
A Hybrid Dynamic Logic
for Event/Data-Based Systems

Rolf Hennicker1, Alexandre Madeira2,3(B), and Alexander Knapp4

1 Ludwig-Maximilians-Universität München, Munich, Germany
hennicke@pst.ifi.lmu.de

2 CIDMA, University of Aveiro, Aveiro, Portugal
madeira@ua.pt

3 QuantaLab, University of Minho, Braga, Portugal
4 Universität Augsburg, Augsburg, Germany

knapp@informatik.uni-augsburg.de

Abstract. We propose E↓-logic as a formal foundation for the specifica-
tion and development of event-based systems with local data states. The
logic is intended to cover a broad range of abstraction levels from abstract
requirements specifications up to constructive specifications. Our logic
uses diamond and box modalities over structured actions adopted from
dynamic logic. Atomic actions are pairs e� ψ where e is an event and ψ
a state transition predicate capturing the allowed reactions to the event.
To write concrete specifications of recursive process structures we inte-
grate (control) state variables and binders of hybrid logic. The seman-
tic interpretation relies on event/data transition systems; specification
refinement is defined by model class inclusion. For the presentation of
constructive specifications we propose operational event/data specifica-
tions allowing for familiar, diagrammatic representations by state transi-
tion graphs. We show that E↓-logic is powerful enough to characterise the
semantics of an operational specification by a single E↓-sentence. Thus
the whole development process can rely on E↓-logic and its semantics as
a common basis. This includes also a variety of implementation construc-
tors to support, among others, event refinement and parallel composition.

1 Introduction

Event-based systems are an important kind of software systems which are open
to the environment to react to certain events. A crucial characteristics of such
systems is that not any event can (or should) be expected at any time. Hence the
control flow of the system is significant and should be modelled by appropriate
means. On the other hand components administrate data which may change
upon the occurrence of an event. Thus also the specification of admissible data
changes caused by events plays a major role.

A. Madeira—Supported by ERDF through COMPETE 2020 and by National Funds
through FCT with POCI-01-0145-FEDER-016692 and UID/MAT/04106/2019, in a
contract foreseen in nos. 4–6 of art. 23 of the DL 57/2016, changed by DL 57/2017.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 79–97, 2019.
https://doi.org/10.1007/978-3-030-16722-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_5&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_5

80 R. Hennicker et al.

There is quite a lot of literature on modelling and specification of event-based
systems. Many approaches, often underpinned by graphical notations, provide
formalisms aiming at being constructive enough to suggest particular designs
or implementations, like e.g., Event-B [1,7], symbolic transition systems [17],
and UML behavioural and protocol state machines [12,16]. On the other hand,
there are logical formalisms to express desired properties of event-based systems.
Among them are temporal logics integrating state and event-based styles [4], and
various kinds of modal logics involving data, like first-order dynamic logic [10]
or the modal μ-calculus with data and time [9]. The gap between logics and
constructive specification is usually filled by checking whether the model of a
constructive specification satisfies certain logical formulae.

In this paper we are interested in investigating a logic which is capable to
express properties of event/data-based systems on various abstraction levels in
a common formalism. For this purpose we follow ideas of [15], but there data
states, effects of events on them and constructive operational specifications (see
below) were not considered. The advantage of an expressive logic is that we can
split the transition from system requirements to system implementation into a
series of gradual refinement steps which are more easy to understand, to verify,
and to adjust when certain aspects of the system are to be changed or when a
product line of similar products has to be developed.

To that end we propose E↓-logic, a dynamic logic enriched with features of
hybrid logic. The dynamic part uses diamond and box modalities over structured
actions. Atomic actions are of the form e�ψ with e an event and ψ a state transi-
tion predicate specifying the admissible effects of e on the data. Using sequential
composition, union, and iteration we obtain complex actions that, in connection
with the modalities, can be used to specify required and forbidden behaviour. In
particular, if E is a finite set of events, though data is infinite we are able to
capture all reachable states of the system and to express safety and liveness prop-
erties. But E↓-logic is also powerful enough to specify concrete, recursive process
structures by integrating state variables and binders from hybrid logic [6] with
the subtle difference that our state variables are used to denote control states
only. We show that the dynamic part of the logic is bisimulation invariant while
the hybrid part, due to the ability to bind names to states, is not.

An axiomatic specification Sp = (Σ,Ax) in E↓ is given by an event/data
signature Σ = (E,A), with a set E of events and a set A of attributes to
model local data states, and a set of E↓-sentences Ax , called axioms, express-
ing requirements. For the semantic interpretation we use event/data transition
systems (edts). Their states are reachable configurations γ = (c, ω) where c is
a control state, recording the current state of execution, and ω is a local data
state, i.e., a valuation of the attributes. Transitions between configurations are
labelled by events. The semantics of a specification Sp is “loose” in the sense that
it consists of all edts satisfying the axioms of the specification. Such structures
are called models of Sp. Loose semantics allows us to define a simple refinement
notion: Sp1 refines to Sp2 if the model class of Sp2 is included in the model class
of Sp1. We may also say that Sp2 is an implementation of Sp1.

A Hybrid Dynamic Logic for Event/Data-Based Systems 81

Our refinement process starts typically with axiomatic specifications whose
axioms involve only the dynamic part of the logic. Hybrid features will succes-
sively be added in refinements when specifying more concrete behaviours, like
loops. Aiming at a concrete design, the use of an axiomatic specification style
may, however, become cumbersome since we have to state explicitly also all
negative cases, what the system should not do. For a convenient presentation
of constructive specifications we propose operational event/data specifications,
which are a kind of symbolic transition systems equipped again with a model
class semantics in terms of edts. We will show that E↓-logic, by use of the hybrid
binder, is powerful enough to characterise the semantics of an operational spec-
ification. Therefore we have not really left E↓-logic when refining axiomatic by
operational specifications. Moreover, since several constructive notations in the
literature, including (essential parts of) Event-B, symbolic transition systems,
and UML protocol state machines, can be expressed as operational specifications,
E↓-logic provides a logical umbrella under which event/data-based systems can
be developed.

In order to consider more complex refinements we take up an idea of Sannella
and Tarlecki [18,19] who have proposed the notion of constructor implementa-
tion. This is a generic notion applicable to specification formalisms based on
signatures and semantic structures for signatures. As both are available in the
context of E↓-logic, we complement our approach by introducing a couple of
constructors, among them event refinement and parallel composition. For the
latter we provide a useful refinement criterion relying on a relationship between
syntactic and semantic parallel composition. The logic and the use of the imple-
mentation constructors will be illustrated by a running example.

