
6System of Particles

6.1 System of Particles

In the previous chapters, objects that can be treated as particles
were only considered. We have seen that this is possible only
if all parts of the object move in exactly the same way. An
object that does not meet this condition must be treated as a
system of particles. Next, wewill see that the complexmotion
of this object or system of particles can be represented by the
motion of a point located at the center of mass of the system.
The center of mass moves as if all of the mass of the object
is concentrated there and as if the net external force acting on
the system is applied there (at the center of mass). As well as
representing an object by a particle, the concept of the center
of mass is used to analyze the motion of many systems such
as a system of two colliding blocks (particle-like objects) and
the system of two colliding subatomic particles such as the
neutron with the nucleus.

6.2 Discrete and Continuous System of
Particles

6.2.1 Discrete System of Particles

A discrete system of particles is a system in which particles
are separated from each other.

6.2.2 Continuous System of Particles

A continuous system of particles is a system where the sepa-
ration of particles is very small such that it approaches zero.
An extended object is a continuous system of particles. Now,
consider the skateboarder example mentioned in Sect. 4.3. It
has been shown that the system (man+skateboard) cannot be
treated as a particle since different parts of the systemmove in
different ways. By representing the skateboarder as a system
of particles its motion can be represented by the motion of

its center of mass, hence, the work–energy theorem can be
applied to that point. The work done by the force, exerted on
the skateboarder by the bar, is not zero because the point of
application of that force (which is at the center of mass) has
moved.

6.3 The Center of Mass of a System of
Particles

For a system of particles of total mass M the acceleration of
its center of mass is given by

a = F
M

6.3.1 Two Particle System

Consider two particles of massesm1 andm2 moving in space.
Suppose that their position vectors at a particular instant of
time are given by r1 and r2 as shown in Fig. 6.1. The center
of mass of the system lies somewhere along the line joining
the two particles and its position vector is given by

rcm = m1r1 + m2r2
m1 + m2

The x, y and z components of the center of mass is

xcm = m1x1 + m2x2
m1 + m2

ycm = m1y1 + m2y2
m1 + m2

and
zcm = m1z1 + m2z2

m1 + m2
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Fig. 6.1 Two particles of masses m1 and m2 moving in space. Their
position vectors at a particular instant of time are given by r1 and r2

Fig. 6.2 A discrete system of particles consisting of n particles

6.3.2 Discrete System of Particles

Consider a discrete system of particles consisting of n parti-
cles (see Fig. 6.2). The position vector of the center of mass
at a particular instant is given by

rcm = m1r1 + m2r2 + m3r3. + · · · · · · · · · · · ·mnrn
m1 + m2 + m3 + · · · + mn

= Σn
i=1miri
M

where ri is the position vector of the ith particle and M =
n∑

i=1

mi is the total mass of the system. In component form, ri

can be written as

ri = xi i + yi j + zik

The x, y and z components of the center of mass vector are

xcm =
∑n

i=1 mi xi
M

ycm =
∑n

i=1 mi yi
M

and

zcm =
∑n

i=1 mi zi
M

Fig. 6.3 The center of mass of a system in the x-y plane

Example 6.1 Find the center of mass of the system shown
in Fig. 6.3 where the three particles have an equal mass of
m = 1 kg.

Solution 6.1

xcm = (1 kg)((0.1m) + (0.5m) + (0.3m))

(3 kg)
= 0.3m

ycm = 0 + 0 + (1 kg)(0.2m) tan(60o)

(3 kg)
= 0.12m

rcm = xcm i + ycmj = (0.3m) i + (0.12m) j

Example 6.2 A system of particles consists of three masses
mA = 0.5kg, mB = 2kg and mC = 5kg located at
PA(−3, 1, 2) , PB(0, 1, 2) and PC(−1, 3, 0), respectively.
Find the position vector of the center of mass of the
system.

Solution 6.2 The position vector of each particle is

rA = (−3i + j + 2k)m

rB = (j + 2k)m

and
rC = (−i + 3j)m

The center of mass of the system is

rcm =
∑n

i=1 mi ri∑n
i=1 mi

= (0.5 kg)((−3i + j + 2k)m) + (2 kg)((j + 2k)m) + (5 kg)((−i + 3j)m)

(7.5 kg)

That gives

rcm = (−0.87i + 2.3j + 0.7k)m.
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Fig. 6.4 An extended object of mass M divided into small volume
elements each of mass �mi and a vector position rI

