [19].

4.3.4 Fractional Models of Lithium-Ion Batteries
with Application to State of Charge and Ageing
Estimation [20]

In the pack, the BMS employs models of every cell to undertake an reliable battery
diagnosis [20]. A two fractional models of lithium-ion cell are devised [20]. The
quite low number of parameters in the simpler devised model allows a two frac-
tional models of lithium-ion cell’s adjustment with a quite straightforward protocol
[20]. A solution is devised to conceptualize if the model parameters adjustment is
needed as because of aging model and cell behaviour discrepancy [20].

4.3.5 Lithium Iron Phosphate Electrode Semi-empirical
Performance Model [21]

Following the meager inherent electronic electrical conductivity elements of LFP,
an empirical variable resistance strategy is devised for the single particle model
(SPM) [21]. Through the increasing ohmic resistance, a resistive-reactant charac-
teristic of LFP as the positive electrode active materials, the increased resistance
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behaviour, which is detected at the end of discharge process of LFP batteries, could
be justified [21]. “Schematic of the coated LFP active material particles in (a) be-
ginning of discharge with well-connected particles, (b) end of discharge with
poor-connected particles” [21].

4.3.6 Representative Volume Element Model of Lithium-Ion
Battery Electrodes Based on X-Ray Nano-tomography
[22]

A novel model that keeps all main advantages of the single-particle model of
lithium-ion batteries (Li-ion batteries) and comprises 3-D structure of the electrode
had been devised [22]. A small volume element of an electrode, called the repre-
sentative volume element (RVE), which constitutes the real electrode structure is
regarded by this model unlike the single spherical particle [22]. The advantages of
employing RVE as the model geometry were shown for a characteristic LIB
electrode, which comprises of nano-particle LiFePO4 (LFP) active material [22].
The simulation results revealed that the distribution of lithium inside the electrode
microstructure is quite various from the results obtained based upon the
single-particle model [22]. The simulation results are in satisfactory concordance
with the discharge profile of LFP cathode at multiple discharge rates; these rates
have been validated with experimental data [22].

4.3.7 Prognostics of Lithium-Ion Batteries Under
Uncertainty Using Multiple Capacity Degradation
Information [23]

Under unclear conditions, where the degradation process parameters distribution
could be learnt from the various readily available capacity measurements, a new
integrated strategy, which is based upon a mixture of Gaussian process
(MGP) model, is summarized for lithium-ion battery SOH estimation [23]. Through
fusing the training data from various battery conditions with the MGP model, the
distribution information of the degradation model parameter is retrieved to uncover
the time-varying degradation behaviour [23]. The PF algorithm is utilized to predict
the battery SOH by exploiting the degradation model parameter distribution
information [23].
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4.3.8 An Adaptive Observer State-of-Charge Estimator
of Hybrid Electric Vehicle Li-Ion Battery—A Case
Study [24]

The efficacy of the examiner state estimator design is demonstrated via intensive
simulations carried out to calculate the state-of-charge of a lithium-ion rechargeable
battery, which is integrated in a hybrid electric vehicle Battery Management System
structure for a particular Honda Insight Japanese car [24]. The state-of-charge is an
indispensable internal parameter of the lithium-ion battery, though not directly
measureable, hence an reliable estimation of battery state-of-charge becomes a
crucial operation for the Battery Management System [24].

4.3.9 Characterization and Model of Piezoelectrochemical
Energy Harvesting Using Lithium-Ion Batteries [25]

Lithium-ion intercalation materials are also mechanically active even though Li-ion
battery research frequently examines electrochemical properties [25]. We build a
model to investigation and predict the efficacy of intercalation materials as
mechanical energy harvesters [25]. We indicate that a Li-ion battery harvester could
be modeled as a straightforward circuit and that we can make both quantitative and
qualitative inferences about the efficacy of a battery material, which is given its
inherent mechanical and electrochemical properties [25].

4.3.10 Coupling Effect of State-of-Health
and State-of-Charge on the Mechanical Integrity
of Lithium-Ion Batteries [26]

Two governing contextual factors that impact the electrochemical behaviours of
lithium-ion batteries (Li-ion batteries), state of charge (SOC) and state of health
(SOH), are continually swapped, hence impeding the understanding of the
mechanical integrity of Li-ion batteries [26]. The electrochemical failure of Li-ion
batteries with multiple SOHs and SOCs exposed to abusive mechanical loading is
examined by the present study [26]. Comprehensive experiments on
LiNi0.8CoO15Al0.05O2 (NCA) LIB indicate that the change trend differs with SOC
value and that SOH decrease gives rise to systemic stiffness [26]. Electrochemical
failure stress at short circuit has no relationship with SOH or SOC, while failure
strain increases with the increase of SOC value [26].
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4.3.11 Real-Time Stress Measurement in SiO2 Thin Films
During Electrochemical Lithiation/Delithiation
Cycling [27]