Hereafter, in Sect. 2, we introduce syntax and semantics of E↓-logic. In Sect. 3,
we consider axiomatic as well as operational specifications and demonstrate the
expressiveness of E↓-logic. Refinement of both types of specifications using sev-
eral implementation constructors is considered in Sect. 4. Section 5 provides some
concluding remarks. Proofs of theorems and facts can be found in [11].

2 A Hybrid Dynamic Logic for Event/Data Systems

We propose the logic E↓ to specify and reason about event/data-based systems.
E↓-logic is an extension of the hybrid dynamic logic considered in [15] by taking
into account changing data. Therefore, we first summarise our underlying notions
used for the treatment of data. We then introduce the syntax and semantics of
E↓ with its hybrid and dynamic logic features applied to events and data.

2.1 Data States

We assume given a universe D of data values. A data signature is given by a set
A of attributes. An A-data state ω is a function ω : A → D. We denote by Ω(A)
the set of all A-data states. For any data signature A, we assume given a set
Φ(A) of state predicates to be interpreted over single A-data states, and a set

82 R. Hennicker et al.

Ψ(A) of transition predicates to be interpreted over pairs of pre- and post-A-data
states. The concrete syntax of state and transition predicates is of no particular
importance for the following. For an attribute a ∈ A, a state predicate may be
a > 0; and a transition predicate e.g. a′ = a + 1, where a refers to the value of
attribute a in the pre-data state and a′ to its value in the post-data state. Still,
both types of predicates are assumed to contain true and to be closed under
negation (written ¬) and disjunction (written ∨); as usual, we will then also use
false, ∧, etc. Furthermore, we assume for each A0 ⊆ A a transition predicate
idA0 ∈ Ψ(A) expressing that the values of attributes in A0 are the same in pre-
and post-A-data states.

We write ω |=D
A ϕ if ϕ ∈ Φ(A) is satisfied in data state ω; and (ω1, ω2) |=D

A ψ
if ψ ∈ Ψ(A) is satisfied in the pre-data state ω1 and post-data state ω2. In
particular, (ω1, ω2) |=D

A idA0 if, and only if, ω1(a0) = ω2(a0) for all a0 ∈ A0.

2.2 E↓-Logic

Definition 1. An event/data signature (ed signature, for short) Σ = (E,A)
consists of a finite set of events E and a data signature A. We write E(Σ) for
E and A(Σ) for A. We also write Ω(Σ) for Ω(A(Σ)), Φ(Σ) for Φ(A(Σ)), and
Ψ(Σ) for Ψ(A(Σ)). The class of ed signatures is denoted by SigE↓

.

Any ed signature Σ determines a class of semantic structures, the event/data
transition systems which are reachable transition systems with sets of initial
states and events as labels on transitions. The states are pairs γ = (c, ω), called
configurations, where c is a control state recording the current execution state
and ω is an A(Σ)-data state; we write c(γ) for c and ω(γ) for ω.

Definition 2. A Σ-event/data transition system (Σ-edts, for short) M =
(Γ,R, Γ0) over an ed signature Σ consists of a set of configurations Γ ⊆
C × Ω(Σ) for a set of control states C; a family of transition relations
R = (Re ⊆ Γ × Γ)e∈E(Σ); and a non-empty set of initial configurations
Γ0 ⊆ {c0} × Ω0 for an initial control state c0 ∈ C and a set of initial data
states Ω0 ⊆ Ω(Σ) such that Γ is reachable via R, i.e., for all γ ∈ Γ there are
γ0 ∈ Γ0, n ≥ 0, e1, . . . , en ∈ E(Σ), and (γi, γi+1) ∈ Rei+1 for all 0 ≤ i < n with
γn = γ. We write Γ (M) for Γ , C(M) for C, R(M) for R, c0(M) for c0, Ω0(M)
for Ω0, and Γ0(M) for Γ0. The class of Σ-edts is denoted by EdtsE↓

(Σ).

Atomic actions are given by expressions of the form e�ψ with e an event and
ψ a state transition predicate. The intuition is that the occurrence of the event
e causes a state transition in accordance with ψ, i.e., the pre- and post-data
states satisfy ψ, and ψ specifies the possible effects of e. Following the ideas
of dynamic logic we also use complex, structured actions formed over atomic
actions by union, sequential composition and iteration. All kinds of actions over
an ed signature Σ are called Σ-event/data actions (Σ-ed actions, for short). The
set Λ(Σ) of Σ-ed actions is defined by the grammar

λ ::= e� ψ | λ1 + λ2 | λ1;λ2 | λ∗

A Hybrid Dynamic Logic for Event/Data-Based Systems 83

where e ∈ E(Σ) and ψ ∈ Ψ(Σ). We use the following shorthand notations
for actions: For a subset F = {e1, . . . , ek} ⊆ E(Σ), we use the notation F
to denote the complex action e1� true + . . . + ek� true and −F to denote the
action E(Σ) \ F . For the action E(Σ) we will write E. For e ∈ E(Σ), we
use the notation e to denote the action e� true and −e to denote the action
E \ {e}. Hence, if E(Σ) = {e1, . . . , en} and ei ∈ E(Σ), the action −ei stands for
e1� true + . . . + ei−1� true + ei+1� true + . . . + en� true.

The actions Λ(Σ) are interpreted over a Σ-edts M as the family of relations
(R(M)λ ⊆ Γ (M) × Γ (M))λ∈Λ(Σ) defined by

– R(M)e�ψ = {(γ, γ′) ∈ R(M)e | (ω(γ), ω(γ′)) |=D
A(Σ) ψ},

– R(M)λ1+λ2 = R(M)λ1 ∪ R(M)λ2 , i.e., union of relations,
– R(M)λ1;λ2 = R(M)λ1 ;R(M)λ2 , i.e., sequential composition of relations,
– R(M)λ∗ = (R(M)λ)∗, i.e., reflexive-transitive closure of relations.

To define the event/data formulae of E↓ we assume given a countably infinite
set X of control state variables which are used in formulae to denote the control
part of a configuration. They can be bound by the binder operator ↓x and
accessed by the jump operator @x of hybrid logic. The dynamic part of our logic
is due to the modalities which can be formed over any ed action over a given ed
signature. E↓ thus retains from hybrid logic the use of binders, but omits free
nominals. Thus sentences of the logic become restricted to express properties of
configurations reachable from the initial ones.