6.3.3 Continuous System of Particles (Extended
Object)

A continuous system of particles is a system consisting of a
large number of particles separated by very small distances.
Consider an extended object of mass M divided into small
volume elements each of mass �mi and a vector position ri
(see Fig. 6.4). The position vector of the center of mass at a
particular instant is then approximately given by

rcm ≈
∑n

i=1 ri�mi

M

For a very large number of particles where n → ∞ we have
�mi → 0, that gives

rcm = lim�mi

∑n
i=1 ri�mi

M
= 1

M

∫
rdm

Since r = x i + yj + zk, the x, y and z components of the
center of mass are given by

xcm = 1

M

∫
xdm

ycm = 1

M

∫
ydm

and

zcm = 1

M

∫
zdm

6.3.4 Elastic and Rigid Bodies

Abody is called an elastic (deformable) body if the separation
between its particles changes when a force is applied to it.
This change or deformation is sometimes so small that it can

be neglected. A body that behaves in this way is called a
rigid body. A rigid body can be defined as a body in which
the separation between its particles remain constant with time
despite the applied force, i.e., the body has a constant size and
shape. Therefore, the center of mass of a rigid object remains
fixed at the same location at all times. In this book, only rigid
bodies are discussed. In solving problems, it is common to
use the volume density ρ defined as the mass per unit volume
given by

ρ = dm

dV

Therefore, the total mass of a rigid object is

M =
∫

ρdV

The center of mass of a rigid object can thus be written as

rcm = 1

M

∫
rdm =

∫
ρrdV∫
ρdV

ρ may be a function of position, i.e., it can vary from point to
point in the body If the body has a uniform density (homoge-
neous body), then ρ can be written as

ρ = dm

dV
= Tota1Mass

Tota1Volume
= constant

If the continuous distribution of particles occupies a sur-
face, then the surface density σ is used and is given by

σ = dm

dA
(massperunit area)

σ = Tota1Mass

Tota1Area
= constant (homogeneous body)

If the particles occupy a curve or a line, the linear density
λ is used given by

λ = dm

dl
(massperunit length)

λ = Tota1Mass

Tota1Length
= constant (homogeneous body)

The center of mass of any homogeneous symmetric object
is at its geometrical center and it is not necessarily located
within the object.

Example 6.3 A thin rod of length L = 2m has a linear
density that increases with x according to the expression
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Fig.6.5 A thin rod of length L = 2 m has a linear density that increases
with x

λ(x) = (2x − 1) kg/m (see Fig. 6.5). Locate the center of
mass of the rod relative to O.

Solution 6.3

xcm = 1

M

∫
xdm =

∫ L
0 xλ(x)dx
∫ L
0 λ(x)dx

=
∫ L
0 (2x2 − x)dx
∫ L
0 (2x − 1)dx

= ((2/3)x3 − x2/2)|Lx=0

(x2 − x)|Lx=0

= L((2/3)L − 1/2)

(L − 1)

Substituting L = 2m gives xcm = 1.7m.

Example 6.4 A uniform square sheet is suspended by a uni-
form rod where they both lie in the same plane as shown in
Fig. 6.6. Find the center of mass of the system.

Solution 6.4 Because the sheet and the rod are homogeneous,
the center of mass of each is at its geometric center. Since the
center of the sheet is at the origin we have

xcm =
∑

i mi xi∑
i mi

= 0 + (M2L/2)

M1 + M2
= LM2

2(M1 + M2)

Fig.6.6 Auniform square sheet suspended by a uniform rodwhere they
both lie in the same plane

Fig. 6.7 The center of mass of a rectangular plate

Example 6.5 Find the center of mass of the rectangular plate
shown in Fig. 6.7. The plate has a uniform surface density σ.

Solution 6.5 • Method 1:

xcm =
∫
xdm

M
=

∫
xσd A∫
σd A

=
∫ b
y=0

∫ a
x=0 xdxdy

∫ b
y=0

∫ a
x=0 dxdy

= ba2

2ab
= a

2

ycm =
∫
ydm

M
=

∫
xσd A∫
σd A

=
∫ a
x=0

∫ b
y=0 ydxdy

∫ a
x=0

∫ b
y=0 dxdy

= ab2

2ab
= b

2

Hence

rcm = a

2
i + b

2
j

• Method 2:

Dividing the plate into very thin rods each of mass σbdx
gives

xcm =
∫
xdm

M
= 1

M

∫
xσd A = 1

M

(
M

ab

) ∫ a

x=0
xbdx = 1

a

[
x2

2

]a

x=0
= a

2

Similarly by dividing the plate into thin horizontal rods
each of mass σady gives

ycm =
∫
ydm

M
= 1

M

∫
yσd A = 1

M

(
M

ab

) ∫ b

y=0
aydy = 1

b

[
y2

2

]b

y=0
= b

2

and

rcm = a

2
i + b

2
j

Example 6.6 An object of uniform surface density σ and
mass M has the shape shown in Fig. 6.8 (half of an ellipse).
Find the center of mass of the object.