Through monitoring the substrate curvature, which employs a multi-beam optical
sensing technique, strain evolution in the SiO2 thin film electrodes during elec-
trochemical lithiation/delithiation is assessed in situ [27]. A straightforward plane
stress finite element model of Si nanotube coated with SiO2 shell had been devised
to comprehend the mechanical response of the core-shell kind microstructures
under electrochemical cycling; assessed strain response had been utilized in the
model to constitute SiO2 constitutive behaviour whilst Si had been treated as an
elasto-plastic material with concentration reliant mechanical properties derived
from the scientific literature [27]. The results indicated here offer insights and
qualitative understanding as to why the highly brittle SiO2 coatings are able to
improve cyclic performance of Si indicated in the scientific literature and stabilize
significant volume expansion (300%) of Si core without fracture [27]. The basic
mechanical properties summarized here are required first step for future design and
development of SiO2-based electrodes or durable Si/SiO2 core shell structures [27].
The energy density and capacity of current lithium-ion batteries is restricted by
electric vehicle and non-conventional energy production technologies’ electrode
materials and are not adequate to satisfy the future energy demands [27]. It could be
detected that when SiO2 coating is presumed as a pure mechanical clamping layer
with elasto-plastic properties [232], the hoop strain in SiO2 reaches as high as 2.9
GPa, which is substantially greater tensile strain than the fracture strength of SiO2;
this strength can give rise to cracking [27].

4.3.12 Diffusion-Induced Stress of Electrode Particles
with Spherically Isotropic Elastic Properties
in Lithium-Ion Batteries [28]

Mechanical degradation, which pulverization and crack nucleation produced, can
give rise to the capacity fade in lithium-ion batteries; this fade has been attributable
to diffusion-induced strain inside battery electrodes in recent decades [28]. Not
considerably attention has been directly taken to the models of diffusion-induced
strain for anisotropic electrodes [28]. An analytical model of diffusion-induced
strain for spherically isotropic elastic electrodes under galvanostatic and potentio-
static operation is devised by us [28].
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4.3.13 Two-Dimensional Analysis of Progressive
Delamination in Thin Film Electrodes [29]

A semi-analytical technique is devised to examine the interfacial delamination in
electrodes by utilizing the 2D analysis, i.e., plane strain and plane stress [29]. It is
observed that the delamination in the plane stress condition happens easier, sug-
gesting that the constraint is damaging to retain the structure stability [29]. With
regard to the obtained governing equations, a formula of the dimensionless critical
size for delamination is offered, which is a function of the Poisson’s ratio of the
active layer and the maximal volumetric stress [29].

4.3.14 Effect of Electrochemical Reaction
on Diffusion-Induced Stress in Hollow Spherical
Lithium-Ion Battery Electrode [30]

Stress (DIS), which is Diffusion-induced, has been examined in hollow and solid
spherical electrode [30]. In a hollow spherical electrode, a novel coupled model is
established to examine the DIS with electrochemical reaction [30]. In contrast to
strain evolution in hollow and solid sphere electrode, electrochemical-induced
strain in solid electrode is considerably smaller than that in hollow electrode [30].
A novel approach is put forth to maximize the reaction-induced strain and the
electrode thickness; this strain might eventually expand the overall battery life [30].

4.3.15 Mechanical Performance Study of Lithium-Ion
Battery Module Under Dynamic Impact Test [31]

Vehicle crashes are one of the leading triggers of catching fires in electrical vehicle
accidents, whilst the mechanical intrusion triggered failure of battery which is the
most frequent cause of these fires [31]. To lessen the risk of catching fires in
electrical vehicle accidents, the crash failure threshold of battery module, which can
be provided as an crucial design parameter in CAE analysis of battery systems’
safety, is required to be reasonably well investigated [31]. That influence directions
have considerable affects on mechanical attributes, crash failure threshold of battery
module, and electric voltage, had been demonstrated by results [31]. Failure stress
of separator has been researched that separator under greater stress rate caused in a
satisfactory elongation feature of separator and smaller elongation ratio can enhance
safety performance of pouch cell under mechanical loadings [31, 287, 288].
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4.3.16 Phase Transition and Electrical Investigation
in Lithium Copper Pyrophosphate Compound
Li2CuP2O7 Using Impedance Spectroscopy [32]

XRD and FTIR results, accomplished at room temperature, suggest respectively a
pure monoclinic stage with I2/a space group and the hegemonic characteristic of
pyrophosphate anion (P2O7)

4− [32]. Dielectric and electrical properties have been
researched employing impedance spectroscopy complex over a wide frequency
(209 Hz–1 MHz) and temperature (576–710 K) variety [32]. The frequency-
dependent AC electrical conductivity obeys Jonscher’s universal power law
rAC * Axs [32].

