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Abstract. Estimation of tail distributions and extreme quantiles is
important in areas such as risk management in finance and insurance
in relation to extreme or catastrophic events. The main difficulty from
the statistical perspective is that the available data to base the esti-
mates on is very sparse, which calls for tailored estimation methods. In
this chapter, we provide a survey of currently used parametric and non-
parametric methods, and provide some perspectives on how to move
forward with non-parametric kernel-based estimation.
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1 Introduction

This chapter presents a position survey on the overall objectives and specific
challenges encompassing the state of the art in tail distribution and extreme
quantile estimation of currently used parametric and non-parametric approaches
and their application to Financial Risk Measurement. What is envisioned, is
an enhanced non-parametric estimation method based on the Extreme Value
Theory approach. The compounding perspectives of current challenges are
addressed, like the threshold level of excess data to be chosen for extreme values
and the bandwidth selection from a bias reduction perspective. The application
of the kernel estimation approach and the use of Expected Shortfall as a coher-
ent risk measure instead of the Value at Risk are presented. The extension to
multivariate data is addressed and its challenges identified.

Overview of the Following Sections. In the following sections, Financial risk mea-
sures are presented in Sect. 2. Section 3, covers Extreme Value Theory, Sect. 4,
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Parametric estimation and Semi-parametric estimation methods, Sect. 5, Non-
Parametric estimation methods and Sect. 6, the perspectives identified by the
addressed challenges when estimating the presented financial risk measures.

2 Financial Risk Measures

The Long Term Capital Management collapse and the 1998 Russian debt crisis,
the Latin American and Asian currency crises and more recently, the U.S. mort-
gage credit market turmoil, followed by the bankruptcy of Lehman Brothers and
the world’s biggest-ever trading loss at Société Générale are some examples of
financial disasters during the last twenty years. In response to the serious finan-
cial crises, like the recent global financial crisis (2007-2008), regulators have
become more concerned about the protection of financial institutions against
catastrophic market risks. We recall that market risk is the risk that the value of
an investment will decrease due to movements in market factors. The difficulty
of modelling these rare but extreme events has been greatly reduced by recent
advances in Extreme Value Theory (EVT). Value at Risk (VaR) and the related
concept of Expected Shortfall (ES) have been the primary tools for measuring
risk exposure in the financial services industry for over two decades. Additional
literature can be found in [39] for Quantitative Risk Management and in [42] or
in [25] for the application of EVT in insurance, finance and other fields.

2.1 Value at Risk

Consider the loss X of a portfolio over a given time period ¢, then VaR is a risk
statistic that measures the risk of holding the portfolio for the time period 4.
Assume that X has a cumulative distribution function (cdf), Fx, then we define
VaR at level a € (0,1) as

VaR%(X) =inf{z € R: P(X >z) <1—a} = inf{z € R, Fx(z) > a} = Fx (a), (1)

F% is the generalized inverse of the cdf F'x. Typical values of o are 0.95 and 0.99,
while § usually is 1day or 10 days. Value-at-Risk (VaR) has become a standard
measure for risk management and is also recommended in the Basel II accord.
For an overview on VaR in a more economic setting we refer to [37] and [23].
Despite its widespread use, VaR has received criticism for failing to distinguish
between light and heavy losses beyond the VaR. Additionally, the traditional
VaR method has been criticized for violating the requirement of sub-additivity
[4]. Artzner et al. analysed risk measures and stated a set of properties/axioms
that should be desirable for any risk measure. The four axioms they stated are:

— Monotonicity: Higher losses mean higher risk.

Translation Equivariance: Increasing (or decreasing) the loss increases
(decreases) the risk by the same amount.

— Subadditivity: Diversification decreases risk.