Solution 6.6 The equation of an ellipse is

x2

a2
+ y2

b2
= 1
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Fig. 6.8 The center of mass of half an ellipse

therefore
2xdx

a2
+ 2ydy

b2
= 0

or

xdx = −a2

b2
ydy

By dividing the area into very thin rectangles each of mass
σ ydx gives

xcm =
∫
xdm

M
= 1

M

∫
xσd A = 1

M

∫ a

x=−a
x

(
2M

πab

)
ydx

= 2

πab

∫ 0

y=0

(−a2

b2

)
y2dy = −2a

πb3

[
y3

3

]0

y=0
= 0

To obtain the y coordinate of the center of mass we divide
the area into very thin rectangles each of mass σ xdy as in
Fig. 6.8. That gives

ycm = 1

M

∫
ydm = 1

M

∫
yσd A = 2

πab

∫ b

y=0
yxdy

= 2

πab

∫ −a

x=a

(−b2

a2

)
x2dx = −2b

πa3

∫ −a

x=a
x2dx = −2b

πa3

[
x3

3

]−a

x=a

−2b

πa3

[
x3

3

]−a

x=a
= −2b

πa3

(−a3

3
− a3

3

)
= 4b

3π

Example 6.7 Determine the center of mass of the cylindrical
shell shown inFig. 6.9. The shell has a uniform surface density
σ.

Solution 6.7 From symmetry, the center of mass lies on the
z-axis. By dividing the shell into very thin rings each of mass
σ2πRdz we have

zcm =
∫
zdm

M
=

∫
zσd A

M
= 1

M

∫ h

z=0
zσ2πRdz = 1

M

(
M

2πRh

) ∫ h

z=0
2πRzdz

Fig. 6.9 The center of mass of a cylindrical shell

= 1

h

[
z2

2

]h

z=0
= h

2

Example 6.8 Aboy standing on a smooth ice surfacewants to
fetch a container that is at a distance of 10m away from him.
To do that, he throws a rope around the container and start
to pull. Because the surface is smooth, both the boy and the
container will move until they meet. If the masses of the boy
and of the container are 40kg and 70kg respectively, how far
will the container move when the boy has moved a distance
of 2m?

Solution 6.8 By taking the midpoint between the boy and the
container as the origin (see Fig. 6.10) and by neglecting the
mass of the rope, the center of mass of the system is

xcm = Σimi xi
Σimi

= (70 kg)(5m) + (40 kg)(−5m)

(110 kg)
= 1.36m

Fig. 6.10 A boy pulling a container on a smooth surface
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Fig. 6.11 A boy walking on a small boat

Because the surface may be assumed to be frictionless, the
resultant external force on the system is zero and therefore the
center of mass must remain stationary at all times. Hence, if
the boy has moved a distance of 2m, he will be at a distance
of −3m from the origin. Thus, we have

(1.36m) = (70 kg)xc + (40 kg)(−3m)

(110 kg)

That gives xc = 3.86m, therefore the distance moved by the
container towards the center of mass is (5m) − (3.86m) =
1.14m.

Example 6.9 A boy is standing at the rear of a boat as shown
in Fig. 6.11. The masses of the boy and of the boat are 45 kg
and 80kg respectively Find the distance that the boat would
move relative to the origin if the boy moves a distance of lm
from the rear of the boat (the length of the boat is 5m).

Solution 6.9 By neglecting air and water resistance, the net
external force on the (boy+ boat) system is zero. Therefore
the center of mass of the system must remain at rest. Suppose
that the boat is a symmetrical homogeneous object where its
center of mass is at its geometrical center. The center of mass
of the boat is therefore at a distance of 2.5m from the origin.
Thus, the center of mass of the system is

xcm =
∑n

i=1 mi xi
M

= m1x1 + m2x2
m1 + m2

= (45 kg)(0) + (80 kg)(2.5m)

(125 kg)
= 1.6m

If the boy moves a distance of 1m, the center of mass is
still at the same position, and we have

(1.6m) = (45 kg)(1m) + (80 kg)xb
(125 kg)

That gives xb = 1.94m. Thus, the displacement of the center
of mass of the boat is (1.94m) − (2.5m) = −0.56m.

6.3.5 Velocity of the Center of Mass

The velocity of the center of mass of a system of particles that
has a constant mass M is

vcm = drcm
dt

= 1

M

d

dt

( n∑

i=1

miri

)
= 1

M

n∑

i=1

mi ṙi

where ṙi = dri/dt , or

vcm =
n∑

i=1

mivi
M

(6.1)

where vi is the ith particle velocity. The acceleration of the
center of mass is given by

acm = dvcm
dt

= 1

M

d

dt

( n∑

i=1

mivi

)
= 1

M

n∑

i=1

mi r̈i

acm = 1

M

n∑

i=1

miai (6.2)

where ai is the acceleration of the ith particle.

6.3.6 Momentum of a System of Particles

The total linear momentum of a system of particles is the
vector sum of the linear momenta of the individual particles:

n∑

i=1

mivi =
n∑

i=1

pi = ptot (6.3)

By using Eq.6.1
ptot = Mvcm (6.4)

Example 6.10 Two particles of masses m1 = 1kg and m2 =
2kg have position vectors given by r1 = (2t i − 4j)m and
r2 = (5t i − 2tj)m respectively where t is time. Determine
the velocity and linear momentum of the center of mass of
the two- particle system at any time and at t = 1 s.