4.3.17 Computational Modeling of Morphology Evolution
in Metal-Based Battery Electrodes [33]

Superior energy and low toxicity, power density, and enhanced shelf life have led to
the popularity of Li-ion batteries as energy storage tools in the automotive and
electronics sectors [33]. Especially greater energy densities will be needed by
next-generation Li-ion batteries to satisfy ever-growing demands for longer battery
life [33]. Due to low electrochemical decrease potential (−3.04 V relating to H/
H+ reference electrode) and superior’s exceedingly high theoretical specific
capacity (roughly ten times bigger than that of traditional anode materials), lithium
metal is a highly appealing candidate as an anode material for next-generation
Li-ion batteries [33]. Stabilization of lithium deposition will be needed by suc-
cessful commercialization [33].

4.3.18 SEI-Forming Electrolyte Additives for Lithium-Ion
Batteries: Development and Benchmarking
of Computational Approaches [34]

SEI-forming additives play important roles in lithium-ion batteries, and the crucial
to enhancing battery functionality is to specify if, how, and when these additives are
lowered [34]. A number of computational methodologies and techniques to specify
the optimal way to predict and characterize the properties of the additives had been
evaluated by us [34].
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4.4 Conclusion

A risk concluded to be satisfactory or not is judged from the severity of temperature
and pressure under runaway of an 18,650 lithium-ion battery [1]. Maximum tem-
perature above 450° (exceeded the auto-ignition temperature (AIT) C of organic
carbonates at the values between 430 and 465 °C) (exceeded 4 times of maximal
allowable working pressure, MAWP) and pressure will cause fire and upsurge when
a lithium-ion battery goes via an uncontrollable runaway [1]. The following
overpressure, which is caused from thermal runaway, is too huge to be tempered or
relieved from a rupture disk equipped with lithium-ion battery under such excessive
self-heat rate (dT/dt), which accompanys a pressure-rising wave [1]. When under a
presumably thermal misuse, when the temperature of the battery surpasses an
exothermic onset temperature, thermal runaway is too violent to be stopped by
either inhibitor, a pressure relief device, which is installed oligomer for thermal
shutdown inside the battery, or by a pressure relief device installed inside the
battery [1]. Lithium-ion batteries with the cathode materials made of
LiNixMnyCozO2 have been devised to owns the high-rate ability, acquire better
thermal stability than that of LiNiO2 or LiCoO2 and maintain the excellent capacity
near that of LiNiO2 [1]. Such four kinds of lithium-ion batteries correlated with the
cathode materials of LiNixMnyCozO2 pose the highly unacceptable risk of thermal
runaway when these batteries are in full-charged states and under external heating
with the temperature, which surpasses 160 °C, in the present study [1].
Investigation of the suppression or thermal shutdown of thermal runaway in an
18,650 lithium-ion battery, which is designed with cathode coated by STOBA and
made of LiNixMnyCozO2, had been demonstrated to be unclear, not successful in
preventing thermal runaway or not good [1].

Research into novel electrode materials to additional increase energy density,
power density, safety at affordable cost and cycle life tends [2]. The design and
development of novel electrode materials and electrolyte elements based upon
understanding of operation and failure processes of the battery, also at the electrolyte/
electrode interfaces is crucial to additional advance the limits of cycle life in the LIB
and safety, power [2]. The physicochemical properties and attributes of the
electrolyte/electrode interfaces formed safety and substantially specify power despite
the fact that electrolyte belongs to the group of inactive materials in the LIB [2].

Lithium-ion batteries are not immune to incidents triggered by possible abuses or
thermal turbulence [3]. Calorimetry combined with confinement test possessed
overwhelming supremacy for evaluating thermal reactive or runaway hazards
submerged in lithium-ion battery [3]. A risk is satisfactory or not is judged from the
pressure and temperature runaway of lithium-ion battery [3]. Pressure (exceeded 4
times of maximal allowable working pressure, MAWP) and maximal temperature
(exceeded auto ignition temperature, AIT) will cause upsurge and fire in batteries,
and their assemblies are both unacceptable risks when lithium-ion batteries go to
uncontrollable runaway [3]. Through confinement test, ignoring the affects of
lithium salt and binder, which is equipped in lithium-ion batteries in the present
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study, simplified reactive systems between EC with transition metal oxides can be
clearly examined [3]. FePO4 is the candidate for large-sized lithium-ion battery
based upon the perspective of most reactive inertness, which is demonstrated most,
from the relationships of cathode materials with EC [3].

