®

Check for
updates

Improved Variable Neighbourhood Search
Heuristic for Quartet Clustering

Sergio Consoli"2®) | Jan Korst?, Steffen Pauws®?, and Gijs Geleijnse?*

! Buropean Commission, Joint Research Centre, Directorate A-Strategy,
Work Programme and Resources, Scientific Development Unit,
Via E. Fermi 2749, 21027 Ispra, VA, Italy
sergio.consoli@ec.europa.eu
2 Philips Research,
High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
3 TiCC, Tilburg University,

Warandelaan 2, 5037 AB Tilburg, The Netherlands
4 Netherlands Comprehensive Cancer Organisation (IKNL),

Zernikestraat 29, 5612 HZ Eindhoven, The Netherlands

Abstract. Given a set of n data objects and their pairwise dissimilari-
ties, the goal of quartet clustering is to construct an optimal tree from the
total number of possible combinations of quartet topologies on n, where
optimality means that the sum of the dissimilarities of the embedded (or
consistent) quartet topologies is minimal. This corresponds to an NP-
hard combinatorial optimization problem, also referred to as minimum
quartet tree cost (MQTC) problem. We provide details and formulation
of this challenging problem, and propose a basic greedy heuristic that is
characterized by a very high speed and some interesting implementation
details. The solution approach, though simple, substantially improves the
performance of a Reduced Variable Neighborhood Search for the MQTC
problem. The latter is one of the most popular heuristic algorithms for
tackling the MQTC problem.

Keywords: Combinatorial optimization - Quartet trees -
Hierarchical clustering - Metaheuristics -
Variable Neighbourhood Search - Graph theory

1 Introduction

Quartet clustering methods are popular in computational biology, where den-
drograms (or phylogenies) are ubiquitous. These methods aim at reconstructing
a rooted dendrogram from a set of pairwise distant objects (or taxa). Given a
set of objects, define Q to be the set of all the possible quartets, and Q; to be
the set of consistent quartets being embedded in a dendrogram t. The problem
of recombining the quartet topologies of @ to form an estimate of the correct
tree diagram can be naturally formulated as an optimization problem. Steel [19]

© The Author(s) 2019
A. Sifaleras et al. (Eds.): ICVNS 2018, LNCS 11328, pp. 1-12, 2019.
https://doi.org/10.1007 /978-3-030-15843-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-15843-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-15843-9_1

2 S. Consoli et al.

formulated the mazimum quartet consistency (MQC) problem, which looks for a
dendrogram tree ¢ maximizing the number of consistent quartets Q; belonging
to a subset P C @ of quartet topologies. This problem has been shown to be
NP-hard [19], and Jiang et al. [15] proved that the problem admits a polynomial
time approximation scheme by using the technique of smooth integer polynomial
programming and by exploiting the natural denseness of the set). However, this
scheme only guarantees a dendrogram that may deviate from @ by en* quartet
topologies for any small constant € > 0, where n is the number of taxa.

Due to these results, most quartet methods are heuristics which attempt to
solve the MQC problem, or some variants of the MQC problem with weaker opti-
mization requirements. Strimmer and von Haeseler [20] formulated the quartet
tree-puzzling problem, which is a variant of the MQC problem where each quartet
is provided with a probability value to be embedded, and for each set of four
objects the quartet with the highest probability is selected (at random in case
of ties) to form a “maximum-likelihood dendrogram”. Felsenstein [11] presented
a heuristic which solves the MQC by incrementally growing the tree diagram
in random order by stepwise addition of objects in the local optimal way. This
procedure is repeated iteratively for different object orders, adding agreement
values on the branches of the tree. Both agglomerative approaches are quite
fast, but suffer from the usual bottom-up problem: a wrong decision early on
cannot be corrected later. Berry et al. [1] reported an interesting result. They
presented two “quartet cleaning” algorithms for correcting bounded numbers of
quartet errors (i.e. incorrect inferences of simple quartet topologies) for many
popular quartet problems.