Solution 6.10

rcm =
∑

i miri∑
i mi

= (1 kg)(2t i − 4j) + (2 kg)(5t i − 2tj)
(3 kg)

That gives

rcm =
(
4t i − 4

3
(t + 1)j

)
m

vcm = drcm
dt

=
(
4i − 4

3
j
)

m/s
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The total linear momentum is

ptot = Mvcm = (3kg)

(
4i − 4

3
j
)

= (12i − 4j) kg.m/s

at t = 1s

rcm = (4i − 8

3
j)m

vcm = (4i − 4

3
j)m/s

and
ptot = (12i − 4j) kg.m/s

6.3.7 Motion of a System of Particles

From Newton’s second law Eq.6.2 can be written as

acm = 1

M

n∑

i=1

Fi (6.5)

where Fi is the net force acting on the ith particle. If both the
external forces on the system and the internal forces between
the particles in the system are included, thenFi maybewritten
as

Fi = Fi(ext) +
∑

j

fi j (6.6)

Where Fi(ext) is the resultant external force acting on the ith
particle. fi j is the internal force exerted on the ith particle by
the jth particle. Note that it is as- sumed that no force is exerted
on the particle by itself, i.e., fi i = 0. Substituting Eq.6.6 into
Eq.6.5 gives:

acm = 1

M

(∑

i

Fi(ext) +
∑

i

∑

j

fi j

)
(6.7)

Now, from Newton’s third law we have

fi j = −f j i

Therefore, the second term in Eq.6.7 is equal to zero. Hence
the net force acting on the system is due only to external
forces. That gives

Fnet =
∑

i

Fi(ext) = Macm

whereFnet is the resultant external force on the center ofmass,
i.e.,

Fnet =
∑

Fext = Macm

By differentiating Eq.6.4 with respect to time we have

Macm = dptot
dt

thus ∑
Fext = dptot

dt

Thus, the net external force acting on a system of particles is
equal to the time rate of change of the total linear momentum
of the system.

6.3.8 Conservation of Momentum

For an isolated system of particles, we have

∑
Fext = 0

Thus
dptot
dt

= 0

and

ptot = Mvcm = constant

Which is the law of conservation of linear momentum for
a system of particles.

6.3.9 Angular Momentum of a System of
Particles

The angular momentum L of a system of particles about a
fixed point is the vector sum of angular momenta of the indi-
vidual particles:

L = L1 + L2 + L3 + +Ln =
n∑

i=1

Li =
n∑

i=1

(ri × pi ) =
n∑

i=1

mi (ri × vi )

6.3.10 TheTotal Torque on a System

The total torque acting on a particle in a system is the sum
of torques associated with the internal forces and of torques
associated with external forces. Using Eq.6.6 we have
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τi = ri ×Fi = ri ×
⎛

⎝Fiext +
∑

j

fi j

⎞

⎠ = ri ×Fiext +
∑

j

ri × fi j

Summing over i we get

∑

i

τi =
∑

i

ri×Fi =
∑

i

ri×Fiext+
∑

i

∑

j

ri×fi j (6.8)

By usingNewton’s third lawof action and reaction, the double
sum in Eq.6.8 has terms of the form

ri × fi j + r j × f j i = (ri − r j ) × fi j

Now, suppose that the internal forces between the two parti-
cles lie along the line joining the particles (i.e., the vectors
fi j and (ri − r j ) have the same direction). This condition is
known as the strong law of action and reaction. It requires the
internal forces to be central. If the internal forces are equal
and opposite but not central, then they are said to satisfy the
weak law of action and reaction. The force of gravity is an
example of a force satisfying the strong law of action and
reaction. Some forces such as the forces between two moving
charges are not central. From this, it follows that the double
summation in Eq.6.8 is equal to zero.

τnet =
∑

i

τi =
∑

i

ri × Fi =
∑

i

ri × Fiext

Therefore, the total torque on the system about the origin is
only the torque associated with external forces

τnet =
∑

τext =
n∑

i=1

ri × Fi(ext) (6.9)

6.3.11 The Angular Momentum and the Total
External Torque

Theangularmomentumof the individual particlesmaychange
with time. This will change the total angular momentum of
the system

dL
dt

=
n∑

i=1

dLi

dt

Eq.6.9 may be written as

τnet =
∑

τext =
n∑

i=1

ri × Fi(ext) = d

dt

{ n∑

i=1

mi (ri × vi )
}

= d

dt

{ n∑

i=1

Li

}
= dL

dt

i.e., the net external torque about some origin exerted on a
system of particles is equal to the time rate of change of the
total angular momentum of the system.

6.3.12 Conservation of Angular Momentum

If ∑
τext = 0

L =
n∑

i=1

mi (ri × vi ) = constant

or
Li = L f

Hence, if the resultant external torque acting on a system is
zero, the total angular momentum remains constant.