Definition 3. The set FrmE↓
(Σ) of Σ-ed formulae over an ed signature Σ is

given by

 ::= ϕ | x | ↓x .
 | @x .
 | 〈λ〉
 | true | ¬
 |
1 ∨
2

where ϕ ∈ Φ(Σ), x ∈ X, and λ ∈ Λ(Σ). We write [λ]
 for ¬〈λ〉¬
 and we
use the usual boolean connectives as well as the constant false to denote ¬true.1

The set SenE↓
(Σ) of Σ-ed sentences consists of all Σ-ed formulae without free

variables, where the free variables are defined as usual with ↓x being the unique
operator binding variables.

Given an ed signature Σ and a Σ-edts M , the satisfaction of a Σ-ed formula

 is inductively defined w.r.t. valuations v : X → C(M), mapping variables to
control states, and configurations γ ∈ Γ (M):

– M,v, γ |=E↓
Σ ϕ iff ω(γ) |=D

A(Σ) ϕ;

– M,v, γ |=E↓
Σ x iff c(γ) = v(x);

– M,v, γ |=E↓
Σ ↓x .
 iff M,v{x
→ c(γ)}, γ |=E↓

Σ
;
– M,v, γ |=E↓

Σ @x .
 iff M,v, γ′ |=E↓
Σ
 for all γ′ ∈ Γ (M) with c(γ′) = v(x);

– M,v, γ |=E↓
Σ 〈λ〉
 iff M,v, γ′ |=E↓

Σ
 for some γ′ ∈ Γ (M) with (γ, γ′) ∈ R(M)λ;

1 We use true and false for predicates and formulae; their meaning will always be clear
from the context. For boolean values we will use instead the notations tt and ff .

84 R. Hennicker et al.

– M,v, γ |=E↓
Σ true always holds;

– M,v, γ |=E↓
Σ ¬
 iff M,v, γ �|=E↓

Σ
;
– M,v, γ |=E↓

Σ
1 ∨
2 iff M,v, γ |=E↓
Σ
1 or M,v, γ |=E↓

Σ
2.

If
 is a sentence then the valuation is irrelevant. M satisfies a sentence
 ∈
SenE↓

(Σ), denoted by M |=E↓
Σ
, if M,γ0 |=E↓

Σ
 for all γ0 ∈ Γ0(M).
By borrowing the modalities from dynamic logic [9,10], E↓ is able to express

liveness and safety requirements as illustrated in our running ATM example
below. There we use the fact that we can state properties over all reachable
states by sentences of the form [E∗]ϕ. In particular, deadlock-freedom can be
expressed by [E∗]〈E〉true. The logic E↓, however, is also suited to directly express
process structures and, thus, the implementation of abstract requirements. The
binder operator is essential for this. For example, we can specify a process which
switches a boolean value, denoted by the attribute val, from tt to ff and back
by the following sentence:

↓x0 . val = tt ∧ 〈switch� val′ = ff 〉〈switch� val′ = tt〉x0.

2.3 Bisimulation and Invariance

Bisimulation is a crucial notion in both behavioural systems specification and
in modal logics. On the specification side, it provides a standard way to identify
systems with the same behaviour by abstracting the internal specifics of the
systems; this is also reflected at the logic side, where bisimulation frequently
relates states that satisfy the same formulae. We explore some properties of E↓

w.r.t. bisimilarity. Let us first introduce the notion of bisimilarity in the context
of E↓:

Definition 4. Let M1,M2 be Σ-edts. A relation B ⊆ Γ (M1) × Γ (M2) is a
bisimulation relation between M1 and M2 if for all (γ1, γ2) ∈ B the following
conditions hold:
(atom) for all ϕ ∈ Φ(Σ), ω(γ1) |=D

A(Σ) ϕ iff ω(γ2) |=D
A(Σ) ϕ;

(zig) for all e� ψ ∈ Λ(Σ) and for all γ′
1 ∈ Γ (M1) with (γ1, γ′

1) ∈ R(M1)e�ψ,
there is a γ′

2 ∈ Γ (M2) such that (γ2, γ′
2) ∈ R(M2)e�ψ and (γ′

1, γ
′
2) ∈ B;

(zag) for all e� ψ ∈ Λ(Σ) and for all γ′
2 ∈ Γ (M2) with (γ2, γ′

2) ∈ R(M2)e�ψ,
there is a γ′

1 ∈ Γ (M1) such that (γ1, γ′
1) ∈ R(M1)e�ψ and (γ′

1, γ
′
2) ∈ B.

M1 and M2 are bisimilar, in symbols M1 ∼ M2, if there exists a bisimulation
relation B ⊆ Γ (M1) × Γ (M2) between M1 and M2 such that

(init) for any γ1 ∈ Γ0(M1), there is a γ2 ∈ Γ0(M2) such that (γ1, γ2) ∈ B and
for any γ2 ∈ Γ0(M2), there is a γ1 ∈ Γ0(M1) such that (γ1, γ2) ∈ B.

Now we are able to establish a Hennessy-Milner like correspondence for a
fragment of E↓. Let us call hybrid-free sentences of E↓ the formulae obtained by
the grammar

 ::= ϕ | 〈λ〉
 | true | ¬
 |
1 ∨
2.

A Hybrid Dynamic Logic for Event/Data-Based Systems 85

Theorem 1. Let M1,M2 be bisimilar Σ-edts. Then M1 |=E↓
Σ
 iff M2 |=E↓

Σ
 for
all hybrid-free sentences
.

The converse of Theorem 1 does not hold, in general, and the usual image-
finiteness assumption has to be imposed: A Σ-edts M is image-finite if, for all
γ ∈ Γ (M) and all e ∈ E(Σ), the set {γ′ | (γ, γ′) ∈ R(M)e} is finite. Then:

Theorem 2. Let M1,M2 be image-finite Σ-edts and γ1 ∈ Γ (M1), γ2 ∈ Γ (M2)
such that M1, γ1 |=E↓

Σ
 iff M2, γ2 |=E↓
Σ
 for all hybrid-free sentences
. Then

there exists a bisimulation B between M1 and M2 such that (γ1, γ2) ∈ B.

3 Specifications of Event/Data Systems

3.1 Axiomatic Specifications

Sentences of E↓-logic can be used to specify properties of event/data systems
and thus to write system specifications in an axiomatic way.

