Skip to main content

Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry

  • Chapter
  • First Online:
Advancements of Mass Spectrometry in Biomedical Research

Abstract

Endoplasmic reticulum (ER) resident and secretory proteins that fail to reach their native conformation are selected for degradation through the ER-Associated Degradation (ERAD) pathway. The ER degradation-enhancing alpha-mannosidase-like proteins (EDEMs) were shown to be involved in this pathway but their precise role is still under investigation. Mass spectrometry analysis has contributed significantly to the characterization of protein complexes in the last years. The recent advancements in instrumentation, especially within resolution and speed can provide unique insights concerning the molecular architecture of protein-protein interactions in systems biology. Previous reports have suggested that several protein complexes in ERAD are sensitive to the extraction conditions. Indeed, whilst EDEM proteins can be recovered in most detergents, some of their partners are not solubilized, which further emphasizes the importance of the experimental setup. Here, we define such dynamic interactions of EDEM proteins by employing offline protein fractionation, nanoLC-MS/MS and describe how mass spectrometry can contribute to the characterization of such complexes, particularly within a disease context like melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Uhlen, M., Fagerberg, L., Hallstrom, B. M., Lindskog, C., Oksvold, P., Mardinoglu, A., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419.

    Article  PubMed  CAS  Google Scholar 

  2. Hebert, D. N., & Molinari, M. (2007). In and out of the ER: Protein folding, quality control, degradation, and related human diseases. Physiological Reviews, 87(4), 1377–1408.

    Article  CAS  PubMed  Google Scholar 

  3. Lamriben, L., Graham, J. B., Adams, B. M., & Hebert, D. N. (2016). N-Glycan-based ER molecular chaperone and protein quality control system: The Calnexin binding cycle. Traffic, 17(4), 308–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vembar, S. S., & Brodsky, J. L. (2008). One step at a time: Endoplasmic reticulum-associated degradation. Nature Reviews. Molecular Cell Biology, 9(12), 944–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munteanu, C. V. (2016). Insights into functional interaction proteomics of endoplasmic reticulum associated degradation (ERAD) and antigen presentation in melanoma using mass spectrometry (p. 199). Bucureşti, Romania: Institute of Biochemistry: Romanian Academy Library.

    Google Scholar 

  6. Guerriero, C. J., & Brodsky, J. L. (2012). The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiological Reviews, 92(2), 537–576.

    Article  CAS  PubMed  Google Scholar 

  7. Aridor, M. (2007). Visiting the ER: The endoplasmic reticulum as a target for therapeutics in traffic related diseases. Advanced Drug Delivery Reviews, 59(8), 759–781.

    Article  CAS  PubMed  Google Scholar 

  8. Gonzalez, D. S., Karaveg, K., Vandersall-Nairn, A. S., Lal, A., & Moremen, K. W. (1999). Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. The Journal of Biological Chemistry, 274(30), 21375–21386.

    Article  CAS  PubMed  Google Scholar 

  9. Tremblay, L. O., & Herscovics, A. (1999). Cloning and expression of a specific human alpha 1,2-mannosidase that trims Man9GlcNAc2 to Man8GlcNAc2 isomer B during N-glycan biosynthesis. Glycobiology, 9(10), 1073–1078.

    Article  CAS  PubMed  Google Scholar 

  10. Ninagawa, S., Okada, T., Sumitomo, Y., Kamiya, Y., Kato, K., Horimoto, S., et al. (2014). EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step. The Journal of Cell Biology, 206(3), 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., et al. (2001). A novel ER alpha-mannosidase-like protein accelerates ER-associated degradation. EMBO Reports, 2(5), 415–422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mast, S. W., Diekman, K., Karaveg, K., Davis, A., Sifers, R. N., & Moremen, K. W. (2005). Human EDEM2, a novel homolog of family 47 glycosidases, is involved in ER-associated degradation of glycoproteins. Glycobiology, 15(4), 421–436.

    Article  CAS  PubMed  Google Scholar 

  13. Olivari, S., Galli, C., Alanen, H., Ruddock, L., & Molinari, M. (2005). A novel stress-induced EDEM variant regulating endoplasmic reticulum-associated glycoprotein degradation. The Journal of Biological Chemistry, 280(4), 2424–2428.

    Article  CAS  PubMed  Google Scholar 

  14. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., et al. (2006). EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. The Journal of Biological Chemistry, 281(14), 9650–9658.

    Article  CAS  PubMed  Google Scholar 

  15. Olivari, S., Cali, T., Salo, K. E., Paganetti, P., Ruddock, L. W., & Molinari, M. (2006). EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation. Biochemical and Biophysical Research Communications, 349(4), 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  16. Hosokawa, N., Tremblay, L. O., Sleno, B., Kamiya, Y., Wada, I., Nagata, K., et al. (2010). EDEM1 accelerates the trimming of alpha1,2-linked mannose on the C branch of N-glycans. Glycobiology, 20(5), 567–575.