6.3.13 Kinetic Energy of a System of Particles

The total kinetic energy of a system of particles is the sum of
the kinetic energies of the individual particles

K = 1

2

n∑

i=1

miv
2
i

6.3.14 Work

Since the total force acting on the ith particle is given by

Fi = Fi(ext) +
∑

j

fi j

then the total work done on such particle is given by

W12 =
∑

i

∫ 2

1
Fi · dsi

6.3.15 Work–Energy Theorem

The total work done in moving a system from one state to
another is

W12 =
∑

i

∫ 2

1
Fi · dsi =

∑

i

∫ 2

1
Fi · dsi

dt
dt =

∑

i

∫ 2

1
Fi · vi dt

=
∑

i

∫ 2

1
vi · Fi dt =

∑

i

∫ 2

1
vi · d

dt
(mivi )dt

Since

vi
d

dt
(mivi ) = 1

2

d

dt
(mi (vi · vi )) = 1

2

d

dt
(miv

2
i )
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it follows that

W12 = 1

2

∑

i

∫ 2

1

d

dt
(miv

2
i )dt = 1

2

∑

i

(
miv

2
i

)|21 = K2−K1

where
1

2

∑

i

miv
2
i is the total kinetic energy of the system.

6.3.16 Potential Energy and Conservation of
Energy of a System of Particles

Consider a system of particles in which the external and inter-
nal forces acting on the system are conservative. First, let us
calculate the work done by the internal conservative forces.
Suppose that fi j is the conservative force acting on the ith
particle due to the jth particle and f j i is the force acting on the
jth particle due to the ith particle. Note that fi j and f j i form
an action and reaction pair, i.e., fi j = −f j i . Because these
forces are conservative there is a potential energy associated
with each force. That is,

fi j = −∇iUi j

and
f j i = −∇ jUi j

From the law of action and reaction,Ui j is a function only of
the distance between the particles. That is

Ui j = Ui j (|ri − r j |) = Uji (|ri − r j |)

or
Ui j (ri j ) = Uji (r ji )

where |ri − r j | = ri j = r ji is the distance between the
ith and jth particles. The work done by each pair of forces
in displacing the ith and jth particles through dri and dr j ,
respectively, is

fi j · dri + f j i · dr j = −∇iUi j · dri − ∇ jUi j · dr j

= −
[

∂Ui j

∂xi
dxi +

∂Ui j

∂yi
dyi +

∂Ui j

∂zi
dzi +

∂Ui j

∂x j
dx j +· · · · · · · · ·

]
= −dUi j

Hence, the total work done by the internal conservative forces
in moving the system from stage 1 to stage 2 is

W12(in,c) =
∑

i

∑

j

∫ 2

1
fi j · dri = −1

2

∑

i

∑

j

∫ 2

1
dUi j

= −1

2

∑

i

∑

j

Ui j |21 = U1(int) −U2(int) = −�U(int)

The factor 1/2 occurs since each term in the summation
appears twice. Now, consider the total work done by the exter-
nal conservative forces

W12(ext,c) =
∑

i

∫ 2

1
Fi(ext).dsi = −

∑

i

∫ 2

1
∇iUi · dsi = −

∑

i

Ui |21 = U1(ext) −U2(ext)

To show that energy is conserved when both the external
and internal forces are conservative, we may define a total
potential of the system as

U =
∑

i

Ui + 1

2

∑

i

∑

j

Ui j

From the work–energy theorem, the work done by the total
force Fi acting on the ith particle is equal to the change in the
kinetic energy of that particle

W12 =
∑

i

∫ 2

1
Fi · dri = K2 − K1

and since
W12 = W12(in,c) + W12(ext,c)

From this, we conclude that for a system of particles in which
the internal and external forces are conservative, the total
mechanical energy of the system is conserved

U1(int) −U2(int) +U1(ext) −U2(ext) = K2 − K1

or
U1 −U2 = K2 − K1

or
�K = −�U

Thus
�K + �U = 0

�E = 0

6.3.17 Impulse

In Sect. 6.3.7, we have seen that the net external force on a
system of particles is equal to the rate of change of the total
linear momentum of the system

Fnet = dptot
dt
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The total linear impulse on the system as the system goes
from one state to another is defined as

I =
∫ t2

t1
Fnetdt =

∫ t2

t1

dptot
dt

dt = ptot2 − ptot1

That is, the total linear impulse on the system is equal to the
change in the total momentum of the system.

6.4 Motion Relative to the Center of Mass

The motion of a system of particles is sometimes described
relative to the center of mass of the system. This method is
used in some problems to simplify the analysis and add a
particular symmetry to it.