State-of-the-art Li-ion batteries are comprised of porous electrodes in order to
increase surface area-to-volume ratio and lead to batteries with better
volume-specific and weight-specific energy and power densities [4]. Description,
which is Theory-based, enables elucidate some dynamic elements of cell perfor-
mance had been electroded by Porous [4]. Various solid stages are contained by the
electrodes for such batteries, and reliable quantification of electrode properties
becomes a quite crucial topic [4].

Confinement test is shown to be an influential method for characterizing the
thermal runaway of commercial Panasonic 18,650 lithium-ion batteries [5]. A risk
concluded to be satisfactory or not is judged from the temperature and pressure
runaway of 18,650 lithium-ion battery [5]. Maximum temperature above 450°
(exceeded the auto-ignition temperature (AIT) C of organic carbonates at about
430-pressure and 465 °C) (exceeded four times of maximal allowable working
pressure, MAWP) will cause fire and upsurge in batteries, and their assemblies were
drawn when a lithium-ion battery went to uncontrollable runaway [5]. Prevention in
the induction of thermal runaway from thermal misuse, overcharge, internal short,
LiC6 responded with electrolytes below 60 °C is the optimal stratagem in
employing lithium-ion battery safely from the runaway processes devised from low
to high temperature [5]. The caused repercussions of thermal runaway in
lithium-ion battery are unacceptable risks by judging from the maximal tempera-
ture, maximal self-heat rate or maximal pressure [5].

An experimental investigation of various configurations: horizontal 4 � 1, hori-
zontal 2 � 2 and vertical 2 � 2 batteries fire behaviours had been summarized [6].
The thorough analysis of the ignition time, mass deterioration, heat release rate, heat
flux and released heat offers a comprehensive understanding of the complex fire
hazard, which batteries with various configurations induced [6]. Experimental results
indicate that the configurations have considerable affects on the burning behaviours of
lithium-ion batteries [6]. The batteries of various configurations experienced resemble
mass deteriorationmechanisms, and the total mass deterioration is comparable, whilst
HRR, heat flux and combustion heat are fairly various [6].

H2, C2H4, and CO, are the most characteristic gases in the initial cycles; CO2 is
dominating if the terminal cell voltage is increasing [7]. The origin of the SEI
forming gases has been identified with separate measurements carried out on
graphite/Li cells [7]. In a rather stable fashion, these could be cycled without
reconstruction of the SEI when the potential of the graphite anode remains between
0.01 and 0.40 V [7]. Throughout a characteristic battery formation cycle, the gas
generation had been examined, as reasonably well [7].

Under overcharge and discharge conditions by means of a cone calorimeter, the
thermal behaviours of Li-ion batteries are summarized [8]. Detailed analysis on the
surface temperature, voltage, the time to thermal runaway, the time to maximal
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temperature increased rate, released heat and HRR offers a comprehensive under-
standing of the thermal behaviours of Li-ion batteries fire [8]. LIB has apparent
warming up during discharge due to irreversible heat and reversible heat [8]. The
batteries under discharging owns greater heating rates which make them obtain into
thermal runaway previous [8]. Discharging will make LIB harder to control and
riskier [8]. Apart from, it is observed that overcharge is damaging to the LIB safety
that it will make LIB easier to behave considerably more violent when catching
fires and obtain into thermal runaway [8].

Four lithium-manganese spinels of various origin, viz., nano-sized stoichio-
metric homemade (JDEES) material, microsized commercial aluminum-doped
(Toda) spinel and two microsized commercial stoichiometric (MTI and NEI) spi-
nels have been exposed to cyclic galvanostatic and voltammetric overdischarge
researches for 240 cycles [9]. Intercalation of lithium-ions into lithium-manganese
spinels by declining potential to +2.4 or +1.5 V against Li/Li+ gives rise to the
formation of the overlithiated Li2−xMn2O4 spinel stage detectable by a feature
Li+ insertion/deinsertion peak in the 2.9 V region [9]. No notable transformations
of this peak with scan number denotes no changes of the spinel structure, and
materials investigated maintain their electrochemical activity in the working region
of spinel electrodes, i.e., >3.5 V [9]. An ability to intercalate extra lithium-ions at
low potentials substantially depends upon material [9]. Through no more than half
gram equivalent, uptake/release of extra Li+ is restricted for other (microsized)
samples [9]. Through declining potential to +2.4 V, being electrochemically
overlithiated, all samples uptake/release half of the gram-equivalent of extra Li+ [9].
Repeated cycling, which entails the low-potential areas, deteriorates electrochem-
ical parameters: specific capacity decreases and cell resistance increases [9]. That
might connote that at least half of the gram equivalent of extra lithium-ions could be
electrochemically inserted into the 16c voids in the spinel structure, which results in
the Li1.5Mn2O4 compound this compound is able to reversibly work within the 2.4–
4.6 V potential variety; this compound is able to reversibly work within the 2.4–
4.6 V potential variety [9].