    Article  CAS  PubMed  Google Scholar 

  17. Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman, J., & Lederkremer, G. Z. (2011). Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Molecular Biology of the Cell, 22(21), 3945–3954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shenkman, M., Groisman, B., Ron, E., Avezov, E., Hendershot, L. M., & Lederkremer, G. Z. (2013). A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins. The Journal of Biological Chemistry, 288(4), 2167–2178.

    Article  CAS  PubMed  Google Scholar 

  19. Marin, M. B., Ghenea, S., Spiridon, L. N., Chiritoiu, G. N., Petrescu, A. J., & Petrescu, S. M. (2012). Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region. PLoS One, 7(8), e42998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lamriben, L., Oster, M. E., Tamura, T., Tian, W., Yang, Z., Clausen, H., et al. (2018). EDEM1’s mannosidase-like domain binds ERAD client proteins in a redox-sensitive manner and possesses catalytic activity. The Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA118.004183

    Article  CAS  Google Scholar 

  21. Tang, H. Y., Huang, C. H., Zhuang, Y. H., Christianson, J. C., & Chen, X. (2014). EDEM2 and OS-9 are required for ER-associated degradation of non-glycosylated sonic hedgehog. PLoS One, 9(6), e92164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Oda, Y., Hosokawa, N., Wada, I., & Nagata, K. (2003). EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science, 299(5611), 1394–1397.

    Article  CAS  PubMed  Google Scholar 

  23. Zuber, C., Cormier, J. H., Guhl, B., Santimaria, R., Hebert, D. N., & Roth, J. (2007). EDEM1 reveals a quality control vesicular transport pathway out of the endoplasmic reticulum not involving the COPII exit sites. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4407–4412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tamura, T., Cormier, J. H., & Hebert, D. N. (2011). Characterization of early EDEM1 protein maturation events and their functional implications. The Journal of Biological Chemistry, 286(28), 24906–24915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Christianson, J. C., Olzmann, J. A., Shaler, T. A., Sowa, M. E., Bennett, E. J., Richter, C. M., et al. (2011). Defining human ERAD networks through an integrative mapping strategy. Nature Cell Biology, 14(1), 93–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Butnaru, C. M., Chiritoiu, M. B., Chiritoiu, G. N., Petrescu, S. M., & Petrescu, A. J. (2017). Inhibition of N-glycan processing modulates the network of EDEM3 interactors. Biochemical and Biophysical Research Communications, 486(4), 978–984.

    Article  CAS  PubMed  Google Scholar 

  27. Jansen, G., Maattanen, P., Denisov, A. Y., Scarffe, L., Schade, B., Balghi, H., et al. (2012). An interaction map of endoplasmic reticulum chaperones and foldases. Molecular & Cellular Proteomics, 11(9), 710–723.

    Article  CAS  Google Scholar 

  28. Kikkert, M., Doolman, R., Dai, M., Avner, R., Hassink, G., van Voorden, S., et al. (2004). Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. The Journal of Biological Chemistry, 279(5), 3525–3534.

    Article  CAS  PubMed  Google Scholar 

  29. Christianson, J. C., Shaler, T. A., Tyler, R. E., & Kopito, R. R. (2008). OS-9 and GRP94 deliver mutant alpha1-antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nature Cell Biology, 10(3), 272–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saeed, M., Suzuki, R., Watanabe, N., Masaki, T., Tomonaga, M., Muhammad, A., et al. (2011). Role of the endoplasmic reticulum-associated degradation (ERAD) pathway in degradation of hepatitis C virus envelope proteins and production of virus particles. The Journal of Biological Chemistry, 286(43), 37264–37273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Timms, R. T., Menzies, S. A., Tchasovnikarova, I. A., Christensen, L. C., Williamson, J. C., Antrobus, R., et al. (2016). Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens. Nature Communications, 7, 11786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chiritoiu, G. N., Ghenea, S., & Petrescu, S. M. (2010). Anticorpi policlonali anti EDEM 2 (p. 15). Romania: OSIM.

    Google Scholar 

  33. Chiritoiu, G. N. (2016). Role of N- Glycosylation and functional Endoplasmic Reticulum Associated Degradation (ERAD) in modulation of tyrosinase immunogenicity (p. 183). Bucureşti, Romania: Institute of Biochemistry: Romanian Academy Library.

    Google Scholar 

  34. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V., & Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.

    Article  CAS  PubMed  Google Scholar 

  35. Chiritoiu, G. N., Jandus, C., Munteanu, C. V., Ghenea, S., Gannon, P. O., Romero, P., et al. (2016). Epitope located N-glycans impair the MHC-I epitope generation and presentation. Electrophoresis, 37(11), 1448–1460.

    Article  CAS  PubMed  Google Scholar 

  36. Olsen, J. V., Schwartz, J. C., Griep-Raming, J., Nielsen, M. L., Damoc, E., Denisov, E., et al. (2009). A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Molecular & Cellular Proteomics, 8(12), 2759–2769.