— Positive Homogeneity: Doubling the portfolio size doubles the risk.
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Any risk measure which satisfies these axioms is said to be coherent. A related
concept to VaR, which accounts for the tail mass is the conditional tail expecta-
tion (CVaR), or Expected Shortfall (ES). ES is the average loss conditional on
the VaR being exceeded and gives risk managers additional valuable information
about the tail risk of the distribution. Due to its usefulness as a risk measure,
in 2013 the Basel Committee on Bank Supervision has even proposed replacing
VaR with ES to measure market risk exposure.

2.2 Conditional Value at Risk or Expected Shortfall

CVaRq(X) := E[X|X > VaRo(X)] (2)

Acerbi and Tasche proved in [1] that CVaR satisfies the above axioms and is
therefore a coherent risk measure.

Conditional Value-at-Risk can be derived from VaR in the case of a continu-
ous random variable and another possibility to calculate CVaR is to use Acerbi’s
Integral Formula:

CVaRg (X) = % / VaRy(X)d3 3)

Estimating ES from the empirical distribution is generally more difficult than
estimating VaR due to the scarcity of observations in the tail. As in most risk
applications, we do not need to focus on the entire distribution. Extreme value
theory is then a practical and useful tool for modeling and quantifying risk.
Value at Risk and Extreme value theory is covered well in most books on risk
management and VaR in particular (also ES with much less extent), see for
example [33,37,39], and [22]. Vice versa, VaR is treated in some Extreme value
theory literature, such as [26] and [17].

3 Extreme Value Theory: Two Main Approaches

Extreme value theory (EVT) is the theory of modelling and measuring events
which occur with very small probability: More precisely, having an Xy, ..., X,
sample of n random variables independently and identically following a distri-
bution function F(-), we want to estimate the real z,, defined by

z,, = F"(p,), with p, <1/n. 4)

where p,, is a known sequence and F*~(u) = inf{z € R, F(z) < u}. F~ is the
generalized inverse of the survival function F'(-) = 1 — F(-). Note that z,,, is the
order quantile 1 — p,, of the cumulative distribution function F'.

A similar problem to the estimate of x,, is the estimate of “small probabili-
ties” p, or the estimation of the tail distribution. In other words, for a series of
fixed (¢;,) reals, we want to estimate the probability p,, defined by

pn =P(X >¢,), with ¢, > 2. (5)
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The main result of Extreme Value Theory states that the tails of all distri-
butions fall into one of three categories, regardless of the overall shape of the
distribution. Two main approaches are used for implementing EVT in practice:
Block maxima approach and Peaks Over Thresholds (POT).

3.1 Block Maxima Approach

The Fisher and Tippett [29] and Gnedenko [30] theorems are the fundamental
results in EVT. The theorems state that the maximum of a sample of properly
normalized independent and identically distributed random variables converges
in distribution to one of the three possible distributions: the Weibull, Gumbel
or the Fréchet.

Theorem 1 (Fisher, Tippett, Gnedenko).
Let X1,..., X, ~**% F and X1, < ... < X,n. If there exist two sequences a,
and b, and a real v such that

Xn n — Un
P(F= <o) — ) (©
when n — 400, then
_Jexp(—=(Q+v2)"VY) ify#£0, 1+7yz>0.
Hy(@) = {exp(— exp(—x)) if v=0, zeR. (7)

We say that F' is in the domain of attraction of H, and denote this by
F € DA(H,). The distribution function H,(-) is called the Generalized Extreme
Value distribution (GEV).

This law depends only on the parameter called the tail index. The density
associated is shown in Fig. 1 for different values of . According to the sign of ~,
we define three areas of attraction:

Fig.1. The GEV distribution for v = —0.5 (solid line), v = 0 (dashed line), and
~v = 0.5 (dash-dot line).
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— If v>0, F € DA (Fréchet): This domain contains the laws for which the
survival function decreases as a power function. Such tails are know as “fat
tails” or “heavy tails”. In this area of attraction, we find the laws of Pareto,
Student, Cauchy, etc.