Definition 5. An axiomatic ed specification Sp = (Σ(Sp),Ax (Sp)) in E↓

consists of an ed signature Σ(Sp) ∈ SigE↓
and a set of axioms Ax (Sp) ⊆

SenE↓
(Σ(Sp)).

The semantics of Sp is given by the pair (Σ(Sp),Mod(Sp)) where Mod(Sp) =
{M ∈ EdtsE↓

(Σ(Sp)) | M |=E↓
Σ(Sp) Ax (Sp)}. The edts in Mod(Sp) are called

models of Sp and Mod(Sp) is the model class of Sp.

As a direct consequence of Theorem 1 we have:

Corollary 1. The model class of an axiomatic ed specification exclusively
expressed by hybrid-free sentences is closed under bisimulation.

This result does not hold for sentences with hybrid features. For instance,
consider the specification Sp =

(
({e}, {a}), {↓x . 〈e� a′ = a〉x}): An edts with

a single control state c0 and a loop transition Re = {(γ0, γ0)} for c(γ0) = c0
is a model of Sp. However, this is obviously not the case for its bisimilar edts
with two control states c0 and c and the relation R′

e = {(γ0, γ), (γ, γ0)} with
c(γ0) = c0, c(γ) = c and ω(γ0) = ω(γ).

Example 1. As a running example we consider an ATM. We start with an
abstract specification Sp0 of fundamental requirements for its interaction
behaviour based on the set of events E0 = {insertCard, enterPIN, ejectCard,
cancel}2 and on the singleton set of attributes A0 = {chk} where chk is boolean
valued and records the correctness of an entered PIN. Hence our first ed signa-
ture is Σ0 = (E0, A0) and Sp0 = (Σ0,Ax 0) where Ax 0 requires the following
properties expressed by corresponding axioms (0.1–0.3):

2 For shortening the presentation we omit further events like withdrawing money, etc.

86 R. Hennicker et al.

– “Whenever a card has been inserted, a correct PIN can eventually be entered
and also the transaction can eventually be cancelled.”

[E∗; insertCard](〈E∗; enterPIN� chk′ = tt〉true ∧ 〈E∗; cancel〉true) (0.1)

– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected.”

[E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉true (0.2)

– “Whenever an incorrect PIN has been entered three times in a row, the current
card is not returned.” This means that the card is kept by the ATM which is
not modelled by an extra event. It may, however, still be possible that another
card is inserted afterwards. So an ejectCard can only be forbidden as long as
no next card is inserted.

[E∗; (enterPIN� chk′ = ff)3; (−insertCard)∗; ejectCard]false (0.3)

where λn abbreviates the n-fold sequential composition λ; . . . ;λ.

The semantics of an axiomatic ed specification is loose allowing usually for
many different realisations. A refinement step is therefore understood as a restric-
tion of the model class of an abstract specification. Following the terminology
of Sannella and Tarlecki [18,19], we call a specification refining another one
an implementation. Formally, a specification Sp′ is a simple implementation of
a specification Sp over the same signature, in symbols Sp � Sp′, whenever
Mod(Sp) ⊇ Mod(Sp′). Transitivity of the inclusion relation ensures gradual
step-by-step development by a series of refinements.

Example 2. We provide a refinement Sp0 � Sp1 where Sp1 = (Σ0,Ax 1) has the
same signature as Sp0 and Ax 1 are the sentences (1.1–1.4) below; the last two
use binders to specify a loop. As is easily seen, all models of Sp1 must satisfy
the axioms of Sp0.

– “At the beginning a card can be inserted with the effect that chk is set to ff ;
nothing else is possible at the beginning.”

〈insertCard� chk′ = ff 〉true ∧ (1.1)
[insertCard� ¬(chk′ = ff)]false ∧ [−insertCard]false

– “Whenever a card has been inserted, a PIN can be entered (directly after-
wards) and also the transaction can be cancelled; but nothing else.”

[E∗; insertCard](〈enterPIN〉true ∧ 〈cancel〉true ∧ (1.2)
[−{enterPIN, cancel}]false)

A Hybrid Dynamic Logic for Event/Data-Based Systems 87

– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected and the ATM starts from the
beginning.”

↓x0 . [E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉x0 (1.3)

– “Whenever an incorrect PIN has been entered three times in a row the ATM
starts from the beginning.” Hence the current card is kept.

↓x0 . [E∗; (enterPIN� chk′ = ff)3]x0 (1.4)

3.2 Operational Specifications

Operational event/data specifications are introduced as a means to specify in a
more constructive style the properties of event/data systems. They are not appro-
priate for writing abstract requirements for which axiomatic specifications are
recommended. Though E↓-logic is able to specify concrete models, as discussed
in Sect. 2, the use of operational specifications allows a graphic representation
close to familiar formalisms in the literature, like UML protocol state machines,
cf. [12,16]. As will be shown in Sect. 3.3, finite operational specifications can be
characterised by a sentence in E↓-logic. Therefore, E↓-logic is still the common
basis of our development approach. Transitions in an operational specification
are tuples (c, ϕ, e, ψ, c′) with c a source control state, ϕ a precondition, e an event,
ψ a state transition predicate specifying the possible effects of the event e, and
c′ a target control state. In the semantic models an event must be enabled when-
ever the respective source data state satisfies the precondition. Thus isolating
preconditions has a semantic consequence that is not expressible by transition
predicates only. The effect of the event must respect ψ; no other transitions are
allowed.

Definition 6. An operational ed specification O = (Σ,C, T, (c0, ϕ0)) is given
by an ed signature Σ, a set of control states C, a transition relation specification
T ⊆ C ×Φ(Σ)×E(Σ)×Ψ(Σ)×C, an initial control state c0 ∈ C, and an initial
state predicate ϕ0 ∈ Φ(Σ), such that C is syntactically reachable, i.e., for every
c ∈ C \{c0} there are (c0, ϕ1, e1, ψ1, c1), . . . , (cn−1, ϕn, en, ψn, cn) ∈ T with n > 0
such that cn = c. We write Σ(O) for Σ, etc.

A Σ-edts M is a model of O if C(M) = C up to a bijective renaming,
c0(M) = c0, Ω0(M) ⊆ {ω | ω |=D

A(Σ) ϕ0}, and if the following conditions hold:

– for all (c, ϕ, e, ψ, c′) ∈ T and ω ∈ Ω(A(Σ)) with ω |=D
A(Σ) ϕ, there is a ((c, ω),

(c′, ω′)) ∈ R(M)e with (ω, ω′) |=D
A(Σ) ψ;

88 R. Hennicker et al.

Fig. 1. Operational ed specification ATM

– for all ((c, ω), (c′, ω′)) ∈ R(M)e there is a (c, ϕ, e, ψ, c′) ∈ T with ω |=D
A(Σ) ϕ

and (ω, ω′) |=D
A(Σ) ψ.