Cilibrasi and Vitanyi [2] proposed for the first time the minimum quartet
tree cost (MQTC) problem. Given a set N of n > 4 objects, the MQTC deals
with a full unrooted binary tree with n leaves, a special topology dendrogram
having all internal nodes connected exactly with three other nodes, the n objects
assigned as leaf nodes, and without any distinction between parent and child
nodes [12]. A full unrooted binary tree with n > 4 leaves has exactly n — 2
internal nodes, and consequently has a total of 2n — 2 nodes. Full unrooted
binary trees are of primary interest in clustering contexts because, of all tree
diagrams with a fixed number of nodes, they have the richest internal structure
(most differentiated paths between nodes). They are therefore very suitable for
representing the structure of a set of objects [12]. A full unrooted binary tree
with exactly n = 4 leaves is also referred to as simple quartet topology, or just
as quartet [10,12]. Given a set N of n > 4 objects, the number of sets of four
objects from the set IV is given by:

n n! n(n—1)(n —2)(n —3)
<4) C Al(n—4) 24 ’

Given four generic objects {a,b, c,d} € N, there exist exactly three different
quartets: ablcd, ac|bd, ad|bc, where the vertical bar divides the two pairs of leaves,
with each pair labelled by the corresponding objects and attached to the same
internal node. Therefore the total number of possible simple quartet topologies

of N is: 3- (Z)

Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 3

A full unrooted binary tree is said to be “consistent” with respect to a simple
quartet topology, say ablcd, if and only if the path from a to b does not cross
the path from ¢ to d. This quartet abled is also said to be “embedded” in the
given full unrooted binary tree.

Considering the set N, the MQTC problem accepts as input a distance
matriz, D, which is a matrix containing the dissimilarities, taken pairwise,
among the n objects'. To extract a hierarchy of clusters from the distance
matrix, the MQTC problem determines a full unrooted binary tree with n leaves
that visually represents the symmetric n x n distance matrix as well as pos-
sible according to a cost measure. Consider the set) of all possible 3 - (Z)
quartets, and let C' : Q — RT be a cost function assigning a real valued cost
C(abled) to each quartet topology abled € Q. The cost assigned to each simple
quartet topology is the sum of the dissimilarities (taken from D) between each
pair of neighbouring leaves [4]. For example, the cost of the quartet abled is
C(abled) = D(q, vy + D(c, a), where D, 3y and D, g indicate, respectively, the
dissimilarities among (a and b) and (¢ and d), obtained from the D.

Consider now the set I" of all full unrooted binary trees with 2n—2 nodes (i.e.
n leaves and n — 2 internal nodes), obtained by placing the n objects to cluster
as leaf nodes of the trees. For each t € I', precisely one of the three possible
simple quartet topologies for any set of four leaves is consistent [4]. Thus, there
exist precisely (Z) consistent quartet topologies (one for each set of four objects)
for each t € I'.

The cost associated with a full unrooted binary tree ¢ € I' is the sum of the
costs of its (}) consistent quartet topologies, that is: C(t) = > vabledeq, Clablcd),

where Q is the set of such (’}) quartet topologies embedded in ¢.

In a hierarchical clustering context, we do not even have a priori knowledge
that certain simple quartet topologies are objectively true and must be embed-
ded. Thus, the MQTC problem assigns a cost value to each simple quartet topol-
ogy, in order to express the relative importance of the simple quartet topologies
to be embedded in the full unrooted binary tree having the n objects as leaves.
The full unrooted binary tree with the minimum cost balances the importance
of embedding different quartet topologies against others, leading to a binary tree
that visually represents the symmetric distance matrix n x n as well as possible.
The solution of this problem allows the hierarchical representation of a set of n
objects within a full unrooted binary tree [12]. That is, the resulting binary tree
will have the n objects assigned as leaves such that objects with short relative
dissimilarities will be placed close to each other in the tree. This hierarchical
clustering approach coming from the MQTC problem is also referred in the lit-
erature to as quartet method [4]. Such method is more sensitive and objective
than other quartet clustering methods, which are usually too slow when they
are exact or global, and too inaccurate or uncertain when they are statistical
incremental, like the case of quartet tree-puzzling. In [4] the MQTC problem
was shown to be NP-hard, and a Randomized Hill Climbing heuristic was also

1 It is therefore a symmetric n x n matrix, with n > 4, containing non-negative reals,
normalized between 0 and 1, as entries.

4 S. Consoli et al.

proposed to obtain approximate problem solutions. Other MQTC metaheuristics
based on Greedy Randomized Adaptive Search Procedure, Simulated Annealing,
and Variable Neighbourhood Search were proposed in [6]. These metaheuristics
performed well for the problem, although the best performance was obtained by
a Reduced Variable Neighbourhood Search (RVNS) implementation [6].