— If =0, F € DA (Gumbel): This domain groups laws for which the sur-
vival function declines exponentially. This is the case of normal, gamma,
log-normal, exponential, etc.

— if v <0, F € DA (Weibull): This domain corresponds to thin tails where the
distribution has a finite endpoint. Examples in this class are the uniform and
reverse Burr distributions.

The Weibull distribution clearly has a finite endpoint (s4(F) = sup{z, F(z) <
1}). This is usually the case of the distribution of mortality and insurance/re-
insurance claims for example, see [20]. The Fréchet tail is thicker than the Gum-
bel’s. Yet, it is well known that the distributions of the return series in most
financial markets are heavy tailed (fat tails). The term “fat tails” can have sev-
eral meanings, the most common being “extreme outcomes occur more frequently
than predicted by the normal distribution”.

The block Maxima approach is based on the utilization of maximum or min-
imum values of these observations within a certain sequence of constant length.
For a sufficiently large number k of established blocks, the resulting peak val-
ues of these k blocks of equal length can be used for estimation. The procedure
is rather wasteful of data and a relatively large sample is needed for accurate
estimate.

3.2 Peaks Over Threshold (POT) Approach

The POT (Peaks-Over-Threshold) approach consists of using the generalized
Pareto distribution (GPD) to approximate the distribution of excesses over a
threshold. This approach has been suggested originally by hydrologists. This
approach is generally preferred and forms the basis of our approach below. Both
EVT approaches are equivalent by the Pickands-Balkema-de Haan theorem pre-
sented in [5,40].

Theorem 2 (Pickands-Balkema-de Haan). For a large class of underlying

distribution functions F,

u—s4 (F)
—

F e DA(H,) = sup  |Fu(x) — Gy 0w ()]
z€[0, s4 (F)[

0, (8)

where sy (F) = sup{z, F(x) < 1} is the end point of the distribution, F,(x) =
P(X —u < |X > u) is the distribution of excess, and G,  is the Generalized
Pareto Distribution (GPD) defined as
_ o1y
1—(14 —x) ifv#0, o >0,
Gy olz) = o , 9)
1 —exp(—z/0) ifvy=0, 0 >0.
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This means that the conditional excess distribution function F,,, for u large, is
well approximated by a Generalized Pareto Distribution. Note that the tail index
7 is the same for both the GPD and GEV distributions. The tail shape parameter
o and the tail index are the fundamental parameters governing the extreme
behavior of the distribution, and the effectiveness of EVT in forecasting depends
upon their reliable and accurate estimation. By incorporating information about
the tail through our estimates of v and o, we can obtain VaR and ES estimates,
even beyond the reach of the empirical distribution.

4 Parametric and Semi-parametric Estimation Methods

The problem of estimating the tail index v has been widely studied in the lit-
erature. The most standard methods are of course the method of moments and
maximum likelihood. Unfortunately, there is no explicit form for the parameters,
but numerical methods provide good estimates. More generally, the two common
approaches to estimate the tail index are:

— Semi-parametric models (e.g., the Hill estimator).
— Fully parametric models (e.g., the Generalized Pareto distribution or GPD).

4.1 Semi-parametric Estimation

The most known estimator for the tail index v > 0 of fat tails distribution is
without contest the Hill estimator [31]. The formal definition of fat tail distribu-
tions comes from regular variation. The cumulative distribution is in the Fréchet
domain if and only if as x — oo, the tails are asymptotically Pareto-distributed:

Fz)=1—-Az™", (10)

where A > 0 and 7 = 1/v. Based on this approximation, the Hill estimator is
written according to the statistics order X, ,, < ... < X, ,, as follows:

kn
Hyyn = 1/kn > I X0 ji1m — I X g, . (11)

j=1

where k,, is a sequence so that 1 < k,, < n. Other estimators of this index
have have been proposed by Beirlant et al. [6,7] using a regression exponential
model to reduce the Hill estimator bias and by [28] that introduce a least squares
estimator. The use of a kernel in the Hill estimator has been studied by Csorgd
et al. [18]. An effective estimator of the extreme value index has been proposed
by Falk and Marohn in [27]. A more detailed list of the different works on the
estimation of the index of extreme values is found in [19]. Note that the Hill
estimator is sensitive to the choice of threshold u = X,,_,, » (or the number of
excess k,) and is only valid for fat-tailed data.
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4.2 Parametric Estimation

The principle of POT is to approximate the survival function of the excess
distribution by a GPD after estimating its parameters from the distribution
of excess over a threshold u as explained in the following two steps:

— First step—Tail distribution estimation
Let X1, ..., X, follow a distribution F" and let Y3,...,Yn, ,(Y; = X; —u,) be
the exceedances over a chosen threshold w,. The distribution of excess F),, is
given by:

Fu,(y) = P(X —up Sy X > up) (12)
and then, the distribution F', of the extreme observations, is given by:

The distribution of excess F),, is approximated by G ;(,,) and the first
step consists in estimating the parameters of this last distribution using the
sample (Y1,...,Yn, ). The parameter estimations can be done using MLE.
Different methods have been proposed to estimate the parameters of the GPD.
Other estimation methods are presented in [26]. The Probability Weighted
Moments (PWM) method proposed by Hosking and Wallis [32] for v < 1/2
was extended by Diebolt et al. [21] by a generalization of PWM estimators
for v < 3/2, as for many applications, e.g., in insurance, distributions are
known to have a tail index larger than 1.

— Second step—Quantile estimation

In order to estimate the extreme quantile z, defined as

Tp, F(xpn) =1—F(xp,) =Dn, npn—0. (14)

n

We estimate F'(u) by its empirical counterpart N, /n and we approximate
F,, by the approximate Generalized Pareto Distribution GPD(4,,5,) in
the Eq.(1). Then, for the threshold v = X,,_., the extreme quantile is
estimated by

(”f’ ) - 15

— (15)
The application of POT involves a number of challenges. The early stage of
data analysis is very important in determining whether the data has the fat tail
needed to apply the EVT results. Also, the parameter estimates of the limit GPD
distributions depend on the number of extreme observations used. The choice
of a threshold should be large enough to satisfy the conditions to permit its
application (u tends towards infinity), while at the same time leaving sufficient
observations for the estimation. A high threshold would generate few excesses,
thereby inflating the variance of our parameter estimates. Lowering the threshold
would necessitate using samples that are no longer considered as being in the
tails which would entail an increase in the bias.

‘%Pmk = X’ﬂ*k,n + a-n



76 I. Rached and E. Larsson

5 Non-parametric Estimation Methods

A main argument for using non-parametric estimation methods is that no spe-
cific assumptions on the distribution of the data is made a priori. That is, model
specification bias can be avoided. This is relevant when there is limited infor-
mation about the ‘theoretical’ data distribution, when the data can potentially
contain a mix of variables with different underlying distributions, or when no
suitable parametric model is available. In the context of extreme value distri-
butions, the GPD and GEV distributions discussed in Sect.3 are appropriate
parametric models for the univariate case. However, for the multivariate case
there is no general parametric form.

We restrict the discussion here to one particular form of non-parametric
estimation, kernel density estimation [44]. Classical kernel estimation performs
well when the data is symmetric, but has problems when there is significant
skewness [9,24,41].

A common way to deal with skewness is transformation kernel estimation
[45], which we will discuss with some details below. The idea is to transform the
skew data set into another variable that has a more symmetric distribution, and
allows for efficient classical kernel estimation.

Another issue for kernel density estimation is boundary bias. This arises
because standard kernel estimates do not take knowledge of the domain of
the data into account, and therefore the estimate does not reflect the actual
behaviour close to the boundaries of the domain. We will also review a few bias
correction techniques [34].