The development of a quantification technique for EMC, DEC, VC and EC in
aqueous solutions of cell culture cell pellet and medium solutions had been indi-
cated and organic carbonates as elements of LIB electrolytes were examined in the
context of cell culture experiments [10]. The combination of extraction with sub-
sequent GC-MS analysis and an organic solvent demonstrated to be able to pinpoint
all feature individual mass traces of the organic carbonates [10]. The stability of EC
and EMC in cell culture medium had been examined, and the transfer of EMC, EC
and DEC across the blood-CSF barrier had been examined [10]. Organic carbonate
solvents were observed to pass is supposed to enter the brain this way in all three
examined concentrations and the simulated in vitro blood-CSF barrier [10].

Spinel LiNi0.5Mn1.5O4 material has been regarded as one of the most fruitful
cathode material in practical energy application because of its eco-friendliness, low
synthesis cost, satisfactory practical capacity of about 135 mAh g−1, and high power
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capability with an operating voltage of 4.7 V [11]. With regard to the discussion, the
fruitful electrolyte additives utilized in high-voltage LiNi0.5Mn1.5O4 cathode ought
have the following attributes: (1) the additive can scavenge HF molecules from the
electrolyte and form a stable protective film on the surface of LiNi0.5Mn1.5O4, then
enhance cell performance a high charge potential without side reactions at the anode
surface; (2) high-voltage electrolytes put forward with the solvents must have
superior anodic stability [11]. Much feasible solutions must be devised and exam-
ined, such as the development of high-voltage solvents (including sulfones, ionic
liquids, etc.), novel lithium salts with high thermostability (including LiBOB), and
the creation of carbonate derivatives (including fluorinated carbonates) [11].

Through having it to charge with high COV, we have efficiently identified the
seeming gain of Li-Ion cell, and confirmed the hidden problems correlated with
charging the cell with high COV, with the use of ECBE battery model, which is
devised lately [12]. We are able to offer real-time on-line non-destructive evaluation
of the internal elements in a Li-Ion cell to assess its validity and safety relating to
this overcharging misuse with our technique [12]. Our technique could be incor-
porated into existing battery management system so that a more advanced safety
technology to assure safe operation of the battery pack with enhanced system
validity could be possible [12].

Details of the failure analysis of swelling in prismatic Li-ion batteries after a cycle
life and primarily via non-destructive analysis techniques including CT, after
longer-term storage and cell disassembly were summarized [13]. The CT disas-
sembly and scans analysis confirmed a void space; this space had been believed to be
triggered by gas bubbles, near the Ni tap and exposed to longer-term storage near the
edges of the cell, and there were wrinkle-like stripes on the corresponding separators
[13]. The CT scans recorded after gas removal revealed between the can body and
jelly roll and that gas accumulated between the jelly rolls in the swollen cell that
underwent a number of cycles after longer-term storage [13]. The gas bubbles and
side reactants produced as a consequence of longer-term storage were dictated to be
responsible for the swelling in the cell because of prolonged cycling [13].

The mechanism of capacity degradation in LiFePO4/graphite lithium-ion bat-
teries cycled at 25 and 55 °C had been examined by this work [14]. A series of
destructive materials, which underlies nondestructive electrochemical analysis and
methods, suggested that deterioration of active lithium had been the principal
reason for cell degradation both at 25 and 55 °C, and a greater discharge rate and
the evident increase in impedance must be responsible for the sudden capacity fall
down at 25 °C [14]. Primarily in the anode, active material downturn at 55 °C
happened, even though this phenomenon did not directly give rise to capacity
degradation of cylindrical battery [14]. Novel characterization methods should be
examined to additional investigation the capacity degradation mechanism of
LiFePO4 Li-ion batteries [14].