6.4.1 TheTotal Linear Momentum of a System of
Particles Relative to the Center of Mass

The position vector of the center of mass of the system with
respect to an origin in an inertial frame of reference (for exam-
ple, the lab frame) is given by

rcm = Σn
i miri
M

(6.10)

From Fig. 6.12, the position vector (r′
i ) of the ith particle rel-

ative to the center of mass is

r′
i = ri − rcm

or
ri = r′

i + rcm (6.11)

Where ri is the position vector of the ith particle relative to
the origin O. Substituting Eq.6.11 into Eq.6.10 gives

rcm = 1

M

n∑

i=1

mi (r′
i + rcm) = 1

M

n∑

i=1

mir′
i +

∑n
i=1 mi

M
rcm

Fig.6.12 The position vector (r′
i ) of the ith particle relative to the center

of mass

= 1

M

n∑

i=1

mir′
i + rcm

therefore
1

M

n∑

i=1

mir′
i = rcm − rcm = 0

That gives
n∑

i=1

mir′
i = 0 (6.12)

Differentiating Eq.6.12 with respect to t gives

n∑

i=1

mv′
i =0 (6.13)

or
n∑

i=1

p′
i = 0

or
p′ = 0

That is, the total linear momentum of the system is zero when
observed from the center of mass frame.

6.4.2 TheTotal Angular MomentumAbout the
Center of Mass

By differentiating Eq.6.11 with respect to time gives

vi=v′
i + vcm (6.14)

where vi and v′
i are the velocities of the particle relative to the

originO and the center ofmass respectively vcm is the velocity
of the center of mass relative to O. The angular momentum
of the system about the origin O is

L =
∑

i

mi (ri × vi ) =
∑

i

mi {(r′
i + rcm) × (v′

i + vcm)}

=
∑

i

mi (r
′
i×v′

i )+
∑

i

mi (r
′
i×vcm )+

∑

i

mi (rcm×v′
i )+

∑

i

mi (rcm×vcm )

The secondand third terms are zero followed fromEqs. 6.12

and6.13where

(
∑

i

mir′
i

)
×vcm = 0 and rcm×

(
∑

i

miv′
i

)
=

0, hence
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L =
∑

i

mi (r′
i × v′

i ) +
∑

i

mi (rcm × vcm)

Thus, the total angular momentum of the system of particles
about an origin O equals the angular momentum of the system
about the center of mass plus the angular momentum of the
center of mass about O. Therefore, the total angular momen-
tum L′ about the center of mass is

L′ =
∑

i

mi (r′
i × v′

i ) =
∑

i

mi (ri × vi ) − M(rcm × vcm)

(6.15)

6.4.3 TheTotal Kinetic Energy of a System of
Particles About the Center of Mass

The total kinetic energy of a system of particles relative to an
origin in an inertial frame of reference is given by

K = 1

2

∑

i

miv
2
i = 1

2

∑

i

mi (vi · vi )

From Eq.6.14 we have

K = 1

2

∑

i

mi ((v′
i + vcm) · (v′

i + vcm))

= 1

2

∑

i

mi (v′
i · v′

i )+
∑

i

mi (v′
i · vcm)+ 1

2

∑

i

mi (vcm · vcm)

= 1

2

∑

i

miv
′2
i + vcm ·

( ∑

i

miv′
i

)
+ 1

2

( ∑

i

mi

)
v2cm

FromEq.6.13, the term in brackets in the second term is equal
to zero. Hence

K = 1

2

∑

i

miv
′2
i + 1

2
Mv2cm

That is the total kinetic energy of a system of particles about
an origin is equal to the kinetic energy of the system with
respect to the center of mass plus the kinetic energy of the
center of mass relative to the origin O. Therefore, the total
kinetic energy of the system with respect to the center of
mass is

K ′ = 1

2

∑

i

miv
′2
i = 1

2

∑

i

miv
2
i − 1

2
Mv2cm

6.4.4 Total Torque on a System of Particles
About the Center of Mass of the System

The total torque acting on a system of particles about the
center of mass is (from theorem (5.6.1)) equal to the time rate
of change of the angular momentum of the system about the
center of mass. That is,

τ ′ = dL′

dt

Example 6.11 Two particles of masses m1 = 1kg and m2 =
2kg are moving in the x-y plane. Their position vectors rela-
tive to the origin are r1 = (t2i− 2tj)m and r2 = (3t i+ j)m
where t is time. Find: (a) the total angular momentum of
the system; the total external torque acting on the system;
and the total kinetic energy of the system all relative to the
origin at any time; (b) repeat (a) relative to the center of
mass.

Solution 6.11 (a)

v1 = dr1
dt

= (2t i − 2j)m/s

v2 = dr2
dt

= (3i)m/s

The total angular momentum of the system relative to the
origin is

L =
∑

i

mi (ri × vi ) = (1)[(t2i− 2tj) × (2t i − 2j)] + (2)[(3t i + j) × (3)i]

that gives

L = ((2t2 − 6)k) kg.m2/s

The total kinetic energy of the system relative to O is

K = 1

2

n∑

i=1

mi v
2
i = 1

2
(m1v

2
1 + m2v

2
2 ) = 1

2
[(1)(4t2 + 4) + (2)(9)] = (2t2 + 11) J

The net external torque about the origin is

∑
τext = dL

dt
= ((4t)k)N.m

(b) To find the total angular momentum relative to the cen-
ter of mass let’s find first the total angular momentum of the
center of mass relative to the origin
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rcm =
∑

i miri∑
i mi

= (1)(t2i − 2tj) + (2)(3t i + j)
(3)