In this paper we propose some improved metaheuristics for the MQTC prob-
lem, to be used to get solutions of higher quality, in terms of reduced costs and
computational running times. In particular we first propose a basic greedy heuris-
tic which is characterized by a very high speed and some interesting implementa-
tion improvements, which can be used to enhance the MQTC metaheuristics to
date in the literature. This greedy algorithm is characterized by its ease of imple-
mentation and simplicity, and it takes inspiration from the recently proposed
“less is more approach” [9,18], which supports the adoption of non-sophisticated
and effective metaheuristics instead of hard-to-reproduce and complex solution
approaches. In particular we will show how the performance of the RVNS quartet
heuristic is improved, with particular emphasis to computational running time,
by adopting our proposed basic greedy heuristic to construct initial solutions for
the algorithm.

The rest of the paper is organized as follows. Section 2 presents the related
work. Section 3 describes the details of the proposed heuristics, along with their
main implementation concepts and pseudo-code formulations. Our computa-
tional experience is reported in Sect.4, and finally the paper ends with con-
clusions in Sect. 5.

2 Related Work

The MQTC problem was originally proposed in [2]. There the main focus was on
compression-based distances, but the authors visually presented the tree recon-
struction results by full unrooted binary trees deriving by their MQTC problem
formulation. Hence, they developed the quartet method for hierarchical clus-
tering, a new approach aimed at general hierarchical clustering of data from
different domains, not necessarily biological phylogenies. Several practical appli-
cations of the quartet method have been explored in the literature. In partic-
ular, Cilibrasi et al. [5] proposed a robust automatic music classification pro-
cedure consisting of two steps. The first step consisted of extracting the “Nor-
malized Compression Distances” [16] among some considered pieces of music.
The Normalized Compression Distance is a similarity metric based on string
compression which mimics the ideal performance of Kolmogorov complexity [16].
The second step consisted of creating an efficient visualization of the extracted
pairwise distances by means of the quartet method of hierarchical clustering.
To substantiate the claims of universality and robustness of this automatic clas-
sification method, evidence of other successful applications in areas as diverse
as genomics, virology, languages, literature, handwriting, astronomy and com-
binations of objects from completely different domains, were reported in [2]. In
addition, Cilibrasi and Vitdnyi [3] reported an interesting application of this

Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 5

theory, consisting of the automatic extraction of similarities among words and
phrases from the WWW using Google page counts. Granados et al. [13] studied
the impact of several kinds of information distortion on compression-based text
clustering, showing their results as ternary trees by means of the quartet method
of hierarchical clustering. In a recent application, a variant of the quartet method
based on the Variable Neighborhood Search metaheuristic was used for biomed-
ical literature extraction and clustering [7,8]. The proposed application was able
to retrieve relevant references for systematic reviews and meta-analysis from
the Medline/PubMed database, and for visualizing the retrieved bibliography
through an intuitive graph layout.

In [4], the authors presented the minimum quartet tree cost problem in a more
formal way. They showed the main concepts, components, advantages and disad-
vantages of the quartet method of hierarchical clustering, particularly underlin-
ing the similarities and differences with respect to other methods from biological
phylogeny. Cilibrasi and Vitdnyi [4] also showed that the MQTC problem is
NP-hard by reduction from the MQC problem, and provided a Randomized Hill
Climbing heuristic to obtain approximate problem solutions. Several other effi-
cient metaheuristics based on Greedy Randomized Adaptive Search Procedure,
Simulated Annealing, and Variable Neighbourhood Search were proposed and
compared for the MQTC problem in [6]. The best reported performance was
obtained by an implementation of a Reduced Variable Neighbourhood Search
metaheuristic, which we will use as a reference benchmark in our paper and try
to overcome its performance.

3 Description of the Solution Algorithms

3.1 Greedy Constructive Heuristic

We first propose a new greedy heuristic for the MQTC problem, used to construct
initial solutions of good quality requiring short computational running time [9,
18]. In the metaheuristics to date used for solving the MQTC problem [4,6],
the initial solution was usually set either completely at random, or by selecting
the corresponding flat structure, and then this solution was iteratively improved
towards local optimality using the different heuristic guidelines of the specific
metaheuristic implementation. The aim of the greedy constructive heuristic that
we propose here consists of providing starting solutions having already a good
quality, and obtained with an high speed too, which can bring to an improvement
of the overall performance of the MQTC heuristic deployed afterwards.