Recycling of smartphone’s lithium-ion secondary batteries is undertaken
employing sulfuric acid as the leachate [15]. The break-up efficiency of the
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recycling process is enhanced employing multiple optimum operating conditions
[15]. 91% with 90% purity of cobalt oxalate is the extraction efficiency of cobalt
[15]. The battery grade lithium cobalt oxide is procured lithium carbonate (Loba
Chemicals, India) and manufactured from the retrieved cobalt oxalate [15]. The
battery grade cathode material must have the purity of 99.5% and consequently
additional research is going to enhance the purity of cobalt oxalate and also to
extract lithium carbonate from the spent lithium-ion batteries, so that cathode active
material could be purely manufactured from metals retrieved from spent lithium-ion
batteries [15].

The former is considerably more cost-effective for BTMS with heating films by
more convenient maintenance and smaller size [16]. The cost of heat pipe limits its
wide application in BTMS due to the use of copper as the wall and wick material
and the complicated fabrication process [16]. Given feasibility [35, 36] and the
aluminium heat pipe manufacturing, the examination on employing aluminium heat
pipe in BTMS could be shown as accurate and efficient way to lessen the cost and
weight of EV [16].

A novel technique is exemplified for the optimum design of battery [17]. The
statistical elements of life-time and other random variables characterizing the
operating conditions, in order to derive an effective estimation of the above life-time
distribution are taken appropriately into consideration by the technique [17].
Through the proper combination of a probabilistic strategy for stemming the
optimum size of a battery and the statistical analysis of the accelerated test, the core
of the technique is constituted [17]. Monte Carlo protocol has been carried out,
allowing to derive the statistical elements of the interest variables [17]. That
approach could be utilized to the characterization of battery life-time, which
incorporates in a proper way the multiple uncertainties engaged in the design [17].
That a full protocol for the design optimization dealt with necessitates the solution
of a parameter identification problem for the battery modelling is remarked by the
authors [17]. The devised optimum design of battery, by a novel technique which
takes appropriately into consideration the statistical elements of the battery
parameters, is just a first step towards a deeper series of researches employing
non-linear programming methods, including non-linear Kalman Filtering or
non-linear least squares [17]. The use the Particle filter technique is worth being
devised for probabilistic modeling of batteries: hence it is not bound on prior
knowledge about likelihood distributions describing the model of the battery and
the technique has the advantage that it is a non-parametric one [17].

The devised lithium-ion battery model employs the elements of both electrical
circuit and analytical modelling methods [18]. The model is based upon assessed
impedance and BTV attributes [18]. The internal voltage CVS is accomplished as a
second-order polynomial function of SOC to retain the simplicity of model
including to reliably portray the terminal attributes [18]. To keep the model
straightforward mean values of impedance parameters are incorporated [18]. The
dynamic attributes of battery are mimiced by the model, with precision [18]. In
determining the battery performance, the series internal resistance R S plays a
crucial role [18]. It could be utilized as a parameter to assess the health of the
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battery [18]. Estimating the state of health (SOH) of the battery is important to
enhance validity of the vehicle and it is considerably simpler if it is based upon the
value of R S [18]. The terminal attributes of battery rely on temperature, as rea-
sonably well [18]. The battery model is demonstrated to match the assessed battery
attributes for pulse and constant loading conditions [18]. Through modelling the
series resistance R S as a function of battery ageing, future work will entail the
battery SOH estimation [18]. “State of charge State of health Open-circuit voltage
Battery terminal voltage Controllable voltage source Depth of discharge Internal
series resistance of the battery Transient response parameters of the battery
Self-discharge resistor of the battery Equivalent or base resistance of the battery
Equivalent or base capacitance of the battery Nominal voltage of the battery Cut-off
voltage of the battery Nominal capacity of the battery” [18].

An SPM that adequately constitutes the principal dynamics of a battery is
established [19]. A BFOA is devised to pinpoint the unknown parameters in the
SPM [19]. The results of the parameter identification process are inserted into the
SPM, which is set up and simulated in Simulink and MATLAB with LiFePO as an
instance [19]. It is ascertained that the results of the parameter identification process
are accurate [19]. The single-particle model will be packaged and enmeshed into
AMESim to ascertain the effect of the battery on vehicle performance in a future
investigation [19].

Fractional models and fractional differentiation are now commonly used to
model systems that displays long systems or memory behaviours in which diffusion
phenomena occur [20]. Two models for a lithium-ion cell in which fractional
transfer functions are utilized and that are inferred from an electrochemical model
after numerous presumptions are devised [20]. Owing to the strategy utilized,
numerous internal variables in the first model (the most complex), are real elec-
trochemical variable and its parameters are directly associated to the electro-
chemical and dimensional constants of the lithium-ion cell [20]. A non-linear law
(to model the cell open circuit voltage) and the tuning of three parameters is just
needed by the second model (the simpler one) [20].