Even though kernel estimation is non-parametric with respect to the under-
lying distribution, there is a parameter that needs to be decided. This is the
bandwidth (scale) of the kernel function, which determines the smoothness of
the density estimate. We consider techniques intended for constant bandwidth
[35], and also take a brief look at variable bandwidth kernel estimation [36]. In
the latter case, the bandwidth and the location is allowed to vary such that bias
can be reduced compared with using fixed parameters.

Kernel density estimation can be applied to any type of application and data,
but some examples where it is used for extreme value distributions are given in
[8,9]. A non parametric method to estimate the VaR in extreme quantiles, based
on transformed kernel estimation (TKE) of the cdf of losses was proposed in [3].
A kernel estimator of conditional ES is proposed in [13,14,43].

In the following subsections, we start by defining the classical kernel estima-
tor, then we describe a selection of measures that are used for evaluating the
quality of an estimate, and are needed, e.g, in the algorithms for bandwidth selec-
tion. Finally, we go into the different subareas of kernel estimation mentioned
above in more detail.

5.1 Classical Kernel Estimation

Expressed in words, a classical kernel estimator approximates the probability
density function associated with a data set through a sum of identical, symmetric
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kernel density functions that are centered at each data point. Then the sum is
normalized to have total probability mass one.

We formalize this in the following way: Let k(-) be a bounded and symmetric
probability distribution function (pdf), such as the normal distribution pdf or
the Epanechnikov pdf, which we refer to as the kernel function.

Given a sample of n independent and identically distributed observations

X1,..., X, of arandom variable X with pdf fx(x), the classical kernel estimator
is given by
. 1 <&
= =N ky(z — X)), 16
felo) = 23 (e = X0 (16)

where ky(-) = +k(;) and b is the bandwidth. Similarly, the classical kernel esti-
mator for the cumulative distribution function (cdf) is given by

Px(a) =2 3" Ky - X)), (1)

where Ky(z) = [*__ ky(t)dt. That is, K(-) is the cdf corresponding to the pdf

5.2 Selected Measures to Evaluate Kernel Estimates

A measure that we would like to minimize for the kernel estimate is the mean
integrated square error (MISE). This is expressed as

Mtsi(t) ~ & [ [ (fxte) - fx(o))’ aa]. (s

where 2 is the domain of support for fx(x), and the argument b is included to
show that minimizing MISE is one criterion for bandwidth selection. However,
MISE can only be computed when the true density fx(z) is known. MISE can
be decomposed into two terms. The integrated square bias

| (B [fx@)] - 1x@) ao. (19)

and the integrated variance
/ Var [fx(x)} dx. (20)
Q

To understand these expressions, we first need to understand that f x is a random
variable that changes with each sample realization. To illustrate what it means,
we work through an example.

Ezample 1. Let X be uniformly distributed on 2 = [0, 1], and let k() be the
Gaussian kernel. Then

1, 0<z<1
fx(z) = {O, otherwise. (21)
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For each kernel function centered at some data point y we have that

1
Exlia =l = [ Bla=y) 1dy= K) = Kol =1). (22

If we apply that to the kernel estimator (16), we get the integrated square bias

/O (Ky(z) — Ky — 1) — 1) da. (23)

By first using that Var(X) = E[X?] — E[X]?, we get the following expression for
the integrated variance

/01 (/01 ky(z —y)? - 1dy — (Ky(x) — Kp(z — 1))?) de. (24)

The integrals are evaluated for the Gaussian kernel, and the results are shown
in Fig.2. The bias, which is largest at the boundaries, is minimized when the
bandwidth is very large, but a large bandwidth also leads to a large variance.
Hence, MISE is minimized by a bandwidth that provides a trade-off between
bias and variance.