We are given as input n > 4 different objects and the corresponding sym-
metric distance matrix D containing the n x n pairwise distances among those
objects. The algorithm makes use also of another distance matrix D’ among a
set N’/ of n’ > 4 objects, with n’ < n, which will be used iteratively from our
optimization routine to reduce the dimensionality n of the original set of objects
in N. Initially, matrix D’ is set equal to D, i.e. the sets of objects N and N’ are
equivalent. At this stage, another graph t’, which will be used during the algo-
rithm iterations as a support solution, is initialized to null, i.e. # < (). Then the

6 S. Consoli et al.

core of our greedy heuristic begins by selecting objects from N’ to be included
in the support solution #’. At this purpose we greedily select from N’ the objects
that have the shortest minimum pairwise distance from D’. Say the two objects
a and b in N’ have this shortest distance, that is Dza’ b < DZ& Q) Y(e, d) € N'.
Note that in case of ties for the object pairs having the shortest distance in D’,
the routine simply selects an object pair at random within this set. Afterwards,
these nodes a and b are connected to the support solution graph t'. The following
three cases are possible:

— None of the two objects a and b are already connected in the partial solution
t', and therefore they are joined together by means of a terminal node;

— One of the two objects is already included as a leaf node in #’, and therefore
the other object b is linked to the subgraph in ¢’ containing a by means of
a transition node (i.e. the dotted internal node in the figure). Please note
that node b requires to be included in the partial solution ¢’ by a link with
a new transition node since, being it a leaf, if it would be included by a link
with a terminal node instead, we would not be able to add any further nodes
afterwards;

— Both objects a and b are already included in the partial solution ¢’ but they
belong to two different subgraphs, and therefore these two subgraphs contain-
ing respectively the two objects are connected together by means of a cross
node.

Afterwards, we apply a routine, referred to as distance matriz reduction,
to merge the added nodes a and b together to form another object, say x, by
reducing in this way the dimension of N’ of one unit, i.e. n’ = n’ — 1. The
distance matrix D’ is recomputed accordingly by removing the distances of the
two objects a and b with all the other objects in N’, and adding the distances
of the new node x with the other objects, which are calculated as the averages
distances, respectively of a and b, with the other nodes in N’. That is D'(z, y) =
w, for all objects y € N’, y # a,b. The rationale behind this
procedure is to greedily merge together highly connected objects which may
bring higher values of the quartet cost function of the subgraphs inferred in the
partial solution ¢'.

This greedy procedure is repeated iteratively until a fully connected unrooted
binary tree t’ is obtained, i.e. t' € I', which is equivalent also in getting a reduced
distance matrix D’ with a size n’ = 4 (i.e. it would not be possible to reduce
further the corresponding set N’ since it only contain four objects). Then the
support solution ¢’ is assigned to the output full unrooted binary tree ¢, which
is produced as final outcome of the algorithm.

3.2 Reduced Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a popular metaheuristic for solving
hard combinatorial optimization problems based on dynamically changing neigh-
bourhood structures during the search process [14]. VNS does not follow a trajec-
tory, but it searches for new solutions in increasingly distant neighbourhoods of

Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 7

the current solution, jumping only if a better solution is found. Reduced Variable
Neighbourhood Search (RVNS) is a variant of the classic VNS algorithm, that
has been shown to be successful for many combinatorial problems where local
optima with respect to one or several neighbourhoods are relatively close to each
other [14]. RVNS is a typical example of a pure stochastic heuristic, akin to a
classic Monte-Carlo method, but more systematic [17]. It is useful especially for
very large problem instances for which the inner local search within the classic
VNS approach is costly, as in the case with quartet clustering.

The Reduced Variable Neighbourhood Search for the MQTC problem starts
by selecting an initial full unrooted binary tree t € I" with 2n— 2 nodes, obtained
by placing the n > 4 objects to cluster as leaves, with total cost C(¢). In the
original RVNS implementation in [6], the initial full unrooted binary tree ¢ was
selected at random.