The class of all models of O is denoted by Mod(O). The semantics of O is given
by the pair (Σ(O),Mod(O)) where Σ(O) = Σ.

Example 3. We construct an operational ed specification, called ATM , for the
ATM example. The signature of ATM extends the one of Sp1 (and Sp0) by an
additional integer-valued attribute trls which counts the number of attempts to
enter a correct PIN (with the same card). ATM is graphically presented in Fig. 1.
The initial control state is Card , and the initial state predicate is true. Precondi-
tions are written before the symbol →. If no precondition is explicitly indicated
it is assumed to be true. Due to the extended signature, ATM is not a simple
implementation of Sp1, and we will only formally justify the implementation
relationship in Example 5.

Operational specifications can be composed by a syntactic parallel composi-
tion operator which synchronises shared events. Two ed signatures Σ1 and Σ2

are composable if A(Σ1) ∩ A(Σ2) = ∅. Their parallel composition is given by
Σ1 ⊗ Σ2 = (E(Σ1) ∪ E(Σ2), A(Σ1) ∪ A(Σ2)).

Definition 7. Let Σ1 and Σ2 be composable ed signatures and let O1 and O2

be operational ed specifications with Σ(O1) = Σ1 and Σ(O2) = Σ2. The parallel
composition of O1 and O2 is given by the operational ed specification O1 ‖ O2 =
(Σ1 ⊗ Σ2, C, T, (c0, ϕ0)) with c0 = (c0(O1), c0(O2)), ϕ0 = ϕ0(O1) ∧ ϕ0(O2), and
C and T are inductively defined by c0 ∈ C and

– for e1 ∈ E(Σ1) \ E(Σ2), c1, c
′
1 ∈ C(O1), and c2 ∈ C(O2), if (c1, c2) ∈ C and

(c1, ϕ1, e1, ψ1, c
′
1) ∈ T (O1), then (c′

1, c2) ∈ C and ((c1, c2), ϕ1, e1, ψ1 ∧ idA(Σ2),
(c′

1, c2)) ∈ T ;
– for e2 ∈ E(Σ2) \ E(Σ1), c2, c

′
2 ∈ C(O2), and c1 ∈ C(O1), if (c1, c2) ∈ C and

(c2, ϕ2, e2, ψ2, c
′
2) ∈ T (O2), then (c1, c′

2) ∈ C and ((c1, c2), ϕ2, e2, ψ2 ∧ idA(Σ1),
(c1, c′

2)) ∈ T ;

A Hybrid Dynamic Logic for Event/Data-Based Systems 89

– for e ∈ E(Σ1) ∩ E(Σ2), c1, c
′
1 ∈ C(O1), and c2, c

′
2 ∈ C(O2), if (c1, c2) ∈ C,

(c1, ϕ1, e, ψ1, c
′
1) ∈ T (O1), and (c2, ϕ2, e, ψ2, c

′
2) ∈ T (O2), then (c′

1, c
′
2) ∈ C

and ((c1, c2), ϕ1 ∧ ϕ2, e, ψ1 ∧ ψ2, (c′
1, c

′
2)) ∈ T .3

3.3 Expressiveness of E↓-Logic

We show that the semantics of an operational ed specification O with finitely
many control states can be characterised by a single E↓-sentence
O, i.e., an edts
M is a model of O iff M |=E↓

Σ(O)
O. Using Algorithm 1, such a characterising
sentence is

O = ↓c0 . ϕ0 ∧ sen(c0, ImO(c0), C(O), {c0}) ,

where c0 = c0(O) and ϕ0 = ϕ0(O). Algorithm 1 closely follows the procedure
in [15] for characterising a finite structure by a sentence of D↓-logic. A call sen(c,
I, V,B) performs a recursive breadth-first traversal through O starting from c,
where I holds the unprocessed quadruples (ϕ, e, ψ, c′) of transitions outgoing
from c, V the remaining states to visit, and B the set of already bound states.
The function first requires the existence of each outgoing transition of I, provided
its precondition holds, in the resulting formula, binding any newly reached state.
Then it requires that no other transitions with source state c exist using calls
to fin. Having visited all states in V , it finally requires all states in C(O) to be
pairwise different.

Algorithm 1. Constructing a sentence from an operational ed specification
Require: O ≡ finite operational ed specification

ImO(c) = {(ϕ, e, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O)
ImO(c, e) = {(ϕ, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O), e ∈ E(Σ(O))

1 function sen(c, I, V, B) � c: state, I: image to visit, V : states to visit, B: bound states
2 if I �= ∅ then
3 (ϕ, e, ψ, c′) ← choose I

4 if c′ ∈ B then

5 return @c . ϕ → 〈e� ψ〉(c′ ∧ sen(c, I \ {(ϕ, e, ψ, c′)}, V, B))

6 else
7 return @c . ϕ → 〈e� ψ〉(↓c′ . sen(c, I \ {(ϕ, e, ψ, c′)}, V, B ∪ {c′}))
8 V ← V \ {c}
9 if V �= ∅ then

10 c′ ← choose B ∩ V

11 return fin(c) ∧ sen(c′, ImO(c′), V, B)

12 return fin(c) ∧ ∧
c1∈C(O),c2∈C(O)\{c1} ¬@c1 . c2

13 function fin(c)
14 return @c .

∧
e∈E(Σ(O))

∧
P⊆ImO(c,e)

[e�
(∧

(ϕ,ψ,c′)∈P (ϕ ∧ ψ)
) ∧

¬(∨
(ϕ,ψ,c′)∈ImO(c,e)\P (ϕ ∧ ψ)

)
]
(∨

(ϕ,ψ,c′)∈P c′)

3 Note that joint moves with e cannot become inconsistent due to composability of ed
signatures.

90 R. Hennicker et al.

It is fin(c) where this algorithm mainly deviates from [15]: To ensure that
no other transitions from c exist than those specified in O, fin(c) produces the
requirement that at state c, for every event e and for every subset P of the
transitions outgoing from c, whenever an e-transition can be done with the com-
bined effect of P but not adhering to any of the effects of the currently not
selected transitions, the e-transition must have one of the states as its target
that are target states of P . The rather complicated formulation is due to possi-
bly overlapping preconditions where for a single event e the preconditions of two
different transitions may be satisfied simultaneously. For a state c, where all out-
going transitions for the same event have disjoint preconditions, the E↓-formula
returned by fin(c) is equivalent to

@c .
∧

e∈E(Σ(O))

∧
(ϕ,ψ,c′)∈ImO(c,e)[e� ϕ ∧ ψ]c′ ∧

[e� ¬(∨
(ϕ,ψ,c′)∈ImO(c,e)(ϕ ∧ ψ)

)
]false.