=
((

t2

3
+ 2t

)
i +

(
2

3
− 2

3
t

)
j
)
m

The velocity of the center of mass is

vcm =
((

2

3
t + 2

)
i −

(
2

3

)
j
)
m/s

and the total angular momentum of the center of mass relative
to O is

Lcm = M(rcm ×vcm ) = (3)

[((
t2

3
+2t

)
i+

(
2

3
− 2

3
t

)
j
)

×
((

2

3
t +2

)
i−

(
2

3

)
j
)]

=
(

−
(
2

3
t2 + 4

3
t + 4

)
k
)
kg.m2/s

From Eq.6.15, the total angular momentum relative to the
center of mass is

L′ =
∑

i

mi (r′
i × v′

i ) =
∑

i

mi (ri × vi ) − M(rcm × vcm)

= (2t2−6)k+
(
2t2

3
+ 4

3
t+4

)
k =

((
8

3
t2+ 4

3
t−2

)
k
)
kg.m2/s

The net external torque about the center of mass is

τ ′ = dL′

dt
=

((
16

3
t + 4

3

)
k
)
N.m

The total kinetic energy of the system relative to the center of
mass is

K ′ = 1

2

∑

i

miv
′2
i =

∑

i

miv
2
i − 1

2
Mv2cm

= (2t2+11)− 1

2
(3)

[(
2

3
t+2

)2

+ 4

9

]
=

(
4t2

3
−2t− 13

3

)
J

Example 6.12 Two particles of equal mass m are rotating
about their center of mass with a constant speed v as in
Fig. 6.13. If they are separated by a distance 2d, find the total
angular momentum of the system.

Solution 6.12

L = mvd + mvd = 2mvd

Fig. 6.13 Two particles rotating about their center of mass

6.4.5 Collisions and the Center of Mass Frame
of Reference

In problems involving collisions, it is useful to use an inertial
frame of reference that is attached to the center of mass to
analyze the collision. This method is most commonly used
in analyzing collisions between subatomic particles or atoms.
In section (6.4.1), we proved that the total linear momentum
of a system when observed from the center of mass frame is
equal to zero.

p′
i = p′

f = 0 (6.16)

Now consider a system consisting of two bodies undergoing a
one-dimensional collision (see Fig. 6.14). Then from Eq.6.16
we have

p′
1i = −p′

2i

and
p′
1 f = −p′

2 f

That is, when viewed from the center of mass frame the two
objects approach each otherwith equal and oppositemomenta
and move away from each other with an equal and opposite
momenta. Therefore, the center of mass frame simplifies the
analysis since it exhibits a particular symmetry to the problem
(see Fig. 6.15).

Example 6.13 A rocket is projected vertically upward and
explodes into three fragments of equal mass when it reaches
the top of its flight at an altitude of 40m (see Fig. 6.16). If the
two fragments land to the ground after 3 s from the explosion,
find the time it takes the third fragment to hit the ground.

Solution 6.13 When the rocket reaches the top its velocity
immediately before explosion is zero. Since v1, v2 and v3 are
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Fig. 6.14 Consider a system consisting of two bodies undergoing a
one-dimensional collision

Fig. 6.15 The center of mass frame analysis of a collision

Fig. 6.16 A rocket is projected
vertically upward and explodes
into three fragments of equal
mass when it reaches the top of
its flight at an altitude of 40 m

the velocities of the fragments immediately after explosion,
we have from the conservation of momentum

m1v1 + m2v2 + m3v3 = 0

Since m1 = m2 = m3, then v1 + v2 + v3 = 0. The first and
second fragments land at the same time t ′ and hence they have
the same vertical velocity initially which is equal to −v3/2.
Therefore

h = v3t + gt2

2

and

h = −v3t ′

2
+ gt ′2

2

That gives

v3 = g(t ′2 − t2)

2t + t ′

and

h = gtt ′(t + 2t ′)
2(2t + t ′)

Substituting the values of h and t ′ gives

29.4t2 + 160t + 63.6 = 0

Thus, t = 2.3 s.

Example 6.14 Find the center of mass of the Earth–Moon
System and describe its motion around the sun.

Solution 6.14 As we shall see in Chap.9, the center of mass
of two bodies with different masses moving under gravity
will trace an ellipse. Since the external forces on the sun can
be neglected, we may consider it to be at rest in an inertial
frame of reference and at the origin of a coordinate system
(see Fig. 6.17). The center of mass of the Earth–Moon system
is

rcm = MErE + MMrM
ME + MM

where r̂E and r̂M are unit vectors in the direction of rE and
rM respectively. The equation of motion of the center of mass
is

F = (ME + MM )r̈cm

The gravitational force on the Earth–Moon system exerted by
the sun is

F = −GMS

(
ME

r2E
r̂E + MM

r2M
r̂M

)

Since the distance between the earth and the moon is so
small compared to their distance from the sun we may write
rE ≈ rM ≈ rcm

F = −GMS

r2cm
(ME + MM )r̂cm = (ME + MM )r̈cm

Hence, the center of mass of the Earth–Moon system moves
as a single planet of mass (ME +MM ) about the sun as shown
in Fig. 6.18.