Then, the shaking phase, which represents the core idea of RVNS, is applied
to t. The shaking phase aims to change the neighbourhood structure, Ni(-),
when the algorithm is trapped at a local optimum. The new incumbent solution,
say t’, is generated at random in order to avoid cycling, which might occur if a
deterministic rule is used. The simplest and most common choice for the neigh-
bourhood structure consists of setting neighbourhoods with increasing cardinal-
ity: [N1(-)| < |[N2(*)] < ... < |Ng,,..(-)|, where kpq. represents the maximum
size of the shaking phase. Let k be the current size of the shaking phase. The
algorithm starts by selecting the first neighbourhood (k < 1) and, at each itera-
tion, it increases the parameter k if a better solution is not obtained (k « k+1),
until the largest neighbourhood is reached (k < kj,q4.). The process of changing
neighbourhoods when no improvement occurs diversifies the search. In particu-
lar, the choice of neighbourhoods of increasing cardinality yields a progressive
diversification of the search process.

For the MQTC problem, a shaking phase of size k consists of the random
selection of another full unrooted binary tree ¢’ within the neighbourhood N(t)
of the current solution ¢. To obtain ¢’ from Ng(¢), the algorithm performs k
consecutive base moves, where a base move is a single basic modification that
each internal node of ¢t can perform with its neighbouring internal nodes. The
possible base moves that can be performed depend on the types of internal node
pairs [6]. In the case of:

— two transition nodes: either the attached leaves are exchanged, or they are
transformed into one cross node and one terminal node connected to the
corresponding leaves;

— one terminal node and one transition node: the leaf of the transition node is
exchanged with one of the two leaves of the terminal node;

— one terminal node and one cross node: they are transformed into two transi-
tion nodes with the two leaves of the terminal node attached;

— one transition node and one cross node: the transition node is moved in one
of the other two branches of the cross node;

— two cross nodes: one branch of one cross node is swapped with a branch of
the other cross node.

8 S. Consoli et al.

Note that each base move corresponds just to a limited local modification
of the structure of the incumbent solution ¢, which results in most of the coef-
ficients of the corresponding Complete Pseudo-Adjacency matrix C to remain
unchanged. In this was there will be no need to recalculate all the coefficients of
C, but only recomputing a small subset of it, speeding up consistently this step.

At the beginning of RVNS, the first neighbourhood (k < 1) is selected and,
at each iteration, the parameter k is increased (k «— k+1) whenever the solution
obtained is not an improvement of the current best solution (i.e. C(t') > C(¢)).
When k > 1, the first base move is performed to a randomly selected internal
node and one of its neighbouring internal nodes with respect to the considered
distance of rank one. Then, to perform the successive base move, the algorithm
selects one of the two internal nodes considered, and another neighbouring inter-
nal node that must be different from the two internal nodes already considered,
and so on. The procedure is repeated until £ consecutive base moves are per-
formed.

If an improved binary tree ¢’ is produced by the shaking phase (C(t') < C(¢)),
this becomes the best solution to date (¢t «— ') and the algorithm restarts from
the first neighbourhood (k « 1) of ¢. The process of increasing progressively
parameter k whenever no improvements are obtained, occurs until the maximum
size of the shaking phase, k4., is reached. When this happens, k is re-initialized
to the first neighbourhood (k < 1). The correct setting of k4, is an important
user task. For the MQTC problem, a simple reactive schema for the efficient
tuning of k,q, has been implemented [6]. At the starting point, kpq. is set to a
small value (ke = 2) and is increased (kmaz = kmaz+1) €Very tupdate iterations
between two consecutive improvements. For the value of this parameter we use
the setting of [6], where iypaate = (1.25-10%)/n? +50. Throughout the execution
of the algorithm, the best solution to date is stored as the binary tree ¢, which
will be produced as output of the algorithm when the user termination condition
(e.g. a maximum allowed CPU time) is reached.

4 Computational Results

In order to evaluate the algorithms, we performed experiments to compare them
in terms of quality of produced solutions and computational running time. For
evaluating solution quality, we used both the cost function C(-), already defined
previously, and of another metric, referred to as normalized tree benefit score,
S(-) € 0,1] [2,6], which is a more intuitive performance measure of the goodness
of quartet clustering. Given the set N of n > 4 documents to cluster, let m be the
best (minimal) cost, calculated as the sum of the (’}) minimum costs of each set of
four objects in N, and let M be the worst (maximal) cost, calculated as the sum
of the (Z) maximum costs of each set of four objects in N. The normalized tree
benefit score S(t) of a full unrooted binary tree ¢ € I' is obtained by rescaling and

normalizing in [0,1] the cost function C(t), i.e. S(t) = J\?W__Cg) € [0,1]. While

a lower cost function C(t) results in a better solution ¢, conversely a higher
normalized tree benefit score means a better clustering quality.

Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 9

Our experimental algorithms comparison was made upon classic MQTC
problem datasets, already used in previous studies in the literature (see e.g.
[2,4,6]). They are briefly described in the following, but for more details the
reader is referred to [2,4,6].

— Data constructed artificially to have none inconsistency, that is data for which
the exact solutions are known in advance and have been built to have normal-
ized tree benefit score equal to one. The construction mechanism is described
in detail in [2,6]. These data aim at testing whether the quartet-based tree
reconstruction is reliable and accurate on clean consistent data with known
solutions. They consist of ten different problem instances ranging from a
number of objects n = 10 to 100. They are referred to as: artificial.

— Example of natural data concerning a study in genomics with DNA sequences
of different placental mammalian species. The distance matrices from the
genomic data were computed by using an automated software method
described by Cilibrasi and Vitdnyi [2,4], who downloaded the whole mito-
chondrial genomes of the placental mammalian species from the GenBank
Database on the World Wide Web. They consists of three sets of data with
n = 10, n = 24, and n = 34, and are referred to as: nature.

Table 1 show the results of our experimental comparison of the algorithms on
the considered datasets. The heuristics are identified with the following abbre-
viations: Greedy, for the greedy constructive heuristic described in Sect. 3.1;
RVNS,and, for the original implementation of the Reduced Variable Neighbour-
hood Search (Sect. 3.2) with initial solution selected at random; RVNSgyecqy, for
the new Reduced Variable Neighbourhood Search implementation where the ini-
tial solution is selected by using the greedy constructive heuristic, Greedy. All the
algorithms were implemented in C+4 under the Microsoft Visual Studio 2015
framework, and were deployed on an Intel Quad-Core i5 64-bit microprocessor
at 2.30 GHz with 16 GB RAM.

As stopping condition for the RVNS-based metaheuristics it was considered
a maximum allowed CPU time (maz-CPU-time). In particular, as also used in
[2,6], we set maz-CPU-time to one hour. Selection of the maximum allowed CPU
time as the stopping criterion was made in order to have a direct comparison
among the RVNS metaheuristics with respect to the quality of their solutions.
Instead, for the Greedy algorithm it was not necessary to set any stopping crite-
rion since, being a constructive heuristic, it automatically ends when a feasible
solution, i.e. a fully connected unrooted binary tree, is obtained.

Looking at Table 1, the first column shows the number of objects, n, charac-
terizing the different datasets (artificial, nature, geographical) while the remain-
ing columns give the computational results in terms of clustering quality (i.e.
cost function values C(-), cost, and normalized tree benefit scores S(-), score),
and computational running time in seconds (time) for the different algorithms.
The performance of an heuristic can be considered better than another if it
obtains a lower cost function value, or more intuitively a larger normalized tree
benefit score. In case of ties, an algorithm is consider better than another if it
was faster.

10 S. Consoli et al.

Table 1. Computational results of the compared algorithms (Greedy, RVNSrand, and
RVNSgreedy) in terms of cost function values (cost, normalized tree benefit scores (score,
and computational running times in seconds (time) for the considered datasets.