An empirical variable resistance has been added inside a SPM to constitute the
increased overpotential specifically observed at the end of the charge/discharge
process of a Li/LFP cell [21]. Through taking into consideration the increased
ohmic resistance from the resistive-reactant characteristic of LFP, this enhanced the
predictability of the SPM model [21]. The electrolyte overpotential can also be a
part of this increased resistance; this resistance makes the model ideally suited for
charge/discharge rates greater than 1C [21].

A computationally effective 3-D RVE model has been efficiently devised and
validated to reliably predict LIB electrode performance at various operating con-
ditions [22]. The model takes advantage of computational efficiency of the
single-particle model, whilst simultaneously employing 3D electrode microstruc-
ture as the real geometry [22]. A computationally effective 3-D RVE model’s
advantages and the demonstration of the model are outlined for a common LIB
electrode, which comprises of nano-particle LFP active material [22]. That value is
observed to be 1.2�, which is premised 10−14 m2/s on the current model, which is
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congruent with lately indicated experimental data ranging from 10−13 to 10−15 m2/
s, unlike widely used lithium-ion diffusion coefficient that are in the order of
10−19 in spherical particle models [22]. The distribution of the lithium-ions in RVE
is shown to be broader than that of the single-spherical-particle model because of
the inherent diverse microstructure [22].

A novel model for the battery SOH estimation is summarized based upon the
MGP model; this model had been exploited to learn the distribution parameters
from various training sets on the various degradation conditions [23]. The initial-
ized distribution parameters could be updated recursively via MGP learning from
the current capacity measurements of battery to constitute the density of the
degradation model parameters under unclear conditions [23]. Our technique is
based upon distribution, which learns from training data, and does not presume any
certain state model of degradation parameter, which is normally hard to be obtained
in advance [23]. The prognostics for battery SOH estimation under unclear con-
ditions have some issues, as various capacity degradation models with multiple
degradation elements can not be obtained in advance [23].

The MATLAB SIMULINK simulation results of the devised AOSE real time
implementation in terms of SOC estimation precision, robustness and convergence
speed, are fruitful [24].

We examined Li-ion battery materials as mechanical energy harvesters and
shown that Li-ion batteries can efficiently be utilized to transform from mechanical
to electrochemical energy in addition to storing energy [25]. We typified this
process, which employs basic circuit elements, and offered a model and conceptual
framework to predict the pertinent energy harvesting parameters including effi-
ciency and peak voltage from basic electrochemical and mechanical data [25]. They
serve reasonably well as a prototype for our model and highlight how our model
can take raw voltage and expansion data from intercalation materials and predict
energy production whilst our commercial Li-ion batteries are not optimal energy
harvesters [25]. We dictated that the maximal theoretical efficiency for energy
harvesting employing these battery materials is 2.9 ± 0.5% from our model [25].

Real-time strain evolution in planar SiO2 thin film electrodes were assessed
whilst cycling against Li foil counter/reference electrodes under galvanostatic
lithiation/delithiation cycling [27]. It had been detected that upon lithiation the
SiO2 film undergoes compressive strain which increases linearly at low Li con-
centrations, below 0.4 GPa of strain and 70 mAh/g capacity, presumably repre-
senting a linear elastic response of the film [27]. A straightforward finite element
model of SiO2-coated Si nanotube (core-shell kind microstructure) had been
devised; the SiO2 coating had been modelled employing electrochemical response
and strain to be able to offer mechanistic explanation as to how highly brittle
SiO2 coatings on Si were able enhance the cyclic performance of Si [37, 38] by
sustaining 300% volume expansion for numerous hundred cycles assessed [27]. It
had been detected that the maximal strain in the SiO2 coating during electro-
chemical cycling (i.e., under 300% volume change of Si) is roughly 0.41 GPa,
which is less than the fracture strength of pure SiO2 films, offering a plausible
explanation as to why oxide coatings survived numerous hundreds of cycles
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without failure [27]. That observation along with the strain measurements indicates
that makes the SiO2 film ductile so that the SiO2 film can maintain huge defor-
mation without fracture, though the addition of Li to SiO2 film not just enhances the
film, as they are able to stabilize strain values as high as 3.1 GPa [27]. Insights,
observations made in the present study and the results are also helpful (i) to design
and build next generation SiO2 coating-based core-shell kind of microstructures for
electrodes that are mechanically and chemically stable and (ii) to build a compre-
hensive electro-chemo-mechanics models of SiO2 films [27].