Example 6.15 Describe the motion of a rocket in space using
the law of conservation of momentum.

Fig. 6.17 The center of mass of
the Earth-Moon system
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Fig. 6.18 The center of mass of the Earth-Moon system moves as a
single planet of mass (ME + MM ) about the sun

Fig. 6.19 A rocket moving in
space is a system with varying
mass. Its motion is analyzed
using the law of conservation of
momentum

Solution 6.15 A rocket moving in space is a system with
varying mass. Its motion is analyzed using the law of conser-
vation of momentum. In order for a rocket to move in space,
its fuel is burned and gases are produced and ejected from its
rear. This will cause the mass of the rocket to decrease contin-
uously The ejected gases producemomentum in the backward
direction and as a result the rocket receives a forwardmomen-
tum and its velocity increases (see Fig. 6.19). Suppose at an
instant t , the rocket has a mass M and velocity v relative to a
stationary frame of reference. During a time interval t, a mass
�m of the fuel is expelled as gas with a velocity u relative to
the rocket. The speed of the rocket increases to v+�v and the
speed of the fuel relative to the stationary frame of reference
is v − u. The initial momentum of the rocket is

p(t) = (M + �m)v

and the final momentum is

p(t + �t) = M(v + �v) + �m (v − u)

The change in the momentum is

�p(t + �t) = p(t + �t) − p(t) = M�v − (�m)u

Therefore, the force acting on the rocket is

F = dp
dt

= lim�t→0

�p
�t

= M
dv
dt

− u
dm

dt

Since the increase in the exhaust mass produce an equal
decrease in the rocket mass, we have

dm = −dM

Fig. 6.20 A system of particles in x-y plane

Thus

F = M
dv
dt

+ u
dM

dt

If no external forces act on the rocket we have F = 0 and

M
dv
dt

= −u
dM

dt

hence

∫ t

t0

dv
dt

dt = −u
∫ M

M0

1

M

dM

dt
dt = −u

∫ M

M0

dM

M

That gives

v − v0 = u ln
(
M0

M

)

Therefore, the final speed of the rocket depends on the exhaust
speed and on the ratio of the initial and final masses.

Problems

1. Find the coordinate of the center of mass of the system
shown in Fig. 6.20.

2. Find the center of mass of a uniform plate bounded by
y = −0.24x2+6 and the x-axis from x = −5 to x = 5m.

3. Find the center of mass of the homogeneous sheet shown
in Fig. 6.21.

4. Find the center of mass of the homogeneous sheet shown
in Fig. 6.22.

5. Find the center of mass of a uniform solid circular cone of
radius a and height h.

6. Find the center of mass of a uniform solid hemisphere of
radius R.
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Fig. 6.21 A homogenous sheet with a hole

Fig. 6.22 A homogenous sheet in the x-y plane

Fig. 6.23 The acceleration of the center of mass of two masses acted
upon by different forces

7. Two masses initially at rest are located at the points shown
in Fig. 6.23. If external forces act on the particles as in
Fig. 6.23, find the acceleration of the center of mass.

Fig.6.24 By neglecting friction between the boat and water, the center
of mass can be used to find the distance moved by the boat

8. A projectile of mass 15kg is fired from the ground with
an initial velocity of 12m/s at an angle of 45o to the hor-
izontal. 1 second later, the projectile explodes into two
fragments A and B. If immediately after explosion, frag-
ment A has a mass of 5kg and a speed of 5m/s at an angle
of 30o to the horizontal, find the velocity of fragment B
(assuming air resistance is neglected).

9. Two boys of masses 45 and 40kg are standing on a boat
of mass 150kg and length 5m as in Fig. 6.24. The boat
is initially lm from the pier. Assuming that there is no
friction between the boat and the water, find the distance
moved by the boat when the two meet at the middle of the
boat.

10. Two particles of masses m1 = 3kg and m2 = 5kg are
moving relative to the lab frame with velocities of 10m/s
along the y-axis and 15m/s at an angle of 30o to the x-
axis. Find (a) the velocity of their center of mass (b) the
momentum of each particle in the center of mass frame (c)
the total kinetic energy of the particles relative to the lab
frame and relative to the center of mass frame.

11. Two particles of masses m1 = 1kg and m2 = 2kg are
moving relative to the lab frame with velocities of v1 =
2i − 3j + k and v2 = 7i + j − 2k. If at a certain instant
they are located at (−1, 1, 2) and (3, 0, 1) , find the angular
momentum of the system relative to the origin and relative
to the center of mass.
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