Greedy RVNS,and ‘ RVNSy,cedy
size n cost ‘ score ‘ time cost ‘ score ‘ time cost ‘ score ‘ time
artificial
10 210.8000 | 0.89500 | 0.004 202.4000| 1.00000 0.040 202.4000 | 1.00000 | 0.005
20 3301.2500{0.95270 | 0.003 3231.8500 | 1.00000 0.421 3231.8500|1.00000 | 0.006
30 15013.8656 | 0.92419 | 0.002 14559.4658 | 1.00000 0.861 14559.4658 | 1.00000 | 0.023
40 45245.7000 | 0.92400 | 0.006 43449.7500 | 1.00000 8.413 43449.7500 | 1.00000 | 0.554
50 104709.0800 | 0.85641 | 0.008 97207.8400 | 1.00000| 10.606 97207.8400 | 1.00000 | 0.055
60 196608.3789 | 0.89166 | 0.012| 186787.0474|1.00000 | 38.724| 186787.0474|1.00000|0.176
70 360831.5064 | 0.88295|0.022 | 338182.8198|1.00000| 38.858| 338182.8198|1.00000 0.243
80 561067.4125|0.79739|0.028 | 509526.6875 | 1.00000 | 66.880| 509526.6875|1.00000 0.193
90 806291.9392 | 0.89048 | 0.037 | 769344.2770 | 1.00000 | 101.512 | 769344.2770|1.00000 | 0.287
100 1232141.4400 | 0.92249 | 0.059 | 1178538.2000 | 1.00000 | 115.013 | 1178538.2000 | 1.00000 | 10.292
nature
10 349.0720{0.99979 | 0.002 349.0720{0.99979 0.006 349.0720{0.99979 | 0.039
24 18649.3360 | 0.98524 | 0.002 18637.3390|0.99588 2.083 18637.3390 | 0.99588 | 0.232
34 82934.2444 | 0.98323 | 0.005 82922.0360 | 0.98792| 10.610 82922.0360 | 0.98792 | 0.542
geographical
13 476.4124|0.74265 | 0.002 439.7529|0.96843 0.270 439.7529|0.96843 | 0.016
22 4644.7111 | 0.82426 | 0.004 4377.1741{0.93507 3.140 4377.1741|0.93507 | 0.029
24 6839.0909 | 0.79911 | 0.004 6422.0182|0.92459 3.290 6422.0182|0.92459 | 0.044
25 8876.1814|0.79267 | 0.004 7827.1264 | 0.98760 2.840 7827.1264 | 0.98760 | 0.046
35 29209.7541 | 0.81774 | 0.004 26332.7485|0.98367 | 10.750 26332.7485 | 0.98367 | 0.205
37 28298.8724 | 0.79559 | 0.006 26846.2316 | 0.91973 | 32.940 26846.2316 | 0.91973 | 0.318

From the results showed in the table, we can immediately denote that Greedy
was much faster of several orders of magnitude than the original RVNS imple-
mentation, RVNS, 4,4, although in most of the cases it obtained solutions with
worst quality. This is an understandable result since RVNS,qnq is an explorative
metaheuristic that runs for a longer time, maz-CPU-time, while Greedy instead
stops immediately when a feasible solution is reached. But when Greedy was
then embedded inside the RVNS metaheuristic in order to produce initial good-
quality solutions in RVNSgreeay, a very powerful metaheuristic was obtained.
Indeed, as it can be seen in the table, RVNSyccqy retained the high-speed fea-
ture from Greedy, but also the characteristics of good-quality solutions that is
proper of the RVNS approach for the given problem. Indeed, looking at the per-
formance of both the RVNS algorithms, the obtained solutions were comparable
with respect to clustering quality, but RVNSgreeqy was much faster. Note that
for the artificial datasets without inconsistencies, both RVNS implementations
were able to reach optimality, RVNSgeeqy being much faster, while this was not
achieved by Greedy.

Summarizing, the novel RVNS implementation with the greedy constructive
heuristic used for selecting the initial starting solutions resulted to be the best
performing method in our computational experiments in terms of both quartet
clustering quality and, especially, computational running time.

Improved Variable Neighbourhood Search Heuristic for Quartet Clustering 11

5 Conclusions

In this paper we proposed some improved heuristics for quartet clustering, a
novel hierarchical clustering approach based on the minimum quartet tree cost
(MQTC) problem, which is NP-hard and whose goal is to derive an optimal tree
from the total number of possible combinations of quartet topologies on some
input objects n, where optimality means that the sum of the dissimilarities of
the embedded (or consistent) quartet topologies is minimal.

In particular we provided the details of a new basic greedy heuristic that
is characterized by a very high speed. Although the performance of this simple
method in terms of quartet clustering quality, evaluated by means of a defined
cost function and of a normalized tree benefit score, was not as good as that
of the best solution method reported in the literature, i.e. a Reduced Variable
Neighbourhood Search (RVNS) metaheuristic, this greedy method was used to
considerably improve the performance of the RVNS by using it to construct
initial good-quality solutions instead of randomly selected solutions.