Example 4. We show the first few steps of representing the operational ed spec-
ification ATM of Fig. 1 as an E↓-sentence
ATM . This top-level sentence is

↓Card . true ∧ sen(Card , {(true, insertCard, chk′ = ff ∧ trls′ = 0,PIN)},
{Card ,PIN ,Return}, {Card}).

The first call of sen(Card , . . .) explores the single outgoing transition from Card
to PIN , adds PIN to the bound states, and hence expands to

@Card . true → 〈insertCard� chk′ = ff ∧ trls′ = 0〉↓PIN .
sen(Card , ∅, {Card ,PIN ,Return}, {Card ,PIN }).

Now all outgoing transitions from Card have been explored and the next call of
sen(Card , ∅, . . .) removes Card from the set of states to be visited, resulting in

fin(Card) ∧ sen(PIN , {(trls < 2, enterPIN, . . .), (trls = 2, enterPIN, . . .),
(trls ≤ 2, enterPIN, . . .), (true, cancel, . . .)},

{PIN ,Return}, {Card ,PIN }).

As there is only a single outgoing transition from Card , the special case of disjoint
preconditions applies for the finalisation call, and fin(Card) results in

@Card . [insertCard� chk′ = ff ∧ trls′ = 0]PIN ∧
[insertCard� chk′ = tt ∨ trls′ �= 0]false ∧
[enterPIN� true]false ∧ [cancel� true]false ∧ [ejectCard� true]false.

4 Constructor Implementations

The implementation notion defined in Sect. 3.1 is too simple for many practical
applications. It requires the same signature for specification and implementation
and does not support the process of constructing an implementation. Therefore,

A Hybrid Dynamic Logic for Event/Data-Based Systems 91

Sannella and Tarlecki [18,19] have proposed the notion of constructor implemen-
tation which is a generic notion applicable to specification formalisms which are
based on signatures and semantic structures for signatures. We will reuse the
ideas in the context of E↓-logic.

The notion of constructor is the basis: for signatures Σ1, . . . , Σn, Σ ∈ SigE↓
,

a constructor κ from (Σ1, . . . , Σn) to Σ is a (total) function κ : EdtsE↓
(Σ1) ×

. . . × EdtsE↓
(Σn) → EdtsE↓

(Σ). Given a constructor κ from (Σ1, . . . , Σn) to Σ
and a set of constructors κi from (Σ1

i , . . . , Σki
i) to Σi, 1 ≤ i ≤ n, the constructor

(κ1, . . . , κn);κ from (Σ1
1 , . . . , Σk1

1 , . . . , Σ1
n, . . . , Σkn

n) to Σ is obtained by the usual
composition of functions. The following definitions apply to both axiomatic and
operational ed specifications since the semantics of both is given in terms of ed
signatures and model classes of edts. In particular, the implementation notion
allows to implement axiomatic specifications by operational specifications.

Definition 8. Given specifications Sp,Sp1, . . . ,Spn and a constructor κ from
(Σ(Sp1), . . . , Σ(Spn)) to Σ(Sp), the tuple 〈Sp1, . . . ,Spn〉 is a constructor imple-
mentation via κ of Sp, in symbols Sp �κ 〈Sp1, . . . ,Spn〉, if for all Mi ∈
Mod(Spi) we have κ(M1, . . . , Mn) ∈ Mod(Sp). The implementation involves a
decomposition if n > 1.

The notion of simple implementation in Sect. 3.1 is captured by choosing the
identity. We now introduce a set of more advanced constructors in the context of
ed signatures and edts. Let us first consider two central notions for constructors:
signature morphisms and reducts. For data signatures A,A′ a data signature
morphism σ : A → A′ is a function from A to A′. The σ-reduct of an A′-data
state ω′ : A′ → D is given by the A-data state ω′|σ : A → D defined by
(ω′|σ)(a) = ω′(σ(a)) for every a ∈ A. If A ⊆ A′, the injection of A into A′ is a
particular data signature morphism and we denote the reduct of an A′-data state
ω′ to A by ω′�A. If A = A1 ∪ A2 is the disjoint union of A1 and A2 and ωi are
Ai-data states for i ∈ {1, 2} then ω1+ω2 denotes the unique A-data state ω with
ω�Ai = ωi for i ∈ {1, 2}. The σ-reduct γ|σ of a configuration γ = (c, ω′) is given
by (c, ω′|σ), and is lifted to a set of configurations Γ ′ by Γ ′|σ = {γ′|σ | γ′ ∈ Γ ′}.

Definition 9. An ed signature morphism σ = (σE , σA) : Σ → Σ′ is given by
a function σE : E(Σ) → E(Σ′) and a data signature morphism σA : A(Σ) →
A(Σ′). We abbreviate both σE and σA by σ.

Definition 10. Let σ : Σ → Σ′ be an ed signature morphism and M ′ a Σ′-edts.
The σ-reduct of M ′ is the Σ-edts M ′|σ = (Γ,R, Γ0) such that Γ0 = Γ0(M ′)|σ,
and Γ and R = (Re)e∈E(Σ) are inductively defined by Γ0 ⊆ Γ and for all e ∈
E(Σ), γ′, γ′′ ∈ Γ (M ′): if γ′|σ ∈ Γ and (γ′, γ′′) ∈ R(M ′)σ(e), then γ′′|σ ∈ Γ and
(γ′|σ, γ′′|σ) ∈ Re.

Definition 11. Let σ : Σ → Σ′ be an ed signature morphism. The reduct con-
structor κσ from Σ′ to Σ maps any M ′ ∈ EdtsE↓

(Σ′) to its reduct κσ(M ′) =
M ′|σ. Whenever σA and σE are bijective functions, κσ is a relabelling construc-
tor. If σE and σA are injective, κσ is a restriction constructor.