Square bias
Variance
o
S
/

/
\
MISE

Fig. 2. The square bias (left) and the variance (middle) as a function of z for b =
0.3, 0.4, 0.5, 0.6. The curve for b = 0.3 is shown with a dashed line in both cases. MISE
(right) is shown as a function of b (solid line) together with the integrated square bias
(dashed line) and the integrated variance (dash-dot line).

To simplify the analysis, MISE is often replaced with the asymptotic MISE
approximation (AMISE). This holds under certain conditions involving the sam-
ple size and the bandwidth. The bandwidth depends on the sample size, and we
can write b = b(n). We require b(n) | 0 as n — oo, while nb(n) — oo as
n — oo. Furthermore, we need fx(x) to be twice continuously differentiable.
We then have [44] the asymptotic approximation

AMISE(b) = %R(k) + img(k)Qb‘lR( ), (25)
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where R(g) = [ g(z)*dz and m,(k) = [ zPk(z)dz. The bandwidth that mini-
mizes AMISE can be analytically derived to be

(R 1N
b = (G 2
leading to )
AMISE(boy) = Z (mz(k)méic)éx}z(fu)) " o)

The optimal bandwidth can then be calculate for different kernel functions. We
have, e.g., for the Gaussian kernel [11]

= () @)

The difficulty in using AMISE is that the norm of second derivative of the
unknown density needs to be estimated. This will be further discussed under the
subsection on bandwidth selectors.

We also mention the skewness vx of the data, which is a measure that can
be used to see if the data is suitable for classical kernel estimation. We estimate

it as | —n -
LS (X, - X
Yy = 1”231“1( ! 7) 7. (29)
(H Zi:l(Xi - X)Z) :
It was shown in [44], see also [41], that minimizing the square integrated
error (ISE) for a specific sample is equivalent to minimizing the cross-validation
function

CV(b) = /Q (fX(z))2 da — Ziﬁ(xi), (30)

where fz() is the kernel estimator obtained when leaving the observation x; out.
Other useful measures of the goodness of fit are also discussed in [41].

5.3 Bias-Corrected Kernel Estimation

As was illustrated in Example 1, boundaries where the density does not go to zero
generate bias. This happens because the kernel functions cross the boundary, and
some of the mass ends up outside the domain. We want from the kernel method
that E[fx (2)] = fx(z) in all of the support §2 of the density function, but this
condition does not hold at boundaries, unless we also have that the density is
zero there. An overview of the topic, and of simple boundary correction methods,
is given in [34]. By employing a linear bias correction method, we can make the
moments of order 0 and 1 satisfy the consistency requirements mgo = 1 (total
probability mass) and m; = 0, such that the expectation is consistent to order
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b? at the boundary. A general linear correction method for a density supported
on {2 = [xg,00] that is shown to perform well in [34] has the form

. —a1y)k
kb(y) _ (0,2 a‘ly) g(y)
ap — ay

, (31)
for a kernel function centered at the data location x. The coefficients a; = a; (b, z)
are computed as

z

a;j(b,x) = / y ky(z — y)dy, (32)

o
where z is the end point of the support of the kernel function. An example
with modified Gaussian kernels close to a boundary is shown in Fig.3. At the
boundary, the amplitude of the kernels becomes higher to compensate for the
mass loss, while away from the boundary they resume the normal shape and
size. The kernel functions closest to the boundary become negative in a small
region, but this does not affect the consistency of the estimate.

Fig. 3. Bias corrected kernel functions using the linear correction approach near a
boundary (dashed line).

A more recent bias correction method is derived in [38], based on ideas from
[15]. This type of correction is applied to the kernel estimator for the cdf, and
can be seen as a Taylor expansion. It also improves the capturing of valleys and
peaks in the distribution function, compared with the classical kernel estimator.
It requires that the density is four times differentiable, that the kernel is sym-
metric, and at least for the theoretical derivations, that the kernel is compactly
supported on 2 = [—1, 1]. The overall bias of the estimator is O(b*) as com-
pared with O(b?) for the linear correction method, while the variance is similar
to what is achieved with the uncorrected estimator. This boundary correction
approach is used for estimating extreme value distributions in [9].