We have examined the impacts of spherical isotropy on diffusion-induced strain
inside electrode particles under potentiostatic and galvanostatic operations and
devised the theoretical model of diffusion-induced strain for elastic electrodes with
spherical isotropy [28]. The elastic modulus ratio and the lithiation expansion
coefficient ratio, which are the feature parameters of the extent of departure from
isotropy, have the significant impacts on the diffusion-induced strain [28].
Highlighting the effect of initial condition, we observe that the tangential and radial
emphasizes increase with bigger initial concentration; this concentration suggests
that extracting more lithium before lithiation (or inserting lower lithium before
delithiation) is beneficial to lessen the strain and mitigate the electrochemical
properties [28]. It is notable that the strain, because of the initial condition, can not
strategy zero even though the concentration is almost homogeneous under poten-
tiostatic operation [28].

Through plane analysis, delamination of the active layer bonded on the substrate
had been examined [29]. In both the evolution of the critical time and delamination,
the influence of seven crucial parameters, i.e., the length of the active layer, the
thickness of the active layer, the electrochemical load factor, the Poisson’s ratio of
the substrate and the active layer, the Young’s modulus ratio, and the cohesive
strength were assessed [29]. Poisson’s ratio of substrate, cohesive strength, and
elastic modulus ratio, have statistically insignificant effect on both the critical time
and the delamination process [29].

DIS evolution in the hollow sphere electrode and the solute concentration is
examined [30]. In hollow sphere, when compared the DIS in the hollow spherical
electrode with that in solid, it is detected that the DIS is smaller [30]. By comparing
the DIS in various thickness of hollow sphere, the DIS in hollow sphere is observed
that the wall thickness of the bigger hollow sphere, the lesser the influence on the
electrochemical reaction-induced strain [30]. Will grow bigger because more sur-
faces in the hollow sphere; this sphere will bring on the solute concentration and
greater changing/exchanging rate [30]. The consequence demonstrates that the
electrochemical reaction-induced strain is compressive all the time and grows larger
with time increasing [30]. What’s more, the strain in the hollow spherical electrode
is considerably larger than that in solid [30]. The reaction radial strain is com-
pressive in the hollow spherical electrode and in the thinner hollow sphere, the
strain is larger under the impact of electrochemical reaction [30]. The tangential
strain with the effect of electrochemical reaction is considerably smaller than in the
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solid electrode [30]. The tangential strain with the effect of electrochemical reaction
will be smaller with the increasing thickness of the hollow electrode [30].

On lithium-ion battery modules, numerous dynamic influence tests were carried
out under various influence directions [31]. That influence directions have con-
siderable affects on mechanical attributes, crash failure threshold of battery module,
and electric voltage, had been demonstrated by results [31].

The temperature reliance of s, which is dictated from the fitting of AC electrical
conductivity as a function of frequency at various temperatures, is examined in
order to comprehend the conduction mechanism in the various stages [32]. CBH
model observed to be the OLPT model for the rest of temperature variety
(T > 622 K) and the most useful conduction mechanism in the low temperature
variety (T < 622 K) [32]. The activation energy, which is computed from modulus
formalism spectra and AC electrical conductivity, is congruent with the estimated
value from the impedance spectra, suggesting that ion transport is presumably
because of the hopping of lithium (Li+) ions [32]. For the first time, an experimental
investigation of the ionic electrical conductivity of Li2CuP2O7 had been demon-
strated [32].

Following the analysis of ten SEI-forming compounds, we were able to observe
the most effective protocol to predict their decrease behaviour [34]. Comparison of
basis sets and various techniques revealed that functionals from the Minnesota
family, particularly M06-2X, were the optimal devices to characterize the decrease
potential [34]. Analysis of popular descriptors confirmed that it is impossible to
evaluate the decrease potential, which is based upon straightforward parameters
including the LUMO energy in a wide variety of chemical compounds; such
screening is just helpful when taking into account compounds; these compounds
indicate just small variations in structure [34]. The chemical hardness had been,
however, observed to be an helpful property for predicting transformations during
the electrode process, even for quite various chemistries [34].

4.5 Related Work

Lisbona D, Snee T. A review of hazards associated with primary lithium and
lithium-ion batteries. Process Saf Environ Prot. 2011;89:434–42. [https://doi.
org/10.1016/j.psep.2011.06.022]

Previous studies on the hazards and incidents correlated with thermal runaway in
lithium-ion batteries have been studied by numerous scholars [1, 39–41]. Previous
studies on the hazards correlated with thermal runaway happened in lithium-ion
batteries were studied [5, 39–41].
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