92 R. Hennicker et al.

Example 5. The operational specification ATM is a constructor implementation
of Sp1 via the restriction constructor κι determined by the inclusion signature
morphism ι : Σ(Sp1) → Σ(ATM), i.e., Sp1 �κι

ATM .

A further refinement technique for reactive systems (see, e.g., [8]), is the
implementation of simple events by complex events, like their sequential compo-
sition. To formalise this as a constructor we use composite events Θ(E) over a
given set of events E, given by the grammar θ ::= e | θ + θ | θ; θ | θ∗ with e ∈ E.
They are interpreted over an (E,A)-edts M by R(M)θ1+θ2 = R(M)θ1 ∪R(M)θ2 ,
R(M)θ1;θ2 = R(M)θ1 ;R(M)θ2 , and R(M)θ∗ = (R(M)θ)∗. Then we can intro-
duce the intended constructor by means of reducts over signature morphisms
mapping atomic to composite events:

Definition 12. Let Σ,Σ′ be ed signatures, D′ a finite subset of Θ(E(Σ′)), Δ′ =
(D′, A(Σ′)), and α : Σ → Δ′ an ed signature morphism. The event refinement
constructor κα from Δ′ to Σ maps any M ′ ∈ EdtsE↓

(Δ′) to its reduct M ′|α ∈
EdtsE↓

(Σ).

Finally, we consider a semantic, synchronous parallel composition construc-
tor that allows for decomposition of implementations into components which
synchronise on shared events. Given two composable signatures Σ1 and Σ2, the
parallel composition γ1 ⊗ γ2 of two configurations γ1 = (c1, ω1), γ2 = (c2, ω2)
with ω1 ∈ Ω(A(Σ1)), ω2 ∈ Ω(A(Σ2)) is given by ((c1, c2), ω1 +ω2), and lifted to
two sets of configurations Γ1 and Γ2 by Γ1 ⊗ Γ2 = {γ1 ⊗ γ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.

Definition 13. Let Σ1, Σ2 be composable ed signatures. The parallel compo-
sition constructor κ⊗ from (Σ1, Σ2) to Σ1 ⊗ Σ2 maps any M1 ∈ EdtsE↓

(Σ1),
M2 ∈ EdtsE↓

(Σ2) to M1 ⊗ M2 = (Γ,R, Γ0) ∈ EdtsE↓
(Σ1 ⊗ Σ2), where

Γ0 = Γ0(M1)⊗Γ0(M2), and Γ and R = (Re)E(Σ1)∪E(Σ2) are inductively defined
by Γ0 ⊆ Γ and

– for all e1 ∈ E(Σ1) \ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2 ∈ Γ (M2), if γ1 ⊗ γ2 ∈ Γ

and (γ1, γ′
1) ∈ R(M1)e1 , then γ′

1 ⊗ γ2 ∈ Γ and (γ1 ⊗ γ2, γ
′
1 ⊗ γ2) ∈ Re1 ;

– for all e2 ∈ E(Σ2) \ E(Σ1), γ2, γ
′
2 ∈ Γ (M2), and γ1 ∈ Γ (M1), if γ1 ⊗ γ2 ∈ Γ

and (γ2, γ′
2) ∈ R(M2)e2 , then γ1 ⊗ γ′

2 ∈ Γ and (γ1 ⊗ γ2, γ1 ⊗ γ′
2) ∈ Re2 ;

– for all e ∈ E(Σ1) ∩ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2, γ

′
2 ∈ Γ (M2), if γ1 ⊗

γ2 ∈ Γ , (γ1, γ′
1) ∈ R(M1)e1 , and (γ2, γ′

2) ∈ R(M2)e2 , then γ′
1 ⊗ γ′

2 ∈ Γ and
(γ1 ⊗ γ2, γ

′
1 ⊗ γ′

2) ∈ Re.

An obvious question is how the semantic parallel composition constructor is
related to the syntactic parallel composition of operational ed specifications.

Proposition 1. Let O1, O2 be operational ed specifications with composable sig-
natures. Then Mod(O1)⊗Mod(O2) ⊆ Mod(O1 ‖ O2), where Mod(O1)⊗Mod(O2)
denotes κ⊗(Mod(O1),Mod(O2)).

A Hybrid Dynamic Logic for Event/Data-Based Systems 93

The converse Mod(O1 ‖ O2) ⊆ Mod(O1)⊗Mod(O2) does not hold: Consider
the ed signature Σ = (E,A) with E = {e}, A = ∅, and the operational ed
specifications Oi = (Σ,Ci, Ti, (ci,0, ϕi,0)) for i ∈ {1, 2} with C1 = {c1,0}, T1 =
{(c1,0, true, e, false, c1,0)}, ϕ1,0 = true; and C2 = {c2,0}, T2 = ∅, ϕ2,0 = true.
Then Mod(O1) = ∅, but Mod(O1 ‖ O2) = {M} with M showing just the initial
configuration.

The next theorem shows the usefulness of the syntactic parallel composi-
tion operator for proving implementation correctness when a (semantic) parallel
composition constructor is involved. The theorem is a direct consequence of
Proposition 1 and Definition 8.

Theorem 3. Let Sp be an (axiomatic or operational) ed specification, O1, O2

operational ed specifications with composable signatures, and κ an implemen-
tation constructor from Σ(O1) ⊗ Σ(O2) to Σ(Sp): If Sp �κ O1 ‖ O2, then
Sp �κ⊗;κ 〈O1, O2〉.

Example 6. We finish the refinement chain for the ATM specifications by apply-
ing a decomposition into two parallel components. The operational specifica-
tion ATM of Example 3 (and Example 5) describes the interface behaviour
of an ATM interacting with a user. For a concrete realisation, however, an
ATM will also interact internally with other components, like, e.g., a clear-
ing company which supports the ATM for verifying PINs. Our last refinement
step hence realises the ATM specification by two parallel components, repre-
sented by the operational specification ATM ′ in Fig. 2a and the operational
specification CC of a clearing company in Fig. 2b. Both communicate (via
shared events) when an ATM sends a verification request, modelled by the
event verifyPIN, to the clearing company. The clearing company may answer
with correctPIN or wrongPIN and then the ATM continues following its speci-
fication. For the implementation construction we use the parallel composition
constructor κ⊗ from (Σ(ATM ′), Σ(CC)) to Σ(ATM ′) ⊗ Σ(CC). The signa-
ture of CC consists of the events shown on the transitions in Fig. 2b. More-
over, there is one integer-valued attribute cnt counting the number of verifica-
tion tasks performed. The signature of ATM ′ extends Σ(ATM) by the events
verifyPIN, correctPIN and wrongPIN. To fit the signature and the behaviour
of the parallel composition of ATM ′ and CC to the specification ATM we
must therefore compose κ⊗ with an event refinement constructor κα such that
α(enterPIN) = (enterPIN; verifyPIN; (correctPIN+wrongPIN)); for the other events
α is the identity and for the attributes the inclusion. The idea is therefore that
the refinement looks like ATM �κ⊗;κα