Py = Px(@)+ Al(lj“: ;a;) + Bo(@)

(33)
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where Fy o(x) = Fx (x T €b) + bfx (x F £b), and

(1 + 2X)ma(k)
L) = ) . (34)
The parameter A is kernel dependent, and should be chosen such that AMISE is
minimized, but according to [15], the estimator is not that sensitive to the choice.
An explicit expression for AMISE with this correction is derived in [38], and is
also cited in [9], where the value A = 0.0799 is also given as an (approximate)
minimizer of the variance for the Epanechnikov kernel.

5.4 Transformation Kernel Estimation

The objective in transformation kernel estimation is to find a transformation
of the random variable X, which for example has a right-skewed distribution
into a symmetric random variable Y. Then classical kernel estimation can be
successfully applied to Y.

The transformation function 7'(-) should be monotonic and increasing. For a
right-skewed true density, it should also be concave. It also needs to have at least
one continuous derivative. The transformation is applied to the original data to
generate a transformed data sample

yi =T(x;), i=1,...,n. (35)
For the pdfs of the two random variables it holds that

fx(@) =T"(2) fv (y), (36)

and for the cdfs we have that Fx(z) = Fy(y). We apply the kernel density
estimator to the transformed data, leading to the following estimator for the
original density:

n

S ka(T(a) — T(ay)). (37)

i=1

A 1
fx(e) =T'(@) v () = T'(2)

Several different transformation classes have been proposed for heavy tailed
data. The shifted power transformation family was proposed in [45]

sign 2 )\ X 1 Az 2
7o) = { RO W 2D (39)

where A\; > — min(z;) and Ay < 1. An algorithm for choosing the transformation
parameters is given in [10]. First a restriction is made to parameters A; o that
give close to zero skewness (29) for the transformed data. Then AMISE (27) of
the classical kernel estimation for the density fy(y) is minimized assuming an
asymptotically optimal bandwidth. This is equivalent to minimizing R(fy/). As
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we do not know the true density, an estimator is needed. The estimator suggested
n [10] is

R(f) = n_lzz k:*k; i), (39)

i=1 j=1+1

where the convolution k * k(u) = [ k(u — s)k(s)ds, and ¢ is the bandwidth used
in this estimate.
The Mébius-like mapping introduced in [16] takes data in £2x = [0, 00) and
maps it to 2y =[-1, 1).
a_ Mo
T(a) =

Tt (40)

The scale M is determined by minimizing R( +). Given a scale M, « is deter-
mined such that no probability mass spills over at the right boundary. That is,
the resulting density does not have mass at (or beyond) infinity.

A modified Champernowne distribution transformation is derived in [12],
with transformation function

afz +)* (M +¢)%) —
((x + ) + (M + ¢)® — 2¢>)2’

T(x) = (41)
where M can be chosen as the median of the data, and o and ¢ are found by
maximizing a log likelihood function, see [12].

So far, we have only considered the possibility of performing one transfor-
mation, but one can also transform the data iteratively, or perform two specific
consecutive transformations. Doubly transformed kernel estimation is discussed,
e.g., in [9]. The idea is to first transform the data to something close to uniform,
and then to apply an inverse beta transformation. This makes the final distri-
bution close to a beta distribution, and the optimal bandwidth can then easily
be computed.

5.5 Bandwidth Selection

As briefly mentioned in Sects. 5.2 and 5.4, the choice of bandwidth b in kernel
estimation has a significant impact on the quality of the estimator, but choosing
the appropriate bandwidth requires the use of one estimator or another. The
rule-of-thumb bandwidth estimator of Silverman [44],

4\°

is often cited, but it assumes that the underlying density can be approximated
by a normal density. This is hence not appropriate for heavy-tailed, right-skewed
distributions.