This produces a very efficient solution approach to the problem, as demon-
strated by our experiments on the comparison of the considered algorithms on
a set of well-known MQTC datasets and by the reported computational results,
which represents an advancement of the state-of-the-art on the solution methods
used for quartet clustering.

Acknowledgements. The author Dr. Sergio Consoli wants to dedicate this work with
deepest respect to the memory of Professor Kenneth Darby-Dowman, a great scientist,
an excellent manager, the best supervisor, a wonderful person, a real friend.

References

1. Berry, V., Jiang, T., Kearney, P., Li, M., Wareham, T.: Quartet cleaning: improved
algorithms and simulations. In: Nesetfil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp.
313-324. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7_28

2. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory
51(4), 1523-1545 (2005)

3. Cilibrasi, R., Vitanyi, P.M.B.: The google similarity distance. IEEE Trans. Knowl.
Data Eng. 19(3), 370-383 (2007)

4. Cilibrasi, R., Vitanyi, P.M.B.: A fast quartet tree heuristic for hierarchical cluster-
ing. Pattern Recogn. 44(3), 662-677 (2011)

5. Cilibrasi, R., Vitanyi, P.M.B., de Wolf, R.: Algorithmic clustering of music based
on string compression. Comput. Music J. 28(4), 49-67 (2004)

6. Consoli, S., Darby-Dowman, K., Geleijnse, G., Korst, J., Pauws, S.: Heuristic
approaches for the quartet method of hierarchical clustering. IEEE Trans. Knowl.
Data Eng. 22(10), 1428-1443 (2010)

7. Consoli, S., Stilianakis, N.I.: A VNS-based quartet algorithm for biomedical liter-
ature clustering. Electron. Notes Discrete Math. 47, 13-20 (2015)

8. Consoli, S., Stilianakis, N.I.: A quartet method based on variable neighborhood
search for biomedical literature extraction and clustering. Int. Trans. Oper. Res.
24(3), 537-558 (2017)

https://doi.org/10.1007/3-540-48481-7_28

12

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

S. Consoli et al.

Costa, L.R., Aloise, D., Mladenovié¢, N.: Less is more: basic variable neighborhood
search heuristic for balanced minimum sum-of-squares clustering. Inf. Sci. 415—
416, 247-253 (2017)

Diestel, R.: Graph Theory. Springer, New York (2000)

Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17(6), 368-376 (1981)

Furnas, G.W.: The generation of random, binary unordered trees. J. Classif. 1(1),
187-233 (1984)

Granados, A., Cebrian, M., Camacho, D., Rodriguez, F.B.: Reducing the loss of
information through annealing text distortion. IEEE Trans. Knowl. Data Eng.
23(7), 1090-1102 (2011)

Hansen, P., Mladenovié¢, N.: Variable neighbourhood search. Comput. Oper. Res.
24, 1097-1100 (1997)

Jiang, T., Kearney, P., Li, M.: A polynomial time approximation scheme for infer-
ring evolutionary trees from quartet topologies and its application. SIAM J. Com-
put. 30(6), 1942-1961 (2000)

Li, M., Vitdnyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Appli-
cations, 2nd edn. Springer, New York (1997)

Mladenovié, N., Petrovié, J., Kovacevié-Vujéié, V., Cangalovié¢, M.: Solving spread
spectrum radar polyphase code design problem by tabu search and variable neigh-
bourhood search. Eur. J. Oper. Res. 151(2), 389-399 (2003)

Mladenovié, N., Todosijevi¢, R., Uroevi¢, D.: Less is more: basic variable neigh-
borhood search for minimum differential dispersion problem. Inf. Sci. 326, 160-171
(2016)

Steel, M.A.: The complexity of reconstructiong trees from qualitative characters
and subtrees. J. Classif. 9, 91-116 (1992)

Strimmer, K., von Haeseler, A.: Quartet puzzling: a quartet maximum-likelihood
method for reconstructing tree topologies. Mol. Biol. Evol. 13(7), 964-969 (1996)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Improved Variable Neighbourhood Search Heuristic for Quartet Clustering
	1 Introduction
	2 Related Work
	3 Description of the Solution Algorithms
	3.1 Greedy Constructive Heuristic
	3.2 Reduced Variable Neighbourhood Search

	4 Computational Results
	5 Conclusions
	References