    Article  CAS  Google Scholar 

  37. Eng, J. K., McCormack, A. L., & Yates, J. R. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. Journal of the American Society for Mass Spectrometry, 5(11), 976–989.

    Article  CAS  PubMed  Google Scholar 

  38. Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207–214.

    Article  CAS  PubMed  Google Scholar 

  39. Kall, L., Storey, J. D., MacCoss, M. J., & Noble, W. S. (2008). Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. Journal of Proteome Research, 7(1), 29–34.

    Article  PubMed  CAS  Google Scholar 

  40. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.

    Article  PubMed  CAS  Google Scholar 

  41. Huang da, W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.

    Article  PubMed  CAS  Google Scholar 

  42. Dunham, W. H., Mullin, M., & Gingras, A. C. (2012). Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 12(10), 1576–1590.

    Article  CAS  PubMed  Google Scholar 

  43. Dzieciatkowska, M., Hill, R., & Hansen, K. C. (2014). GeLC-MS/MS analysis of complex protein mixtures. Methods in Molecular Biology, 1156, 53–66.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, H., Chang-Wong, T., Tang, H. Y., & Speicher, D. W. (2010). Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. Journal of Proteome Research, 9(2), 1032–1040.

    Article  CAS  PubMed  Google Scholar 

  45. Gilar, M., Olivova, P., Daly, A. E., & Gebler, J. C. (2005). Orthogonality of separation in two-dimensional liquid chromatography. Analytical Chemistry, 77(19), 6426–6434.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y., Yang, F., Gritsenko, M. A., Wang, Y., Clauss, T., Liu, T., et al. (2011). Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics, 11(10), 2019–2026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Budayeva, H. G., & Cristea, I. M. (2014). A mass spectrometry view of stable and transient protein interactions. Advances in Experimental Medicine and Biology, 806, 263–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Morris, J. H., Knudsen, G. M., Verschueren, E., Johnson, J. R., Cimermancic, P., Greninger, A. L., et al. (2014). Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nature Protocols, 9(11), 2539–2554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bildl, W., Haupt, A., Muller, C. S., Biniossek, M. L., Thumfart, J. O., Huber, B., et al. (2012). Extending the dynamic range of label-free mass spectrometric quantification of affinity purifications. Molecular & Cellular Proteomics, 11(2), M111 007955.

    Article  CAS  Google Scholar 

  50. Kaufmann, A., & Walker, S. (2017). Comparison of linear intrascan and interscan dynamic ranges of Orbitrap and ion-mobility time-of-flight mass spectrometers. Rapid Communications in Mass Spectrometry, 31(22), 1915–1926.

    Article  CAS  PubMed  Google Scholar 

  51. Antrobus, R., & Borner, G. H. (2011). Improved elution conditions for native co-immunoprecipitation. PLoS One, 6(3), e18218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hubner, N. C., Bird, A. W., Cox, J., Splettstoesser, B., Bandilla, P., Poser, I., et al. (2010). Quantitative proteomics combined with BAC TransgeneOmics reveals in vivo protein interactions. The Journal of Cell Biology, 189(4), 739–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, E. D., Sabharwal, A., Vetta, A. R., & Blanchette, M. (2010). Predicting direct protein interactions from affinity purification mass spectrometry data. Algorithms for Molecular Biology, 5, 34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Zhang, X. F., Ou-Yang, L., Hu, X., & Dai, D. Q. (2015). Identifying binary protein-protein interactions from affinity purification mass spectrometry data. BMC Genomics, 16, 745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Tian, B., Zhao, C., Gu, F., & He, Z. (2017). A two-step framework for inferring direct protein-protein interaction network from AP-MS data. BMC Systems Biology, 11(Suppl 4), 82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge support for funding to the Romanian Ministry of Research and Innovation, CNCS-UEFISCDI grant PN-III-P1-1.1-PD-2016-1528 and CCCDI-UEFISCDI grant PNCDI-III-PCCDI-2018-1, PN-III-P4-ID-PCE-2016-0650. Part of this work constituted the Ph.D. thesis of Cristian V.A. Munteanu, which received financial support from European Social Fund for Sectorial Operational Program Human Resources Development 2007–2013 grant no. POSDRU/159/1.5/S/135760 and Gabriela N. Chiriţoiu, supported by Romanian Academy. All the authors were partially funded by Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ștefana M. Petrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Munteanu, C.V.A., Chiriţoiu, G.N., Petrescu, AJ., Petrescu, Ș.M. (2019). Profiling Optimal Conditions for Capturing EDEM Proteins Complexes in Melanoma Using Mass Spectrometry. In: Woods, A., Darie, C. (eds) Advancements of Mass Spectrometry in Biomedical Research. Advances in Experimental Medicine and Biology, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-15950-4_9

Download citation

Publish with us

Policies and ethics