Many bandwidth selection methods use a normal reference at some step in
the process [11], but this introduces a parametric step in the non-parametric
estimation. An interesting alternative, the Improved Sheather-Jones bandwidth
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selection algorithm, is also described in [11], where the normal reference is elim-
inated by formulating a non-linear equation for the optimal bandwidth.

We start from the point of how to estimate R(f%) = ||f”||?>. There are at
least two possible plug-in estimators, based on the equality

IF2)? = (~1)E[f®). (43)

The two types of estimators are

0P =530 3 [ ) a0

and

(~1VE[f@D T — Tim).- (45)

k=1m=1
By requiring the two estimators to have the same asymptotic mean square error,
we get a condition on the bandwidth. A derivation for the Gaussian kernel is
provided in [11], and we summarize these result here to illustrate the bandwidth
selection algorithm. Requiring (44) and (45) to be asymptotically equivalent
gives the following relation between the bandwidths for two consecutive deriva-
tives:

L
1+7i1 (2-_1 n a2
IS JT2 J ) _ 7%
bj = ; - T aTne =’Yj(bj+1)7 (46)
NSl

and, for the Gaussian kernel, (44) for j + 1 becomes

Taal. (47)

. (T —2m).
k=1m=1 fb]Jrl

The two relations (46) and (47) together define the function -y;(b). We also have

Eq. (28) for the bandwidth of the Gaussian kernel. Combining this with (46) for

j =1 allows us to eliminate H?;H2

1
* 6\/5 -3 ’ * *
b* = <7> by = &by (48)
Now we can apply (46) recursively to get a relation

bt =) ,,), (49)

where Y (b) = y1(---ve_1(7(D)) - - - ), for £ > 1. Here, it would be possible to
assume a normal distribution to estimate ||f¢+2||* in order to compute b},
and then all the other bandwidths. However, this does not work well if the true
distribution is far from normal [11]. In the improved Sheather-Jones algorithm,

to get
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we instead assume that b, , = b for some large enough ¢. The experiments in
[11] indicate that £ = 5 should be enough. We then get a non-linear equation to
solve for b

b=¢y1(b). (50)

Using this relation, no assumptions on the true distribution are made, and this
bandwidth selector is shown to perform well also for non-normal distributions.

6 More Challenges in Estimating the Risk
Measures—Financial Time Series and Multivariate
Case

A Dynamic Approach. Highlighting the underlying assumptions is relevant for
understanding model uncertainty when estimating rare or extreme events. The
VaR and ES are estimated given that the distribution of asset returns does not
change over time. In the last two sections, when applying the POT approach
to the returns in order to calculate these risk measures, their distribution was
assumed to be stationary. A dynamic model which captures current risk is then
more realistic. EVT can also be used based on a stochastic time series model.
These dynamic models use an ARCH/GARCH type process along with the POT
to model VaR and ES which depend on and change due to the fluctuations of
the market. This approach, studied in [2], reflects two stylized facts exhibited by
most financial return series, namely stochastic volatility and the fat-tailedness
of conditional return distributions over short time horizons.

The Multivariate Case for EVT. When estimating the VaR of a multi-asset
portfolio, under financial crises, correlations between assets often become more
positive and stronger. Assuming that the variables are independent and identi-
cally distributed is a strong hypothesis. Portfolio losses are the result not only of
the individual asset’s performance but also, and very importantly, the result of
the interaction between assets. Hence, from the accuracy point of view, ideally
we would prefer the multivariate approach.

An extension of the univariate EVT models using a dependence structure
leads to a parametric model and is then expected to be less efficient for scarce
data. A non-parametric approach should be preferred to estimate portfolio tail
risk. Transformation kernel density estimation is used in [8] for studying mul-
tivariate extreme value distributions in temperature measurement data. Future
directions involve to apply this type of methodology to real and simulated port-
folio data.
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