〈ATM ′,CC 〉. To prove this refinement
relation we rely on the syntactic parallel composition ATM ′ ‖ CC shown in
Fig. 2c, and on Theorem3. It is easy to see that ATM �κα

ATM ′ ‖ CC . In
fact, all transitions for event enterPIN in Fig. 1 are split into several transitions
in Fig. 2c according to the event refinement defined by α. For instance, the loop
transition from PIN to PIN with precondition trls < 2 in Fig. 1 is split into

94 R. Hennicker et al.

Fig. 2. Operational ed specifications ATM ′, CC and their parallel composition

the cycle from (PIN , Idle) via (PINEntered , Idle) and (Verifying ,Busy) back to
(PIN , Idle) in Fig. 2c. Thus, we have ATM �κα

ATM ′ ‖ CC and can apply
Theorem 3 such that we get ATM �κ⊗;κα

〈ATM ′,CC 〉.

A Hybrid Dynamic Logic for Event/Data-Based Systems 95

5 Conclusions

We have presented a novel logic, called E↓-logic, for the rigorous formal devel-
opment of event-based systems incorporating changing data states. To the best
of our knowledge, no other logic supports the full development process for this
kind of systems ranging from abstract requirements specifications, expressible
by the dynamic logic features, to the concrete specification of implementations,
expressible by the hybrid part of the logic.

The temporal logic of actions (TLA [13]) supports also stepwise refinement
where state transition predicates are considered as actions. In contrast to TLA
we model also the events which cause data state transitions. For writing con-
crete specifications we have proposed an operational specification format captur-
ing (at least parts of) similar formalisms, like Event-B [1], symbolic transition
systems [17], and UML protocol state machines [16]. A significant difference to
Event-B machines is that we distinguish between control and data states, the
former being encoded as data in Event-B. On the other hand, Event-B sup-
ports parameters of events which could be integrated in our logic as well. An
institution-based semantics of Event-B has been proposed in [7] which coincides
with our semantics of operational specifications for the special case of determin-
istic state transition predicates. Similarly, our semantics of operational specifi-
cations coincides with the unfolding of symbolic transition systems in [17] if we
instantiate our generic data domain with algebraic specifications of data types
(and consider again only deterministic state transition predicates). The syntax
of UML protocol state machines is about the same as the one of operational
event/data specifications. As a consequence, all of the aforementioned concrete
specification formalisms (and several others) would be appropriate candidates
for integration into a development process based on E↓-logic.

There remain several interesting tasks for future research. First, our logic is
not yet equipped with a proof system for deriving consequences of specifications.
This would also support the proof of refinement steps which is currently achieved
by purely semantic reasoning. A proof system for E↓-logic must cover dynamic
and hybrid logic parts at the same time, like the proof system in [15], which,
however, does not consider data states, and the recent calculus of [5], which
extends differential dynamic logic but does not deal with events and reactions to
events. Both proof systems could be appropriate candidates for incorporating the
features of E↓-logic. Another issue concerns the separation of events into input
and output as in I/O-automata [14]. Then also communication compatibility
(see [2] for interface automata without data and [3] for interface theories with
data) would become relevant when applying a parallel composition constructor.

96 R. Hennicker et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2013)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings 8th European Software Engineering Conference & 9th ACM SIGSOFT
International Symposium Foundations of Software Engineering, pp. 109–120. ACM
(2001)

3. Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and
data. Theoret. Comput. Sci. 412(28), 3101–3121 (2011)

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–
148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-4 11

5. Bohrer, B., Platzer, A.: A hybrid, dynamic logic for hybrid-dynamic information
flow. In: Dawar, A., Grädel, E. (eds.) Proceedings of 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, pp. 115–124. ACM (2018)

6. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-94-007-0002-4

7. Farrell, M., Monahan, R., Power, J.F.: An institution for Event-B. In: James, P.,
Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 104–119. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 8

8. Gorrieri, R., Rensink, A.: Action refinement. In: Bergstra, J.A., Ponse, A., Smolka,
S.A. (eds.) Handbook of Process Algebra, pp. 1047–1147. Elsevier, Amsterdam
(2000)

9. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

10. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
11. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-

based systems (2019). https://arxiv.org/abs/1902.03074
12. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple

UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 1

13. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2003)

14. Lynch, N.A.: Input/output automata: basic, timed, hybrid, probabilistic, dynamic,
. . .. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 191–
192. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45187-7 12

15. Madeira, A., Barbosa, L.S., Hennicker, R., Martins, M.A.: A logic for the stepwise
development of reactive systems. Theoret. Comput. Sci. 744, 78–96 (2018)

16. Object Management Group: Unified Modeling Language 2.5. Standard
formal/2015-03-01, OMG (2015)

17. Poizat, P., Royer, J.C.: A formal architectural description language based on sym-
bolic transition systems and modal logic. J. Univ. Comp. Sci. 12(12), 1741–1782
(2006)

https://doi.org/10.1007/978-3-540-79707-4_11
https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-3-319-72044-9_8
https://arxiv.org/abs/1902.03074
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-540-45187-7_12

A Hybrid Dynamic Logic for Event/Data-Based Systems 97

18. Sannella, D., Tarlecki, A.: Toward formal development of programs from algebraic
specifications: implementations revisited. Acta Inf. 25(3), 233–281 (1988)

19. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal
Software Development. EATCS Monographs in Theoretical Computer Science.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-17336-3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-17336-3
http://creativecommons.org/licenses/by/4.0/

	A Hybrid Dynamic Logic for Event/Data-Based Systems
	1 Introduction
	2 A Hybrid Dynamic Logic for Event/Data Systems
	2.1 Data States
	2.2 E"3223379 -Logic
	2.3 Bisimulation and Invariance

	3 Specifications of Event/Data Systems
	3.1 Axiomatic Specifications
	3.2 Operational Specifications
	3.3 Expressiveness of E"3223379 -Logic

	4 Constructor Implementations
	5 Conclusions
	References

